/* Spa */ /* SPDX-FileCopyrightText: Copyright © 2020 Collabora Ltd. */ /* SPDX-License-Identifier: MIT */ /* [title] Running audioadapter nodes. [title] [doc] Runs an output audioadapter using audiotestsrc as follower with an input audioadapter using alsa-pcm-sink as follower for easy testing. [doc] */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static SPA_LOG_IMPL(default_log); #define MIN_LATENCY 1024 #define CONTROL_BUFFER_SIZE 32768 #define DEFAULT_RAMP_SAMPLES (64*1*1024) #define DEFAULT_RAMP_STEP_SAMPLES 200 #define DEFAULT_RAMP_TIME 2000 // 2 seconds #define DEFAULT_RAMP_STEP_TIME 5000 // 5 milli seconds #define DEFAULT_DEVICE "hw:0,0" #define LINEAR "linear" #define CUBIC "cubic" #define DEFAULT_SCALE SPA_AUDIO_VOLUME_RAMP_LINEAR #define NON_NATIVE "non-native" #define NATIVE "native" #define DEFAULT_MODE NON_NATIVE struct buffer { struct spa_buffer buffer; struct spa_meta metas[1]; struct spa_meta_header header; struct spa_data datas[1]; struct spa_chunk chunks[1]; }; struct data { const char *plugin_dir; struct spa_log *log; struct spa_system *system; struct spa_loop *loop; struct spa_loop_control *control; struct spa_support support[5]; uint32_t n_support; struct spa_graph graph; struct spa_graph_state graph_state; struct spa_graph_node graph_source_node; struct spa_graph_node graph_sink_node; struct spa_graph_state graph_source_state; struct spa_graph_state graph_sink_state; struct spa_graph_port graph_source_port_0; struct spa_graph_port graph_sink_port_0; struct spa_node *source_follower_node; // audiotestsrc struct spa_node *source_node; // adapter for audiotestsrc struct spa_node *sink_follower_node; // alsa-pcm-sink struct spa_node *sink_node; // adapter for alsa-pcm-sink struct spa_io_position position; struct spa_io_buffers source_sink_io[1]; struct spa_buffer *source_buffers[1]; struct buffer source_buffer[1]; struct spa_io_buffers control_io; struct spa_buffer *control_buffers[1]; struct buffer control_buffer[1]; int buffer_count; bool start_fade_in; double volume_accum; uint32_t volume_offs; const char *alsa_device; const char *mode; enum spa_audio_volume_ramp_scale scale; uint32_t volume_ramp_samples; uint32_t volume_ramp_step_samples; uint32_t volume_ramp_time; uint32_t volume_ramp_step_time; bool running; pthread_t thread; }; static int load_handle (struct data *data, struct spa_handle **handle, const char *lib, const char *name, struct spa_dict *info) { int res; void *hnd; spa_handle_factory_enum_func_t enum_func; uint32_t i; char *path; if ((path = spa_aprintf("%s/%s", data->plugin_dir, lib)) == NULL) return -ENOMEM; hnd = dlopen(path, RTLD_NOW); free(path); if (hnd == NULL) { printf("can't load %s: %s\n", lib, dlerror()); return -ENOENT; } if ((enum_func = dlsym(hnd, SPA_HANDLE_FACTORY_ENUM_FUNC_NAME)) == NULL) { printf("can't find enum function\n"); res = -ENOENT; goto exit_cleanup; } for (i = 0;;) { const struct spa_handle_factory *factory; if ((res = enum_func(&factory, &i)) <= 0) { if (res != 0) printf("can't enumerate factories: %s\n", spa_strerror(res)); break; } if (factory->version < 1) continue; if (!spa_streq(factory->name, name)) continue; *handle = calloc(1, spa_handle_factory_get_size(factory, NULL)); if ((res = spa_handle_factory_init(factory, *handle, info, data->support, data->n_support)) < 0) { printf("can't make factory instance: %d\n", res); goto exit_cleanup; } return 0; } return -EBADF; exit_cleanup: dlclose(hnd); return res; } static int init_data(struct data *data) { int res; const char *str; struct spa_handle *handle = NULL; struct spa_dict_item items [2]; struct spa_dict info; void *iface; if ((str = getenv("SPA_PLUGIN_DIR")) == NULL) str = PLUGINDIR; data->plugin_dir = str; /* start not doing fade-in */ data->start_fade_in = true; data->volume_accum = 0.0; data->volume_offs = 0; /* init the graph */ spa_graph_init(&data->graph, &data->graph_state); /* enable the debug messages in SPA */ items [0] = SPA_DICT_ITEM_INIT(SPA_KEY_LOG_TIMESTAMP, "true"); info = SPA_DICT_INIT(items, 1); if ((res = load_handle (data, &handle, "support/libspa-support.so", SPA_NAME_SUPPORT_LOG, &info)) < 0) return res; if ((res = spa_handle_get_interface(handle, SPA_TYPE_INTERFACE_Log, &iface)) < 0) { printf("can't get System interface %d\n", res); return res; } data->log = iface; data->support[data->n_support++] = SPA_SUPPORT_INIT(SPA_TYPE_INTERFACE_Log, data->log); /* load and set support system */ if ((res = load_handle(data, &handle, "support/libspa-support.so", SPA_NAME_SUPPORT_SYSTEM, NULL)) < 0) return res; if ((res = spa_handle_get_interface(handle, SPA_TYPE_INTERFACE_System, &iface)) < 0) { printf("can't get System interface %d\n", res); return res; } data->system = iface; data->support[data->n_support++] = SPA_SUPPORT_INIT(SPA_TYPE_INTERFACE_System, data->system); data->support[data->n_support++] = SPA_SUPPORT_INIT(SPA_TYPE_INTERFACE_DataSystem, data->system); /* load and set support loop and loop control */ if ((res = load_handle(data, &handle, "support/libspa-support.so", SPA_NAME_SUPPORT_LOOP, NULL)) < 0) return res; if ((res = spa_handle_get_interface(handle, SPA_TYPE_INTERFACE_Loop, &iface)) < 0) { printf("can't get interface %d\n", res); return res; } data->loop = iface; data->support[data->n_support++] = SPA_SUPPORT_INIT(SPA_TYPE_INTERFACE_Loop, data->loop); data->support[data->n_support++] = SPA_SUPPORT_INIT(SPA_TYPE_INTERFACE_DataLoop, data->loop); if ((res = spa_handle_get_interface(handle, SPA_TYPE_INTERFACE_LoopControl, &iface)) < 0) { printf("can't get interface %d\n", res); return res; } data->control = iface; if ((str = getenv("SPA_DEBUG"))) data->log->level = atoi(str); return 0; } static int make_node(struct data *data, struct spa_node **node, const char *lib, const char *name, const struct spa_dict *props) { struct spa_handle *handle; int res = 0; void *hnd = NULL; spa_handle_factory_enum_func_t enum_func; uint32_t i; char *path; if ((path = spa_aprintf("%s/%s", data->plugin_dir, lib)) == NULL) return -ENOMEM; hnd = dlopen(path, RTLD_NOW); free(path); if (hnd == NULL) { printf("can't load %s: %s\n", lib, dlerror()); return -ENOENT; } if ((enum_func = dlsym(hnd, SPA_HANDLE_FACTORY_ENUM_FUNC_NAME)) == NULL) { printf("can't find enum function\n"); res = -ENOENT; goto exit_cleanup; } for (i = 0;;) { const struct spa_handle_factory *factory; void *iface; if ((res = enum_func(&factory, &i)) <= 0) { if (res != 0) printf("can't enumerate factories: %s\n", spa_strerror(res)); break; } if (factory->version < 1) continue; if (!spa_streq(factory->name, name)) continue; handle = calloc(1, spa_handle_factory_get_size(factory, NULL)); if ((res = spa_handle_factory_init(factory, handle, props, data->support, data->n_support)) < 0) { printf("can't make factory instance: %d\n", res); goto exit_cleanup; } if ((res = spa_handle_get_interface(handle, SPA_TYPE_INTERFACE_Node, &iface)) < 0) { printf("can't get interface %d\n", res); goto exit_cleanup; } *node = iface; return 0; } return -EBADF; exit_cleanup: dlclose(hnd); return res; } static int get_ramp_samples(struct data *data) { int samples = -1; if (data->volume_ramp_samples) samples = data->volume_ramp_samples; else if (data->volume_ramp_time) { samples = (data->volume_ramp_time * 48000) / 1000; } if (!samples) samples = -1; return samples; } static int get_ramp_step_samples(struct data *data) { int samples = -1; if (data->volume_ramp_step_samples) samples = data->volume_ramp_step_samples; else if (data->volume_ramp_step_time) { /* convert the step time which is in nano seconds to seconds */ samples = (data->volume_ramp_step_time / 1000) * (48000 / 1000); } if (!samples) samples = -1; return samples; } static double get_volume_at_scale(struct data *data) { if (data->scale == SPA_AUDIO_VOLUME_RAMP_LINEAR) return data->volume_accum; else if (data->scale == SPA_AUDIO_VOLUME_RAMP_CUBIC) return (data->volume_accum * data->volume_accum * data->volume_accum); return 0.0; } static int fade_in(struct data *data) { printf("fading in\n"); if (spa_streq (data->mode, NON_NATIVE)) { struct spa_pod_builder b; struct spa_pod_frame f[1]; void *buffer = data->control_buffer->datas[0].data; int ramp_samples = get_ramp_samples(data); int ramp_step_samples = get_ramp_step_samples(data); double step_size = ((double) ramp_step_samples / (double) ramp_samples); uint32_t buffer_size = data->control_buffer->datas[0].maxsize; data->control_buffer->datas[0].chunk[0].size = buffer_size; spa_pod_builder_init(&b, buffer, buffer_size); spa_pod_builder_push_sequence(&b, &f[0], 0); data->volume_offs = 0; do { // printf("volume level %f offset %d\n", get_volume_at_scale(data), data->volume_offs); spa_pod_builder_control(&b, data->volume_offs, SPA_CONTROL_Properties); spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_Props, 0, SPA_PROP_volume, SPA_POD_Float(get_volume_at_scale(data))); data->volume_accum += step_size; data->volume_offs += ramp_step_samples; } while (data->volume_accum < 1.0); spa_pod_builder_pop(&b, &f[0]); } else { struct spa_pod_builder b; struct spa_pod *props; int res = 0; uint8_t buffer[1024]; spa_pod_builder_init(&b, buffer, sizeof(buffer)); props = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_Props, 0, SPA_PROP_volume, SPA_POD_Float(1.0), SPA_PROP_volumeRampSamples, SPA_POD_Int(data->volume_ramp_samples), SPA_PROP_volumeRampStepSamples, SPA_POD_Int(data->volume_ramp_step_samples), SPA_PROP_volumeRampTime, SPA_POD_Int(data->volume_ramp_time), SPA_PROP_volumeRampStepTime, SPA_POD_Int(data->volume_ramp_step_time), SPA_PROP_volumeRampScale, SPA_POD_Id(data->scale)); if ((res = spa_node_set_param(data->sink_node, SPA_PARAM_Props, 0, props)) < 0) { printf("can't call volramp set params %d\n", res); return res; } } return 0; } static int fade_out(struct data *data) { printf("fading out\n"); if (spa_streq (data->mode, NON_NATIVE)) { struct spa_pod_builder b; struct spa_pod_frame f[1]; int ramp_samples = get_ramp_samples(data); int ramp_step_samples = get_ramp_step_samples(data); double step_size = ((double) ramp_step_samples / (double) ramp_samples); void *buffer = data->control_buffer->datas[0].data; uint32_t buffer_size = data->control_buffer->datas[0].maxsize; data->control_buffer->datas[0].chunk[0].size = buffer_size; spa_pod_builder_init(&b, buffer, buffer_size); spa_pod_builder_push_sequence(&b, &f[0], 0); data->volume_offs = ramp_step_samples; do { // printf("volume level %f offset %d\n", get_volume_at_scale(data), data->volume_offs); spa_pod_builder_control(&b, data->volume_offs, SPA_CONTROL_Properties); spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_Props, 0, SPA_PROP_volume, SPA_POD_Float(get_volume_at_scale(data))); data->volume_accum -= step_size; data->volume_offs += ramp_step_samples; } while (data->volume_accum > 0.0); spa_pod_builder_pop(&b, &f[0]); } else { struct spa_pod_builder b; uint8_t buffer[1024]; struct spa_pod *props; int res = 0; spa_pod_builder_init(&b, buffer, sizeof(buffer)); props = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_Props, 0, SPA_PROP_volume, SPA_POD_Float(0.0), SPA_PROP_volumeRampSamples, SPA_POD_Int(data->volume_ramp_samples), SPA_PROP_volumeRampStepSamples, SPA_POD_Int(data->volume_ramp_step_samples), SPA_PROP_volumeRampTime, SPA_POD_Int(data->volume_ramp_time), SPA_PROP_volumeRampStepTime, SPA_POD_Int(data->volume_ramp_step_time), SPA_PROP_volumeRampScale, SPA_POD_Id(data->scale)); if ((res = spa_node_set_param(data->sink_node, SPA_PARAM_Props, 0, props)) < 0) { printf("can't call volramp set params %d\n", res); return res; } } return 0; } static void do_fade(struct data *data) { if (spa_streq (data->mode, NON_NATIVE)) { switch (data->control_io.status) { case SPA_STATUS_OK: case SPA_STATUS_NEED_DATA: break; case SPA_STATUS_HAVE_DATA: case SPA_STATUS_STOPPED: default: return; } } /* fade */ if (data->start_fade_in) fade_in(data); else fade_out(data); if (spa_streq (data->mode, NON_NATIVE)) { data->control_io.status = SPA_STATUS_HAVE_DATA; data->control_io.buffer_id = 0; } /* alternate */ data->start_fade_in = !data->start_fade_in; } static int on_sink_node_ready(void *_data, int status) { struct data *data = _data; int runway = (get_ramp_samples(data) / 1024); /* only do fade in/out when buffer count is 0 */ if (data->buffer_count == 0) do_fade(data); /* update buffer count */ data->buffer_count++; if (data->buffer_count > (runway * 2)) data->buffer_count = 0; spa_graph_node_process(&data->graph_source_node); spa_graph_node_process(&data->graph_sink_node); return 0; } static const struct spa_node_callbacks sink_node_callbacks = { SPA_VERSION_NODE_CALLBACKS, .ready = on_sink_node_ready, }; static int make_nodes(struct data *data) { int res = 0; struct spa_pod *props; struct spa_pod_builder b = { 0 }; uint8_t buffer[1024]; char value[32]; struct spa_dict_item items[2]; struct spa_audio_info_raw info; struct spa_pod *param; float initial_volume = 0.0; items[0] = SPA_DICT_ITEM_INIT("clock.quantum-limit", "8192"); /* make the source node (audiotestsrc) */ if ((res = make_node(data, &data->source_follower_node, "audiotestsrc/libspa-audiotestsrc.so", "audiotestsrc", &SPA_DICT_INIT(items, 1))) < 0) { printf("can't create source follower node (audiotestsrc): %d\n", res); return res; } printf("created source follower node %p\n", data->source_follower_node); /* set the format on the source */ spa_pod_builder_init(&b, buffer, sizeof(buffer)); param = spa_format_audio_raw_build(&b, 0, &SPA_AUDIO_INFO_RAW_INIT( .format = SPA_AUDIO_FORMAT_S16, .rate = 48000, .channels = 2 )); if ((res = spa_node_port_set_param(data->source_follower_node, SPA_DIRECTION_OUTPUT, 0, SPA_PARAM_Format, 0, param)) < 0) { printf("can't set format on follower node (audiotestsrc): %d\n", res); return res; } /* make the source adapter node */ snprintf(value, sizeof(value), "pointer:%p", data->source_follower_node); items[1] = SPA_DICT_ITEM_INIT("audio.adapt.follower", value); if ((res = make_node(data, &data->source_node, "audioconvert/libspa-audioconvert.so", SPA_NAME_AUDIO_ADAPT, &SPA_DICT_INIT(items, 2))) < 0) { printf("can't create source adapter node: %d\n", res); return res; } printf("created source adapter node %p\n", data->source_node); /* setup the source node props */ spa_pod_builder_init(&b, buffer, sizeof(buffer)); props = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_Props, 0, SPA_PROP_frequency, SPA_POD_Float(600.0), SPA_PROP_volume, SPA_POD_Float(0.5), SPA_PROP_live, SPA_POD_Bool(false)); if ((res = spa_node_set_param(data->source_node, SPA_PARAM_Props, 0, props)) < 0) { printf("can't setup source follower node %d\n", res); return res; } /* setup the source node port config */ spa_zero(info); info.format = SPA_AUDIO_FORMAT_F32P; info.channels = 1; info.rate = 48000; info.position[0] = SPA_AUDIO_CHANNEL_MONO; spa_pod_builder_init(&b, buffer, sizeof(buffer)); param = spa_format_audio_raw_build(&b, SPA_PARAM_Format, &info); param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_ParamPortConfig, SPA_PARAM_PortConfig, SPA_PARAM_PORT_CONFIG_direction, SPA_POD_Id(SPA_DIRECTION_OUTPUT), SPA_PARAM_PORT_CONFIG_mode, SPA_POD_Id(SPA_PARAM_PORT_CONFIG_MODE_dsp), SPA_PARAM_PORT_CONFIG_format, SPA_POD_Pod(param)); if ((res = spa_node_set_param(data->source_node, SPA_PARAM_PortConfig, 0, param) < 0)) { printf("can't setup source node %d\n", res); return res; } /* make the sink follower node (alsa-pcm-sink) */ if ((res = make_node(data, &data->sink_follower_node, "alsa/libspa-alsa.so", SPA_NAME_API_ALSA_PCM_SINK, &SPA_DICT_INIT(items, 1))) < 0) { printf("can't create sink follower node (alsa-pcm-sink): %d\n", res); return res; } printf("created sink follower node %p\n", data->sink_follower_node); /* make the sink adapter node */ snprintf(value, sizeof(value), "pointer:%p", data->sink_follower_node); items[1] = SPA_DICT_ITEM_INIT("audio.adapt.follower", value); if ((res = make_node(data, &data->sink_node, "audioconvert/libspa-audioconvert.so", SPA_NAME_AUDIO_ADAPT, &SPA_DICT_INIT(items, 2))) < 0) { printf("can't create sink adapter node: %d\n", res); return res; } printf("created sink adapter node %p\n", data->sink_node); /* add sink follower node callbacks */ spa_node_set_callbacks(data->sink_node, &sink_node_callbacks, data); /* setup the sink node props */ spa_pod_builder_init(&b, buffer, sizeof(buffer)); props = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_Props, 0, SPA_PROP_device, SPA_POD_String(data->alsa_device), SPA_PROP_minLatency, SPA_POD_Int(MIN_LATENCY)); if ((res = spa_node_set_param(data->sink_follower_node, SPA_PARAM_Props, 0, props)) < 0) { printf("can't setup sink follower node %d\n", res); return res; } printf("Selected (%s) alsa device\n", data->alsa_device); if (!data->start_fade_in) initial_volume = 1.0; /* setup the sink node port config */ spa_zero(info); info.format = SPA_AUDIO_FORMAT_F32P; info.channels = 1; info.rate = 48000; info.position[0] = SPA_AUDIO_CHANNEL_MONO; spa_pod_builder_init(&b, buffer, sizeof(buffer)); param = spa_format_audio_raw_build(&b, SPA_PARAM_Format, &info); if (spa_streq (data->mode, NON_NATIVE)) param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_ParamPortConfig, SPA_PARAM_PortConfig, SPA_PARAM_PORT_CONFIG_direction, SPA_POD_Id(SPA_DIRECTION_INPUT), SPA_PARAM_PORT_CONFIG_mode, SPA_POD_Id(SPA_PARAM_PORT_CONFIG_MODE_dsp), SPA_PARAM_PORT_CONFIG_control, SPA_POD_Bool(true), SPA_PARAM_PORT_CONFIG_format, SPA_POD_Pod(param)); else param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_ParamPortConfig, SPA_PARAM_PortConfig, SPA_PARAM_PORT_CONFIG_direction, SPA_POD_Id(SPA_DIRECTION_INPUT), SPA_PARAM_PORT_CONFIG_mode, SPA_POD_Id(SPA_PARAM_PORT_CONFIG_MODE_dsp), SPA_PARAM_PORT_CONFIG_format, SPA_POD_Pod(param)); if ((res = spa_node_set_param(data->sink_node, SPA_PARAM_PortConfig, 0, param) < 0)) { printf("can't setup sink node %d\n", res); return res; } spa_pod_builder_init(&b, buffer, sizeof(buffer)); props = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_Props, 0, SPA_PROP_volume, SPA_POD_Float(initial_volume)); if ((res = spa_node_set_param(data->sink_node, SPA_PARAM_Props, 0, props)) < 0) { printf("can't configure initial volume %d\n", res); return res; } /* set io buffers on source and sink nodes */ data->source_sink_io[0] = SPA_IO_BUFFERS_INIT; if ((res = spa_node_port_set_io(data->source_node, SPA_DIRECTION_OUTPUT, 0, SPA_IO_Buffers, &data->source_sink_io[0], sizeof(data->source_sink_io[0]))) < 0) { printf("can't set io buffers on port 0 of source node: %d\n", res); return res; } printf("set io buffers on port 0 of source node %p\n", data->source_node); if ((res = spa_node_port_set_io(data->sink_node, SPA_DIRECTION_INPUT, 0, SPA_IO_Buffers, &data->source_sink_io[0], sizeof(data->source_sink_io[0]))) < 0) { printf("can't set io buffers on port 0 of sink node: %d\n", res); return res; } printf("set io buffers on port 0 of sink node %p\n", data->sink_node); /* set io position and clock on source and sink nodes */ data->position.clock.target_rate = SPA_FRACTION(1, 48000); data->position.clock.target_duration = 1024; data->position.clock.rate = data->position.clock.target_rate; data->position.clock.duration = data->position.clock.target_duration; if ((res = spa_node_set_io(data->source_node, SPA_IO_Position, &data->position, sizeof(data->position))) < 0) { printf("can't set io position on source node: %d\n", res); return res; } if ((res = spa_node_set_io(data->sink_node, SPA_IO_Position, &data->position, sizeof(data->position))) < 0) { printf("can't set io position on sink node: %d\n", res); return res; } if ((res = spa_node_set_io(data->source_node, SPA_IO_Clock, &data->position.clock, sizeof(data->position.clock))) < 0) { printf("can't set io clock on source node: %d\n", res); return res; } if ((res = spa_node_set_io(data->sink_node, SPA_IO_Clock, &data->position.clock, sizeof(data->position.clock))) < 0) { printf("can't set io clock on sink node: %d\n", res); return res; } if (spa_streq (data->mode, NON_NATIVE)) { /* set io buffers on control port of sink node */ if ((res = spa_node_port_set_io(data->sink_node, SPA_DIRECTION_INPUT, 1, SPA_IO_Buffers, &data->control_io, sizeof(data->control_io))) < 0) { printf("can't set io buffers on control port 1 of sink node\n"); return res; } } /* add source node to the graph */ spa_graph_node_init(&data->graph_source_node, &data->graph_source_state); spa_graph_node_set_callbacks(&data->graph_source_node, &spa_graph_node_impl_default, data->source_node); spa_graph_node_add(&data->graph, &data->graph_source_node); spa_graph_port_init(&data->graph_source_port_0, SPA_DIRECTION_OUTPUT, 0, 0); spa_graph_port_add(&data->graph_source_node, &data->graph_source_port_0); /* add sink node to the graph */ spa_graph_node_init(&data->graph_sink_node, &data->graph_sink_state); spa_graph_node_set_callbacks(&data->graph_sink_node, &spa_graph_node_impl_default, data->sink_node); spa_graph_node_add(&data->graph, &data->graph_sink_node); spa_graph_port_init(&data->graph_sink_port_0, SPA_DIRECTION_INPUT, 0, 0); spa_graph_port_add(&data->graph_sink_node, &data->graph_sink_port_0); /* link source and sink nodes */ spa_graph_port_link(&data->graph_source_port_0, &data->graph_sink_port_0); return res; } static void init_buffer(struct data *data, struct spa_buffer **bufs, struct buffer *ba, int n_buffers, size_t size) { int i; for (i = 0; i < n_buffers; i++) { struct buffer *b = &ba[i]; bufs[i] = &b->buffer; b->buffer.metas = b->metas; b->buffer.n_metas = 1; b->buffer.datas = b->datas; b->buffer.n_datas = 1; b->header.flags = 0; b->header.seq = 0; b->header.pts = 0; b->header.dts_offset = 0; b->metas[0].type = SPA_META_Header; b->metas[0].data = &b->header; b->metas[0].size = sizeof(b->header); b->datas[0].type = SPA_DATA_MemPtr; b->datas[0].flags = 0; b->datas[0].fd = -1; b->datas[0].mapoffset = 0; b->datas[0].maxsize = size; b->datas[0].data = malloc(size); b->datas[0].chunk = &b->chunks[0]; b->datas[0].chunk->offset = 0; b->datas[0].chunk->size = 0; b->datas[0].chunk->stride = 0; } } static int negotiate_formats(struct data *data) { int res; struct spa_pod *filter = NULL, *param = NULL; struct spa_pod_builder b = { 0 }; uint8_t buffer[4096]; uint32_t state = 0; size_t buffer_size = 1024; /* set the sink and source formats */ spa_pod_builder_init(&b, buffer, sizeof(buffer)); param = spa_format_audio_dsp_build(&b, 0, &SPA_AUDIO_INFO_DSP_INIT( .format = SPA_AUDIO_FORMAT_F32P)); if ((res = spa_node_port_set_param(data->source_node, SPA_DIRECTION_OUTPUT, 0, SPA_PARAM_Format, 0, param)) < 0) { printf("can't set format on source node: %d\n", res); return res; } if ((res = spa_node_port_set_param(data->sink_node, SPA_DIRECTION_INPUT, 0, SPA_PARAM_Format, 0, param)) < 0) { printf("can't set format on source node: %d\n", res); return res; } if (spa_streq (data->mode, NON_NATIVE)) { spa_pod_builder_init(&b, buffer, sizeof(buffer)); param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_Format, SPA_PARAM_Format, SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_application), SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_control)); if ((res = spa_node_port_set_param(data->sink_node, SPA_DIRECTION_INPUT, 1, SPA_PARAM_Format, 0, param)) < 0) { printf("can't set format on control port of source node: %d\n", res); return res; } } /* get the source node buffer size */ spa_pod_builder_init(&b, buffer, sizeof(buffer)); if ((res = spa_node_port_enum_params_sync(data->source_node, SPA_DIRECTION_OUTPUT, 0, SPA_PARAM_Buffers, &state, filter, ¶m, &b)) != 1) return res ? res : -ENOTSUP; spa_pod_fixate(param); if ((res = spa_pod_parse_object(param, SPA_TYPE_OBJECT_ParamBuffers, NULL, SPA_PARAM_BUFFERS_size, SPA_POD_Int(&buffer_size))) < 0) return res; /* use buffers on the source and sink */ init_buffer(data, data->source_buffers, data->source_buffer, 1, buffer_size); if ((res = spa_node_port_use_buffers(data->source_node, SPA_DIRECTION_OUTPUT, 0, 0, data->source_buffers, 1)) < 0) return res; printf("allocated and assigned buffer (%zu) to source node %p\n", buffer_size, data->source_node); if ((res = spa_node_port_use_buffers(data->sink_node, SPA_DIRECTION_INPUT, 0, 0, data->source_buffers, 1)) < 0) return res; printf("allocated and assigned buffers to sink node %p\n", data->sink_node); if (spa_streq (data->mode, NON_NATIVE)) { /* Set the control buffers */ init_buffer(data, data->control_buffers, data->control_buffer, 1, CONTROL_BUFFER_SIZE); if ((res = spa_node_port_use_buffers(data->sink_node, SPA_DIRECTION_INPUT, 1, 0, data->control_buffers, 1)) < 0) return res; printf("allocated and assigned control buffers(%d) to sink node %p\n", CONTROL_BUFFER_SIZE, data->sink_node); } return 0; } static void *loop(void *user_data) { struct data *data = user_data; printf("enter thread\n"); spa_loop_control_enter(data->control); while (data->running) { spa_loop_control_iterate(data->control, -1); } printf("leave thread\n"); spa_loop_control_leave(data->control); return NULL; return NULL; } static void run_async_sink(struct data *data) { int res, err; struct spa_command cmd; cmd = SPA_NODE_COMMAND_INIT(SPA_NODE_COMMAND_Start); if ((res = spa_node_send_command(data->source_node, &cmd)) < 0) printf("got error %d\n", res); printf("Source node started\n"); if ((res = spa_node_send_command(data->sink_node, &cmd)) < 0) printf("got error %d\n", res); printf("sink node started\n"); spa_loop_control_leave(data->control); data->running = true; if ((err = pthread_create(&data->thread, NULL, loop, data)) != 0) { printf("can't create thread: %d %s", err, strerror(err)); data->running = false; } printf("sleeping for 1000 seconds\n"); sleep(1000); if (data->running) { data->running = false; pthread_join(data->thread, NULL); } spa_loop_control_enter(data->control); cmd = SPA_NODE_COMMAND_INIT(SPA_NODE_COMMAND_Pause); if ((res = spa_node_send_command(data->source_node, &cmd)) < 0) printf("got error %d\n", res); if ((res = spa_node_send_command(data->sink_node, &cmd)) < 0) printf("got error %d\n", res); } static const char *getscale(uint32_t scale) { const char *scale_s = NULL; if (scale == SPA_AUDIO_VOLUME_RAMP_LINEAR) scale_s = LINEAR; else if (scale == SPA_AUDIO_VOLUME_RAMP_CUBIC) scale_s = CUBIC; return scale_s; } static void show_help(struct data *data, const char *name, bool error) { fprintf(error ? stderr : stdout, "%s [options] [command]\n" " -h, --help Show this help\n" " -d, --alsa-device ALSA device(\"aplay -l\" for more info) to play the samples on(default %s)\n" " -m, --mode Volume Ramp Mode(\"NonNative\"(via Control Port) \"Native\" (via Volume Ramp Params of AudioAdapter plugin)) (default %s)\n" " -s, --ramp-samples SPA_PROP_volumeRampSamples(Samples to ramp the volume over)(default %d)\n" " -a, --ramp-step-samples SPA_PROP_volumeRampStepSamples(Step or incremental Samples to ramp the volume over)(default %d)\n" " -t, --ramp-time SPA_PROP_volumeRampTime(Time to ramp the volume over in msec)(default %d)\n" " -i, --ramp-step-time SPA_PROP_volumeRampStepTime(Step or incremental Time to ramp the volume over in nano sec)(default %d)\n" " -c, --scale SPA_PROP_volumeRampScale(the scale or graph to used to ramp the volume)(\"linear\" or \"cubic\")(default %s)\n" "examples:\n" "adapter-control\n" "-->when invoked with out any params, ramps volume with default values\n" "adapter-control --ramp-samples=70000, rest of the parameters are defaults\n" "-->ramps volume over 70000 samples(it is 1.45 seconds)\n" "adapter-control --alsa-device=hw:0,0 --ramp-samples=70000\n" "-->ramps volume on \"hw:0,0\" alsa device over 70000 samples\n" "adapter-control --alsa-device=hw:0,0 --ramp-samples=70000 --mode=native\n" "-->ramps volume on \"hw:0,0\" alsa device over 70000 samples in native mode\n" "adapter-control --alsa-device=hw:0,0 --ramp-time=1000 --mode=native\n" "-->ramps volume on \"hw:0,0\" alsa device over 1000 msec in native mode\n" "adapter-control --alsa-device=hw:0,0 --ramp-time=1000 --ramp-step-time=5000 --mode=native\n" "-->ramps volume on \"hw:0,0\" alsa device over 1000 msec in steps of 5000 nano seconds(5 msec)in native mode\n" "adapter-control --alsa-device=hw:0,0 --ramp-samples=70000 --ramp-step-samples=200 --mode=native\n" "-->ramps volume on \"hw:0,0\" alsa device over 70000 samples with a step size of 200 samples in native mode\n" "adapter-control --alsa-device=hw:1,0 --scale=linear\n" "-->ramps volume on \"hw:1,0\" in linear volume scale, one can leave choose to not use the linear scale here as it is the default\n" "adapter-control --alsa-device=hw:1,0 --ramp-samples=70000 --scale=cubic\n" "-->ramps volume on \"hw:1,0\" alsa device over 70000 samples deploying cubic volume scale\n" "adapter-control --alsa-device=hw:1,0 --ramp-samples=70000 --mode=native --scale=cubic\n" "-->ramps volume on \"hw:1,0\" alsa device over 70000 samples deploying cubic volume scale in native mode\n" "adapter-control --alsa-device=hw:1,0 --ramp-time=3000 --scale=cubic --mode=native\n" "-->ramps volume on \"hw:1,0\" alsa device over 3 seconds samples with a step size of 200 samples in native mode\n", name, DEFAULT_DEVICE, DEFAULT_MODE, DEFAULT_RAMP_SAMPLES, DEFAULT_RAMP_STEP_SAMPLES, DEFAULT_RAMP_TIME, DEFAULT_RAMP_STEP_TIME, getscale(DEFAULT_SCALE)); } int main(int argc, char *argv[]) { struct data data = { 0 }; int res = 0, c; /* default values*/ data.volume_ramp_samples = DEFAULT_RAMP_SAMPLES; data.volume_ramp_step_samples = DEFAULT_RAMP_STEP_SAMPLES; data.alsa_device = DEFAULT_DEVICE; data.mode = DEFAULT_MODE; data.scale = DEFAULT_SCALE; static const struct option long_options[] = { { "help", no_argument, NULL, 'h' }, { "alsa-device", required_argument, NULL, 'd' }, { "mode", required_argument, NULL, 'm' }, { "ramp-samples", required_argument, NULL, 's' }, { "ramp-time", required_argument, NULL, 't' }, { "ramp-step-samples", required_argument, NULL, 'a' }, { "ramp-step-time", required_argument, NULL, 'i' }, { "scale", required_argument, NULL, 'c' }, { NULL, 0, NULL, 0} }; setlocale(LC_ALL, ""); while ((c = getopt_long(argc, argv, "hdmstiac:", long_options, NULL)) != -1) { switch (c) { case 'h': show_help(&data, argv[0], false); return 0; case 'm': if (!spa_streq (optarg, NATIVE) && !spa_streq (optarg, NON_NATIVE)) printf("Invalid Mode(\"%s\"), using default(\"%s\")\n", optarg, DEFAULT_MODE); else data.mode = optarg; break; case 'c': if (!spa_streq (optarg, LINEAR) && !spa_streq (optarg, CUBIC)) printf("Invalid Scale(\"%s\"), using default(\"%s\")\n", optarg, getscale(DEFAULT_SCALE)); else if (spa_streq (optarg, LINEAR)) data.scale = SPA_AUDIO_VOLUME_RAMP_LINEAR; else if (spa_streq (optarg, CUBIC)) data.scale = SPA_AUDIO_VOLUME_RAMP_CUBIC; break; case 'd': data.alsa_device = optarg; break; case 's': data.volume_ramp_samples = atoi(optarg); break; case 't': data.volume_ramp_time = atoi(optarg); if (!data.volume_ramp_step_time) data.volume_ramp_step_time = DEFAULT_RAMP_STEP_TIME; data.volume_ramp_samples = 0; data.volume_ramp_step_samples = 0; break; case 'a': data.volume_ramp_step_samples = atoi(optarg); break; case 'i': data.volume_ramp_step_time = atoi(optarg); break; default: show_help(&data, argv[0], true); return -1; } } /* init data */ if ((res = init_data(&data)) < 0) { printf("can't init data: %d (%s)\n", res, spa_strerror(res)); return -1; } /* make the nodes (audiotestsrc and adapter with alsa-pcm-sink as follower) */ if ((res = make_nodes(&data)) < 0) { printf("can't make nodes: %d (%s)\n", res, spa_strerror(res)); return -1; } /* Negotiate format */ if ((res = negotiate_formats(&data)) < 0) { printf("can't negotiate nodes: %d (%s)\n", res, spa_strerror(res)); return -1; } printf("using %s mode\n", data.mode); if (data.volume_ramp_samples && data.volume_ramp_step_samples) printf("using %d samples with a step size of %d samples to ramp volume at %s scale\n", data.volume_ramp_samples, data.volume_ramp_step_samples, getscale(data.scale)); else if (data.volume_ramp_time && data.volume_ramp_step_time) printf("using %d msec with a step size of %d msec to ramp volume at %s scale\n", data.volume_ramp_time, (data.volume_ramp_step_time/1000), getscale(data.scale)); spa_loop_control_enter(data.control); run_async_sink(&data); spa_loop_control_leave(data.control); }