325 lines
8.9 KiB
C
325 lines
8.9 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2024 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/hmm.h>
|
|
#include <linux/mm.h>
|
|
#include "xe_hmm.h"
|
|
#include "xe_vm.h"
|
|
#include "xe_bo.h"
|
|
|
|
static u64 xe_npages_in_range(unsigned long start, unsigned long end)
|
|
{
|
|
return (end - start) >> PAGE_SHIFT;
|
|
}
|
|
|
|
static int xe_alloc_sg(struct xe_device *xe, struct sg_table *st,
|
|
struct hmm_range *range, struct rw_semaphore *notifier_sem)
|
|
{
|
|
unsigned long i, npages, hmm_pfn;
|
|
unsigned long num_chunks = 0;
|
|
int ret;
|
|
|
|
/* HMM docs says this is needed. */
|
|
ret = down_read_interruptible(notifier_sem);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (mmu_interval_read_retry(range->notifier, range->notifier_seq)) {
|
|
up_read(notifier_sem);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
npages = xe_npages_in_range(range->start, range->end);
|
|
for (i = 0; i < npages;) {
|
|
unsigned long len;
|
|
|
|
hmm_pfn = range->hmm_pfns[i];
|
|
xe_assert(xe, hmm_pfn & HMM_PFN_VALID);
|
|
|
|
len = 1UL << hmm_pfn_to_map_order(hmm_pfn);
|
|
|
|
/* If order > 0 the page may extend beyond range->start */
|
|
len -= (hmm_pfn & ~HMM_PFN_FLAGS) & (len - 1);
|
|
i += len;
|
|
num_chunks++;
|
|
}
|
|
up_read(notifier_sem);
|
|
|
|
return sg_alloc_table(st, num_chunks, GFP_KERNEL);
|
|
}
|
|
|
|
/**
|
|
* xe_build_sg() - build a scatter gather table for all the physical pages/pfn
|
|
* in a hmm_range. dma-map pages if necessary. dma-address is save in sg table
|
|
* and will be used to program GPU page table later.
|
|
* @xe: the xe device who will access the dma-address in sg table
|
|
* @range: the hmm range that we build the sg table from. range->hmm_pfns[]
|
|
* has the pfn numbers of pages that back up this hmm address range.
|
|
* @st: pointer to the sg table.
|
|
* @notifier_sem: The xe notifier lock.
|
|
* @write: whether we write to this range. This decides dma map direction
|
|
* for system pages. If write we map it bi-diretional; otherwise
|
|
* DMA_TO_DEVICE
|
|
*
|
|
* All the contiguous pfns will be collapsed into one entry in
|
|
* the scatter gather table. This is for the purpose of efficiently
|
|
* programming GPU page table.
|
|
*
|
|
* The dma_address in the sg table will later be used by GPU to
|
|
* access memory. So if the memory is system memory, we need to
|
|
* do a dma-mapping so it can be accessed by GPU/DMA.
|
|
*
|
|
* FIXME: This function currently only support pages in system
|
|
* memory. If the memory is GPU local memory (of the GPU who
|
|
* is going to access memory), we need gpu dpa (device physical
|
|
* address), and there is no need of dma-mapping. This is TBD.
|
|
*
|
|
* FIXME: dma-mapping for peer gpu device to access remote gpu's
|
|
* memory. Add this when you support p2p
|
|
*
|
|
* This function allocates the storage of the sg table. It is
|
|
* caller's responsibility to free it calling sg_free_table.
|
|
*
|
|
* Returns 0 if successful; -ENOMEM if fails to allocate memory
|
|
*/
|
|
static int xe_build_sg(struct xe_device *xe, struct hmm_range *range,
|
|
struct sg_table *st,
|
|
struct rw_semaphore *notifier_sem,
|
|
bool write)
|
|
{
|
|
unsigned long npages = xe_npages_in_range(range->start, range->end);
|
|
struct device *dev = xe->drm.dev;
|
|
struct scatterlist *sgl;
|
|
struct page *page;
|
|
unsigned long i, j;
|
|
|
|
lockdep_assert_held(notifier_sem);
|
|
|
|
i = 0;
|
|
for_each_sg(st->sgl, sgl, st->nents, j) {
|
|
unsigned long hmm_pfn, size;
|
|
|
|
hmm_pfn = range->hmm_pfns[i];
|
|
page = hmm_pfn_to_page(hmm_pfn);
|
|
xe_assert(xe, !is_device_private_page(page));
|
|
|
|
size = 1UL << hmm_pfn_to_map_order(hmm_pfn);
|
|
size -= page_to_pfn(page) & (size - 1);
|
|
i += size;
|
|
|
|
if (unlikely(j == st->nents - 1)) {
|
|
xe_assert(xe, i >= npages);
|
|
if (i > npages)
|
|
size -= (i - npages);
|
|
|
|
sg_mark_end(sgl);
|
|
} else {
|
|
xe_assert(xe, i < npages);
|
|
}
|
|
|
|
sg_set_page(sgl, page, size << PAGE_SHIFT, 0);
|
|
}
|
|
|
|
return dma_map_sgtable(dev, st, write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE,
|
|
DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_NO_KERNEL_MAPPING);
|
|
}
|
|
|
|
static void xe_hmm_userptr_set_mapped(struct xe_userptr_vma *uvma)
|
|
{
|
|
struct xe_userptr *userptr = &uvma->userptr;
|
|
struct xe_vm *vm = xe_vma_vm(&uvma->vma);
|
|
|
|
lockdep_assert_held_write(&vm->lock);
|
|
lockdep_assert_held(&vm->userptr.notifier_lock);
|
|
|
|
mutex_lock(&userptr->unmap_mutex);
|
|
xe_assert(vm->xe, !userptr->mapped);
|
|
userptr->mapped = true;
|
|
mutex_unlock(&userptr->unmap_mutex);
|
|
}
|
|
|
|
void xe_hmm_userptr_unmap(struct xe_userptr_vma *uvma)
|
|
{
|
|
struct xe_userptr *userptr = &uvma->userptr;
|
|
struct xe_vma *vma = &uvma->vma;
|
|
bool write = !xe_vma_read_only(vma);
|
|
struct xe_vm *vm = xe_vma_vm(vma);
|
|
struct xe_device *xe = vm->xe;
|
|
|
|
if (!lockdep_is_held_type(&vm->userptr.notifier_lock, 0) &&
|
|
!lockdep_is_held_type(&vm->lock, 0) &&
|
|
!(vma->gpuva.flags & XE_VMA_DESTROYED)) {
|
|
/* Don't unmap in exec critical section. */
|
|
xe_vm_assert_held(vm);
|
|
/* Don't unmap while mapping the sg. */
|
|
lockdep_assert_held(&vm->lock);
|
|
}
|
|
|
|
mutex_lock(&userptr->unmap_mutex);
|
|
if (userptr->sg && userptr->mapped)
|
|
dma_unmap_sgtable(xe->drm.dev, userptr->sg,
|
|
write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE, 0);
|
|
userptr->mapped = false;
|
|
mutex_unlock(&userptr->unmap_mutex);
|
|
}
|
|
|
|
/**
|
|
* xe_hmm_userptr_free_sg() - Free the scatter gather table of userptr
|
|
* @uvma: the userptr vma which hold the scatter gather table
|
|
*
|
|
* With function xe_userptr_populate_range, we allocate storage of
|
|
* the userptr sg table. This is a helper function to free this
|
|
* sg table, and dma unmap the address in the table.
|
|
*/
|
|
void xe_hmm_userptr_free_sg(struct xe_userptr_vma *uvma)
|
|
{
|
|
struct xe_userptr *userptr = &uvma->userptr;
|
|
|
|
xe_assert(xe_vma_vm(&uvma->vma)->xe, userptr->sg);
|
|
xe_hmm_userptr_unmap(uvma);
|
|
sg_free_table(userptr->sg);
|
|
userptr->sg = NULL;
|
|
}
|
|
|
|
/**
|
|
* xe_hmm_userptr_populate_range() - Populate physical pages of a virtual
|
|
* address range
|
|
*
|
|
* @uvma: userptr vma which has information of the range to populate.
|
|
* @is_mm_mmap_locked: True if mmap_read_lock is already acquired by caller.
|
|
*
|
|
* This function populate the physical pages of a virtual
|
|
* address range. The populated physical pages is saved in
|
|
* userptr's sg table. It is similar to get_user_pages but call
|
|
* hmm_range_fault.
|
|
*
|
|
* This function also read mmu notifier sequence # (
|
|
* mmu_interval_read_begin), for the purpose of later
|
|
* comparison (through mmu_interval_read_retry).
|
|
*
|
|
* This must be called with mmap read or write lock held.
|
|
*
|
|
* This function allocates the storage of the userptr sg table.
|
|
* It is caller's responsibility to free it calling sg_free_table.
|
|
*
|
|
* returns: 0 for succuss; negative error no on failure
|
|
*/
|
|
int xe_hmm_userptr_populate_range(struct xe_userptr_vma *uvma,
|
|
bool is_mm_mmap_locked)
|
|
{
|
|
unsigned long timeout =
|
|
jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
|
|
unsigned long *pfns;
|
|
struct xe_userptr *userptr;
|
|
struct xe_vma *vma = &uvma->vma;
|
|
u64 userptr_start = xe_vma_userptr(vma);
|
|
u64 userptr_end = userptr_start + xe_vma_size(vma);
|
|
struct xe_vm *vm = xe_vma_vm(vma);
|
|
struct hmm_range hmm_range = {
|
|
.pfn_flags_mask = 0, /* ignore pfns */
|
|
.default_flags = HMM_PFN_REQ_FAULT,
|
|
.start = userptr_start,
|
|
.end = userptr_end,
|
|
.notifier = &uvma->userptr.notifier,
|
|
.dev_private_owner = vm->xe,
|
|
};
|
|
bool write = !xe_vma_read_only(vma);
|
|
unsigned long notifier_seq;
|
|
u64 npages;
|
|
int ret;
|
|
|
|
userptr = &uvma->userptr;
|
|
|
|
if (is_mm_mmap_locked)
|
|
mmap_assert_locked(userptr->notifier.mm);
|
|
|
|
if (vma->gpuva.flags & XE_VMA_DESTROYED)
|
|
return 0;
|
|
|
|
notifier_seq = mmu_interval_read_begin(&userptr->notifier);
|
|
if (notifier_seq == userptr->notifier_seq)
|
|
return 0;
|
|
|
|
if (userptr->sg)
|
|
xe_hmm_userptr_free_sg(uvma);
|
|
|
|
npages = xe_npages_in_range(userptr_start, userptr_end);
|
|
pfns = kvmalloc_array(npages, sizeof(*pfns), GFP_KERNEL);
|
|
if (unlikely(!pfns))
|
|
return -ENOMEM;
|
|
|
|
if (write)
|
|
hmm_range.default_flags |= HMM_PFN_REQ_WRITE;
|
|
|
|
if (!mmget_not_zero(userptr->notifier.mm)) {
|
|
ret = -EFAULT;
|
|
goto free_pfns;
|
|
}
|
|
|
|
hmm_range.hmm_pfns = pfns;
|
|
|
|
while (true) {
|
|
hmm_range.notifier_seq = mmu_interval_read_begin(&userptr->notifier);
|
|
|
|
if (!is_mm_mmap_locked)
|
|
mmap_read_lock(userptr->notifier.mm);
|
|
|
|
ret = hmm_range_fault(&hmm_range);
|
|
|
|
if (!is_mm_mmap_locked)
|
|
mmap_read_unlock(userptr->notifier.mm);
|
|
|
|
if (ret == -EBUSY) {
|
|
if (time_after(jiffies, timeout))
|
|
break;
|
|
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
mmput(userptr->notifier.mm);
|
|
|
|
if (ret)
|
|
goto free_pfns;
|
|
|
|
ret = xe_alloc_sg(vm->xe, &userptr->sgt, &hmm_range, &vm->userptr.notifier_lock);
|
|
if (ret)
|
|
goto free_pfns;
|
|
|
|
ret = down_read_interruptible(&vm->userptr.notifier_lock);
|
|
if (ret)
|
|
goto free_st;
|
|
|
|
if (mmu_interval_read_retry(hmm_range.notifier, hmm_range.notifier_seq)) {
|
|
ret = -EAGAIN;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = xe_build_sg(vm->xe, &hmm_range, &userptr->sgt,
|
|
&vm->userptr.notifier_lock, write);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
userptr->sg = &userptr->sgt;
|
|
xe_hmm_userptr_set_mapped(uvma);
|
|
userptr->notifier_seq = hmm_range.notifier_seq;
|
|
up_read(&vm->userptr.notifier_lock);
|
|
kvfree(pfns);
|
|
return 0;
|
|
|
|
out_unlock:
|
|
up_read(&vm->userptr.notifier_lock);
|
|
free_st:
|
|
sg_free_table(&userptr->sgt);
|
|
free_pfns:
|
|
kvfree(pfns);
|
|
return ret;
|
|
}
|