1604 lines
43 KiB
C
1604 lines
43 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2022 Intel Corporation
|
|
*/
|
|
|
|
#include "xe_guc_ct.h"
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/circ_buf.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include <kunit/static_stub.h>
|
|
|
|
#include <drm/drm_managed.h>
|
|
|
|
#include "abi/guc_actions_abi.h"
|
|
#include "abi/guc_actions_sriov_abi.h"
|
|
#include "abi/guc_klvs_abi.h"
|
|
#include "xe_bo.h"
|
|
#include "xe_device.h"
|
|
#include "xe_gt.h"
|
|
#include "xe_gt_pagefault.h"
|
|
#include "xe_gt_printk.h"
|
|
#include "xe_gt_sriov_pf_control.h"
|
|
#include "xe_gt_sriov_pf_monitor.h"
|
|
#include "xe_gt_tlb_invalidation.h"
|
|
#include "xe_guc.h"
|
|
#include "xe_guc_relay.h"
|
|
#include "xe_guc_submit.h"
|
|
#include "xe_map.h"
|
|
#include "xe_pm.h"
|
|
#include "xe_trace_guc.h"
|
|
|
|
/* Used when a CT send wants to block and / or receive data */
|
|
struct g2h_fence {
|
|
u32 *response_buffer;
|
|
u32 seqno;
|
|
u32 response_data;
|
|
u16 response_len;
|
|
u16 error;
|
|
u16 hint;
|
|
u16 reason;
|
|
bool retry;
|
|
bool fail;
|
|
bool done;
|
|
};
|
|
|
|
static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
|
|
{
|
|
g2h_fence->response_buffer = response_buffer;
|
|
g2h_fence->response_data = 0;
|
|
g2h_fence->response_len = 0;
|
|
g2h_fence->fail = false;
|
|
g2h_fence->retry = false;
|
|
g2h_fence->done = false;
|
|
g2h_fence->seqno = ~0x0;
|
|
}
|
|
|
|
static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
|
|
{
|
|
return g2h_fence->seqno == ~0x0;
|
|
}
|
|
|
|
static struct xe_guc *
|
|
ct_to_guc(struct xe_guc_ct *ct)
|
|
{
|
|
return container_of(ct, struct xe_guc, ct);
|
|
}
|
|
|
|
static struct xe_gt *
|
|
ct_to_gt(struct xe_guc_ct *ct)
|
|
{
|
|
return container_of(ct, struct xe_gt, uc.guc.ct);
|
|
}
|
|
|
|
static struct xe_device *
|
|
ct_to_xe(struct xe_guc_ct *ct)
|
|
{
|
|
return gt_to_xe(ct_to_gt(ct));
|
|
}
|
|
|
|
/**
|
|
* DOC: GuC CTB Blob
|
|
*
|
|
* We allocate single blob to hold both CTB descriptors and buffers:
|
|
*
|
|
* +--------+-----------------------------------------------+------+
|
|
* | offset | contents | size |
|
|
* +========+===============================================+======+
|
|
* | 0x0000 | H2G CTB Descriptor (send) | |
|
|
* +--------+-----------------------------------------------+ 4K |
|
|
* | 0x0800 | G2H CTB Descriptor (g2h) | |
|
|
* +--------+-----------------------------------------------+------+
|
|
* | 0x1000 | H2G CT Buffer (send) | n*4K |
|
|
* | | | |
|
|
* +--------+-----------------------------------------------+------+
|
|
* | 0x1000 | G2H CT Buffer (g2h) | m*4K |
|
|
* | + n*4K | | |
|
|
* +--------+-----------------------------------------------+------+
|
|
*
|
|
* Size of each ``CT Buffer`` must be multiple of 4K.
|
|
* We don't expect too many messages in flight at any time, unless we are
|
|
* using the GuC submission. In that case each request requires a minimum
|
|
* 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
|
|
* enough space to avoid backpressure on the driver. We increase the size
|
|
* of the receive buffer (relative to the send) to ensure a G2H response
|
|
* CTB has a landing spot.
|
|
*
|
|
* In addition to submissions, the G2H buffer needs to be able to hold
|
|
* enough space for recoverable page fault notifications. The number of
|
|
* page faults is interrupt driven and can be as much as the number of
|
|
* compute resources available. However, most of the actual work for these
|
|
* is in a separate page fault worker thread. Therefore we only need to
|
|
* make sure the queue has enough space to handle all of the submissions
|
|
* and responses and an extra buffer for incoming page faults.
|
|
*/
|
|
|
|
#define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
|
|
#define CTB_H2G_BUFFER_SIZE (SZ_4K)
|
|
#define CTB_G2H_BUFFER_SIZE (SZ_128K)
|
|
#define G2H_ROOM_BUFFER_SIZE (CTB_G2H_BUFFER_SIZE / 2)
|
|
|
|
/**
|
|
* xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full
|
|
* CT command queue
|
|
* @ct: the &xe_guc_ct. Unused at this moment but will be used in the future.
|
|
*
|
|
* Observation is that a 4KiB buffer full of commands takes a little over a
|
|
* second to process. Use that to calculate maximum time to process a full CT
|
|
* command queue.
|
|
*
|
|
* Return: Maximum time to process a full CT queue in jiffies.
|
|
*/
|
|
long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct)
|
|
{
|
|
BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4));
|
|
return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ;
|
|
}
|
|
|
|
static size_t guc_ct_size(void)
|
|
{
|
|
return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
|
|
CTB_G2H_BUFFER_SIZE;
|
|
}
|
|
|
|
static void guc_ct_fini(struct drm_device *drm, void *arg)
|
|
{
|
|
struct xe_guc_ct *ct = arg;
|
|
|
|
destroy_workqueue(ct->g2h_wq);
|
|
xa_destroy(&ct->fence_lookup);
|
|
}
|
|
|
|
static void receive_g2h(struct xe_guc_ct *ct);
|
|
static void g2h_worker_func(struct work_struct *w);
|
|
static void safe_mode_worker_func(struct work_struct *w);
|
|
|
|
static void primelockdep(struct xe_guc_ct *ct)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_LOCKDEP))
|
|
return;
|
|
|
|
fs_reclaim_acquire(GFP_KERNEL);
|
|
might_lock(&ct->lock);
|
|
fs_reclaim_release(GFP_KERNEL);
|
|
}
|
|
|
|
int xe_guc_ct_init(struct xe_guc_ct *ct)
|
|
{
|
|
struct xe_device *xe = ct_to_xe(ct);
|
|
struct xe_gt *gt = ct_to_gt(ct);
|
|
struct xe_tile *tile = gt_to_tile(gt);
|
|
struct xe_bo *bo;
|
|
int err;
|
|
|
|
xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE));
|
|
|
|
ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", 0);
|
|
if (!ct->g2h_wq)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_init(&ct->fast_lock);
|
|
xa_init(&ct->fence_lookup);
|
|
INIT_WORK(&ct->g2h_worker, g2h_worker_func);
|
|
INIT_DELAYED_WORK(&ct->safe_mode_worker, safe_mode_worker_func);
|
|
init_waitqueue_head(&ct->wq);
|
|
init_waitqueue_head(&ct->g2h_fence_wq);
|
|
|
|
err = drmm_mutex_init(&xe->drm, &ct->lock);
|
|
if (err)
|
|
return err;
|
|
|
|
primelockdep(ct);
|
|
|
|
bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
|
|
XE_BO_FLAG_SYSTEM |
|
|
XE_BO_FLAG_GGTT |
|
|
XE_BO_FLAG_GGTT_INVALIDATE);
|
|
if (IS_ERR(bo))
|
|
return PTR_ERR(bo);
|
|
|
|
ct->bo = bo;
|
|
|
|
err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
|
|
if (err)
|
|
return err;
|
|
|
|
xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED);
|
|
ct->state = XE_GUC_CT_STATE_DISABLED;
|
|
return 0;
|
|
}
|
|
|
|
#define desc_read(xe_, guc_ctb__, field_) \
|
|
xe_map_rd_field(xe_, &guc_ctb__->desc, 0, \
|
|
struct guc_ct_buffer_desc, field_)
|
|
|
|
#define desc_write(xe_, guc_ctb__, field_, val_) \
|
|
xe_map_wr_field(xe_, &guc_ctb__->desc, 0, \
|
|
struct guc_ct_buffer_desc, field_, val_)
|
|
|
|
static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
|
|
struct iosys_map *map)
|
|
{
|
|
h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
|
|
h2g->info.resv_space = 0;
|
|
h2g->info.tail = 0;
|
|
h2g->info.head = 0;
|
|
h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
|
|
h2g->info.size) -
|
|
h2g->info.resv_space;
|
|
h2g->info.broken = false;
|
|
|
|
h2g->desc = *map;
|
|
xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
|
|
|
|
h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
|
|
}
|
|
|
|
static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
|
|
struct iosys_map *map)
|
|
{
|
|
g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
|
|
g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
|
|
g2h->info.head = 0;
|
|
g2h->info.tail = 0;
|
|
g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
|
|
g2h->info.size) -
|
|
g2h->info.resv_space;
|
|
g2h->info.broken = false;
|
|
|
|
g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
|
|
xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
|
|
|
|
g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
|
|
CTB_H2G_BUFFER_SIZE);
|
|
}
|
|
|
|
static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
|
|
{
|
|
struct xe_guc *guc = ct_to_guc(ct);
|
|
u32 desc_addr, ctb_addr, size;
|
|
int err;
|
|
|
|
desc_addr = xe_bo_ggtt_addr(ct->bo);
|
|
ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
|
|
size = ct->ctbs.h2g.info.size * sizeof(u32);
|
|
|
|
err = xe_guc_self_cfg64(guc,
|
|
GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
|
|
desc_addr);
|
|
if (err)
|
|
return err;
|
|
|
|
err = xe_guc_self_cfg64(guc,
|
|
GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
|
|
ctb_addr);
|
|
if (err)
|
|
return err;
|
|
|
|
return xe_guc_self_cfg32(guc,
|
|
GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
|
|
size);
|
|
}
|
|
|
|
static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
|
|
{
|
|
struct xe_guc *guc = ct_to_guc(ct);
|
|
u32 desc_addr, ctb_addr, size;
|
|
int err;
|
|
|
|
desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
|
|
ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
|
|
CTB_H2G_BUFFER_SIZE;
|
|
size = ct->ctbs.g2h.info.size * sizeof(u32);
|
|
|
|
err = xe_guc_self_cfg64(guc,
|
|
GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
|
|
desc_addr);
|
|
if (err)
|
|
return err;
|
|
|
|
err = xe_guc_self_cfg64(guc,
|
|
GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
|
|
ctb_addr);
|
|
if (err)
|
|
return err;
|
|
|
|
return xe_guc_self_cfg32(guc,
|
|
GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
|
|
size);
|
|
}
|
|
|
|
static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
|
|
{
|
|
u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
|
|
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
|
|
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
|
|
FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
|
|
GUC_ACTION_HOST2GUC_CONTROL_CTB),
|
|
FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
|
|
enable ? GUC_CTB_CONTROL_ENABLE :
|
|
GUC_CTB_CONTROL_DISABLE),
|
|
};
|
|
int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));
|
|
|
|
return ret > 0 ? -EPROTO : ret;
|
|
}
|
|
|
|
static void xe_guc_ct_set_state(struct xe_guc_ct *ct,
|
|
enum xe_guc_ct_state state)
|
|
{
|
|
mutex_lock(&ct->lock); /* Serialise dequeue_one_g2h() */
|
|
spin_lock_irq(&ct->fast_lock); /* Serialise CT fast-path */
|
|
|
|
xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 ||
|
|
state == XE_GUC_CT_STATE_STOPPED);
|
|
|
|
if (ct->g2h_outstanding)
|
|
xe_pm_runtime_put(ct_to_xe(ct));
|
|
ct->g2h_outstanding = 0;
|
|
ct->state = state;
|
|
|
|
spin_unlock_irq(&ct->fast_lock);
|
|
|
|
/*
|
|
* Lockdep doesn't like this under the fast lock and he destroy only
|
|
* needs to be serialized with the send path which ct lock provides.
|
|
*/
|
|
xa_destroy(&ct->fence_lookup);
|
|
|
|
mutex_unlock(&ct->lock);
|
|
}
|
|
|
|
static bool ct_needs_safe_mode(struct xe_guc_ct *ct)
|
|
{
|
|
return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev));
|
|
}
|
|
|
|
static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct)
|
|
{
|
|
if (!ct_needs_safe_mode(ct))
|
|
return false;
|
|
|
|
queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10);
|
|
return true;
|
|
}
|
|
|
|
static void safe_mode_worker_func(struct work_struct *w)
|
|
{
|
|
struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work);
|
|
|
|
receive_g2h(ct);
|
|
|
|
if (!ct_restart_safe_mode_worker(ct))
|
|
xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n");
|
|
}
|
|
|
|
static void ct_enter_safe_mode(struct xe_guc_ct *ct)
|
|
{
|
|
if (ct_restart_safe_mode_worker(ct))
|
|
xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n");
|
|
}
|
|
|
|
static void ct_exit_safe_mode(struct xe_guc_ct *ct)
|
|
{
|
|
if (cancel_delayed_work_sync(&ct->safe_mode_worker))
|
|
xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n");
|
|
}
|
|
|
|
int xe_guc_ct_enable(struct xe_guc_ct *ct)
|
|
{
|
|
struct xe_device *xe = ct_to_xe(ct);
|
|
struct xe_gt *gt = ct_to_gt(ct);
|
|
int err;
|
|
|
|
xe_gt_assert(gt, !xe_guc_ct_enabled(ct));
|
|
|
|
guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
|
|
guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
|
|
|
|
err = guc_ct_ctb_h2g_register(ct);
|
|
if (err)
|
|
goto err_out;
|
|
|
|
err = guc_ct_ctb_g2h_register(ct);
|
|
if (err)
|
|
goto err_out;
|
|
|
|
err = guc_ct_control_toggle(ct, true);
|
|
if (err)
|
|
goto err_out;
|
|
|
|
xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED);
|
|
|
|
smp_mb();
|
|
wake_up_all(&ct->wq);
|
|
xe_gt_dbg(gt, "GuC CT communication channel enabled\n");
|
|
|
|
if (ct_needs_safe_mode(ct))
|
|
ct_enter_safe_mode(ct);
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err));
|
|
|
|
return err;
|
|
}
|
|
|
|
static void stop_g2h_handler(struct xe_guc_ct *ct)
|
|
{
|
|
cancel_work_sync(&ct->g2h_worker);
|
|
}
|
|
|
|
/**
|
|
* xe_guc_ct_disable - Set GuC to disabled state
|
|
* @ct: the &xe_guc_ct
|
|
*
|
|
* Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected
|
|
* in this transition.
|
|
*/
|
|
void xe_guc_ct_disable(struct xe_guc_ct *ct)
|
|
{
|
|
xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED);
|
|
ct_exit_safe_mode(ct);
|
|
stop_g2h_handler(ct);
|
|
}
|
|
|
|
/**
|
|
* xe_guc_ct_stop - Set GuC to stopped state
|
|
* @ct: the &xe_guc_ct
|
|
*
|
|
* Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h
|
|
*/
|
|
void xe_guc_ct_stop(struct xe_guc_ct *ct)
|
|
{
|
|
xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED);
|
|
stop_g2h_handler(ct);
|
|
}
|
|
|
|
static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
|
|
{
|
|
struct guc_ctb *h2g = &ct->ctbs.h2g;
|
|
|
|
lockdep_assert_held(&ct->lock);
|
|
|
|
if (cmd_len > h2g->info.space) {
|
|
h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
|
|
h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
|
|
h2g->info.size) -
|
|
h2g->info.resv_space;
|
|
if (cmd_len > h2g->info.space)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
|
|
{
|
|
if (!g2h_len)
|
|
return true;
|
|
|
|
lockdep_assert_held(&ct->fast_lock);
|
|
|
|
return ct->ctbs.g2h.info.space > g2h_len;
|
|
}
|
|
|
|
static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
|
|
{
|
|
lockdep_assert_held(&ct->lock);
|
|
|
|
if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
|
|
{
|
|
lockdep_assert_held(&ct->lock);
|
|
ct->ctbs.h2g.info.space -= cmd_len;
|
|
}
|
|
|
|
static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
|
|
{
|
|
xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space);
|
|
xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) ||
|
|
(g2h_len && num_g2h));
|
|
|
|
if (g2h_len) {
|
|
lockdep_assert_held(&ct->fast_lock);
|
|
|
|
if (!ct->g2h_outstanding)
|
|
xe_pm_runtime_get_noresume(ct_to_xe(ct));
|
|
|
|
ct->ctbs.g2h.info.space -= g2h_len;
|
|
ct->g2h_outstanding += num_g2h;
|
|
}
|
|
}
|
|
|
|
static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
|
|
{
|
|
lockdep_assert_held(&ct->fast_lock);
|
|
xe_gt_assert(ct_to_gt(ct), ct->ctbs.g2h.info.space + g2h_len <=
|
|
ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space);
|
|
xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding);
|
|
|
|
ct->ctbs.g2h.info.space += g2h_len;
|
|
if (!--ct->g2h_outstanding)
|
|
xe_pm_runtime_put(ct_to_xe(ct));
|
|
}
|
|
|
|
static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
|
|
{
|
|
spin_lock_irq(&ct->fast_lock);
|
|
__g2h_release_space(ct, g2h_len);
|
|
spin_unlock_irq(&ct->fast_lock);
|
|
}
|
|
|
|
#define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */
|
|
|
|
static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
|
|
u32 ct_fence_value, bool want_response)
|
|
{
|
|
struct xe_device *xe = ct_to_xe(ct);
|
|
struct xe_gt *gt = ct_to_gt(ct);
|
|
struct guc_ctb *h2g = &ct->ctbs.h2g;
|
|
u32 cmd[H2G_CT_HEADERS];
|
|
u32 tail = h2g->info.tail;
|
|
u32 full_len;
|
|
struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
|
|
tail * sizeof(u32));
|
|
|
|
full_len = len + GUC_CTB_HDR_LEN;
|
|
|
|
lockdep_assert_held(&ct->lock);
|
|
xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN);
|
|
xe_gt_assert(gt, tail <= h2g->info.size);
|
|
|
|
/* Command will wrap, zero fill (NOPs), return and check credits again */
|
|
if (tail + full_len > h2g->info.size) {
|
|
xe_map_memset(xe, &map, 0, 0,
|
|
(h2g->info.size - tail) * sizeof(u32));
|
|
h2g_reserve_space(ct, (h2g->info.size - tail));
|
|
h2g->info.tail = 0;
|
|
desc_write(xe, h2g, tail, h2g->info.tail);
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* dw0: CT header (including fence)
|
|
* dw1: HXG header (including action code)
|
|
* dw2+: action data
|
|
*/
|
|
cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
|
|
FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
|
|
FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
|
|
if (want_response) {
|
|
cmd[1] =
|
|
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
|
|
FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
|
|
GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
|
|
} else {
|
|
cmd[1] =
|
|
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) |
|
|
FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
|
|
GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
|
|
}
|
|
|
|
/* H2G header in cmd[1] replaces action[0] so: */
|
|
--len;
|
|
++action;
|
|
|
|
/* Write H2G ensuring visable before descriptor update */
|
|
xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
|
|
xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
|
|
xe_device_wmb(xe);
|
|
|
|
/* Update local copies */
|
|
h2g->info.tail = (tail + full_len) % h2g->info.size;
|
|
h2g_reserve_space(ct, full_len);
|
|
|
|
/* Update descriptor */
|
|
desc_write(xe, h2g, tail, h2g->info.tail);
|
|
|
|
trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len,
|
|
desc_read(xe, h2g, head), h2g->info.tail);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The CT protocol accepts a 16 bits fence. This field is fully owned by the
|
|
* driver, the GuC will just copy it to the reply message. Since we need to
|
|
* be able to distinguish between replies to REQUEST and FAST_REQUEST messages,
|
|
* we use one bit of the seqno as an indicator for that and a rolling counter
|
|
* for the remaining 15 bits.
|
|
*/
|
|
#define CT_SEQNO_MASK GENMASK(14, 0)
|
|
#define CT_SEQNO_UNTRACKED BIT(15)
|
|
static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence)
|
|
{
|
|
u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK;
|
|
|
|
if (!is_g2h_fence)
|
|
seqno |= CT_SEQNO_UNTRACKED;
|
|
|
|
return seqno;
|
|
}
|
|
|
|
static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
|
|
u32 len, u32 g2h_len, u32 num_g2h,
|
|
struct g2h_fence *g2h_fence)
|
|
{
|
|
struct xe_gt *gt __maybe_unused = ct_to_gt(ct);
|
|
u16 seqno;
|
|
int ret;
|
|
|
|
xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
|
|
xe_gt_assert(gt, !g2h_len || !g2h_fence);
|
|
xe_gt_assert(gt, !num_g2h || !g2h_fence);
|
|
xe_gt_assert(gt, !g2h_len || num_g2h);
|
|
xe_gt_assert(gt, g2h_len || !num_g2h);
|
|
lockdep_assert_held(&ct->lock);
|
|
|
|
if (unlikely(ct->ctbs.h2g.info.broken)) {
|
|
ret = -EPIPE;
|
|
goto out;
|
|
}
|
|
|
|
if (ct->state == XE_GUC_CT_STATE_DISABLED) {
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
if (ct->state == XE_GUC_CT_STATE_STOPPED) {
|
|
ret = -ECANCELED;
|
|
goto out;
|
|
}
|
|
|
|
xe_gt_assert(gt, xe_guc_ct_enabled(ct));
|
|
|
|
if (g2h_fence) {
|
|
g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
|
|
num_g2h = 1;
|
|
|
|
if (g2h_fence_needs_alloc(g2h_fence)) {
|
|
g2h_fence->seqno = next_ct_seqno(ct, true);
|
|
ret = xa_err(xa_store(&ct->fence_lookup,
|
|
g2h_fence->seqno, g2h_fence,
|
|
GFP_ATOMIC));
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
seqno = g2h_fence->seqno;
|
|
} else {
|
|
seqno = next_ct_seqno(ct, false);
|
|
}
|
|
|
|
if (g2h_len)
|
|
spin_lock_irq(&ct->fast_lock);
|
|
retry:
|
|
ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
|
|
if (unlikely(ret))
|
|
goto out_unlock;
|
|
|
|
ret = h2g_write(ct, action, len, seqno, !!g2h_fence);
|
|
if (unlikely(ret)) {
|
|
if (ret == -EAGAIN)
|
|
goto retry;
|
|
goto out_unlock;
|
|
}
|
|
|
|
__g2h_reserve_space(ct, g2h_len, num_g2h);
|
|
xe_guc_notify(ct_to_guc(ct));
|
|
out_unlock:
|
|
if (g2h_len)
|
|
spin_unlock_irq(&ct->fast_lock);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void kick_reset(struct xe_guc_ct *ct)
|
|
{
|
|
xe_gt_reset_async(ct_to_gt(ct));
|
|
}
|
|
|
|
static int dequeue_one_g2h(struct xe_guc_ct *ct);
|
|
|
|
static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
|
|
u32 g2h_len, u32 num_g2h,
|
|
struct g2h_fence *g2h_fence)
|
|
{
|
|
struct xe_device *xe = ct_to_xe(ct);
|
|
struct xe_gt *gt = ct_to_gt(ct);
|
|
struct drm_printer p = xe_gt_info_printer(gt);
|
|
unsigned int sleep_period_ms = 1;
|
|
int ret;
|
|
|
|
xe_gt_assert(gt, !g2h_len || !g2h_fence);
|
|
lockdep_assert_held(&ct->lock);
|
|
xe_device_assert_mem_access(ct_to_xe(ct));
|
|
|
|
try_again:
|
|
ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
|
|
g2h_fence);
|
|
|
|
/*
|
|
* We wait to try to restore credits for about 1 second before bailing.
|
|
* In the case of H2G credits we have no choice but just to wait for the
|
|
* GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
|
|
* the case of G2H we process any G2H in the channel, hopefully freeing
|
|
* credits as we consume the G2H messages.
|
|
*/
|
|
if (unlikely(ret == -EBUSY &&
|
|
!h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
|
|
struct guc_ctb *h2g = &ct->ctbs.h2g;
|
|
|
|
if (sleep_period_ms == 1024)
|
|
goto broken;
|
|
|
|
trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail,
|
|
h2g->info.size,
|
|
h2g->info.space,
|
|
len + GUC_CTB_HDR_LEN);
|
|
msleep(sleep_period_ms);
|
|
sleep_period_ms <<= 1;
|
|
|
|
goto try_again;
|
|
} else if (unlikely(ret == -EBUSY)) {
|
|
struct xe_device *xe = ct_to_xe(ct);
|
|
struct guc_ctb *g2h = &ct->ctbs.g2h;
|
|
|
|
trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head,
|
|
desc_read(xe, g2h, tail),
|
|
g2h->info.size,
|
|
g2h->info.space,
|
|
g2h_fence ?
|
|
GUC_CTB_HXG_MSG_MAX_LEN :
|
|
g2h_len);
|
|
|
|
#define g2h_avail(ct) \
|
|
(desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
|
|
if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
|
|
g2h_avail(ct), HZ))
|
|
goto broken;
|
|
#undef g2h_avail
|
|
|
|
if (dequeue_one_g2h(ct) < 0)
|
|
goto broken;
|
|
|
|
goto try_again;
|
|
}
|
|
|
|
return ret;
|
|
|
|
broken:
|
|
xe_gt_err(gt, "No forward process on H2G, reset required\n");
|
|
xe_guc_ct_print(ct, &p, true);
|
|
ct->ctbs.h2g.info.broken = true;
|
|
|
|
return -EDEADLK;
|
|
}
|
|
|
|
static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
|
|
u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
|
|
{
|
|
int ret;
|
|
|
|
xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence);
|
|
|
|
mutex_lock(&ct->lock);
|
|
ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
|
|
mutex_unlock(&ct->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
|
|
u32 g2h_len, u32 num_g2h)
|
|
{
|
|
int ret;
|
|
|
|
ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
|
|
if (ret == -EDEADLK)
|
|
kick_reset(ct);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
|
|
u32 g2h_len, u32 num_g2h)
|
|
{
|
|
int ret;
|
|
|
|
ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
|
|
if (ret == -EDEADLK)
|
|
kick_reset(ct);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
|
|
{
|
|
int ret;
|
|
|
|
lockdep_assert_held(&ct->lock);
|
|
|
|
ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
|
|
if (ret == -EDEADLK)
|
|
kick_reset(ct);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check if a GT reset is in progress or will occur and if GT reset brought the
|
|
* CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
|
|
*/
|
|
static bool retry_failure(struct xe_guc_ct *ct, int ret)
|
|
{
|
|
if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
|
|
return false;
|
|
|
|
#define ct_alive(ct) \
|
|
(xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \
|
|
!ct->ctbs.g2h.info.broken)
|
|
if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5))
|
|
return false;
|
|
#undef ct_alive
|
|
|
|
return true;
|
|
}
|
|
|
|
static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
|
|
u32 *response_buffer, bool no_fail)
|
|
{
|
|
struct xe_gt *gt = ct_to_gt(ct);
|
|
struct g2h_fence g2h_fence;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* We use a fence to implement blocking sends / receiving response data.
|
|
* The seqno of the fence is sent in the H2G, returned in the G2H, and
|
|
* an xarray is used as storage media with the seqno being to key.
|
|
* Fields in the fence hold success, failure, retry status and the
|
|
* response data. Safe to allocate on the stack as the xarray is the
|
|
* only reference and it cannot be present after this function exits.
|
|
*/
|
|
retry:
|
|
g2h_fence_init(&g2h_fence, response_buffer);
|
|
retry_same_fence:
|
|
ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
|
|
if (unlikely(ret == -ENOMEM)) {
|
|
/* Retry allocation /w GFP_KERNEL */
|
|
ret = xa_err(xa_store(&ct->fence_lookup, g2h_fence.seqno,
|
|
&g2h_fence, GFP_KERNEL));
|
|
if (ret)
|
|
return ret;
|
|
|
|
goto retry_same_fence;
|
|
} else if (unlikely(ret)) {
|
|
if (ret == -EDEADLK)
|
|
kick_reset(ct);
|
|
|
|
if (no_fail && retry_failure(ct, ret))
|
|
goto retry_same_fence;
|
|
|
|
if (!g2h_fence_needs_alloc(&g2h_fence))
|
|
xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
|
|
|
|
return ret;
|
|
}
|
|
|
|
ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
|
|
|
|
if (!ret) {
|
|
LNL_FLUSH_WORK(&ct->g2h_worker);
|
|
if (g2h_fence.done) {
|
|
xe_gt_warn(gt, "G2H fence %u, action %04x, done\n",
|
|
g2h_fence.seqno, action[0]);
|
|
ret = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Occasionally it is seen that the G2H worker starts running after a delay of more than
|
|
* a second even after being queued and activated by the Linux workqueue subsystem. This
|
|
* leads to G2H timeout error. The root cause of issue lies with scheduling latency of
|
|
* Lunarlake Hybrid CPU. Issue dissappears if we disable Lunarlake atom cores from BIOS
|
|
* and this is beyond xe kmd.
|
|
*
|
|
* TODO: Drop this change once workqueue scheduling delay issue is fixed on LNL Hybrid CPU.
|
|
*/
|
|
if (!ret) {
|
|
flush_work(&ct->g2h_worker);
|
|
if (g2h_fence.done) {
|
|
xe_gt_warn(gt, "G2H fence %u, action %04x, done\n",
|
|
g2h_fence.seqno, action[0]);
|
|
ret = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ensure we serialize with completion side to prevent UAF with fence going out of scope on
|
|
* the stack, since we have no clue if it will fire after the timeout before we can erase
|
|
* from the xa. Also we have some dependent loads and stores below for which we need the
|
|
* correct ordering, and we lack the needed barriers.
|
|
*/
|
|
mutex_lock(&ct->lock);
|
|
if (!ret) {
|
|
xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s",
|
|
g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done));
|
|
xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
|
|
mutex_unlock(&ct->lock);
|
|
return -ETIME;
|
|
}
|
|
|
|
if (g2h_fence.retry) {
|
|
xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n",
|
|
action[0], g2h_fence.reason);
|
|
mutex_unlock(&ct->lock);
|
|
goto retry;
|
|
}
|
|
if (g2h_fence.fail) {
|
|
xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n",
|
|
action[0], g2h_fence.error, g2h_fence.hint);
|
|
ret = -EIO;
|
|
}
|
|
|
|
if (ret > 0)
|
|
ret = response_buffer ? g2h_fence.response_len : g2h_fence.response_data;
|
|
|
|
mutex_unlock(&ct->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* xe_guc_ct_send_recv - Send and receive HXG to the GuC
|
|
* @ct: the &xe_guc_ct
|
|
* @action: the dword array with `HXG Request`_ message (can't be NULL)
|
|
* @len: length of the `HXG Request`_ message (in dwords, can't be 0)
|
|
* @response_buffer: placeholder for the `HXG Response`_ message (can be NULL)
|
|
*
|
|
* Send a `HXG Request`_ message to the GuC over CT communication channel and
|
|
* blocks until GuC replies with a `HXG Response`_ message.
|
|
*
|
|
* For non-blocking communication with GuC use xe_guc_ct_send().
|
|
*
|
|
* Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_.
|
|
*
|
|
* Return: response length (in dwords) if &response_buffer was not NULL, or
|
|
* DATA0 from `HXG Response`_ if &response_buffer was NULL, or
|
|
* a negative error code on failure.
|
|
*/
|
|
int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
|
|
u32 *response_buffer)
|
|
{
|
|
KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer);
|
|
return guc_ct_send_recv(ct, action, len, response_buffer, false);
|
|
}
|
|
|
|
int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
|
|
u32 len, u32 *response_buffer)
|
|
{
|
|
return guc_ct_send_recv(ct, action, len, response_buffer, true);
|
|
}
|
|
|
|
static u32 *msg_to_hxg(u32 *msg)
|
|
{
|
|
return msg + GUC_CTB_MSG_MIN_LEN;
|
|
}
|
|
|
|
static u32 msg_len_to_hxg_len(u32 len)
|
|
{
|
|
return len - GUC_CTB_MSG_MIN_LEN;
|
|
}
|
|
|
|
static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
|
|
{
|
|
u32 *hxg = msg_to_hxg(msg);
|
|
u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
|
|
|
|
lockdep_assert_held(&ct->lock);
|
|
|
|
switch (action) {
|
|
case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
|
|
case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
|
|
case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
|
|
case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
|
|
g2h_release_space(ct, len);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
|
|
{
|
|
struct xe_gt *gt = ct_to_gt(ct);
|
|
u32 *hxg = msg_to_hxg(msg);
|
|
u32 hxg_len = msg_len_to_hxg_len(len);
|
|
u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
|
|
u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
|
|
struct g2h_fence *g2h_fence;
|
|
|
|
lockdep_assert_held(&ct->lock);
|
|
|
|
/*
|
|
* Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup.
|
|
* Those messages should never fail, so if we do get an error back it
|
|
* means we're likely doing an illegal operation and the GuC is
|
|
* rejecting it. We have no way to inform the code that submitted the
|
|
* H2G that the message was rejected, so we need to escalate the
|
|
* failure to trigger a reset.
|
|
*/
|
|
if (fence & CT_SEQNO_UNTRACKED) {
|
|
if (type == GUC_HXG_TYPE_RESPONSE_FAILURE)
|
|
xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n",
|
|
fence,
|
|
FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]),
|
|
FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]));
|
|
else
|
|
xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n",
|
|
type, fence);
|
|
|
|
return -EPROTO;
|
|
}
|
|
|
|
g2h_fence = xa_erase(&ct->fence_lookup, fence);
|
|
if (unlikely(!g2h_fence)) {
|
|
/* Don't tear down channel, as send could've timed out */
|
|
xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence);
|
|
g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
|
|
return 0;
|
|
}
|
|
|
|
xe_gt_assert(gt, fence == g2h_fence->seqno);
|
|
|
|
if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
|
|
g2h_fence->fail = true;
|
|
g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]);
|
|
g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]);
|
|
} else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
|
|
g2h_fence->retry = true;
|
|
g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]);
|
|
} else if (g2h_fence->response_buffer) {
|
|
g2h_fence->response_len = hxg_len;
|
|
memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32));
|
|
} else {
|
|
g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]);
|
|
}
|
|
|
|
g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
|
|
|
|
g2h_fence->done = true;
|
|
smp_mb();
|
|
|
|
wake_up_all(&ct->g2h_fence_wq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
|
|
{
|
|
struct xe_gt *gt = ct_to_gt(ct);
|
|
u32 *hxg = msg_to_hxg(msg);
|
|
u32 origin, type;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&ct->lock);
|
|
|
|
origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
|
|
if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
|
|
xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n",
|
|
origin);
|
|
ct->ctbs.g2h.info.broken = true;
|
|
|
|
return -EPROTO;
|
|
}
|
|
|
|
type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
|
|
switch (type) {
|
|
case GUC_HXG_TYPE_EVENT:
|
|
ret = parse_g2h_event(ct, msg, len);
|
|
break;
|
|
case GUC_HXG_TYPE_RESPONSE_SUCCESS:
|
|
case GUC_HXG_TYPE_RESPONSE_FAILURE:
|
|
case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
|
|
ret = parse_g2h_response(ct, msg, len);
|
|
break;
|
|
default:
|
|
xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n",
|
|
type);
|
|
ct->ctbs.g2h.info.broken = true;
|
|
|
|
ret = -EOPNOTSUPP;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
|
|
{
|
|
struct xe_guc *guc = ct_to_guc(ct);
|
|
struct xe_gt *gt = ct_to_gt(ct);
|
|
u32 hxg_len = msg_len_to_hxg_len(len);
|
|
u32 *hxg = msg_to_hxg(msg);
|
|
u32 action, adj_len;
|
|
u32 *payload;
|
|
int ret = 0;
|
|
|
|
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
|
|
return 0;
|
|
|
|
action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
|
|
payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN;
|
|
adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN;
|
|
|
|
switch (action) {
|
|
case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
|
|
ret = xe_guc_sched_done_handler(guc, payload, adj_len);
|
|
break;
|
|
case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
|
|
ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
|
|
break;
|
|
case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
|
|
ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
|
|
break;
|
|
case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
|
|
ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
|
|
adj_len);
|
|
break;
|
|
case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
|
|
/* Selftest only at the moment */
|
|
break;
|
|
case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
|
|
case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
|
|
/* FIXME: Handle this */
|
|
break;
|
|
case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
|
|
ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
|
|
adj_len);
|
|
break;
|
|
case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
|
|
ret = xe_guc_pagefault_handler(guc, payload, adj_len);
|
|
break;
|
|
case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
|
|
ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
|
|
adj_len);
|
|
break;
|
|
case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
|
|
ret = xe_guc_access_counter_notify_handler(guc, payload,
|
|
adj_len);
|
|
break;
|
|
case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF:
|
|
ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len);
|
|
break;
|
|
case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF:
|
|
ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len);
|
|
break;
|
|
case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY:
|
|
ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len);
|
|
break;
|
|
case GUC_ACTION_GUC2PF_ADVERSE_EVENT:
|
|
ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len);
|
|
break;
|
|
default:
|
|
xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action);
|
|
}
|
|
|
|
if (ret)
|
|
xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
|
|
action, ERR_PTR(ret));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
|
|
{
|
|
struct xe_device *xe = ct_to_xe(ct);
|
|
struct xe_gt *gt = ct_to_gt(ct);
|
|
struct guc_ctb *g2h = &ct->ctbs.g2h;
|
|
u32 tail, head, len;
|
|
s32 avail;
|
|
u32 action;
|
|
u32 *hxg;
|
|
|
|
xe_gt_assert(gt, ct->state != XE_GUC_CT_STATE_NOT_INITIALIZED);
|
|
lockdep_assert_held(&ct->fast_lock);
|
|
|
|
if (ct->state == XE_GUC_CT_STATE_DISABLED)
|
|
return -ENODEV;
|
|
|
|
if (ct->state == XE_GUC_CT_STATE_STOPPED)
|
|
return -ECANCELED;
|
|
|
|
if (g2h->info.broken)
|
|
return -EPIPE;
|
|
|
|
xe_gt_assert(gt, xe_guc_ct_enabled(ct));
|
|
|
|
/* Calculate DW available to read */
|
|
tail = desc_read(xe, g2h, tail);
|
|
avail = tail - g2h->info.head;
|
|
if (unlikely(avail == 0))
|
|
return 0;
|
|
|
|
if (avail < 0)
|
|
avail += g2h->info.size;
|
|
|
|
/* Read header */
|
|
xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
|
|
sizeof(u32));
|
|
len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
|
|
if (len > avail) {
|
|
xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n",
|
|
avail, len);
|
|
g2h->info.broken = true;
|
|
|
|
return -EPROTO;
|
|
}
|
|
|
|
head = (g2h->info.head + 1) % g2h->info.size;
|
|
avail = len - 1;
|
|
|
|
/* Read G2H message */
|
|
if (avail + head > g2h->info.size) {
|
|
u32 avail_til_wrap = g2h->info.size - head;
|
|
|
|
xe_map_memcpy_from(xe, msg + 1,
|
|
&g2h->cmds, sizeof(u32) * head,
|
|
avail_til_wrap * sizeof(u32));
|
|
xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
|
|
&g2h->cmds, 0,
|
|
(avail - avail_til_wrap) * sizeof(u32));
|
|
} else {
|
|
xe_map_memcpy_from(xe, msg + 1,
|
|
&g2h->cmds, sizeof(u32) * head,
|
|
avail * sizeof(u32));
|
|
}
|
|
|
|
hxg = msg_to_hxg(msg);
|
|
action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
|
|
|
|
if (fast_path) {
|
|
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
|
|
return 0;
|
|
|
|
switch (action) {
|
|
case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
|
|
case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
|
|
break; /* Process these in fast-path */
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Update local / descriptor header */
|
|
g2h->info.head = (head + avail) % g2h->info.size;
|
|
desc_write(xe, g2h, head, g2h->info.head);
|
|
|
|
trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id,
|
|
action, len, g2h->info.head, tail);
|
|
|
|
return len;
|
|
}
|
|
|
|
static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
|
|
{
|
|
struct xe_gt *gt = ct_to_gt(ct);
|
|
struct xe_guc *guc = ct_to_guc(ct);
|
|
u32 hxg_len = msg_len_to_hxg_len(len);
|
|
u32 *hxg = msg_to_hxg(msg);
|
|
u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
|
|
u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN;
|
|
u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN;
|
|
int ret = 0;
|
|
|
|
switch (action) {
|
|
case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
|
|
ret = xe_guc_pagefault_handler(guc, payload, adj_len);
|
|
break;
|
|
case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
|
|
__g2h_release_space(ct, len);
|
|
ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
|
|
adj_len);
|
|
break;
|
|
default:
|
|
xe_gt_warn(gt, "NOT_POSSIBLE");
|
|
}
|
|
|
|
if (ret)
|
|
xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
|
|
action, ERR_PTR(ret));
|
|
}
|
|
|
|
/**
|
|
* xe_guc_ct_fast_path - process critical G2H in the IRQ handler
|
|
* @ct: GuC CT object
|
|
*
|
|
* Anything related to page faults is critical for performance, process these
|
|
* critical G2H in the IRQ. This is safe as these handlers either just wake up
|
|
* waiters or queue another worker.
|
|
*/
|
|
void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
|
|
{
|
|
struct xe_device *xe = ct_to_xe(ct);
|
|
bool ongoing;
|
|
int len;
|
|
|
|
ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
|
|
if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
|
|
return;
|
|
|
|
spin_lock(&ct->fast_lock);
|
|
do {
|
|
len = g2h_read(ct, ct->fast_msg, true);
|
|
if (len > 0)
|
|
g2h_fast_path(ct, ct->fast_msg, len);
|
|
} while (len > 0);
|
|
spin_unlock(&ct->fast_lock);
|
|
|
|
if (ongoing)
|
|
xe_pm_runtime_put(xe);
|
|
}
|
|
|
|
/* Returns less than zero on error, 0 on done, 1 on more available */
|
|
static int dequeue_one_g2h(struct xe_guc_ct *ct)
|
|
{
|
|
int len;
|
|
int ret;
|
|
|
|
lockdep_assert_held(&ct->lock);
|
|
|
|
spin_lock_irq(&ct->fast_lock);
|
|
len = g2h_read(ct, ct->msg, false);
|
|
spin_unlock_irq(&ct->fast_lock);
|
|
if (len <= 0)
|
|
return len;
|
|
|
|
ret = parse_g2h_msg(ct, ct->msg, len);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
|
|
ret = process_g2h_msg(ct, ct->msg, len);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void receive_g2h(struct xe_guc_ct *ct)
|
|
{
|
|
struct xe_gt *gt = ct_to_gt(ct);
|
|
bool ongoing;
|
|
int ret;
|
|
|
|
/*
|
|
* Normal users must always hold mem_access.ref around CT calls. However
|
|
* during the runtime pm callbacks we rely on CT to talk to the GuC, but
|
|
* at this stage we can't rely on mem_access.ref and even the
|
|
* callback_task will be different than current. For such cases we just
|
|
* need to ensure we always process the responses from any blocking
|
|
* ct_send requests or where we otherwise expect some response when
|
|
* initiated from those callbacks (which will need to wait for the below
|
|
* dequeue_one_g2h()). The dequeue_one_g2h() will gracefully fail if
|
|
* the device has suspended to the point that the CT communication has
|
|
* been disabled.
|
|
*
|
|
* If we are inside the runtime pm callback, we can be the only task
|
|
* still issuing CT requests (since that requires having the
|
|
* mem_access.ref). It seems like it might in theory be possible to
|
|
* receive unsolicited events from the GuC just as we are
|
|
* suspending-resuming, but those will currently anyway be lost when
|
|
* eventually exiting from suspend, hence no need to wake up the device
|
|
* here. If we ever need something stronger than get_if_ongoing() then
|
|
* we need to be careful with blocking the pm callbacks from getting CT
|
|
* responses, if the worker here is blocked on those callbacks
|
|
* completing, creating a deadlock.
|
|
*/
|
|
ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
|
|
if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
|
|
return;
|
|
|
|
do {
|
|
mutex_lock(&ct->lock);
|
|
ret = dequeue_one_g2h(ct);
|
|
mutex_unlock(&ct->lock);
|
|
|
|
if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
|
|
struct drm_printer p = xe_gt_info_printer(gt);
|
|
|
|
xe_guc_ct_print(ct, &p, false);
|
|
kick_reset(ct);
|
|
}
|
|
} while (ret == 1);
|
|
|
|
if (ongoing)
|
|
xe_pm_runtime_put(ct_to_xe(ct));
|
|
}
|
|
|
|
static void g2h_worker_func(struct work_struct *w)
|
|
{
|
|
struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
|
|
|
|
receive_g2h(ct);
|
|
}
|
|
|
|
static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
|
|
struct guc_ctb_snapshot *snapshot,
|
|
bool atomic)
|
|
{
|
|
u32 head, tail;
|
|
|
|
xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
|
|
sizeof(struct guc_ct_buffer_desc));
|
|
memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));
|
|
|
|
snapshot->cmds = kmalloc_array(ctb->info.size, sizeof(u32),
|
|
atomic ? GFP_ATOMIC : GFP_KERNEL);
|
|
|
|
if (!snapshot->cmds) {
|
|
drm_err(&xe->drm, "Skipping CTB commands snapshot. Only CTB info will be available.\n");
|
|
return;
|
|
}
|
|
|
|
head = snapshot->desc.head;
|
|
tail = snapshot->desc.tail;
|
|
|
|
if (head != tail) {
|
|
struct iosys_map map =
|
|
IOSYS_MAP_INIT_OFFSET(&ctb->cmds, head * sizeof(u32));
|
|
|
|
while (head != tail) {
|
|
snapshot->cmds[head] = xe_map_rd(xe, &map, 0, u32);
|
|
++head;
|
|
if (head == ctb->info.size) {
|
|
head = 0;
|
|
map = ctb->cmds;
|
|
} else {
|
|
iosys_map_incr(&map, sizeof(u32));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
|
|
struct drm_printer *p)
|
|
{
|
|
u32 head, tail;
|
|
|
|
drm_printf(p, "\tsize: %d\n", snapshot->info.size);
|
|
drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
|
|
drm_printf(p, "\thead: %d\n", snapshot->info.head);
|
|
drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
|
|
drm_printf(p, "\tspace: %d\n", snapshot->info.space);
|
|
drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
|
|
drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
|
|
drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
|
|
drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);
|
|
|
|
if (!snapshot->cmds)
|
|
return;
|
|
|
|
head = snapshot->desc.head;
|
|
tail = snapshot->desc.tail;
|
|
|
|
while (head != tail) {
|
|
drm_printf(p, "\tcmd[%d]: 0x%08x\n", head,
|
|
snapshot->cmds[head]);
|
|
++head;
|
|
if (head == snapshot->info.size)
|
|
head = 0;
|
|
}
|
|
}
|
|
|
|
static void guc_ctb_snapshot_free(struct guc_ctb_snapshot *snapshot)
|
|
{
|
|
kfree(snapshot->cmds);
|
|
}
|
|
|
|
/**
|
|
* xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
|
|
* @ct: GuC CT object.
|
|
* @atomic: Boolean to indicate if this is called from atomic context like
|
|
* reset or CTB handler or from some regular path like debugfs.
|
|
*
|
|
* This can be printed out in a later stage like during dev_coredump
|
|
* analysis.
|
|
*
|
|
* Returns: a GuC CT snapshot object that must be freed by the caller
|
|
* by using `xe_guc_ct_snapshot_free`.
|
|
*/
|
|
struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct,
|
|
bool atomic)
|
|
{
|
|
struct xe_device *xe = ct_to_xe(ct);
|
|
struct xe_guc_ct_snapshot *snapshot;
|
|
|
|
snapshot = kzalloc(sizeof(*snapshot),
|
|
atomic ? GFP_ATOMIC : GFP_KERNEL);
|
|
|
|
if (!snapshot) {
|
|
drm_err(&xe->drm, "Skipping CTB snapshot entirely.\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) {
|
|
snapshot->ct_enabled = true;
|
|
snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
|
|
guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g,
|
|
&snapshot->h2g, atomic);
|
|
guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h,
|
|
&snapshot->g2h, atomic);
|
|
}
|
|
|
|
return snapshot;
|
|
}
|
|
|
|
/**
|
|
* xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
|
|
* @snapshot: GuC CT snapshot object.
|
|
* @p: drm_printer where it will be printed out.
|
|
*
|
|
* This function prints out a given GuC CT snapshot object.
|
|
*/
|
|
void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
|
|
struct drm_printer *p)
|
|
{
|
|
if (!snapshot)
|
|
return;
|
|
|
|
if (snapshot->ct_enabled) {
|
|
drm_puts(p, "H2G CTB (all sizes in DW):\n");
|
|
guc_ctb_snapshot_print(&snapshot->h2g, p);
|
|
|
|
drm_puts(p, "\nG2H CTB (all sizes in DW):\n");
|
|
guc_ctb_snapshot_print(&snapshot->g2h, p);
|
|
|
|
drm_printf(p, "\tg2h outstanding: %d\n",
|
|
snapshot->g2h_outstanding);
|
|
} else {
|
|
drm_puts(p, "CT disabled\n");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
|
|
* @snapshot: GuC CT snapshot object.
|
|
*
|
|
* This function free all the memory that needed to be allocated at capture
|
|
* time.
|
|
*/
|
|
void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
|
|
{
|
|
if (!snapshot)
|
|
return;
|
|
|
|
guc_ctb_snapshot_free(&snapshot->h2g);
|
|
guc_ctb_snapshot_free(&snapshot->g2h);
|
|
kfree(snapshot);
|
|
}
|
|
|
|
/**
|
|
* xe_guc_ct_print - GuC CT Print.
|
|
* @ct: GuC CT.
|
|
* @p: drm_printer where it will be printed out.
|
|
* @atomic: Boolean to indicate if this is called from atomic context like
|
|
* reset or CTB handler or from some regular path like debugfs.
|
|
*
|
|
* This function quickly capture a snapshot and immediately print it out.
|
|
*/
|
|
void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool atomic)
|
|
{
|
|
struct xe_guc_ct_snapshot *snapshot;
|
|
|
|
snapshot = xe_guc_ct_snapshot_capture(ct, atomic);
|
|
xe_guc_ct_snapshot_print(snapshot, p);
|
|
xe_guc_ct_snapshot_free(snapshot);
|
|
}
|