1
0
Fork 0
libreoffice/sc/source/ui/StatisticsDialogs/RegressionDialog.cxx
Daniel Baumann 8e63e14cf6
Adding upstream version 4:25.2.3.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 16:20:04 +02:00

695 lines
26 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
*/
#include <sal/config.h>
#include <string_view>
#include <document.hxx>
#include <reffact.hxx>
#include <TableFillingAndNavigationTools.hxx>
#include <RegressionDialog.hxx>
#include <scresid.hxx>
#include <strings.hrc>
/*
Some regression basics
----------------------
1. Linear regression fits using data, a linear function between the dependent variable and the independent variable(s).
The basic form of this function is :-
y = b + m_1*x_1 + m_2*x_2 + ... + m_k*x_k
where y is the dependent variable
x_1, x_2, ..., x_k are the k independent variables
b is the intercept
m_1, m_2, ..., m_k are the slopes corresponding to the variables x_1, x_2, ..., x_k respectively.
This equation for n observations can be compactly written using matrices as :-
y = X*A
where y is the n dimensional column vector containing dependent variable observations.
where X is matrix of shape n*(k+1) where a row looks like [ 1 x_1 x_2 ... x_k ]
A is the k+1 dimensional column vector [ b m_1 m_2 ... m_k ]
Calc formula LINEST(Y_array ; X_array) can be used to compute all entries in "A" along with many other statistics.
2. Logarithmic regression is basically used to find a linear function between the dependent variable and
the natural logarithm of the independent variable(s).
So the basic form of this functions is :-
y = b + m_1*ln(x_1) + m_2*ln(x_2) + ... + m_k*ln(x_k)
This can be again written in a compact matrix form for n observations.
y = ln(X)*A
where y is the n dimensional column vector containing dependent variable observations.
where X is matrix of shape n*(k+1) where a row looks like [ e x_1 x_2 ... x_k ]
A is the k+1 dimensional column vector [ b m_1 m_2 ... m_k ]
To estimate A, we use the formula =LINEST(Y_array ; LN(X_array))
3. Power regression is used to fit the following model :-
y = b * (x_1 ^ m_1) * (x_2 ^ m_2) * ... * (x_k ^ m_k)
To reduce this to a linear function(so that we can still use LINEST()), we take natural logarithm on both sides
ln(y) = c + m_1*ln(x_1) + m_2*ln(x_2) + ... + m_k*ln(x_k) ; where c = ln(b)
This again can be written compactly in matrix form as :-
ln(y) = ln(X)*A
where y is the n dimensional column vector containing dependent variable observations.
where X is matrix of shape n*(k+1) where a row looks like [ e x_1 x_2 ... x_k ]
A is the k+1 dimensional column vector [ c m_1 m_2 ... m_k ]
To estimate A, we use the formula =LINEST(LN(Y_array) ; LN(X_array))
Once we get A, to get back y from x's we use the formula :-
y = exp( ln(X)*A )
Some references for computing confidence interval for the regression coefficients :-
[1] https://en.wikipedia.org/wiki/Student%27s_t-test#Slope_of_a_regression_line
[2] https://en.wikipedia.org/wiki/Simple_linear_regression#Normality_assumption
[3] https://onlinecourses.science.psu.edu/stat414/node/280
*/
namespace
{
enum class ScRegType {
LINEAR,
LOGARITHMIC,
POWER
};
const TranslateId constRegressionModel[] =
{
STR_LABEL_LINEAR,
STR_LABEL_LOGARITHMIC,
STR_LABEL_POWER
};
OUString constTemplateLINEST[] =
{
u"=LINEST(%VARIABLE2_RANGE% ; %VARIABLE1_RANGE% ; %CALC_INTERCEPT% ; TRUE)"_ustr,
u"=LINEST(%VARIABLE2_RANGE% ; LN(%VARIABLE1_RANGE%) ; %CALC_INTERCEPT% ; TRUE)"_ustr,
u"=LINEST(LN(%VARIABLE2_RANGE%) ; LN(%VARIABLE1_RANGE%) ; %CALC_INTERCEPT% ; TRUE)"_ustr
};
OUString constRegressionFormula[] =
{
u"=MMULT(%XDATAMATRIX_RANGE% ; %SLOPES_RANGE%) + %INTERCEPT_ADDR%"_ustr,
u"=MMULT(LN(%XDATAMATRIX_RANGE%) ; %SLOPES_RANGE%) + %INTERCEPT_ADDR%"_ustr,
u"=EXP(MMULT(LN(%XDATAMATRIX_RANGE%) ; %SLOPES_RANGE%) + %INTERCEPT_ADDR%)"_ustr
};
} // end anonymous namespace
static size_t lcl_GetNumRowsColsInRange(const ScRange& rRange, bool bRows)
{
if (bRows)
return rRange.aEnd.Row() - rRange.aStart.Row() + 1;
return rRange.aEnd.Col() - rRange.aStart.Col() + 1;
}
ScRegressionDialog::ScRegressionDialog(
SfxBindings* pSfxBindings, SfxChildWindow* pChildWindow,
weld::Window* pParent, ScViewData& rViewData )
: ScStatisticsTwoVariableDialog(
pSfxBindings, pChildWindow, pParent, rViewData,
u"modules/scalc/ui/regressiondialog.ui"_ustr, u"RegressionDialog"_ustr)
, mbUnivariate(true)
, mnNumIndependentVars(1)
, mnNumObservations(0)
, mbUse3DAddresses(false)
, mbCalcIntercept(true)
, mxWithLabelsCheckBox(m_xBuilder->weld_check_button(u"withlabels-check"_ustr))
, mxLinearRadioButton(m_xBuilder->weld_radio_button(u"linear-radio"_ustr))
, mxLogarithmicRadioButton(m_xBuilder->weld_radio_button(u"logarithmic-radio"_ustr))
, mxErrorMessage(m_xBuilder->weld_label(u"error-message"_ustr))
, mxConfidenceLevelField(m_xBuilder->weld_spin_button(u"confidencelevel-spin"_ustr))
, mxCalcResidualsCheckBox(m_xBuilder->weld_check_button(u"calcresiduals-check"_ustr))
, mxNoInterceptCheckBox(m_xBuilder->weld_check_button(u"nointercept-check"_ustr))
{
mxWithLabelsCheckBox->connect_toggled(LINK(this, ScRegressionDialog, CheckBoxHdl));
mxConfidenceLevelField->connect_value_changed(LINK(this, ScRegressionDialog, NumericFieldHdl));
}
ScRegressionDialog::~ScRegressionDialog()
{
}
void ScRegressionDialog::Close()
{
DoClose(ScRegressionDialogWrapper::GetChildWindowId());
}
TranslateId ScRegressionDialog::GetUndoNameId()
{
return STR_REGRESSION_UNDO_NAME;
}
ScRange ScRegressionDialog::ApplyOutput(ScDocShell* pDocShell)
{
AddressWalkerWriter aOutput(mOutputAddress, pDocShell, mDocument,
formula::FormulaGrammar::mergeToGrammar( formula::FormulaGrammar::GRAM_ENGLISH, mAddressDetails.eConv));
FormulaTemplate aTemplate(&mDocument);
aTemplate.autoReplaceUses3D(mbUse3DAddresses);
mbCalcIntercept = !mxNoInterceptCheckBox->get_active();
// max col of our output should account for
// 1. constant term column,
// 2. mnNumIndependentVars columns
// 3. Actual Y column
// 4. Predicted Y column
// 5. Residual Column
SCCOL nOutputMaxCol = mOutputAddress.Col() + mnNumIndependentVars + 3;
ScRange aXDataRange(GetDataRange(mVariable1Range));
ScRange aYDataRange(GetDataRange(mVariable2Range));
aTemplate.autoReplaceRange(u"%VARIABLE1_RANGE%"_ustr, aXDataRange);
aTemplate.autoReplaceRange(u"%VARIABLE2_RANGE%"_ustr, aYDataRange);
size_t nRegressionIndex = GetRegressionTypeIndex();
ScRegType eRegType = static_cast<ScRegType>(nRegressionIndex);
bool bTakeLogX = eRegType == ScRegType::LOGARITHMIC || eRegType == ScRegType::POWER;
WriteRawRegressionResults(aOutput, aTemplate, nRegressionIndex);
WriteRegressionStatistics(aOutput, aTemplate);
WriteRegressionANOVAResults(aOutput, aTemplate);
WriteRegressionEstimatesWithCI(aOutput, aTemplate, bTakeLogX);
if (mxCalcResidualsCheckBox->get_active())
WritePredictionsWithResiduals(aOutput, aTemplate, nRegressionIndex);
ScAddress aMaxAddress(aOutput.mMaximumAddress);
aMaxAddress.SetCol(std::max(aMaxAddress.Col(), nOutputMaxCol));
return ScRange(aOutput.mMinimumAddress, aMaxAddress);
}
bool ScRegressionDialog::InputRangesValid()
{
if (!mVariable1Range.IsValid())
{
mxErrorMessage->set_label(ScResId(STR_MESSAGE_XINVALID_RANGE));
return false;
}
if (!mVariable2Range.IsValid())
{
mxErrorMessage->set_label(ScResId(STR_MESSAGE_YINVALID_RANGE));
return false;
}
if (!mOutputAddress.IsValid())
{
mxErrorMessage->set_label(ScResId(STR_MESSAGE_INVALID_OUTPUT_ADDR));
return false;
}
{
double fConfidenceLevel = mxConfidenceLevelField->get_value();
if ( fConfidenceLevel <= 0.0 || fConfidenceLevel >= 100.0 )
{
mxErrorMessage->set_label(ScResId(STR_MESSAGE_INVALID_CONFIDENCE_LEVEL));
return false;
}
}
mVariable1Range.PutInOrder();
mVariable2Range.PutInOrder();
bool bGroupedByColumn = mGroupedBy == BY_COLUMN;
bool bYHasSingleDim = (
(bGroupedByColumn &&
mVariable2Range.aStart.Col() == mVariable2Range.aEnd.Col()) ||
(!bGroupedByColumn &&
mVariable2Range.aStart.Row() == mVariable2Range.aEnd.Row()));
if (!bYHasSingleDim)
{
if (bGroupedByColumn)
mxErrorMessage->set_label(ScResId(STR_MESSAGE_YVARIABLE_MULTI_COLUMN));
else
mxErrorMessage->set_label(ScResId(STR_MESSAGE_YVARIABLE_MULTI_ROW));
return false;
}
bool bWithLabels = mxWithLabelsCheckBox->get_active();
size_t nYObs = lcl_GetNumRowsColsInRange(mVariable2Range, bGroupedByColumn);
size_t nNumXVars = lcl_GetNumRowsColsInRange(mVariable1Range, !bGroupedByColumn);
mbUnivariate = nNumXVars == 1;
// Observation count mismatch check
if (lcl_GetNumRowsColsInRange(mVariable1Range, bGroupedByColumn) != nYObs)
{
if (mbUnivariate)
mxErrorMessage->set_label(ScResId(STR_MESSAGE_UNIVARIATE_NUMOBS_MISMATCH));
else
mxErrorMessage->set_label(ScResId(STR_MESSAGE_MULTIVARIATE_NUMOBS_MISMATCH));
return false;
}
mnNumIndependentVars = nNumXVars;
mnNumObservations = bWithLabels ? nYObs - 1 : nYObs;
mbUse3DAddresses = mVariable1Range.aStart.Tab() != mOutputAddress.Tab() ||
mVariable2Range.aStart.Tab() != mOutputAddress.Tab();
mxErrorMessage->set_label(u""_ustr);
return true;
}
size_t ScRegressionDialog::GetRegressionTypeIndex() const
{
if (mxLinearRadioButton->get_active())
return 0;
if (mxLogarithmicRadioButton->get_active())
return 1;
return 2;
}
ScRange ScRegressionDialog::GetDataRange(const ScRange& rRange)
{
if (!mxWithLabelsCheckBox->get_active())
return rRange;
ScRange aDataRange(rRange);
if (mGroupedBy == BY_COLUMN)
aDataRange.aStart.IncRow(1);
else
aDataRange.aStart.IncCol(1);
return aDataRange;
}
OUString ScRegressionDialog::GetVariableNameFormula(bool bXVar, size_t nIndex, bool bWithLog)
{
if (bXVar && nIndex == 0)
return "=\"" + ScResId(STR_LABEL_INTERCEPT) + "\"";
if (mxWithLabelsCheckBox->get_active())
{
ScAddress aAddr(bXVar ? mVariable1Range.aStart : mVariable2Range.aStart);
if (mGroupedBy == BY_COLUMN)
aAddr.IncCol(nIndex - 1);
else
aAddr.IncRow(nIndex - 1);
ScRefFlags eAddrFlag = mbUse3DAddresses ? ScRefFlags::ADDR_ABS_3D : ScRefFlags::ADDR_ABS;
return bWithLog ? OUString("=CONCAT(\"LN(\";" +
aAddr.Format(eAddrFlag, &mDocument, mDocument.GetAddressConvention()) + ";\")\")") :
OUString("=" + aAddr.Format(eAddrFlag, &mDocument, mDocument.GetAddressConvention()));
}
OUString aDefaultVarName;
if (bXVar)
aDefaultVarName = "X" + OUString::number(nIndex);
else
aDefaultVarName = "Y";
return bWithLog ? OUString("=\"LN(" + aDefaultVarName + ")\"") :
OUString("=\"" + aDefaultVarName + "\"");
}
OUString ScRegressionDialog::GetXVariableNameFormula(size_t nIndex, bool bWithLog)
{
assert(nIndex <= mnNumIndependentVars);
return GetVariableNameFormula(true, nIndex, bWithLog);
}
OUString ScRegressionDialog::GetYVariableNameFormula(bool bWithLog)
{
return GetVariableNameFormula(false, 1, bWithLog);
}
void ScRegressionDialog::WriteRawRegressionResults(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate,
size_t nRegressionIndex)
{
rOutput.writeBoldString(ScResId(STR_REGRESSION));
rOutput.newLine();
// REGRESSION MODEL
rOutput.writeString(ScResId(STR_LABEL_REGRESSION_MODEL));
rOutput.nextColumn();
rOutput.writeString(ScResId(constRegressionModel[nRegressionIndex]));
rOutput.newLine();
rOutput.newLine();
rOutput.writeString(ScResId(STR_LINEST_RAW_OUTPUT_TITLE));
rOutput.newLine();
rOutput.push();
rTemplate.setTemplate(constTemplateLINEST[nRegressionIndex].
replaceFirst("%CALC_INTERCEPT%",
mbCalcIntercept ? std::u16string_view(u"TRUE") : std::u16string_view(u"FALSE")));
rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1 + mnNumIndependentVars, 5);
// Add LINEST result components to template
// 1. Add ranges for coefficients and standard errors for independent vars and the intercept.
// Note that these two are in the reverse order(m_n, m_n-1, ..., m_1, b) w.r.t what we expect.
rTemplate.autoReplaceRange(u"%COEFFICIENTS_REV_RANGE%"_ustr, ScRange(rOutput.current(), rOutput.current(mnNumIndependentVars)));
rTemplate.autoReplaceRange(u"%SERRORSX_REV_RANGE%"_ustr, ScRange(rOutput.current(0, 1), rOutput.current(mnNumIndependentVars, 1)));
// 2. Add R-squared and standard error for y estimate.
rTemplate.autoReplaceAddress(u"%RSQUARED_ADDR%"_ustr, rOutput.current(0, 2));
rTemplate.autoReplaceAddress(u"%SERRORY_ADDR%"_ustr, rOutput.current(1, 2));
// 3. Add F statistic and degrees of freedom
rTemplate.autoReplaceAddress(u"%FSTATISTIC_ADDR%"_ustr, rOutput.current(0, 3));
rTemplate.autoReplaceAddress(u"%DoFRESID_ADDR%"_ustr, rOutput.current(1, 3));
// 4. Add regression sum of squares and residual sum of squares
rTemplate.autoReplaceAddress(u"%SSREG_ADDR%"_ustr, rOutput.current(0, 4));
rTemplate.autoReplaceAddress(u"%SSRESID_ADDR%"_ustr, rOutput.current(1, 4));
rOutput.push(0, 4);
rOutput.newLine();
}
void ScRegressionDialog::WriteRegressionStatistics(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate)
{
rOutput.newLine();
rOutput.writeString(ScResId(STR_LABEL_REGRESSION_STATISTICS));
rOutput.newLine();
const TranslateId aMeasureNames[] =
{
STR_LABEL_RSQUARED,
STRID_CALC_STD_ERROR,
STR_LABEL_XVARIABLES_COUNT,
STR_OBSERVATIONS_LABEL,
STR_LABEL_ADJUSTED_RSQUARED
};
OUString aMeasureFormulas[] =
{
u"=%RSQUARED_ADDR%"_ustr,
u"=%SERRORY_ADDR%"_ustr,
"=" + OUString::number(mnNumIndependentVars),
"=" + OUString::number(mnNumObservations),
OUString::Concat(
"=1 - (1 - %RSQUARED_ADDR%)*(%NUMOBS_ADDR% - 1)/(%NUMOBS_ADDR% - %NUMXVARS_ADDR%") +
(mbCalcIntercept ? std::u16string_view(u" - 1)") : std::u16string_view(u")"))
};
rTemplate.autoReplaceAddress(u"%NUMXVARS_ADDR%"_ustr, rOutput.current(1, 2));
rTemplate.autoReplaceAddress(u"%NUMOBS_ADDR%"_ustr, rOutput.current(1, 3));
for (size_t nIdx = 0; nIdx < SAL_N_ELEMENTS(aMeasureNames); ++nIdx)
{
rOutput.writeString(ScResId(aMeasureNames[nIdx]));
rOutput.nextColumn();
rTemplate.setTemplate(aMeasureFormulas[nIdx]);
rOutput.writeFormula(rTemplate.getTemplate());
rOutput.newLine();
}
}
void ScRegressionDialog::WriteRegressionANOVAResults(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate)
{
rOutput.newLine();
rOutput.writeString(ScResId(STR_LABEL_ANOVA));
rOutput.newLine();
const size_t nColsInTable = 6;
const size_t nRowsInTable = 4;
OUString aTable[nRowsInTable][nColsInTable] =
{
{
u""_ustr,
ScResId(STR_ANOVA_LABEL_DF),
ScResId(STR_ANOVA_LABEL_SS),
ScResId(STR_ANOVA_LABEL_MS),
ScResId(STR_ANOVA_LABEL_F),
ScResId(STR_ANOVA_LABEL_SIGNIFICANCE_F)
},
{
ScResId(STR_REGRESSION),
u"=%NUMXVARS_ADDR%"_ustr,
u"=%SSREG_ADDR%"_ustr,
u"=%SSREG_ADDR% / %DoFREG_ADDR%"_ustr,
u"=%FSTATISTIC_ADDR%"_ustr,
u"=FDIST(%FSTATISTIC_ADDR% ; %DoFREG_ADDR% ; %DoFRESID_ADDR%)"_ustr
},
{
ScResId(STR_LABEL_RESIDUAL),
u"=%DoFRESID_ADDR%"_ustr,
u"=%SSRESID_ADDR%"_ustr,
u"=%SSRESID_ADDR% / %DoFRESID_ADDR%"_ustr,
u""_ustr,
u""_ustr
},
{
ScResId(STR_ANOVA_LABEL_TOTAL),
u"=%DoFREG_ADDR% + %DoFRESID_ADDR%"_ustr,
u"=%SSREG_ADDR% + %SSRESID_ADDR%"_ustr,
u""_ustr,
u""_ustr,
u""_ustr
}
};
rTemplate.autoReplaceAddress(u"%DoFREG_ADDR%"_ustr, rOutput.current(1, 1));
// Cell getter lambda
std::function<CellValueGetter> aCellGetterFunc = [&aTable](size_t nRowIdx, size_t nColIdx) -> const OUString&
{
return aTable[nRowIdx][nColIdx];
};
// Cell writer lambda
std::function<CellWriter> aCellWriterFunc = [&rOutput, &rTemplate]
(const OUString& rContent, size_t /*nRowIdx*/, size_t /*nColIdx*/)
{
if (!rContent.isEmpty())
{
if (rContent.startsWith("="))
{
rTemplate.setTemplate(rContent);
rOutput.writeFormula(rTemplate.getTemplate());
}
else
rOutput.writeString(rContent);
}
};
WriteTable(aCellGetterFunc, nRowsInTable, nColsInTable, rOutput, aCellWriterFunc);
// User given confidence level
rOutput.newLine();
rOutput.writeString(ScResId(STR_LABEL_CONFIDENCE_LEVEL));
rOutput.nextColumn();
rOutput.writeValue(mxConfidenceLevelField->get_value() / 100.0);
rTemplate.autoReplaceAddress(u"%CONFIDENCE_LEVEL_ADDR%"_ustr, rOutput.current());
rOutput.newLine();
}
// Write slopes, intercept, their standard errors, t-statistics, p-value, confidence intervals
void ScRegressionDialog::WriteRegressionEstimatesWithCI(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate,
bool bTakeLogX)
{
rOutput.newLine();
ScAddress aEnd( rOutput.current(0, 1 + mnNumIndependentVars));
ScRefFlags eAddrFlag = mbUse3DAddresses ? ScRefFlags::ADDR_ABS_3D : ScRefFlags::ADDR_ABS;
aEnd.IncCol();
const OUString aCoeffAddr( aEnd.Format( eAddrFlag, &mDocument, mDocument.GetAddressConvention()));
aEnd.IncCol();
const OUString aStErrAddr( aEnd.Format( eAddrFlag, &mDocument, mDocument.GetAddressConvention()));
// Coefficients & Std.Errors ranges (column vectors) in this table (yet to populate).
rTemplate.autoReplaceRange(u"%COEFFICIENTS_RANGE%"_ustr,
ScRange(rOutput.current(1, 1),
rOutput.current(1, 1 + mnNumIndependentVars)));
rTemplate.autoReplaceRange(u"%SLOPES_RANGE%"_ustr, // Excludes the intercept
ScRange(rOutput.current(1, 2),
rOutput.current(1, 1 + mnNumIndependentVars)));
rTemplate.autoReplaceAddress(u"%INTERCEPT_ADDR%"_ustr, rOutput.current(1, 1));
rTemplate.autoReplaceRange(u"%SERRORSX_RANGE%"_ustr,
ScRange(rOutput.current(2, 1),
rOutput.current(2, 1 + mnNumIndependentVars)));
// t-Statistics range in this table (yet to populate)
rTemplate.autoReplaceRange(u"%TSTAT_RANGE%"_ustr,
ScRange(rOutput.current(3, 1),
rOutput.current(3, 1 + mnNumIndependentVars)));
const size_t nColsInTable = 7;
const size_t nRowsInTable = 2;
OUString aTable[nRowsInTable][nColsInTable] =
{
{
u""_ustr,
ScResId(STR_LABEL_COEFFICIENTS),
ScResId(STRID_CALC_STD_ERROR),
ScResId(STR_LABEL_TSTATISTIC),
ScResId(STR_P_VALUE_LABEL),
"=CONCAT(\"" + ScResId(STR_LABEL_LOWER) +
" \" ; INT(%CONFIDENCE_LEVEL_ADDR% * 100) ; \"%\")",
"=CONCAT(\"" + ScResId(STR_LABEL_UPPER) +
" \" ; INT(%CONFIDENCE_LEVEL_ADDR% * 100) ; \"%\")",
},
// Following are matrix formulas of size numcols = 1, numrows = (mnNumIndependentVars + 1)
{
u""_ustr,
// This puts the coefficients in the reverse order compared to that in LINEST output.
"=INDEX(%COEFFICIENTS_REV_RANGE%; 1 ; ROW(" + aCoeffAddr + ")+1 - ROW())",
// This puts the standard errors in the reverse order compared to that in LINEST output.
"=INDEX(%SERRORSX_REV_RANGE%; 1 ; ROW(" + aStErrAddr + ")+1 - ROW())",
// t-Statistic
u"=%COEFFICIENTS_RANGE% / %SERRORSX_RANGE%"_ustr,
// p-Value
u"=TDIST(ABS(%TSTAT_RANGE%) ; %DoFRESID_ADDR% ; 2 )"_ustr,
// Lower limit of confidence interval
u"=%COEFFICIENTS_RANGE% - %SERRORSX_RANGE% * "
"TINV(1 - %CONFIDENCE_LEVEL_ADDR% ; %DoFRESID_ADDR%)"_ustr,
// Upper limit of confidence interval
u"=%COEFFICIENTS_RANGE% + %SERRORSX_RANGE% * "
"TINV(1 - %CONFIDENCE_LEVEL_ADDR% ; %DoFRESID_ADDR%)"_ustr
}
};
// Cell getter lambda
std::function<CellValueGetter> aCellGetterFunc = [&aTable](size_t nRowIdx, size_t nColIdx) -> const OUString&
{
return aTable[nRowIdx][nColIdx];
};
// Cell writer lambda
size_t nNumIndependentVars = mnNumIndependentVars;
std::function<CellWriter> aCellWriterFunc = [&rOutput, &rTemplate, nNumIndependentVars]
(const OUString& rContent, size_t nRowIdx, size_t /*nColIdx*/)
{
if (!rContent.isEmpty())
{
if (rContent.startsWith("="))
{
rTemplate.setTemplate(rContent);
if (nRowIdx == 0)
rOutput.writeFormula(rTemplate.getTemplate());
else
rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1, 1 + nNumIndependentVars);
}
else
rOutput.writeString(rContent);
}
};
WriteTable(aCellGetterFunc, nRowsInTable, nColsInTable, rOutput, aCellWriterFunc);
// Go back to the second row and first column of the table to
// fill the names of variables + intercept
rOutput.push(0, -1);
for (size_t nXvarIdx = 0; nXvarIdx <= mnNumIndependentVars; ++nXvarIdx)
{
rOutput.writeFormula(GetXVariableNameFormula(nXvarIdx, bTakeLogX));
rOutput.newLine();
}
}
// Re-write all observations in group-by column mode with predictions and residuals
void ScRegressionDialog::WritePredictionsWithResiduals(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate,
size_t nRegressionIndex)
{
bool bGroupedByColumn = mGroupedBy == BY_COLUMN;
rOutput.newLine();
rOutput.push();
// Range of X variables with rows as observations and columns as variables.
ScRange aDataMatrixRange(rOutput.current(0, 1), rOutput.current(mnNumIndependentVars - 1, mnNumObservations));
rTemplate.autoReplaceRange(u"%XDATAMATRIX_RANGE%"_ustr, aDataMatrixRange);
// Write X variable names
for (size_t nXvarIdx = 1; nXvarIdx <= mnNumIndependentVars; ++nXvarIdx)
{
// Here we write the X variables without any transformation(LN)
rOutput.writeFormula(GetXVariableNameFormula(nXvarIdx, false));
rOutput.nextColumn();
}
rOutput.reset();
// Write the X data matrix
rOutput.nextRow();
OUString aDataMatrixFormula = bGroupedByColumn ? u"=%VARIABLE1_RANGE%"_ustr : u"=TRANSPOSE(%VARIABLE1_RANGE%)"_ustr;
rTemplate.setTemplate(aDataMatrixFormula);
rOutput.writeMatrixFormula(rTemplate.getTemplate(), mnNumIndependentVars, mnNumObservations);
// Write predicted values
rOutput.push(mnNumIndependentVars, -1);
rOutput.writeString(ScResId(STR_LABEL_PREDICTEDY));
rOutput.nextRow();
rTemplate.setTemplate(constRegressionFormula[nRegressionIndex]);
rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1, mnNumObservations);
rTemplate.autoReplaceRange(u"%PREDICTEDY_RANGE%"_ustr, ScRange(rOutput.current(), rOutput.current(0, mnNumObservations - 1)));
// Write actual Y
rOutput.push(1, -1);
rOutput.writeFormula(GetYVariableNameFormula(false));
rOutput.nextRow();
OUString aYVectorFormula = bGroupedByColumn ? u"=%VARIABLE2_RANGE%"_ustr : u"=TRANSPOSE(%VARIABLE2_RANGE%)"_ustr;
rTemplate.setTemplate(aYVectorFormula);
rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1, mnNumObservations);
rTemplate.autoReplaceRange(u"%ACTUALY_RANGE%"_ustr, ScRange(rOutput.current(), rOutput.current(0, mnNumObservations - 1)));
// Write residual
rOutput.push(1, -1);
rOutput.writeString(ScResId(STR_LABEL_RESIDUAL));
rOutput.nextRow();
rTemplate.setTemplate("=%ACTUALY_RANGE% - %PREDICTEDY_RANGE%");
rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1, mnNumObservations);
}
// Generic table writer
void ScRegressionDialog::WriteTable(const std::function<CellValueGetter>& rCellGetter,
size_t nRowsInTable, size_t nColsInTable,
AddressWalkerWriter& rOutput,
const std::function<CellWriter>& rFunc)
{
for (size_t nRowIdx = 0; nRowIdx < nRowsInTable; ++nRowIdx)
{
for (size_t nColIdx = 0; nColIdx < nColsInTable; ++nColIdx)
{
rFunc(rCellGetter(nRowIdx, nColIdx), nRowIdx, nColIdx);
rOutput.nextColumn();
}
rOutput.newLine();
}
}
IMPL_LINK_NOARG(ScRegressionDialog, CheckBoxHdl, weld::Toggleable&, void)
{
ValidateDialogInput();
}
IMPL_LINK_NOARG(ScRegressionDialog, NumericFieldHdl, weld::SpinButton&, void)
{
ValidateDialogInput();
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */