1
0
Fork 0
linux/drivers/gpu/drm/xe/xe_hmm.c
Daniel Baumann 79d69e5050
Adding upstream version 6.12.33.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 12:14:28 +02:00

325 lines
8.9 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2024 Intel Corporation
*/
#include <linux/scatterlist.h>
#include <linux/mmu_notifier.h>
#include <linux/dma-mapping.h>
#include <linux/memremap.h>
#include <linux/swap.h>
#include <linux/hmm.h>
#include <linux/mm.h>
#include "xe_hmm.h"
#include "xe_vm.h"
#include "xe_bo.h"
static u64 xe_npages_in_range(unsigned long start, unsigned long end)
{
return (end - start) >> PAGE_SHIFT;
}
static int xe_alloc_sg(struct xe_device *xe, struct sg_table *st,
struct hmm_range *range, struct rw_semaphore *notifier_sem)
{
unsigned long i, npages, hmm_pfn;
unsigned long num_chunks = 0;
int ret;
/* HMM docs says this is needed. */
ret = down_read_interruptible(notifier_sem);
if (ret)
return ret;
if (mmu_interval_read_retry(range->notifier, range->notifier_seq)) {
up_read(notifier_sem);
return -EAGAIN;
}
npages = xe_npages_in_range(range->start, range->end);
for (i = 0; i < npages;) {
unsigned long len;
hmm_pfn = range->hmm_pfns[i];
xe_assert(xe, hmm_pfn & HMM_PFN_VALID);
len = 1UL << hmm_pfn_to_map_order(hmm_pfn);
/* If order > 0 the page may extend beyond range->start */
len -= (hmm_pfn & ~HMM_PFN_FLAGS) & (len - 1);
i += len;
num_chunks++;
}
up_read(notifier_sem);
return sg_alloc_table(st, num_chunks, GFP_KERNEL);
}
/**
* xe_build_sg() - build a scatter gather table for all the physical pages/pfn
* in a hmm_range. dma-map pages if necessary. dma-address is save in sg table
* and will be used to program GPU page table later.
* @xe: the xe device who will access the dma-address in sg table
* @range: the hmm range that we build the sg table from. range->hmm_pfns[]
* has the pfn numbers of pages that back up this hmm address range.
* @st: pointer to the sg table.
* @notifier_sem: The xe notifier lock.
* @write: whether we write to this range. This decides dma map direction
* for system pages. If write we map it bi-diretional; otherwise
* DMA_TO_DEVICE
*
* All the contiguous pfns will be collapsed into one entry in
* the scatter gather table. This is for the purpose of efficiently
* programming GPU page table.
*
* The dma_address in the sg table will later be used by GPU to
* access memory. So if the memory is system memory, we need to
* do a dma-mapping so it can be accessed by GPU/DMA.
*
* FIXME: This function currently only support pages in system
* memory. If the memory is GPU local memory (of the GPU who
* is going to access memory), we need gpu dpa (device physical
* address), and there is no need of dma-mapping. This is TBD.
*
* FIXME: dma-mapping for peer gpu device to access remote gpu's
* memory. Add this when you support p2p
*
* This function allocates the storage of the sg table. It is
* caller's responsibility to free it calling sg_free_table.
*
* Returns 0 if successful; -ENOMEM if fails to allocate memory
*/
static int xe_build_sg(struct xe_device *xe, struct hmm_range *range,
struct sg_table *st,
struct rw_semaphore *notifier_sem,
bool write)
{
unsigned long npages = xe_npages_in_range(range->start, range->end);
struct device *dev = xe->drm.dev;
struct scatterlist *sgl;
struct page *page;
unsigned long i, j;
lockdep_assert_held(notifier_sem);
i = 0;
for_each_sg(st->sgl, sgl, st->nents, j) {
unsigned long hmm_pfn, size;
hmm_pfn = range->hmm_pfns[i];
page = hmm_pfn_to_page(hmm_pfn);
xe_assert(xe, !is_device_private_page(page));
size = 1UL << hmm_pfn_to_map_order(hmm_pfn);
size -= page_to_pfn(page) & (size - 1);
i += size;
if (unlikely(j == st->nents - 1)) {
xe_assert(xe, i >= npages);
if (i > npages)
size -= (i - npages);
sg_mark_end(sgl);
} else {
xe_assert(xe, i < npages);
}
sg_set_page(sgl, page, size << PAGE_SHIFT, 0);
}
return dma_map_sgtable(dev, st, write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_NO_KERNEL_MAPPING);
}
static void xe_hmm_userptr_set_mapped(struct xe_userptr_vma *uvma)
{
struct xe_userptr *userptr = &uvma->userptr;
struct xe_vm *vm = xe_vma_vm(&uvma->vma);
lockdep_assert_held_write(&vm->lock);
lockdep_assert_held(&vm->userptr.notifier_lock);
mutex_lock(&userptr->unmap_mutex);
xe_assert(vm->xe, !userptr->mapped);
userptr->mapped = true;
mutex_unlock(&userptr->unmap_mutex);
}
void xe_hmm_userptr_unmap(struct xe_userptr_vma *uvma)
{
struct xe_userptr *userptr = &uvma->userptr;
struct xe_vma *vma = &uvma->vma;
bool write = !xe_vma_read_only(vma);
struct xe_vm *vm = xe_vma_vm(vma);
struct xe_device *xe = vm->xe;
if (!lockdep_is_held_type(&vm->userptr.notifier_lock, 0) &&
!lockdep_is_held_type(&vm->lock, 0) &&
!(vma->gpuva.flags & XE_VMA_DESTROYED)) {
/* Don't unmap in exec critical section. */
xe_vm_assert_held(vm);
/* Don't unmap while mapping the sg. */
lockdep_assert_held(&vm->lock);
}
mutex_lock(&userptr->unmap_mutex);
if (userptr->sg && userptr->mapped)
dma_unmap_sgtable(xe->drm.dev, userptr->sg,
write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE, 0);
userptr->mapped = false;
mutex_unlock(&userptr->unmap_mutex);
}
/**
* xe_hmm_userptr_free_sg() - Free the scatter gather table of userptr
* @uvma: the userptr vma which hold the scatter gather table
*
* With function xe_userptr_populate_range, we allocate storage of
* the userptr sg table. This is a helper function to free this
* sg table, and dma unmap the address in the table.
*/
void xe_hmm_userptr_free_sg(struct xe_userptr_vma *uvma)
{
struct xe_userptr *userptr = &uvma->userptr;
xe_assert(xe_vma_vm(&uvma->vma)->xe, userptr->sg);
xe_hmm_userptr_unmap(uvma);
sg_free_table(userptr->sg);
userptr->sg = NULL;
}
/**
* xe_hmm_userptr_populate_range() - Populate physical pages of a virtual
* address range
*
* @uvma: userptr vma which has information of the range to populate.
* @is_mm_mmap_locked: True if mmap_read_lock is already acquired by caller.
*
* This function populate the physical pages of a virtual
* address range. The populated physical pages is saved in
* userptr's sg table. It is similar to get_user_pages but call
* hmm_range_fault.
*
* This function also read mmu notifier sequence # (
* mmu_interval_read_begin), for the purpose of later
* comparison (through mmu_interval_read_retry).
*
* This must be called with mmap read or write lock held.
*
* This function allocates the storage of the userptr sg table.
* It is caller's responsibility to free it calling sg_free_table.
*
* returns: 0 for succuss; negative error no on failure
*/
int xe_hmm_userptr_populate_range(struct xe_userptr_vma *uvma,
bool is_mm_mmap_locked)
{
unsigned long timeout =
jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
unsigned long *pfns;
struct xe_userptr *userptr;
struct xe_vma *vma = &uvma->vma;
u64 userptr_start = xe_vma_userptr(vma);
u64 userptr_end = userptr_start + xe_vma_size(vma);
struct xe_vm *vm = xe_vma_vm(vma);
struct hmm_range hmm_range = {
.pfn_flags_mask = 0, /* ignore pfns */
.default_flags = HMM_PFN_REQ_FAULT,
.start = userptr_start,
.end = userptr_end,
.notifier = &uvma->userptr.notifier,
.dev_private_owner = vm->xe,
};
bool write = !xe_vma_read_only(vma);
unsigned long notifier_seq;
u64 npages;
int ret;
userptr = &uvma->userptr;
if (is_mm_mmap_locked)
mmap_assert_locked(userptr->notifier.mm);
if (vma->gpuva.flags & XE_VMA_DESTROYED)
return 0;
notifier_seq = mmu_interval_read_begin(&userptr->notifier);
if (notifier_seq == userptr->notifier_seq)
return 0;
if (userptr->sg)
xe_hmm_userptr_free_sg(uvma);
npages = xe_npages_in_range(userptr_start, userptr_end);
pfns = kvmalloc_array(npages, sizeof(*pfns), GFP_KERNEL);
if (unlikely(!pfns))
return -ENOMEM;
if (write)
hmm_range.default_flags |= HMM_PFN_REQ_WRITE;
if (!mmget_not_zero(userptr->notifier.mm)) {
ret = -EFAULT;
goto free_pfns;
}
hmm_range.hmm_pfns = pfns;
while (true) {
hmm_range.notifier_seq = mmu_interval_read_begin(&userptr->notifier);
if (!is_mm_mmap_locked)
mmap_read_lock(userptr->notifier.mm);
ret = hmm_range_fault(&hmm_range);
if (!is_mm_mmap_locked)
mmap_read_unlock(userptr->notifier.mm);
if (ret == -EBUSY) {
if (time_after(jiffies, timeout))
break;
continue;
}
break;
}
mmput(userptr->notifier.mm);
if (ret)
goto free_pfns;
ret = xe_alloc_sg(vm->xe, &userptr->sgt, &hmm_range, &vm->userptr.notifier_lock);
if (ret)
goto free_pfns;
ret = down_read_interruptible(&vm->userptr.notifier_lock);
if (ret)
goto free_st;
if (mmu_interval_read_retry(hmm_range.notifier, hmm_range.notifier_seq)) {
ret = -EAGAIN;
goto out_unlock;
}
ret = xe_build_sg(vm->xe, &hmm_range, &userptr->sgt,
&vm->userptr.notifier_lock, write);
if (ret)
goto out_unlock;
userptr->sg = &userptr->sgt;
xe_hmm_userptr_set_mapped(uvma);
userptr->notifier_seq = hmm_range.notifier_seq;
up_read(&vm->userptr.notifier_lock);
kvfree(pfns);
return 0;
out_unlock:
up_read(&vm->userptr.notifier_lock);
free_st:
sg_free_table(&userptr->sgt);
free_pfns:
kvfree(pfns);
return ret;
}