#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "alsa-pcm.h" static struct spa_list cards = SPA_LIST_INIT(&cards); static struct spa_list states = SPA_LIST_INIT(&states); static struct card *find_card(uint32_t index) { struct card *c; spa_list_for_each(c, &cards, link) { if (c->index == index) { c->ref++; return c; } } return NULL; } static struct card *ensure_card(uint32_t index, bool ucm, bool ucm_split) { struct card *c; char card_name[128]; const char *alibpref = NULL; int err; if (index == SPA_ID_INVALID) return NULL; if ((c = find_card(index)) != NULL) return c; c = calloc(1, sizeof(*c)); c->ref = 1; c->index = index; if (ucm) { const char *split_prefix = ucm_split ? "<<>>" : ""; snprintf(card_name, sizeof(card_name), "%shw:%i", split_prefix, index); err = snd_use_case_mgr_open(&c->ucm, card_name); if (err < 0) { char *name; err = snd_card_get_name(index, &name); if (err < 0) goto error; snprintf(card_name, sizeof(card_name), "%s%s", split_prefix, name); free(name); err = snd_use_case_mgr_open(&c->ucm, card_name); if (err < 0) goto error; } if ((snd_use_case_get(c->ucm, "_alibpref", &alibpref) != 0)) alibpref = NULL; c->ucm_prefix = (char*)alibpref; } spa_list_append(&cards, &c->link); return c; error: free(c); errno = -err; return NULL; } static void release_card(struct card *c) { if (!c) return; spa_assert(c->ref > 0); if (--c->ref > 0) return; spa_list_remove(&c->link); if (c->ucm) { free(c->ucm_prefix); snd_use_case_mgr_close(c->ucm); } free(c); } #define CHECK(s,msg,...) if ((err = (s)) < 0) { spa_log_error(state->log, msg ": %s", ##__VA_ARGS__, snd_strerror(err)); return err; } static int write_bind_ctl_param(struct state *state, const char *name, const char *param) { int err; unsigned int count, idx; char _name[1024]; for (unsigned int i = 0; i < state->num_bind_ctls; i++) { snd_ctl_elem_info_t *info = state->bound_ctls[i].info; bool changed = false; int type; if(!state->bound_ctls[i].value || !info) continue; snprintf(_name, sizeof(_name), "api.alsa.bind-ctl.%s", snd_ctl_elem_info_get_name(info)); if (!spa_streq(name, _name)) continue; type = snd_ctl_elem_info_get_type(info); count = snd_ctl_elem_info_get_count(info); switch (type) { case SND_CTL_ELEM_TYPE_BOOLEAN: { bool b = spa_atob(param); for (idx = 0; idx < count; idx++) snd_ctl_elem_value_set_boolean(state->bound_ctls[i].value, idx, b); changed = true; } break; case SND_CTL_ELEM_TYPE_INTEGER: { long l = (long) atoi(param); for (idx = 0; idx < count; idx++) snd_ctl_elem_value_set_integer(state->bound_ctls[i].value, idx, l); changed = true; } break; default: spa_log_warn(state->log, "%s ctl '%s' not supported", snd_ctl_elem_type_name(snd_ctl_elem_info_get_type(info)), snd_ctl_elem_info_get_name(info)); break; } if(changed) CHECK(snd_ctl_elem_write(state->ctl, state->bound_ctls[i].value), "snd_ctl_elem_write"); return 0; } return 0; } static int alsa_set_param(struct state *state, const char *k, const char *s) { int fmt_change = 0; if (spa_streq(k, SPA_KEY_AUDIO_CHANNELS)) { state->default_channels = atoi(s); fmt_change++; } else if (spa_streq(k, SPA_KEY_AUDIO_RATE)) { state->default_rate = atoi(s); fmt_change++; } else if (spa_streq(k, SPA_KEY_AUDIO_FORMAT)) { state->default_format = spa_type_audio_format_from_short_name(s); fmt_change++; } else if (spa_streq(k, SPA_KEY_AUDIO_POSITION)) { spa_alsa_parse_position(&state->default_pos, s, strlen(s)); fmt_change++; } else if (spa_streq(k, SPA_KEY_AUDIO_ALLOWED_RATES)) { state->n_allowed_rates = spa_alsa_parse_rates(state->allowed_rates, MAX_RATES, s, strlen(s)); fmt_change++; } else if (spa_streq(k, "iec958.codecs")) { spa_alsa_parse_iec958_codecs(&state->iec958_codecs, s, strlen(s)); fmt_change++; } else if (spa_streq(k, "api.alsa.period-size")) { state->default_period_size = atoi(s); } else if (spa_streq(k, "api.alsa.period-num")) { state->default_period_num = atoi(s); } else if (spa_streq(k, "api.alsa.headroom")) { state->default_headroom = atoi(s); } else if (spa_streq(k, "api.alsa.start-delay")) { state->default_start_delay = atoi(s); } else if (spa_streq(k, "api.alsa.disable-mmap")) { state->disable_mmap = spa_atob(s); } else if (spa_streq(k, "api.alsa.disable-batch")) { state->disable_batch = spa_atob(s); } else if (spa_streq(k, "api.alsa.disable-tsched")) { state->disable_tsched = spa_atob(s); } else if (spa_streq(k, "api.alsa.use-chmap")) { state->props.use_chmap = spa_atob(s); } else if (spa_streq(k, "api.alsa.multi-rate")) { state->multi_rate = spa_atob(s); } else if (spa_streq(k, "api.alsa.htimestamp")) { state->htimestamp = spa_atob(s); } else if (spa_streq(k, "api.alsa.htimestamp.max-errors")) { state->htimestamp_max_errors = atoi(s); } else if (spa_streq(k, "api.alsa.auto-link")) { state->auto_link = spa_atob(s); } else if (spa_streq(k, "latency.internal.rate")) { state->process_latency.rate = atoi(s); } else if (spa_streq(k, "latency.internal.ns")) { state->process_latency.ns = atoi(s); } else if (spa_streq(k, "clock.name")) { spa_scnprintf(state->clock_name, sizeof(state->clock_name), "%s", s); } else if (spa_strstartswith(k, "api.alsa.bind-ctl.")) { write_bind_ctl_param(state, k, s); fmt_change++; } else if (spa_streq(k, SPA_KEY_MEDIA_CLASS)) { spa_scnprintf(state->props.media_class, sizeof(state->props.media_class), "%s", s); } else if (spa_streq(k, "api.alsa.split.parent")) { state->is_split_parent = true; } else return 0; if (fmt_change > 0) { state->port_info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS; state->port_params[PORT_EnumFormat].user++; } return 1; } static int position_to_string(struct channel_map *map, char *val, size_t len) { uint32_t i, o = 0; int r; o += snprintf(val, len, "[ "); for (i = 0; i < map->channels; i++) { r = snprintf(val+o, len-o, "%s%s", i == 0 ? "" : ", ", spa_debug_type_find_short_name(spa_type_audio_channel, map->pos[i])); if (r < 0 || o + r >= len) return -ENOSPC; o += r; } if (len > o) o += snprintf(val+o, len-o, " ]"); return 0; } static int uint32_array_to_string(uint32_t *vals, uint32_t n_vals, char *val, size_t len) { uint32_t i, o = 0; int r; o += snprintf(val, len, "[ "); for (i = 0; i < n_vals; i++) { r = snprintf(val+o, len-o, "%s%d", i == 0 ? "" : ", ", vals[i]); if (r < 0 || o + r >= len) return -ENOSPC; o += r; } if (len > o) o += snprintf(val+o, len-o, " ]"); return 0; } static struct spa_pod *enum_bind_ctl_propinfo(struct state *state, uint32_t idx, struct spa_pod_builder *b) { char param_name[1024]; char param_desc[1024]; snd_ctl_elem_info_t *info = state->bound_ctls[idx].info; if (!info) { // This will end iteration early, so print a warning spa_log_warn(state->log, "Don't have prop info for bind ctl, bailing"); return NULL; } snprintf(param_name, sizeof(param_name), "api.alsa.bind-ctl.%s", snd_ctl_elem_info_get_name(info)); snprintf(param_desc, sizeof(param_desc), "Value of ALSA control '%s'", snd_ctl_elem_info_get_name(info)); // We don't have meaningful default values switch (snd_ctl_elem_info_get_type(info)) { case SND_CTL_ELEM_TYPE_BOOLEAN: return spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String(param_name), SPA_PROP_INFO_description, SPA_POD_String(param_desc), SPA_PROP_INFO_type, SPA_POD_Bool(false), SPA_PROP_INFO_params, SPA_POD_Bool(true)); case SND_CTL_ELEM_TYPE_INTEGER: return spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String(param_name), SPA_PROP_INFO_description, SPA_POD_String(param_desc), SPA_PROP_INFO_type, SPA_POD_Int(0), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case SND_CTL_ELEM_TYPE_INTEGER64: return spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String(param_name), SPA_PROP_INFO_description, SPA_POD_String(param_desc), SPA_PROP_INFO_type, SPA_POD_Long(0), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case SND_CTL_ELEM_TYPE_ENUMERATED: return spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String(param_name), SPA_PROP_INFO_description, SPA_POD_String(param_desc), SPA_PROP_INFO_type, SPA_POD_Int(0), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; default: // FIXME: we can probably support bytes but the length seems unknown in the API spa_log_warn(state->log, "%s ctl '%s' not supported", snd_ctl_elem_type_name(snd_ctl_elem_info_get_type(info)), snd_ctl_elem_info_get_name(info)); return NULL; } } struct spa_pod *spa_alsa_enum_propinfo(struct state *state, uint32_t idx, struct spa_pod_builder *b) { struct spa_pod *param; switch (idx) { case 0: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_CHANNELS), SPA_PROP_INFO_description, SPA_POD_String("Audio Channels"), SPA_PROP_INFO_type, SPA_POD_Int(state->default_channels), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 1: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_RATE), SPA_PROP_INFO_description, SPA_POD_String("Audio Rate"), SPA_PROP_INFO_type, SPA_POD_Int(state->default_rate), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 2: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_FORMAT), SPA_PROP_INFO_description, SPA_POD_String("Audio Format"), SPA_PROP_INFO_type, SPA_POD_String( spa_debug_type_find_short_name(spa_type_audio_format, state->default_format)), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 3: { char buf[1024]; position_to_string(&state->default_pos, buf, sizeof(buf)); param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_POSITION), SPA_PROP_INFO_description, SPA_POD_String("Audio Position"), SPA_PROP_INFO_type, SPA_POD_String(buf), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; } case 4: { char buf[1024]; uint32_array_to_string(state->allowed_rates, state->n_allowed_rates, buf, sizeof(buf)); param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String(SPA_KEY_AUDIO_ALLOWED_RATES), SPA_PROP_INFO_description, SPA_POD_String("Audio Allowed Rates"), SPA_PROP_INFO_type, SPA_POD_String(buf), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; } case 5: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.period-size"), SPA_PROP_INFO_description, SPA_POD_String("Period Size"), SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->default_period_size, 0, 8192), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 6: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.period-num"), SPA_PROP_INFO_description, SPA_POD_String("Number of Periods"), SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->default_period_num, 0, 1024), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 7: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.headroom"), SPA_PROP_INFO_description, SPA_POD_String("Headroom"), SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->default_headroom, 0, 8192), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 8: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.start-delay"), SPA_PROP_INFO_description, SPA_POD_String("Start Delay"), SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->default_start_delay, 0, 8192), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 9: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.disable-mmap"), SPA_PROP_INFO_description, SPA_POD_String("Disable MMAP"), SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(state->disable_mmap), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 10: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.disable-batch"), SPA_PROP_INFO_description, SPA_POD_String("Disable Batch"), SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(state->disable_batch), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 11: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.disable-tsched"), SPA_PROP_INFO_description, SPA_POD_String("Disable timer based scheduling"), SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(state->disable_tsched), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 12: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.use-chmap"), SPA_PROP_INFO_description, SPA_POD_String("Use the driver channelmap"), SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(state->props.use_chmap), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 13: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.multi-rate"), SPA_PROP_INFO_description, SPA_POD_String("Support multiple rates"), SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(state->multi_rate), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 14: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.htimestamp"), SPA_PROP_INFO_description, SPA_POD_String("Use hires timestamps"), SPA_PROP_INFO_type, SPA_POD_CHOICE_Bool(state->htimestamp), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 15: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("latency.internal.rate"), SPA_PROP_INFO_description, SPA_POD_String("Internal latency in samples"), SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->process_latency.rate, 0, 65536), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 16: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("latency.internal.ns"), SPA_PROP_INFO_description, SPA_POD_String("Internal latency in nanoseconds"), SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Long(state->process_latency.ns, 0LL, 2 * SPA_NSEC_PER_SEC), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 17: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("clock.name"), SPA_PROP_INFO_description, SPA_POD_String("The name of the clock"), SPA_PROP_INFO_type, SPA_POD_String(state->clock_name), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; case 18: param = spa_pod_builder_add_object(b, SPA_TYPE_OBJECT_PropInfo, SPA_PARAM_PropInfo, SPA_PROP_INFO_name, SPA_POD_String("api.alsa.htimestamp.max-errors"), SPA_PROP_INFO_description, SPA_POD_String("Max errors before disabling htimestamp"), SPA_PROP_INFO_type, SPA_POD_CHOICE_RANGE_Int(state->htimestamp_max_errors, 0, INT32_MAX), SPA_PROP_INFO_params, SPA_POD_Bool(true)); break; // While adding params here, update the math in default too default: idx -= 18; if (idx <= state->num_bind_ctls) param = enum_bind_ctl_propinfo(state, idx - 1, b); else return NULL; } return param; } static void add_bind_ctl_param(struct state *state, const snd_ctl_elem_value_t *elem, const snd_ctl_elem_info_t *info, struct spa_pod_builder *b) { struct spa_pod_frame f[1]; char param_name[1024]; unsigned int count = snd_ctl_elem_info_get_count(info); int type = snd_ctl_elem_info_get_type(info); bool is_array = count > 1 && type != SND_CTL_ELEM_TYPE_BYTES; snprintf(param_name, sizeof(param_name), "api.alsa.bind-ctl.%s", snd_ctl_elem_info_get_name(info)); spa_pod_builder_string(b, param_name); if (is_array) spa_pod_builder_push_array(b, &f[0]); switch (type) { case SND_CTL_ELEM_TYPE_BOOLEAN: for (unsigned int i = 0; i < count; i++) spa_pod_builder_bool(b, snd_ctl_elem_value_get_boolean(elem, i)); break; case SND_CTL_ELEM_TYPE_INTEGER: for (unsigned int i = 0; i < count; i++) spa_pod_builder_int(b, snd_ctl_elem_value_get_integer(elem, i)); break; case SND_CTL_ELEM_TYPE_INTEGER64: for (unsigned int i = 0; i < count; i++) spa_pod_builder_long(b, snd_ctl_elem_value_get_integer64(elem, i)); break; case SND_CTL_ELEM_TYPE_ENUMERATED: for (unsigned int i = 0; i < count; i++) spa_pod_builder_int(b, snd_ctl_elem_value_get_enumerated(elem, i)); break; case SND_CTL_ELEM_TYPE_BYTES: spa_pod_builder_bytes(b, snd_ctl_elem_value_get_bytes(elem), count); break; default: spa_log_warn(state->log, "%s ctl '%s' not supported", snd_ctl_elem_type_name(snd_ctl_elem_info_get_type(info)), snd_ctl_elem_info_get_name(info)); break; } if (is_array) spa_pod_builder_pop(b, &f[0]); } static void add_bind_ctl_params(struct state *state, struct spa_pod_builder *b) { int err; for (unsigned int i = 0; i < state->num_bind_ctls; i++) { if(!state->bound_ctls[i].value || !state->bound_ctls[i].info) continue; err = snd_ctl_elem_read(state->ctl, state->bound_ctls[i].value); if (err < 0) { spa_log_warn(state->log, "Could not read elem value for '%s': %s", state->bound_ctls[i].name, snd_strerror(err)); } add_bind_ctl_param(state, state->bound_ctls[i].value, state->bound_ctls[i].info, b); } } int spa_alsa_add_prop_params(struct state *state, struct spa_pod_builder *b) { struct spa_pod_frame f[1]; char buf[1024]; spa_pod_builder_prop(b, SPA_PROP_params, 0); spa_pod_builder_push_struct(b, &f[0]); spa_pod_builder_string(b, SPA_KEY_AUDIO_CHANNELS); spa_pod_builder_int(b, state->default_channels); spa_pod_builder_string(b, SPA_KEY_AUDIO_RATE); spa_pod_builder_int(b, state->default_rate); spa_pod_builder_string(b, SPA_KEY_AUDIO_FORMAT); spa_pod_builder_string(b, spa_debug_type_find_short_name(spa_type_audio_format, state->default_format)); position_to_string(&state->default_pos, buf, sizeof(buf)); spa_pod_builder_string(b, SPA_KEY_AUDIO_POSITION); spa_pod_builder_string(b, buf); uint32_array_to_string(state->allowed_rates, state->n_allowed_rates, buf, sizeof(buf)); spa_pod_builder_string(b, SPA_KEY_AUDIO_ALLOWED_RATES); spa_pod_builder_string(b, buf); spa_pod_builder_string(b, "api.alsa.period-size"); spa_pod_builder_int(b, state->default_period_size); spa_pod_builder_string(b, "api.alsa.period-num"); spa_pod_builder_int(b, state->default_period_num); spa_pod_builder_string(b, "api.alsa.headroom"); spa_pod_builder_int(b, state->default_headroom); spa_pod_builder_string(b, "api.alsa.start-delay"); spa_pod_builder_int(b, state->default_start_delay); spa_pod_builder_string(b, "api.alsa.disable-mmap"); spa_pod_builder_bool(b, state->disable_mmap); spa_pod_builder_string(b, "api.alsa.disable-batch"); spa_pod_builder_bool(b, state->disable_batch); spa_pod_builder_string(b, "api.alsa.disable-tsched"); spa_pod_builder_bool(b, state->disable_tsched); spa_pod_builder_string(b, "api.alsa.use-chmap"); spa_pod_builder_bool(b, state->props.use_chmap); spa_pod_builder_string(b, "api.alsa.multi-rate"); spa_pod_builder_bool(b, state->multi_rate); spa_pod_builder_string(b, "api.alsa.htimestamp"); spa_pod_builder_bool(b, state->htimestamp); spa_pod_builder_string(b, "api.alsa.htimestamp.max-errors"); spa_pod_builder_int(b, state->htimestamp_max_errors); spa_pod_builder_string(b, "latency.internal.rate"); spa_pod_builder_int(b, state->process_latency.rate); spa_pod_builder_string(b, "latency.internal.ns"); spa_pod_builder_long(b, state->process_latency.ns); spa_pod_builder_string(b, "clock.name"); spa_pod_builder_string(b, state->clock_name); add_bind_ctl_params(state, b); spa_pod_builder_pop(b, &f[0]); return 0; } int spa_alsa_parse_prop_params(struct state *state, struct spa_pod *params) { struct spa_pod_parser prs; struct spa_pod_frame f; int changed = 0; if (params == NULL) return 0; spa_pod_parser_pod(&prs, params); if (spa_pod_parser_push_struct(&prs, &f) < 0) return 0; while (true) { const char *name; struct spa_pod *pod; char value[512]; if (spa_pod_parser_get_string(&prs, &name) < 0) break; if (spa_pod_parser_get_pod(&prs, &pod) < 0) break; if (spa_pod_is_string(pod)) { spa_pod_copy_string(pod, sizeof(value), value); } else if (spa_pod_is_int(pod)) { snprintf(value, sizeof(value), "%d", SPA_POD_VALUE(struct spa_pod_int, pod)); } else if (spa_pod_is_long(pod)) { snprintf(value, sizeof(value), "%"PRIi64, SPA_POD_VALUE(struct spa_pod_long, pod)); } else if (spa_pod_is_bool(pod)) { snprintf(value, sizeof(value), "%s", SPA_POD_VALUE(struct spa_pod_bool, pod) ? "true" : "false"); } else continue; spa_log_info(state->log, "key:'%s' val:'%s'", name, value); alsa_set_param(state, name, value); changed++; } if (changed > 0) { state->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS; state->params[NODE_Props].user++; } return changed; } static ssize_t log_write(void *cookie, const char *buf, size_t size) { struct state *state = cookie; int len; while (size > 0) { len = strcspn(buf, "\n"); if (len > 0) spa_log_debug(state->log, "%.*s", (int)len, buf); buf += len + 1; size -= len + 1; } return size; } static cookie_io_functions_t io_funcs = { .write = log_write, }; static void silence_error_handler(const char *file, int line, const char *function, int err, const char *fmt, ...) { } static void fill_device_name(struct state *state, const char *params, char device_name[], size_t len) { spa_scnprintf(device_name, len, "%s%s%s", state->card && state->card->ucm_prefix ? state->card->ucm_prefix : "", state->props.device, params ? params : ""); } static void bind_ctl_event(struct spa_source *source) { struct state *state = source->data; snd_ctl_event_t *ev; snd_ctl_elem_id_t *id, *bound_id; snd_ctl_elem_value_t *old_value; unsigned short revents; int err; // Do the same demangling of revents we do for PCM pollfds for (int i = 0; i < state->ctl_n_fds; i++) { state->ctl_pfds[i].revents = state->ctl_sources[i].rmask; state->ctl_sources[i].rmask = 0; } err = snd_ctl_poll_descriptors_revents(state->ctl, state->ctl_pfds, state->ctl_n_fds, &revents); if (SPA_UNLIKELY(err < 0)) { spa_log_warn(state->log, "Could not read ctl revents: %s", snd_strerror(err)); return; } if (!revents) { spa_log_trace(state->log, "Got a bind ctl wakeup but no actual event"); return; } snd_ctl_event_alloca(&ev); snd_ctl_elem_id_alloca(&id); snd_ctl_elem_id_alloca(&bound_id); snd_ctl_elem_value_alloca(&old_value); while ((err = snd_ctl_read(state->ctl, ev) > 0)) { bool changed = false; if (snd_ctl_event_get_type(ev) != SND_CTL_EVENT_ELEM) continue; snd_ctl_event_elem_get_id(ev, id); for (unsigned int i = 0; i < state->num_bind_ctls; i++) { int err; if(!state->bound_ctls[i].value || !state->bound_ctls[i].info) continue; // Check if we have the right element snd_ctl_elem_value_get_id(state->bound_ctls[i].value, bound_id); if (snd_ctl_elem_id_compare_set(id, bound_id) || snd_ctl_elem_id_compare_numid(id, bound_id)) { continue; } snd_ctl_elem_value_copy(old_value, state->bound_ctls[i].value); err = snd_ctl_elem_read(state->ctl, state->bound_ctls[i].value); if (err < 0) { spa_log_warn(state->log, "Could not read ctl '%s': %s", state->bound_ctls[i].name, snd_strerror(err)); continue; } if (snd_ctl_elem_value_compare(old_value, state->bound_ctls[i].value) != 0) { // We don't need to check all the ctls, if one changed, // we'll emit a notification and they'll be read when // the props are read spa_log_debug(state->log, "bound ctl '%s' has changed", state->bound_ctls[i].name); changed = true; break; } } if (changed) { state->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS; state->params[NODE_Props].user++; spa_alsa_emit_node_info(state, false); } } if (err < 0 && err != -EAGAIN) spa_log_warn(state->log, "Could not read ctl: %s", snd_strerror(err)); } static void fetch_bind_ctls(struct state *state) { snd_ctl_elem_list_t* element_list; unsigned int elem_count = 0; int err; if (!state->num_bind_ctls) return; snd_ctl_elem_list_alloca(&element_list); /* Get number of elements */ err = snd_ctl_elem_list(state->ctl, element_list); if (SPA_UNLIKELY(err < 0)) { spa_log_warn(state->log, "Couldn't get elem list count. Error: %s", snd_strerror(err)); return; } elem_count = snd_ctl_elem_list_get_count(element_list); err = snd_ctl_elem_list_alloc_space(element_list, elem_count); if (SPA_UNLIKELY(err < 0)) { spa_log_error(state->log, "Couldn't allocate elem_list space. Error: %s", snd_strerror(err)); return; } /* Get identifiers */ err = snd_ctl_elem_list(state->ctl, element_list); if (SPA_UNLIKELY(err < 0)) { spa_log_warn(state->log, "Couldn't get elem list. Error: %s", snd_strerror(err)); goto cleanup; } for (unsigned int i = 0; i < state->num_bind_ctls; i++) { unsigned int numid = 0; for (unsigned int j = 0; j < elem_count; j++) { const char* element_name = snd_ctl_elem_list_get_name(element_list, j); if (!strcmp(element_name, state->bound_ctls[i].name)) { numid = snd_ctl_elem_list_get_numid(element_list, j); break; } } /* zero = invalid numid */ if (SPA_UNLIKELY(!numid)) { spa_log_warn(state->log, "Didn't find ctl: '%s', count: %u", state->bound_ctls[i].name, elem_count); continue; } snd_ctl_elem_info_malloc(&state->bound_ctls[i].info); snd_ctl_elem_info_set_numid(state->bound_ctls[i].info, numid); err = snd_ctl_elem_info(state->ctl, state->bound_ctls[i].info); if (SPA_UNLIKELY(err < 0)) { spa_log_warn(state->log, "Could not read elem info for '%s': %s", state->bound_ctls[i].name, snd_strerror(err)); snd_ctl_elem_info_free(state->bound_ctls[i].info); state->bound_ctls[i].info = NULL; continue; } snd_ctl_elem_value_malloc(&state->bound_ctls[i].value); snd_ctl_elem_value_set_numid(state->bound_ctls[i].value, numid); spa_log_debug(state->log, "Binding ctl for '%s'", snd_ctl_elem_info_get_name(state->bound_ctls[i].info)); } cleanup: snd_ctl_elem_list_free_space(element_list); } int open_card_ctl(struct state *state) { int err; char card_name[256]; snprintf(card_name, sizeof(card_name), "hw:%d", state->card_index); spa_log_debug(state->log, "Trying to open ctl device '%s'", card_name); err = snd_ctl_open(&state->ctl, card_name, SND_CTL_NONBLOCK); if (err < 0) { spa_log_info(state->log, "%s could not find ctl card: %s", card_name, snd_strerror(err)); return err; } return 0; } static void bind_ctls_for_params(struct state *state) { int err; if (state->num_bind_ctls == 0) return; if (!state->ctl) { err = open_card_ctl(state); if (err < 0) return; } state->ctl_n_fds = snd_ctl_poll_descriptors_count(state->ctl); if (state->ctl_n_fds > (int)SPA_N_ELEMENTS(state->ctl_sources)) { spa_log_warn(state->log, "Too many poll descriptors (%d), listening to a subset", state->ctl_n_fds); state->ctl_n_fds = SPA_N_ELEMENTS(state->ctl_sources); } if ((err = snd_ctl_poll_descriptors(state->ctl, state->ctl_pfds, state->ctl_n_fds)) < 0) { spa_log_warn(state->log, "Could not get poll descriptors: %s", snd_strerror(err)); return; } snd_ctl_subscribe_events(state->ctl, 1); for (int i = 0; i < state->ctl_n_fds; i++) { state->ctl_sources[i].func = bind_ctl_event; state->ctl_sources[i].data = state; state->ctl_sources[i].fd = state->ctl_pfds[i].fd; state->ctl_sources[i].mask = SPA_IO_IN; state->ctl_sources[i].rmask = 0; spa_loop_add_source(state->main_loop, &state->ctl_sources[i]); } fetch_bind_ctls(state); } int spa_alsa_init(struct state *state, const struct spa_dict *info) { uint32_t i; int err; const char *str; spa_list_init(&state->followers); spa_list_init(&state->rt.followers); snd_config_update_free_global(); if ((str = spa_dict_lookup(info, "device.profile.pro")) != NULL) state->is_pro = spa_atob(str); state->multi_rate = true; state->htimestamp = false; state->htimestamp_max_errors = MAX_HTIMESTAMP_ERROR; state->card_index = SPA_ID_INVALID; for (i = 0; info && i < info->n_items; i++) { const char *k = info->items[i].key; const char *s = info->items[i].value; if (spa_streq(k, SPA_KEY_API_ALSA_PATH)) { snprintf(state->props.device, 63, "%s", s); } else if (spa_streq(k, SPA_KEY_API_ALSA_PCM_CARD)) { state->card_index = atoi(s); } else if (spa_streq(k, SPA_KEY_API_ALSA_OPEN_UCM)) { state->open_ucm = spa_atob(s); if (state->open_ucm) state->props.use_chmap = true; } else if (spa_streq(k, "clock.quantum-limit")) { spa_atou32(s, &state->quantum_limit, 0); } else if (spa_streq(k, SPA_KEY_API_ALSA_BIND_CTLS)) { struct spa_json it[1]; char v[256]; unsigned int i = 0; /* Read a list of ALSA control names to bind as params */ if (spa_json_begin_array_relax(&it[0], s, strlen(s)) <= 0) continue; while (spa_json_get_string(&it[0], v, sizeof(v)) > 0 && i < SPA_N_ELEMENTS(state->bound_ctls)) { snprintf(state->bound_ctls[i].name, sizeof(state->bound_ctls[i].name), "%s", v); i++; } state->num_bind_ctls = i; /* We'll do the actual binding after checking the card exists */ } else { alsa_set_param(state, k, s); } } if (state->card_index == SPA_ID_INVALID) { /* If we don't have a card index, see if we have a *: string */ sscanf(state->props.device, "%*[^:]:%u", &state->card_index); if (state->card_index == SPA_ID_INVALID) { spa_log_info(state->log, "Could not determine card index. %s and/or clock.name " "may need to be configured manually", SPA_KEY_API_ALSA_PCM_CARD); } } if (state->clock_name[0] == '\0' && state->card_index != SPA_ID_INVALID) snprintf(state->clock_name, sizeof(state->clock_name), "api.alsa.%s-%u", state->stream == SND_PCM_STREAM_PLAYBACK ? "p" : "c", state->card_index); if (state->stream == SND_PCM_STREAM_PLAYBACK) { state->is_iec958 = spa_strstartswith(state->props.device, "iec958"); state->is_hdmi = spa_strstartswith(state->props.device, "hdmi"); state->iec958_codecs |= 1ULL << SPA_AUDIO_IEC958_CODEC_PCM; } state->card = ensure_card(state->card_index, state->open_ucm, state->is_split_parent); state->log_file = fopencookie(state, "w", io_funcs); if (state->log_file == NULL) { spa_log_error(state->log, "can't create log file"); return -errno; } CHECK(snd_output_stdio_attach(&state->output, state->log_file, 0), "attach failed"); spa_list_append(&states, &state->link); state->rate_limit.interval = 2 * SPA_NSEC_PER_SEC; state->rate_limit.burst = 1; bind_ctls_for_params(state); return 0; } int spa_alsa_clear(struct state *state) { int err; struct state *follower; spa_list_remove(&state->link); release_card(state->card); if (state->driver != NULL) { spa_list_remove(&state->driver_link); state->driver = NULL; } if (state->rt.driver != NULL) { spa_list_remove(&state->rt.driver_link); state->rt.driver = NULL; } spa_list_consume(follower, &state->followers, driver_link) { spa_list_remove(&follower->driver_link); follower->driver = NULL; } spa_list_consume(follower, &state->rt.followers, rt.driver_link) { spa_list_remove(&follower->rt.driver_link); follower->rt.driver = NULL; } state->card = NULL; state->card_index = SPA_ID_INVALID; if ((err = snd_output_close(state->output)) < 0) spa_log_warn(state->log, "output close failed: %s", snd_strerror(err)); fclose(state->log_file); free(state->tag[0]); free(state->tag[1]); if (state->ctl) { for (int i = 0; i < state->ctl_n_fds; i++) { spa_loop_remove_source(state->main_loop, &state->ctl_sources[i]); } snd_ctl_close(state->ctl); state->ctl = NULL; for (unsigned int i = 0; i < state->num_bind_ctls; i++) { if (state->bound_ctls[i].info) { snd_ctl_elem_info_free(state->bound_ctls[i].info); state->bound_ctls[i].info = NULL; } if (state->bound_ctls[i].value) { snd_ctl_elem_value_free(state->bound_ctls[i].value); state->bound_ctls[i].value = NULL; } } } return err; } static int probe_pitch_ctl(struct state *state) { snd_ctl_elem_id_t *id; /* TODO: Add configuration params for the control name and units */ const char *elem_name = state->stream == SND_PCM_STREAM_CAPTURE ? "Capture Pitch 1000000" : "Playback Pitch 1000000"; bool opened = false; int err; snd_lib_error_set_handler(silence_error_handler); if (!state->ctl) { err = open_card_ctl(state); if (err < 0) goto error; opened = true; } snd_ctl_elem_id_alloca(&id); snd_ctl_elem_id_set_name(id, elem_name); snd_ctl_elem_id_set_interface(id, SND_CTL_ELEM_IFACE_PCM); snd_ctl_elem_value_malloc(&state->pitch_elem); snd_ctl_elem_value_set_id(state->pitch_elem, id); err = snd_ctl_elem_read(state->ctl, state->pitch_elem); if (err < 0) { spa_log_debug(state->log, "%s: did not find ctl: %s", elem_name, snd_strerror(err)); snd_ctl_elem_value_free(state->pitch_elem); state->pitch_elem = NULL; if (opened) { snd_ctl_close(state->ctl); state->ctl = NULL; } goto error; } snd_ctl_elem_value_set_integer(state->pitch_elem, 0, 1000000); CHECK(snd_ctl_elem_write(state->ctl, state->pitch_elem), "snd_ctl_elem_write"); state->last_rate = 1.0; spa_log_info(state->log, "found ctl %s", elem_name); err = 0; error: snd_lib_error_set_handler(NULL); return err; } static int do_link(struct state *driver, struct state *state) { int res; snd_pcm_status_t *status; snd_pcm_status_alloca(&status); snd_pcm_status(driver->hndl, status); snd_pcm_status_dump(status, state->output); snd_pcm_status(state->hndl, status); snd_pcm_status_dump(status, state->output); fflush(state->log_file); res = snd_pcm_link(driver->hndl, state->hndl); if (res >= 0 || res == -EALREADY) state->linked = true; spa_log_info(state->log, "%p: linked to driver %p: %u (%s)", state, driver, state->linked, snd_strerror(res)); return 0; } int spa_alsa_open(struct state *state, const char *params) { int err; struct props *props = &state->props; char device_name[256]; if (state->opened) return 0; fill_device_name(state, params, device_name, sizeof(device_name)); spa_scnprintf(state->name, sizeof(state->name), "%s%s", props->device, state->stream == SND_PCM_STREAM_CAPTURE ? "c" : "p"); spa_log_info(state->log, "%p: ALSA device open '%s' %s", state, device_name, state->stream == SND_PCM_STREAM_CAPTURE ? "capture" : "playback"); CHECK(snd_pcm_open(&state->hndl, device_name, state->stream, SND_PCM_NONBLOCK | SND_PCM_NO_AUTO_RESAMPLE | SND_PCM_NO_AUTO_CHANNELS | SND_PCM_NO_AUTO_FORMAT), "'%s': %s open failed", device_name, state->stream == SND_PCM_STREAM_CAPTURE ? "capture" : "playback"); if (!state->disable_tsched) { if ((err = spa_system_timerfd_create(state->data_system, CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK)) < 0) goto error_exit_close; state->timerfd = err; } else { /* ALSA pollfds may only be ready after setting swparams, so * these are initialised in spa_alsa_start() */ } state->opened = true; state->sample_count = 0; state->sample_time = 0; probe_pitch_ctl(state); return 0; error_exit_close: spa_log_info(state->log, "%p: Device '%s' closing: %s", state, state->name, spa_strerror(err)); snd_pcm_close(state->hndl); return err; } static void try_unlink(struct state *state) { struct state *follower; if (state->driver != NULL && state->linked) { snd_pcm_unlink(state->hndl); spa_log_info(state->log, "%p: unlinked from driver %p", state, state->driver); state->linked = false; } spa_list_for_each(follower, &state->followers, driver_link) { if (follower->opened && follower->linked) { snd_pcm_unlink(follower->hndl); spa_log_info(state->log, "%p: follower unlinked from driver %p", follower, state); follower->linked = false; } } } int spa_alsa_close(struct state *state) { int err = 0; if (!state->opened) return 0; try_unlink(state); spa_alsa_pause(state); spa_log_info(state->log, "%p: Device '%s' closing", state, state->name); if ((err = snd_pcm_close(state->hndl)) < 0) spa_log_warn(state->log, "%s: close failed: %s", state->name, snd_strerror(err)); if (!state->disable_tsched) spa_system_close(state->data_system, state->timerfd); else state->n_fds = 0; if (state->have_format && state->card) state->card->format_ref--; state->have_format = false; state->opened = false; state->linked = false; if (state->pitch_elem) { snd_ctl_elem_value_free(state->pitch_elem); state->pitch_elem = NULL; // Close it unless we've got some bind_ctls we're listening to if (state->ctl_n_fds == 0) { snd_ctl_close(state->ctl); state->ctl = NULL; } } return err; } struct format_info { uint32_t spa_format; uint32_t spa_pformat; snd_pcm_format_t format; }; static const struct format_info format_info[] = { { SPA_AUDIO_FORMAT_UNKNOWN, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_UNKNOWN}, { SPA_AUDIO_FORMAT_F32_LE, SPA_AUDIO_FORMAT_F32P, SND_PCM_FORMAT_FLOAT_LE}, { SPA_AUDIO_FORMAT_F32_BE, SPA_AUDIO_FORMAT_F32P, SND_PCM_FORMAT_FLOAT_BE}, { SPA_AUDIO_FORMAT_S32_LE, SPA_AUDIO_FORMAT_S32P, SND_PCM_FORMAT_S32_LE}, { SPA_AUDIO_FORMAT_S32_BE, SPA_AUDIO_FORMAT_S32P, SND_PCM_FORMAT_S32_BE}, { SPA_AUDIO_FORMAT_S24_32_LE, SPA_AUDIO_FORMAT_S24_32P, SND_PCM_FORMAT_S24_LE}, { SPA_AUDIO_FORMAT_S24_32_BE, SPA_AUDIO_FORMAT_S24_32P, SND_PCM_FORMAT_S24_BE}, { SPA_AUDIO_FORMAT_S24_LE, SPA_AUDIO_FORMAT_S24P, SND_PCM_FORMAT_S24_3LE}, { SPA_AUDIO_FORMAT_S24_BE, SPA_AUDIO_FORMAT_S24P, SND_PCM_FORMAT_S24_3BE}, { SPA_AUDIO_FORMAT_S16_LE, SPA_AUDIO_FORMAT_S16P, SND_PCM_FORMAT_S16_LE}, { SPA_AUDIO_FORMAT_S16_BE, SPA_AUDIO_FORMAT_S16P, SND_PCM_FORMAT_S16_BE}, { SPA_AUDIO_FORMAT_S8, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_S8}, { SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_U8P, SND_PCM_FORMAT_U8}, { SPA_AUDIO_FORMAT_U16_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U16_LE}, { SPA_AUDIO_FORMAT_U16_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U16_BE}, { SPA_AUDIO_FORMAT_U24_32_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_LE}, { SPA_AUDIO_FORMAT_U24_32_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_BE}, { SPA_AUDIO_FORMAT_U24_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_3LE}, { SPA_AUDIO_FORMAT_U24_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U24_3BE}, { SPA_AUDIO_FORMAT_U32_LE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U32_LE}, { SPA_AUDIO_FORMAT_U32_BE, SPA_AUDIO_FORMAT_UNKNOWN, SND_PCM_FORMAT_U32_BE}, { SPA_AUDIO_FORMAT_F64_LE, SPA_AUDIO_FORMAT_F64P, SND_PCM_FORMAT_FLOAT64_LE}, { SPA_AUDIO_FORMAT_F64_BE, SPA_AUDIO_FORMAT_F64P, SND_PCM_FORMAT_FLOAT64_BE}, }; static snd_pcm_format_t spa_format_to_alsa(uint32_t format, bool *planar) { SPA_FOR_EACH_ELEMENT_VAR(format_info, i) { *planar = i->spa_pformat == format; if (i->spa_format == format || *planar) return i->format; } return SND_PCM_FORMAT_UNKNOWN; } struct chmap_info { enum snd_pcm_chmap_position pos; enum spa_audio_channel channel; }; static const struct chmap_info chmap_info[] = { [SND_CHMAP_UNKNOWN] = { SND_CHMAP_UNKNOWN, SPA_AUDIO_CHANNEL_UNKNOWN }, [SND_CHMAP_NA] = { SND_CHMAP_NA, SPA_AUDIO_CHANNEL_NA }, [SND_CHMAP_MONO] = { SND_CHMAP_MONO, SPA_AUDIO_CHANNEL_MONO }, [SND_CHMAP_FL] = { SND_CHMAP_FL, SPA_AUDIO_CHANNEL_FL }, [SND_CHMAP_FR] = { SND_CHMAP_FR, SPA_AUDIO_CHANNEL_FR }, [SND_CHMAP_RL] = { SND_CHMAP_RL, SPA_AUDIO_CHANNEL_RL }, [SND_CHMAP_RR] = { SND_CHMAP_RR, SPA_AUDIO_CHANNEL_RR }, [SND_CHMAP_FC] = { SND_CHMAP_FC, SPA_AUDIO_CHANNEL_FC }, [SND_CHMAP_LFE] = { SND_CHMAP_LFE, SPA_AUDIO_CHANNEL_LFE }, [SND_CHMAP_SL] = { SND_CHMAP_SL, SPA_AUDIO_CHANNEL_SL }, [SND_CHMAP_SR] = { SND_CHMAP_SR, SPA_AUDIO_CHANNEL_SR }, [SND_CHMAP_RC] = { SND_CHMAP_RC, SPA_AUDIO_CHANNEL_RC }, [SND_CHMAP_FLC] = { SND_CHMAP_FLC, SPA_AUDIO_CHANNEL_FLC }, [SND_CHMAP_FRC] = { SND_CHMAP_FRC, SPA_AUDIO_CHANNEL_FRC }, [SND_CHMAP_RLC] = { SND_CHMAP_RLC, SPA_AUDIO_CHANNEL_RLC }, [SND_CHMAP_RRC] = { SND_CHMAP_RRC, SPA_AUDIO_CHANNEL_RRC }, [SND_CHMAP_FLW] = { SND_CHMAP_FLW, SPA_AUDIO_CHANNEL_FLW }, [SND_CHMAP_FRW] = { SND_CHMAP_FRW, SPA_AUDIO_CHANNEL_FRW }, [SND_CHMAP_FLH] = { SND_CHMAP_FLH, SPA_AUDIO_CHANNEL_FLH }, [SND_CHMAP_FCH] = { SND_CHMAP_FCH, SPA_AUDIO_CHANNEL_FCH }, [SND_CHMAP_FRH] = { SND_CHMAP_FRH, SPA_AUDIO_CHANNEL_FRH }, [SND_CHMAP_TC] = { SND_CHMAP_TC, SPA_AUDIO_CHANNEL_TC }, [SND_CHMAP_TFL] = { SND_CHMAP_TFL, SPA_AUDIO_CHANNEL_TFL }, [SND_CHMAP_TFR] = { SND_CHMAP_TFR, SPA_AUDIO_CHANNEL_TFR }, [SND_CHMAP_TFC] = { SND_CHMAP_TFC, SPA_AUDIO_CHANNEL_TFC }, [SND_CHMAP_TRL] = { SND_CHMAP_TRL, SPA_AUDIO_CHANNEL_TRL }, [SND_CHMAP_TRR] = { SND_CHMAP_TRR, SPA_AUDIO_CHANNEL_TRR }, [SND_CHMAP_TRC] = { SND_CHMAP_TRC, SPA_AUDIO_CHANNEL_TRC }, [SND_CHMAP_TFLC] = { SND_CHMAP_TFLC, SPA_AUDIO_CHANNEL_TFLC }, [SND_CHMAP_TFRC] = { SND_CHMAP_TFRC, SPA_AUDIO_CHANNEL_TFRC }, [SND_CHMAP_TSL] = { SND_CHMAP_TSL, SPA_AUDIO_CHANNEL_TSL }, [SND_CHMAP_TSR] = { SND_CHMAP_TSR, SPA_AUDIO_CHANNEL_TSR }, [SND_CHMAP_LLFE] = { SND_CHMAP_LLFE, SPA_AUDIO_CHANNEL_LLFE }, [SND_CHMAP_RLFE] = { SND_CHMAP_RLFE, SPA_AUDIO_CHANNEL_RLFE }, [SND_CHMAP_BC] = { SND_CHMAP_BC, SPA_AUDIO_CHANNEL_BC }, [SND_CHMAP_BLC] = { SND_CHMAP_BLC, SPA_AUDIO_CHANNEL_BLC }, [SND_CHMAP_BRC] = { SND_CHMAP_BRC, SPA_AUDIO_CHANNEL_BRC }, }; #define _M(ch) (1LL << SND_CHMAP_ ##ch) struct def_mask { int channels; uint64_t mask; }; static const struct def_mask default_layouts[] = { { 0, 0 }, { 1, _M(MONO) }, { 2, _M(FL) | _M(FR) }, { 3, _M(FL) | _M(FR) | _M(LFE) }, { 4, _M(FL) | _M(FR) | _M(RL) |_M(RR) }, { 5, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(FC) }, { 6, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(FC) | _M(LFE) }, { 7, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(SL) | _M(SR) | _M(FC) }, { 8, _M(FL) | _M(FR) | _M(RL) |_M(RR) | _M(SL) | _M(SR) | _M(FC) | _M(LFE) }, }; #define _C(ch) (SPA_AUDIO_CHANNEL_ ##ch) static const struct channel_map default_map[] = { { 0, { 0, } } , { 1, { _C(MONO), } }, { 2, { _C(FL), _C(FR), } }, { 3, { _C(FL), _C(FR), _C(LFE) } }, { 4, { _C(FL), _C(FR), _C(RL), _C(RR), } }, { 5, { _C(FL), _C(FR), _C(RL), _C(RR), _C(FC) } }, { 6, { _C(FL), _C(FR), _C(RL), _C(RR), _C(FC), _C(LFE), } }, { 7, { _C(FL), _C(FR), _C(RL), _C(RR), _C(FC), _C(SL), _C(SR), } }, { 8, { _C(FL), _C(FR), _C(RL), _C(RR), _C(FC), _C(LFE), _C(SL), _C(SR), } }, }; static enum spa_audio_channel chmap_position_to_channel(enum snd_pcm_chmap_position pos) { return chmap_info[pos].channel; } static void sanitize_map(snd_pcm_chmap_t* map) { uint64_t mask = 0, p, dup = 0; const struct def_mask *def; uint32_t i, j, pos; for (i = 0; i < map->channels; i++) { if (map->pos[i] > SND_CHMAP_LAST) map->pos[i] = SND_CHMAP_UNKNOWN; p = 1LL << map->pos[i]; if (mask & p) { /* duplicate channel */ for (j = 0; j <= i; j++) if (map->pos[j] == map->pos[i]) map->pos[j] = SND_CHMAP_UNKNOWN; dup |= p; p = 1LL << SND_CHMAP_UNKNOWN; } mask |= p; } if ((mask & (1LL << SND_CHMAP_UNKNOWN)) == 0) return; def = &default_layouts[map->channels]; /* remove duplicates */ mask &= ~dup; /* keep unassigned channels */ mask = def->mask & ~mask; pos = 0; for (i = 0; i < map->channels; i++) { if (map->pos[i] == SND_CHMAP_UNKNOWN) { do { mask >>= 1; pos++; } while (mask != 0 && (mask & 1) == 0); map->pos[i] = mask ? pos : 0; } } } static bool uint32_array_contains(uint32_t *vals, uint32_t n_vals, uint32_t val) { uint32_t i; for (i = 0; i < n_vals; i++) if (vals[i] == val) return true; return false; } static int add_rate(struct state *state, uint32_t scale, uint32_t interleave, bool all, uint32_t index, uint32_t *next, uint32_t min_allowed_rate, snd_pcm_hw_params_t *params, struct spa_pod_builder *b) { struct spa_pod_frame f[1]; int err, dir; unsigned int min, max; struct spa_pod_choice *choice; uint32_t rate; CHECK(snd_pcm_hw_params_get_rate_min(params, &min, &dir), "get_rate_min"); CHECK(snd_pcm_hw_params_get_rate_max(params, &max, &dir), "get_rate_max"); spa_log_debug(state->log, "min:%u max:%u min-allowed:%u scale:%u interleave:%u all:%d", min, max, min_allowed_rate, scale, interleave, all); min = SPA_MAX(min_allowed_rate * scale / interleave, min) * interleave / scale; max = max * interleave / scale; if (max < min) return 0; if (!state->multi_rate && state->card && state->card->format_ref > 0) rate = state->card->rate; else rate = state->default_rate; if (rate < min || rate > max) rate = 0; if (rate != 0 && !all) min = max = rate; if (rate == 0) rate = state->position ? state->position->clock.target_rate.denom : DEFAULT_RATE; rate = SPA_CLAMP(rate, min, max); spa_log_debug(state->log, "rate:%u multi:%d card:%u def:%d", rate, state->multi_rate, state->card ? state->card->rate : 0, state->default_rate); spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_rate, 0); spa_pod_builder_push_choice(b, &f[0], SPA_CHOICE_None, 0); choice = (struct spa_pod_choice*)spa_pod_builder_frame(b, &f[0]); if (state->n_allowed_rates > 0) { uint32_t i, v, last = 0, count = 0; if (uint32_array_contains(state->allowed_rates, state->n_allowed_rates, rate)) { spa_pod_builder_int(b, rate * scale); count++; } for (i = 0; i < state->n_allowed_rates; i++) { v = SPA_CLAMP(state->allowed_rates[i], min, max); if (v != last && uint32_array_contains(state->allowed_rates, state->n_allowed_rates, v)) { spa_pod_builder_int(b, v * scale); if (count == 0) spa_pod_builder_int(b, v * scale); count++; } last = v; } if (count > 1) choice->body.type = SPA_CHOICE_Enum; } else { spa_pod_builder_int(b, rate * scale); if (min != max) { spa_pod_builder_int(b, min * scale); spa_pod_builder_int(b, max * scale); choice->body.type = SPA_CHOICE_Range; } } spa_pod_builder_pop(b, &f[0]); return 1; } static int add_channels(struct state *state, bool all, uint32_t index, uint32_t *next, snd_pcm_hw_params_t *params, struct spa_pod_builder *b) { struct spa_pod_frame f[1]; size_t i; int err; snd_pcm_t *hndl = state->hndl; snd_pcm_chmap_query_t **maps; unsigned int min, max; CHECK(snd_pcm_hw_params_get_channels_min(params, &min), "get_channels_min"); CHECK(snd_pcm_hw_params_get_channels_max(params, &max), "get_channels_max"); spa_log_debug(state->log, "channels (%d %d) default:%d all:%d", min, max, state->default_channels, all); if (state->default_channels != 0 && !all) { if (min < state->default_channels) min = state->default_channels; if (max > state->default_channels) max = state->default_channels; } min = SPA_MIN(min, SPA_AUDIO_MAX_CHANNELS); max = SPA_MIN(max, SPA_AUDIO_MAX_CHANNELS); spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_channels, 0); if (state->props.use_chmap && (maps = snd_pcm_query_chmaps(hndl)) != NULL) { uint32_t channel; snd_pcm_chmap_t* map; skip_channels: if (maps[index] == NULL) { snd_pcm_free_chmaps(maps); return 0; } map = &maps[index]->map; spa_log_debug(state->log, "map %d channels (%d %d)", map->channels, min, max); if (map->channels < min || map->channels > max) { index = (*next)++; goto skip_channels; } spa_log_debug(state->log, "%p: using chmap", state); sanitize_map(map); spa_pod_builder_int(b, map->channels); spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_position, 0); spa_pod_builder_push_array(b, &f[0]); for (i = 0; i < map->channels; i++) { spa_log_debug(state->log, "%p: position %zd %d", state, i, map->pos[i]); channel = chmap_position_to_channel(map->pos[i]); spa_pod_builder_id(b, channel); } spa_pod_builder_pop(b, &f[0]); snd_pcm_free_chmaps(maps); } else { const struct channel_map *map = NULL; struct spa_pod_choice *choice; if (index > 0) return 0; spa_pod_builder_push_choice(b, &f[0], SPA_CHOICE_None, 0); choice = (struct spa_pod_choice*)spa_pod_builder_frame(b, &f[0]); spa_pod_builder_int(b, max); if (min != max) { spa_pod_builder_int(b, min); spa_pod_builder_int(b, max); choice->body.type = SPA_CHOICE_Range; } spa_pod_builder_pop(b, &f[0]); if (min == max) { if (state->default_pos.channels == min) { map = &state->default_pos; spa_log_debug(state->log, "%p: using provided default", state); } else if (min <= 8) { map = &default_map[min]; spa_log_debug(state->log, "%p: using default %d channel map", state, min); } } if (map) { spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_position, 0); spa_pod_builder_push_array(b, &f[0]); for (i = 0; i < map->channels; i++) { spa_log_debug(state->log, "%p: position %zd %d", state, i, map->pos[i]); spa_pod_builder_id(b, map->pos[i]); } spa_pod_builder_pop(b, &f[0]); } } return 1; } static void debug_hw_params(struct state *state, const char *prefix, snd_pcm_hw_params_t *params) { if (SPA_UNLIKELY(spa_log_level_topic_enabled(state->log, SPA_LOG_TOPIC_DEFAULT, SPA_LOG_LEVEL_DEBUG))) { spa_log_debug(state->log, "%s:", prefix); snd_pcm_hw_params_dump(params, state->output); fflush(state->log_file); } } static int enum_pcm_formats(struct state *state, uint32_t index, uint32_t *next, struct spa_pod **result, struct spa_pod_builder *b) { int res, err; size_t j; snd_pcm_t *hndl; snd_pcm_hw_params_t *params; struct spa_pod_frame f[2]; snd_pcm_format_mask_t *fmask; snd_pcm_access_mask_t *amask; unsigned int rrate, rchannels; struct spa_pod_choice *choice; hndl = state->hndl; snd_pcm_hw_params_alloca(¶ms); CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration: no configurations available"); debug_hw_params(state, __func__, params); CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample"); if (state->default_channels != 0) { rchannels = state->default_channels; CHECK(snd_pcm_hw_params_set_channels_near(hndl, params, &rchannels), "set_channels"); if (state->default_channels != rchannels) { spa_log_warn(state->log, "%s: Channels doesn't match (requested %u, got %u)", state->name, state->default_channels, rchannels); } } if (state->default_rate != 0) { rrate = state->default_rate; CHECK(snd_pcm_hw_params_set_rate_near(hndl, params, &rrate, 0), "set_rate_near"); if (state->default_rate != rrate) { spa_log_warn(state->log, "%s: Rate doesn't match (requested %u, got %u)", state->name, state->default_rate, rrate); } } spa_pod_builder_push_object(b, &f[0], SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat); spa_pod_builder_add(b, SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_audio), SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_raw), 0); snd_pcm_format_mask_alloca(&fmask); snd_pcm_hw_params_get_format_mask(params, fmask); snd_pcm_access_mask_alloca(&amask); snd_pcm_hw_params_get_access_mask(params, amask); spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_format, 0); spa_pod_builder_push_choice(b, &f[1], SPA_CHOICE_None, 0); choice = (struct spa_pod_choice*)spa_pod_builder_frame(b, &f[1]); j = 0; SPA_FOR_EACH_ELEMENT_VAR(format_info, fi) { if (fi->format == SND_PCM_FORMAT_UNKNOWN) continue; if (snd_pcm_format_mask_test(fmask, fi->format)) { if ((snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_MMAP_NONINTERLEAVED) || snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_RW_NONINTERLEAVED)) && fi->spa_pformat != SPA_AUDIO_FORMAT_UNKNOWN && (state->default_format == 0 || state->default_format == fi->spa_pformat)) { if (j++ == 0) spa_pod_builder_id(b, fi->spa_pformat); spa_pod_builder_id(b, fi->spa_pformat); } if ((snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_MMAP_INTERLEAVED) || snd_pcm_access_mask_test(amask, SND_PCM_ACCESS_RW_INTERLEAVED)) && (state->default_format == 0 || state->default_format == fi->spa_format)) { if (j++ == 0) spa_pod_builder_id(b, fi->spa_format); spa_pod_builder_id(b, fi->spa_format); } } } if (j > 1) choice->body.type = SPA_CHOICE_Enum; spa_pod_builder_pop(b, &f[1]); if (j == 0) { char buf[1024]; int i, r, offs; for (i = 0, offs = 0; i <= SND_PCM_FORMAT_LAST; i++) { if (snd_pcm_format_mask_test(fmask, (snd_pcm_format_t)i)) { r = snprintf(&buf[offs], sizeof(buf) - offs, "%s ", snd_pcm_format_name((snd_pcm_format_t)i)); if (r < 0 || r + offs >= (int)sizeof(buf)) return -ENOSPC; offs += r; } } spa_log_warn(state->log, "%s: no format found (def:%d) formats:%s", state->name, state->default_format, buf); for (i = 0, offs = 0; i <= SND_PCM_ACCESS_LAST; i++) { if (snd_pcm_access_mask_test(amask, (snd_pcm_access_t)i)) { r = snprintf(&buf[offs], sizeof(buf) - offs, "%s ", snd_pcm_access_name((snd_pcm_access_t)i)); if (r < 0 || r + offs >= (int)sizeof(buf)) return -ENOSPC; offs += r; } } spa_log_warn(state->log, "%s: access:%s", state->name, buf); return -ENOTSUP; } if ((res = add_rate(state, 1, 1, false, index & 0xffff, next, 0, params, b)) != 1) return res; if ((res = add_channels(state, false, index & 0xffff, next, params, b)) != 1) return res; *result = spa_pod_builder_pop(b, &f[0]); return 1; } static bool codec_supported(uint32_t codec, unsigned int chmax, unsigned int rmax) { switch (codec) { case SPA_AUDIO_IEC958_CODEC_PCM: case SPA_AUDIO_IEC958_CODEC_DTS: case SPA_AUDIO_IEC958_CODEC_AC3: case SPA_AUDIO_IEC958_CODEC_MPEG: case SPA_AUDIO_IEC958_CODEC_MPEG2_AAC: if (chmax >= 2) return true; break; case SPA_AUDIO_IEC958_CODEC_EAC3: if (rmax >= 48000 * 4 && chmax >= 2) return true; break; case SPA_AUDIO_IEC958_CODEC_TRUEHD: case SPA_AUDIO_IEC958_CODEC_DTSHD: if (chmax >= 8) return true; break; } return false; } static int enum_iec958_formats(struct state *state, uint32_t index, uint32_t *next, struct spa_pod **result, struct spa_pod_builder *b) { int res, err, dir; snd_pcm_t *hndl; snd_pcm_hw_params_t *params; struct spa_pod_frame f[2]; unsigned int rmin, rmax; unsigned int chmin, chmax; uint32_t i, c, codecs[16], n_codecs; if ((index & 0xffff) > 0) return 0; if (!(state->is_iec958 || state->is_hdmi)) return 0; if (state->iec958_codecs == 0) return 0; hndl = state->hndl; snd_pcm_hw_params_alloca(¶ms); CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration: no configurations available"); debug_hw_params(state, __func__, params); CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample"); spa_pod_builder_push_object(b, &f[0], SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat); spa_pod_builder_add(b, SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_audio), SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_iec958), 0); CHECK(snd_pcm_hw_params_get_channels_min(params, &chmin), "get_channels_min"); CHECK(snd_pcm_hw_params_get_channels_max(params, &chmax), "get_channels_max"); spa_log_debug(state->log, "channels (%d %d)", chmin, chmax); CHECK(snd_pcm_hw_params_get_rate_min(params, &rmin, &dir), "get_rate_min"); CHECK(snd_pcm_hw_params_get_rate_max(params, &rmax, &dir), "get_rate_max"); spa_log_debug(state->log, "rate (%d %d)", rmin, rmax); if (state->default_rate != 0) { if (rmin < state->default_rate) rmin = state->default_rate; if (rmax > state->default_rate) rmax = state->default_rate; } spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_iec958Codec, 0); spa_pod_builder_push_choice(b, &f[1], SPA_CHOICE_Enum, 0); n_codecs = spa_alsa_get_iec958_codecs(state, codecs, SPA_N_ELEMENTS(codecs)); for (i = 0, c = 0; i < n_codecs; i++) { if (!codec_supported(codecs[i], chmax, rmax)) continue; if (c++ == 0) spa_pod_builder_id(b, codecs[i]); spa_pod_builder_id(b, codecs[i]); } spa_pod_builder_pop(b, &f[1]); if ((res = add_rate(state, 1, 1, true, index & 0xffff, next, 0, params, b)) != 1) return res; (*next)++; *result = spa_pod_builder_pop(b, &f[0]); return 1; } static int enum_dsd_formats(struct state *state, uint32_t index, uint32_t *next, struct spa_pod **result, struct spa_pod_builder *b) { int res, err; snd_pcm_t *hndl; snd_pcm_hw_params_t *params; snd_pcm_format_mask_t *fmask; struct spa_pod_frame f[2]; int32_t interleave; if ((index & 0xffff) > 0) return 0; hndl = state->hndl; snd_pcm_hw_params_alloca(¶ms); CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration: no configurations available"); debug_hw_params(state, __func__, params); snd_pcm_format_mask_alloca(&fmask); snd_pcm_hw_params_get_format_mask(params, fmask); if (snd_pcm_format_mask_test(fmask, SND_PCM_FORMAT_DSD_U32_BE)) interleave = 4; else if (snd_pcm_format_mask_test(fmask, SND_PCM_FORMAT_DSD_U32_LE)) interleave = -4; else if (snd_pcm_format_mask_test(fmask, SND_PCM_FORMAT_DSD_U16_BE)) interleave = 2; else if (snd_pcm_format_mask_test(fmask, SND_PCM_FORMAT_DSD_U16_LE)) interleave = -2; else if (snd_pcm_format_mask_test(fmask, SND_PCM_FORMAT_DSD_U8)) interleave = 1; else return 0; CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample"); spa_pod_builder_push_object(b, &f[0], SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat); spa_pod_builder_add(b, SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_audio), SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_dsd), 0); spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_bitorder, 0); spa_pod_builder_id(b, SPA_PARAM_BITORDER_msb); spa_pod_builder_prop(b, SPA_FORMAT_AUDIO_interleave, 0); spa_pod_builder_int(b, interleave); /* Use a lower rate limit of 352800 (= 44100 * 64 / 8). This is because in * PipeWire, DSD rates are given in bytes, not bits, so 352800 corresponds * to the bit rate of DSD64. (The "64" in DSD64 means "64 times the rate * of 44.1 kHz".) Some hardware may report rates lower than that, for example * 176400. This would correspond to "DSD32" (which does not exist). Trying * to use such a rate with DSD hardware does not work and may cause undefined * behavior in said hardware. */ if ((res = add_rate(state, 8, SPA_ABS(interleave), true, index & 0xffff, next, 44100, params, b)) != 1) return res; if ((res = add_channels(state, true, index & 0xffff, next, params, b)) != 1) return res; *result = spa_pod_builder_pop(b, &f[0]); return 1; } /* find smaller power of 2 */ static uint32_t flp2(uint32_t x) { x = x | (x >> 1); x = x | (x >> 2); x = x | (x >> 4); x = x | (x >> 8); x = x | (x >> 16); return x - (x >> 1); } int spa_alsa_enum_format(struct state *state, int seq, uint32_t start, uint32_t num, const struct spa_pod *filter) { uint8_t buffer[4096]; struct spa_pod_builder b = { 0 }; struct spa_pod *fmt; int err, res; bool opened; struct spa_result_node_params result; uint32_t count = 0; spa_log_debug(state->log, "opened:%d format:%d started:%d", state->opened, state->have_format, state->started); opened = state->opened; if (!state->started && state->have_format) spa_alsa_close(state); if ((err = spa_alsa_open(state, NULL)) < 0) return err; result.id = SPA_PARAM_EnumFormat; result.next = start; next: result.index = result.next++; spa_pod_builder_init(&b, buffer, sizeof(buffer)); if (result.index < 0x10000) { if ((res = enum_pcm_formats(state, result.index, &result.next, &fmt, &b)) != 1) { result.next = 0x10000; goto next; } } else if (result.index < 0x20000) { if ((res = enum_iec958_formats(state, result.index, &result.next, &fmt, &b)) != 1) { result.next = 0x20000; goto next; } } else if (result.index < 0x30000) { if ((res = enum_dsd_formats(state, result.index, &result.next, &fmt, &b)) != 1) { result.next = 0x30000; goto next; } } else goto enum_end; if (spa_pod_filter(&b, &result.param, fmt, filter) < 0) goto next; spa_node_emit_result(&state->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result); if (++count != num) goto next; enum_end: res = 0; if (!opened) spa_alsa_close(state); return res; } static void recalc_headroom(struct state *state) { uint32_t latency; uint32_t rate = 0; if (state->position != NULL) rate = state->position->clock.target_rate.denom; state->headroom = state->default_headroom; if (!state->disable_tsched || state->resample) { /* When using timers, we might miss the pointer update for batch * devices so add some extra headroom. With IRQ, we know the pointers * are updated when we wake up and we don't need the headroom. */ if (state->is_batch) state->headroom += state->period_frames; /* Add 32 extra samples of headroom to handle jitter in capture. * For IRQ, we don't need this because when we wake up, we have * exactly enough samples to read or write. */ if (state->stream == SND_PCM_STREAM_CAPTURE) state->headroom = SPA_MAX(state->headroom, 32u); } if (SPA_LIKELY(state->buffer_frames >= state->threshold)) state->headroom = SPA_MIN(state->headroom, state->buffer_frames - state->threshold); else state->headroom = 0; latency = SPA_MAX(state->min_delay, SPA_MIN(state->max_delay, state->headroom)); if (rate != 0 && state->rate != 0) latency = SPA_SCALE32_UP(latency, rate, state->rate); state->latency[state->port_direction].min_rate = state->latency[state->port_direction].max_rate = latency; } int spa_alsa_set_format(struct state *state, struct spa_audio_info *fmt, uint32_t flags) { unsigned int rrate, rchannels, val, rscale = 1; snd_pcm_uframes_t period_size; int err, dir; snd_pcm_hw_params_t *params; snd_pcm_format_t rformat; snd_pcm_access_mask_t *amask; snd_pcm_t *hndl; unsigned int periods; bool match = true, planar = false; char spdif_params[128] = ""; uint32_t default_period; spa_log_debug(state->log, "opened:%d format:%d started:%d", state->opened, state->have_format, state->started); state->use_mmap = !state->disable_mmap; state->force_rate = false; switch (fmt->media_subtype) { case SPA_MEDIA_SUBTYPE_raw: { struct spa_audio_info_raw *f = &fmt->info.raw; rrate = f->rate; rchannels = f->channels; rformat = spa_format_to_alsa(f->format, &planar); break; } case SPA_MEDIA_SUBTYPE_iec958: { struct spa_audio_info_iec958 *f = &fmt->info.iec958; unsigned aes3; spa_log_info(state->log, "using IEC958 Codec:%s rate:%d", spa_type_audio_iec958_codec_to_short_name(f->codec), f->rate); rformat = SND_PCM_FORMAT_S16_LE; rchannels = 2; rrate = f->rate; switch (f->codec) { case SPA_AUDIO_IEC958_CODEC_PCM: case SPA_AUDIO_IEC958_CODEC_DTS: case SPA_AUDIO_IEC958_CODEC_AC3: case SPA_AUDIO_IEC958_CODEC_MPEG: case SPA_AUDIO_IEC958_CODEC_MPEG2_AAC: break; case SPA_AUDIO_IEC958_CODEC_EAC3: /* EAC3 has 3 rates, 32, 44.1 and 48KHz. We need to * open the device in 4x that rate. Some clients * already multiply (mpv,..) others don't (vlc). */ if (rrate <= 48000) rrate *= 4; break; case SPA_AUDIO_IEC958_CODEC_TRUEHD: case SPA_AUDIO_IEC958_CODEC_DTSHD: rchannels = 8; break; default: return -ENOTSUP; } switch (rrate) { case 22050: aes3 = IEC958_AES3_CON_FS_22050; break; case 24000: aes3 = IEC958_AES3_CON_FS_24000; break; case 32000: aes3 = IEC958_AES3_CON_FS_32000; break; case 44100: aes3 = IEC958_AES3_CON_FS_44100; break; case 48000: aes3 = IEC958_AES3_CON_FS_48000; break; case 88200: aes3 = IEC958_AES3_CON_FS_88200; break; case 96000: aes3 = IEC958_AES3_CON_FS_96000; break; case 176400: aes3 = IEC958_AES3_CON_FS_176400; break; case 192000: aes3 = IEC958_AES3_CON_FS_192000; break; case 768000: aes3 = IEC958_AES3_CON_FS_768000; break; default: aes3 = IEC958_AES3_CON_FS_NOTID; break; } spa_scnprintf(spdif_params, sizeof(spdif_params), ",AES0=0x%x,AES1=0x%x,AES2=0x%x,AES3=0x%x", IEC958_AES0_CON_EMPHASIS_NONE | IEC958_AES0_NONAUDIO, IEC958_AES1_CON_ORIGINAL | IEC958_AES1_CON_PCM_CODER, 0, aes3); state->force_rate = true; break; } case SPA_MEDIA_SUBTYPE_dsd: { struct spa_audio_info_dsd *f = &fmt->info.dsd; rrate = f->rate; rchannels = f->channels; switch (f->interleave) { case 4: rformat = SND_PCM_FORMAT_DSD_U32_BE; rrate /= 4; rscale = 4; break; case -4: rformat = SND_PCM_FORMAT_DSD_U32_LE; rrate /= 4; rscale = 4; break; case 2: rformat = SND_PCM_FORMAT_DSD_U16_BE; rrate /= 2; rscale = 2; break; case -2: rformat = SND_PCM_FORMAT_DSD_U16_LE; rrate /= 2; rscale = 2; break; case 1: rformat = SND_PCM_FORMAT_DSD_U8; rscale = 1; break; default: return -ENOTSUP; } break; } default: return -ENOTSUP; } if (rformat == SND_PCM_FORMAT_UNKNOWN) { spa_log_warn(state->log, "%s: unknown format", state->name); return -EINVAL; } if (!state->started && state->have_format) spa_alsa_close(state); if ((err = spa_alsa_open(state, spdif_params)) < 0) return err; hndl = state->hndl; snd_pcm_hw_params_alloca(¶ms); /* choose all parameters */ CHECK(snd_pcm_hw_params_any(hndl, params), "Broken configuration for playback: no configurations available"); debug_hw_params(state, __func__, params); /* set hardware resampling, no resample */ CHECK(snd_pcm_hw_params_set_rate_resample(hndl, params, 0), "set_rate_resample"); /* set the interleaved/planar read/write format */ snd_pcm_access_mask_alloca(&amask); snd_pcm_hw_params_get_access_mask(params, amask); if (state->use_mmap) { if ((err = snd_pcm_hw_params_set_access(hndl, params, planar ? SND_PCM_ACCESS_MMAP_NONINTERLEAVED : SND_PCM_ACCESS_MMAP_INTERLEAVED)) < 0) { spa_log_debug(state->log, "%p: MMAP not possible: %s", state, snd_strerror(err)); state->use_mmap = false; } } if (!state->use_mmap) { if ((err = snd_pcm_hw_params_set_access(hndl, params, planar ? SND_PCM_ACCESS_RW_NONINTERLEAVED : SND_PCM_ACCESS_RW_INTERLEAVED)) < 0) { spa_log_error(state->log, "%s: RW not possible: %s", state->name, snd_strerror(err)); return err; } } /* set the sample format */ spa_log_debug(state->log, "%p: Stream parameters are %iHz fmt:%s access:%s-%s channels:%i", state, rrate, snd_pcm_format_name(rformat), state->use_mmap ? "mmap" : "rw", planar ? "planar" : "interleaved", rchannels); CHECK(snd_pcm_hw_params_set_format(hndl, params, rformat), "set_format"); /* set the count of channels */ val = rchannels; CHECK(snd_pcm_hw_params_set_channels_near(hndl, params, &val), "set_channels"); if (rchannels != val) { spa_log_warn(state->log, "%s: Channels doesn't match (requested %u, got %u)", state->name, rchannels, val); if (!SPA_FLAG_IS_SET(flags, SPA_NODE_PARAM_FLAG_NEAREST)) return -EINVAL; if (fmt->media_subtype != SPA_MEDIA_SUBTYPE_raw) return -EINVAL; rchannels = val; fmt->info.raw.channels = rchannels; match = false; } if (!state->multi_rate && state->card && state->card->format_ref > 0 && state->card->rate != rrate) { spa_log_error(state->log, "%p: card already opened at rate:%i", state, state->card->rate); return -EINVAL; } /* set the stream rate */ val = rrate; CHECK(snd_pcm_hw_params_set_rate_near(hndl, params, &val, 0), "set_rate_near"); if (rrate != val) { spa_log_warn(state->log, "%s: Rate doesn't match (requested %iHz, got %iHz)", state->name, rrate, val); if (!SPA_FLAG_IS_SET(flags, SPA_NODE_PARAM_FLAG_NEAREST)) return -EINVAL; if (fmt->media_subtype != SPA_MEDIA_SUBTYPE_raw) return -EINVAL; rrate = val; fmt->info.raw.rate = rrate; match = false; } if (rchannels == 0 || rrate == 0) { spa_log_error(state->log, "%s: invalid channels:%d or rate:%d", state->name, rchannels, rrate); return -EIO; } state->format = rformat; state->channels = rchannels; state->rate = rrate; state->frame_size = snd_pcm_format_physical_width(rformat) / 8; state->frame_scale = rscale; state->planar = planar; state->blocks = 1; if (planar) state->blocks *= rchannels; else state->frame_size *= rchannels; /* make sure we update threshold in check_position_config() because they depend * on the samplerate. */ state->driver_duration = 0; state->driver_rate.denom = 0; state->have_format = true; if (state->card && state->card->format_ref++ == 0) state->card->rate = rrate; dir = 0; period_size = state->default_period_size; state->is_batch = snd_pcm_hw_params_is_batch(params) && !state->disable_batch; default_period = SPA_SCALE32_UP(DEFAULT_PERIOD, state->rate, DEFAULT_RATE); default_period = flp2(2 * default_period - 1); /* no period size specified. If we are batch or not using timers, * use the graph duration as the period */ if (period_size == 0 && (state->is_batch || state->disable_tsched)) period_size = state->position ? state->position->clock.target_duration : default_period; if (period_size == 0) period_size = default_period; if (!state->disable_tsched || state->resample) { if (state->is_batch) { /* batch devices get their hw pointers updated every period. Make * the period smaller and add one period of headroom. Limit the * period size to our default so that we don't create too much * headroom. */ period_size = SPA_MIN(period_size, default_period) / 2; } else { /* disable ALSA wakeups */ if (snd_pcm_hw_params_can_disable_period_wakeup(params)) CHECK(snd_pcm_hw_params_set_period_wakeup(hndl, params, 0), "set_period_wakeup"); } } CHECK(snd_pcm_hw_params_set_period_size_near(hndl, params, &period_size, &dir), "set_period_size_near"); if (period_size == 0) { spa_log_error(state->log, "%s: invalid period_size 0 (driver error?)", state->name); return -EIO; } state->period_frames = period_size; if (state->default_period_num != 0) { periods = state->default_period_num; CHECK(snd_pcm_hw_params_set_periods_near(hndl, params, &periods, &dir), "set_periods"); state->buffer_frames = period_size * periods; } else { CHECK(snd_pcm_hw_params_get_buffer_size_max(params, &state->buffer_frames), "get_buffer_size_max"); state->buffer_frames = SPA_MIN(state->buffer_frames, state->quantum_limit * 4 * state->frame_scale); CHECK(snd_pcm_hw_params_set_buffer_size_min(hndl, params, &state->buffer_frames), "set_buffer_size_min"); CHECK(snd_pcm_hw_params_set_buffer_size_near(hndl, params, &state->buffer_frames), "set_buffer_size_near"); periods = state->buffer_frames / period_size; } if (state->buffer_frames == 0) { spa_log_error(state->log, "%s: invalid buffer_frames 0 (driver error?)", state->name); return -EIO; } state->max_delay = state->buffer_frames / 2; if (spa_strstartswith(state->props.device, "a52") || spa_strstartswith(state->props.device, "dca") || (spa_strstartswith(state->props.device, "plug:") && strstr(state->props.device, "a52:"))) state->min_delay = SPA_MIN(2048u, state->buffer_frames); else state->min_delay = 0; state->start_delay = state->default_start_delay; recalc_headroom(state); spa_log_info(state->log, "%s: format:%s access:%s-%s rate:%d channels:%d " "buffer frames %lu, period frames %lu, periods %u, frame_size %zd " "headroom %u start-delay:%u batch:%u tsched:%u", state->name, snd_pcm_format_name(state->format), state->use_mmap ? "mmap" : "rw", planar ? "planar" : "interleaved", state->rate, state->channels, state->buffer_frames, state->period_frames, periods, state->frame_size, state->headroom, state->start_delay, state->is_batch, !state->disable_tsched); /* write the parameters to device */ CHECK(snd_pcm_hw_params(hndl, params), "set_hw_params"); return match ? 0 : 1; } int spa_alsa_update_rate_match(struct state *state) { uint64_t pitch, last_pitch; int err; if (!state->pitch_elem) return -ENOENT; /* The rate/pitch defines the rate of input to output (if there were a * resampler, it's the ratio of input samples to output samples). This * means that to adjust the playback rate, we need to apply the inverse * of the given rate. */ if (state->stream == SND_PCM_STREAM_CAPTURE) { pitch = (uint64_t)(1000000 * state->rate_match->rate); last_pitch = (uint64_t)(1000000 * state->last_rate); } else { pitch = (uint64_t)(1000000 / state->rate_match->rate); last_pitch = (uint64_t)(1000000 / state->last_rate); } /* The pitch adjustment is limited to 1 ppm according to the spec, but * let's avoid very granular changes so that we don't spam the host * (and ourselves, if bind-ctls are enabled). */ if (SPA_ABS((int)pitch - (int)last_pitch) < 10) return 0; snd_ctl_elem_value_set_integer(state->pitch_elem, 0, pitch); CHECK(snd_ctl_elem_write(state->ctl, state->pitch_elem), "snd_ctl_elem_write"); spa_log_trace_fp(state->log, "%s %u set rate to %g", state->name, state->stream, state->rate_match->rate); state->last_rate = state->rate_match->rate; return 0; } static int set_swparams(struct state *state) { snd_pcm_t *hndl = state->hndl; int err = 0; snd_pcm_sw_params_t *params; snd_pcm_sw_params_alloca(¶ms); /* get the current params */ CHECK(snd_pcm_sw_params_current(hndl, params), "sw_params_current"); CHECK(snd_pcm_sw_params_set_tstamp_mode(hndl, params, SND_PCM_TSTAMP_ENABLE), "sw_params_set_tstamp_mode"); CHECK(snd_pcm_sw_params_set_tstamp_type(hndl, params, SND_PCM_TSTAMP_TYPE_MONOTONIC), "sw_params_set_tstamp_type"); #if 0 snd_pcm_uframes_t boundary; CHECK(snd_pcm_sw_params_get_boundary(params, &boundary), "get_boundary"); CHECK(snd_pcm_sw_params_set_stop_threshold(hndl, params, boundary), "set_stop_threshold"); #endif /* start the transfer */ CHECK(snd_pcm_sw_params_set_start_threshold(hndl, params, LONG_MAX), "set_start_threshold"); if (state->disable_tsched) { snd_pcm_uframes_t avail_min = 0; if (state->stream == SND_PCM_STREAM_PLAYBACK) { /* wake up when buffer has target frames or less data (will underrun soon) */ if (state->buffer_frames >= (state->threshold + state->headroom)) avail_min = state->buffer_frames - (state->threshold + state->headroom); } else { /* wake up when there's target frames or more (enough for us to read and push a buffer) */ avail_min = SPA_MIN(state->threshold + state->headroom, state->buffer_frames); } CHECK(snd_pcm_sw_params_set_avail_min(hndl, params, avail_min), "set_avail_min"); } /* write the parameters to the playback device */ CHECK(snd_pcm_sw_params(hndl, params), "sw_params"); if (SPA_UNLIKELY(spa_log_level_topic_enabled(state->log, SPA_LOG_TOPIC_DEFAULT, SPA_LOG_LEVEL_DEBUG))) { spa_log_debug(state->log, "state after sw_params:"); snd_pcm_dump(hndl, state->output); fflush(state->log_file); } return 0; } static int set_timeout(struct state *state, uint64_t time) { struct itimerspec ts; ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC; ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; spa_system_timerfd_settime(state->data_system, state->timerfd, SPA_FD_TIMER_ABSTIME, &ts, NULL); return 0; } static int spa_alsa_silence(struct state *state, snd_pcm_uframes_t silence) { snd_pcm_t *hndl = state->hndl; const snd_pcm_channel_area_t *my_areas; snd_pcm_uframes_t frames, offset; int i, res; if (state->use_mmap) { frames = state->buffer_frames; if (SPA_UNLIKELY((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &frames)) < 0)) { spa_log_error(state->log, "%s: snd_pcm_mmap_begin error: %s", state->name, snd_strerror(res)); return res; } silence = SPA_MIN(silence, frames); spa_log_trace_fp(state->log, "%p: frames:%ld offset:%ld silence %ld", state, frames, offset, silence); snd_pcm_areas_silence(my_areas, offset, state->channels, silence, state->format); if (SPA_UNLIKELY((res = snd_pcm_mmap_commit(hndl, offset, silence)) < 0)) { spa_log_error(state->log, "%s: snd_pcm_mmap_commit error: %s", state->name, snd_strerror(res)); return res; } } else { uint8_t buffer[silence * state->frame_size]; memset(buffer, 0, silence * state->frame_size); if (state->planar) { void *bufs[state->channels]; for (i = 0; i < state->channels; i++) bufs[i] = buffer; snd_pcm_writen(hndl, bufs, silence); } else { snd_pcm_writei(hndl, buffer, silence); } } return 0; } static void reset_buffers(struct state *this) { uint32_t i; spa_list_init(&this->free); spa_list_init(&this->ready); this->ready_offset = 0; for (i = 0; i < this->n_buffers; i++) { struct buffer *b = &this->buffers[i]; if (this->stream == SND_PCM_STREAM_PLAYBACK) { SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT); spa_node_call_reuse_buffer(&this->callbacks, 0, b->id); } else { spa_list_append(&this->free, &b->link); SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_OUT); } } } static int do_prepare(struct state *state) { int err; state->last_threshold = state->threshold; spa_log_debug(state->log, "%p: start threshold:%d duration:%d rate:%d follower:%d match:%d resample:%d", state, state->threshold, state->driver_duration, state->driver_rate.denom, state->following, state->matching, state->resample); CHECK(set_swparams(state), "swparams"); if ((!state->linked) && (err = snd_pcm_prepare(state->hndl)) < 0 && err != -EBUSY) { spa_log_error(state->log, "%s: snd_pcm_prepare error: %s", state->name, snd_strerror(err)); return err; } if (state->stream == SND_PCM_STREAM_PLAYBACK) { snd_pcm_uframes_t silence = state->start_delay + state->threshold + state->headroom; if (state->disable_tsched) silence += state->threshold; spa_alsa_silence(state, silence); } reset_buffers(state); state->alsa_sync = true; state->alsa_sync_warning = false; state->alsa_started = false; return 0; } static inline int do_drop(struct state *state) { int res; spa_log_debug(state->log, "%p: snd_pcm_drop linked:%u", state, state->linked); if (!state->linked && (res = snd_pcm_drop(state->hndl)) < 0) { spa_log_error(state->log, "%s: snd_pcm_drop: %s", state->name, snd_strerror(res)); return res; } return 0; } static inline int do_start(struct state *state) { int res; if (SPA_UNLIKELY(!state->alsa_started)) { spa_log_debug(state->log, "%p: snd_pcm_start linked:%u", state, state->linked); if (!state->linked && (res = snd_pcm_start(state->hndl)) < 0) { spa_log_error(state->log, "%s: snd_pcm_start: %s", state->name, snd_strerror(res)); return res; } state->alsa_started = true; } return 0; } static inline int check_position_config(struct state *state, bool starting); static int alsa_recover(struct state *state) { int res, st, retry = 0; snd_pcm_status_t *status; struct state *driver, *follower; snd_pcm_status_alloca(&status); if (SPA_UNLIKELY((res = snd_pcm_status(state->hndl, status)) < 0)) { spa_log_error(state->log, "%s: snd_pcm_status error: %s", state->name, snd_strerror(res)); goto recover; } st = snd_pcm_status_get_state(status); switch (st) { case SND_PCM_STATE_XRUN: { struct timeval now, trigger, diff; uint64_t delay, missing; snd_pcm_status_get_tstamp (status, &now); snd_pcm_status_get_trigger_tstamp (status, &trigger); timersub(&now, &trigger, &diff); delay = SPA_TIMEVAL_TO_USEC(&diff); missing = delay * state->rate / SPA_USEC_PER_SEC; missing += state->start_delay + state->threshold + state->headroom; spa_log_trace(state->log, "%p: xrun of %"PRIu64" usec %"PRIu64, state, delay, missing); if (state->clock) { state->clock->xrun += SPA_SCALE32_UP(missing, state->clock->rate.denom, state->rate); } spa_node_call_xrun(&state->callbacks, SPA_TIMEVAL_TO_USEC(&trigger), delay, NULL); break; } case SND_PCM_STATE_SUSPENDED: spa_log_info(state->log, "%s: recover from state %s", state->name, snd_pcm_state_name(st)); while (retry++ < 5 && (res = snd_pcm_resume(state->hndl)) == -EAGAIN) /* wait until suspend flag is released */ poll(NULL, 0, 1000); if (res >= 0) return res; /* try to drop and prepare below */ break; default: spa_log_error(state->log, "%s: recover from error state %s", state->name, snd_pcm_state_name(st)); break; } recover: if (state->driver && state->linked) driver = state->driver; else driver = state; do_drop(driver); spa_list_for_each(follower, &driver->rt.followers, rt.driver_link) { if (follower != driver && follower->linked) { do_drop(follower); check_position_config(follower, false); } } do_prepare(driver); spa_list_for_each(follower, &driver->rt.followers, rt.driver_link) { if (follower != driver && follower->linked) do_prepare(follower); } do_start(driver); spa_list_for_each(follower, &driver->rt.followers, rt.driver_link) { if (follower != driver && follower->linked) do_start(follower); } return 0; } static inline snd_pcm_sframes_t alsa_avail(struct state *state) { snd_pcm_sframes_t avail; if (!state->matching && state->disable_tsched && !state->resample) avail = snd_pcm_avail_update(state->hndl); else avail = snd_pcm_avail(state->hndl); return avail; } static int get_avail(struct state *state, uint64_t current_time, snd_pcm_uframes_t *delay) { int res, suppressed; snd_pcm_sframes_t avail; if (SPA_UNLIKELY((avail = alsa_avail(state)) < 0)) { if ((res = alsa_recover(state)) < 0) return res; if ((avail = alsa_avail(state)) < 0) { if ((suppressed = spa_ratelimit_test(&state->rate_limit, current_time)) >= 0) { spa_log_warn(state->log, "%s: (%d suppressed) snd_pcm_avail after recover: %s", state->name, suppressed, snd_strerror(avail)); } avail = state->threshold * 2; } } *delay = avail; if (state->htimestamp) { snd_pcm_uframes_t havail; snd_htimestamp_t tstamp; uint64_t then; if ((res = snd_pcm_htimestamp(state->hndl, &havail, &tstamp)) < 0) { if ((suppressed = spa_ratelimit_test(&state->rate_limit, current_time)) >= 0) { spa_log_warn(state->log, "%s: (%d suppressed) snd_pcm_htimestamp error: %s", state->name, suppressed, snd_strerror(res)); } return avail; } avail = havail; *delay = havail; if ((then = SPA_TIMESPEC_TO_NSEC(&tstamp)) != 0) { int64_t diff; if (then < current_time) diff = ((int64_t)(current_time - then)) * state->rate / SPA_NSEC_PER_SEC; else diff = -((int64_t)(then - current_time)) * state->rate / SPA_NSEC_PER_SEC; spa_log_trace_fp(state->log, "%"PRIu64" %"PRIu64" %"PRIi64, current_time, then, diff); if (SPA_ABS(diff) < state->threshold * 3) { *delay += SPA_CLAMP(diff, -((int64_t)state->threshold), (int64_t)state->threshold); state->htimestamp_error = 0; } else if (state->htimestamp_max_errors) { if (++state->htimestamp_error > state->htimestamp_max_errors) { spa_log_error(state->log, "%s: wrong htimestamps from driver, disabling", state->name); state->htimestamp_error = 0; state->htimestamp = false; } else if ((suppressed = spa_ratelimit_test(&state->rate_limit, current_time)) >= 0) { spa_log_warn(state->log, "%s: (%d suppressed) impossible htimestamp diff:%"PRIi64, state->name, suppressed, diff); } } } } return avail; } static int get_status(struct state *state, uint64_t current_time, snd_pcm_uframes_t *avail, snd_pcm_uframes_t *delay, snd_pcm_uframes_t *target) { int res; snd_pcm_uframes_t a, d; if ((res = get_avail(state, current_time, &d)) < 0) return res; a = SPA_MIN(res, (int)state->buffer_frames); if (state->resample && state->rate_match) { state->delay = state->rate_match->delay; state->read_size = state->rate_match->size; } else { state->delay = 0; state->read_size = state->threshold; } if (state->stream == SND_PCM_STREAM_PLAYBACK) { *avail = state->buffer_frames - a; *delay = state->buffer_frames - SPA_MIN(d, state->buffer_frames); *target = state->threshold + state->headroom; } else { *avail = a; *delay = d; *target = SPA_MAX(state->threshold, state->read_size) + state->headroom; } *target = SPA_CLAMP(*target, state->min_delay, state->max_delay); return 0; } static int update_time(struct state *state, uint64_t current_time, snd_pcm_sframes_t delay, snd_pcm_sframes_t target, bool follower) { double err, corr, avg; int32_t diff; if (state->disable_tsched && !follower) { err = (int64_t)(current_time - state->next_time); err = err / 1e9 * state->rate; } else { if (state->stream == SND_PCM_STREAM_PLAYBACK) err = delay - target; else err = target - delay; } if (SPA_UNLIKELY(state->dll.bw == 0.0)) { spa_dll_set_bw(&state->dll, SPA_DLL_BW_MAX, state->threshold, state->rate); state->next_time = current_time; state->base_time = current_time; } diff = (int32_t) (state->last_threshold - state->threshold); if (SPA_UNLIKELY(diff != 0)) { err -= diff; spa_log_trace(state->log, "%p: follower:%d quantum change %d -> %d (%d) %f", state, follower, state->last_threshold, state->threshold, diff, err); state->last_threshold = state->threshold; state->alsa_sync = true; state->alsa_sync_warning = false; } if (err > state->max_resync) { state->alsa_sync = true; if (err > state->max_error) err = state->max_error; } else if (err < -state->max_resync) { state->alsa_sync = true; if (err < -state->max_error) err = -state->max_error; } if (!follower || state->matching) { corr = spa_dll_update(&state->dll, err); avg = (state->err_avg * state->err_wdw + (err - state->err_avg)) / (state->err_wdw + 1.0); state->err_var = (state->err_var * state->err_wdw + (err - state->err_avg) * (err - avg)) / (state->err_wdw + 1.0); state->err_avg = avg; } else { corr = 1.0; } if (diff < 0) state->next_time += (uint64_t)(diff / corr * 1e9 / state->rate); if (SPA_UNLIKELY((state->next_time - state->base_time) > BW_PERIOD)) { double bw; state->base_time = state->next_time; bw = (fabs(state->err_avg) + sqrt(fabs(state->err_var)))/1000.0; spa_log_debug(state->log, "%s: follower:%d match:%d rate:%f " "bw:%f thr:%u del:%ld target:%ld err:%f max_err:%f max_resync: %f var:%f:%f:%f", state->name, follower, state->matching, corr, state->dll.bw, state->threshold, delay, target, err, state->max_error, state->max_resync, state->err_avg, state->err_var, bw); spa_dll_set_bw(&state->dll, SPA_CLAMPD(bw, 0.001, SPA_DLL_BW_MAX), state->threshold, state->rate); } if (state->rate_match) { if (state->stream == SND_PCM_STREAM_PLAYBACK) state->rate_match->rate = corr; else state->rate_match->rate = 1.0/corr; if (state->pitch_elem && state->matching) spa_alsa_update_rate_match(state); else SPA_FLAG_UPDATE(state->rate_match->flags, SPA_IO_RATE_MATCH_FLAG_ACTIVE, state->matching); } state->next_time += (uint64_t)(state->threshold / corr * 1e9 / state->rate); if (SPA_LIKELY(state->clock)) { state->clock->nsec = current_time; state->clock->rate = state->driver_rate; state->clock->position += state->clock->duration; state->clock->duration = state->driver_duration; state->clock->delay = delay + state->delay; state->clock->rate_diff = corr; state->clock->next_nsec = state->next_time; } spa_log_trace_fp(state->log, "%p: follower:%d %"PRIu64" %f %ld %ld %f %f %u", state, follower, current_time, corr, delay, target, err, state->threshold * corr, state->threshold); return 0; } static int setup_matching(struct state *state) { state->matching = state->following; if (state->position == NULL) return -ENOTSUP; spa_log_debug(state->log, "driver clock:'%s' our clock:'%s'", state->position->clock.name, state->clock_name); if (spa_streq(state->position->clock.name, state->clock_name)) state->matching = false; state->resample = !state->pitch_elem && (((uint32_t)state->rate != state->driver_rate.denom) || state->matching); recalc_headroom(state); spa_log_info(state->log, "driver clock:'%s'@%d our clock:'%s'@%d matching:%d resample:%d", state->position->clock.name, state->driver_rate.denom, state->clock_name, state->rate, state->matching, state->resample); return 0; } static void update_sources(struct state *state, bool active) { if (state->disable_tsched && state->rt.sources_added) { for (int i = 0; i < state->n_fds; i++) { state->source[i].mask = active ? state->pfds[i].events : 0; spa_loop_update_source(state->data_loop, &state->source[i]); } } } static inline int check_position_config(struct state *state, bool starting) { uint64_t target_duration; struct spa_fraction target_rate; struct spa_io_position *pos; if (SPA_UNLIKELY((pos = state->position) == NULL)) return 0; if (state->disable_tsched && (starting || state->started) && !state->following) { target_duration = state->period_frames; target_rate = SPA_FRACTION(1, state->rate); pos->clock.target_duration = target_duration; pos->clock.target_rate = target_rate; } else { target_duration = pos->clock.target_duration; if (state->force_rate && !state->following) { target_rate = SPA_FRACTION(1, state->rate); pos->clock.target_rate = target_rate; } else { target_rate = pos->clock.target_rate; } } if (target_duration == 0 || target_rate.denom == 0) return -EIO; if (SPA_UNLIKELY((state->driver_duration != target_duration) || (state->driver_rate.denom != target_rate.denom))) { spa_log_info(state->log, "%p: follower:%d duration:%u->%"PRIu64" rate:%d->%d", state, state->following, state->driver_duration, target_duration, state->driver_rate.denom, target_rate.denom); state->driver_duration = target_duration; state->driver_rate = target_rate; state->threshold = SPA_SCALE32_UP(state->driver_duration, state->rate, state->driver_rate.denom); state->max_error = SPA_MAX(256.0f, (state->threshold + state->headroom) / 2.0f); state->max_resync = SPA_MIN(state->threshold + state->headroom, state->max_error); state->err_wdw = (double)state->driver_rate.denom/state->driver_duration; state->resample = !state->pitch_elem && (((uint32_t)state->rate != state->driver_rate.denom) || state->matching); state->alsa_sync = true; } return 0; } static int alsa_write_sync(struct state *state, uint64_t current_time) { int res, suppressed; snd_pcm_uframes_t avail, delay, target; bool following = state->following; if (SPA_UNLIKELY((res = check_position_config(state, false)) < 0)) return res; if (SPA_UNLIKELY((res = get_status(state, current_time, &avail, &delay, &target)) < 0)) { spa_log_error(state->log, "get_status error: %s", spa_strerror(res)); state->next_time += (uint64_t)(state->threshold * 1e9 / state->rate); return res; } if (SPA_UNLIKELY(!following && state->alsa_started && delay > target + state->max_error)) { spa_log_trace(state->log, "%p: early wakeup %ld %lu %lu", state, avail, delay, target); if (delay > target * 3) delay = target * 3; state->next_time = current_time + (delay - target) * SPA_NSEC_PER_SEC / state->rate; return -EAGAIN; } if (SPA_UNLIKELY((res = update_time(state, current_time, delay, target, following)) < 0)) return res; if (following && state->alsa_started && !state->linked) { if (SPA_UNLIKELY(state->alsa_sync)) { enum spa_log_level lev; if (SPA_UNLIKELY(state->alsa_sync_warning)) lev = SPA_LOG_LEVEL_WARN; else lev = SPA_LOG_LEVEL_INFO; if ((suppressed = spa_ratelimit_test(&state->rate_limit, current_time)) < 0) lev = SPA_LOG_LEVEL_DEBUG; spa_log_lev(state->log, lev, "%s: follower avail:%lu delay:%ld " "target:%ld thr:%u, resync (%d suppressed)", state->name, avail, delay, target, state->threshold, suppressed); if (avail > target) snd_pcm_rewind(state->hndl, avail - target); else if (avail < target) spa_alsa_silence(state, target - avail); avail = target; spa_dll_init(&state->dll); state->alsa_sync = false; } else state->alsa_sync_warning = true; } return 0; } static int alsa_write_frames(struct state *state) { snd_pcm_t *hndl = state->hndl; const snd_pcm_channel_area_t *my_areas; snd_pcm_uframes_t written, frames, offset, off, to_write, total_written; snd_pcm_sframes_t commitres; int res = 0; size_t frame_size = state->frame_size; total_written = 0; again: frames = state->buffer_frames; if (state->use_mmap && frames > 0) { if (SPA_UNLIKELY((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &frames)) < 0)) { spa_log_error(state->log, "%s: snd_pcm_mmap_begin error: %s", state->name, snd_strerror(res)); alsa_recover(state); return res; } spa_log_trace_fp(state->log, "%p: begin offset:%ld avail:%ld threshold:%d", state, offset, frames, state->threshold); off = offset; } else { off = 0; } to_write = frames; written = 0; while (!spa_list_is_empty(&state->ready) && to_write > 0) { size_t n_bytes, n_frames; struct buffer *b; struct spa_data *d; uint32_t i, offs, size, last_offset; b = spa_list_first(&state->ready, struct buffer, link); d = b->buf->datas; offs = d[0].chunk->offset + state->ready_offset; last_offset = d[0].chunk->size; size = last_offset - state->ready_offset; offs = SPA_MIN(offs, d[0].maxsize); size = SPA_MIN(d[0].maxsize - offs, size); n_frames = SPA_MIN(size / frame_size, to_write); n_bytes = n_frames * frame_size; if (SPA_LIKELY(state->use_mmap)) { for (i = 0; i < b->buf->n_datas; i++) { spa_memcpy(channel_area_addr(&my_areas[i], off), SPA_PTROFF(d[i].data, offs, void), n_bytes); } } else { void *bufs[b->buf->n_datas]; for (i = 0; i < b->buf->n_datas; i++) bufs[i] = SPA_PTROFF(d[i].data, offs, void); if (state->planar) snd_pcm_writen(hndl, bufs, n_frames); else snd_pcm_writei(hndl, bufs[0], n_frames); } state->ready_offset += n_bytes; if (state->ready_offset >= last_offset) { spa_list_remove(&b->link); SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT); state->io->buffer_id = b->id; spa_log_trace_fp(state->log, "%p: reuse buffer %u", state, b->id); spa_node_call_reuse_buffer(&state->callbacks, 0, b->id); state->ready_offset = 0; } written += n_frames; off += n_frames; to_write -= n_frames; } spa_log_trace_fp(state->log, "%p: commit offset:%ld written:%ld sample_count:%"PRIi64, state, offset, written, state->sample_count); total_written += written; if (state->use_mmap && written > 0) { if (SPA_UNLIKELY((commitres = snd_pcm_mmap_commit(hndl, offset, written)) < 0)) { if (commitres == -EPIPE || commitres == -ESTRPIPE) { spa_log_warn(state->log, "%s: snd_pcm_mmap_commit error: %s", state->name, snd_strerror(commitres)); } else { spa_log_error(state->log, "%s: snd_pcm_mmap_commit error: %s", state->name, snd_strerror(commitres)); return res; } } if (commitres > 0 && written != (snd_pcm_uframes_t) commitres) { spa_log_warn(state->log, "%s: mmap_commit wrote %ld instead of %ld", state->name, commitres, written); } } if (!spa_list_is_empty(&state->ready) && written > 0) goto again; state->sample_count += total_written; if (SPA_UNLIKELY(!state->alsa_started && (total_written > 0 || frames == 0))) do_start(state); update_sources(state, true); return 0; } int spa_alsa_write(struct state *state) { if (state->following && state->rt.driver == NULL) { uint64_t current_time = state->position->clock.nsec; alsa_write_sync(state, current_time); } return alsa_write_frames(state); } void spa_alsa_recycle_buffer(struct state *this, uint32_t buffer_id) { struct buffer *b = &this->buffers[buffer_id]; if (SPA_FLAG_IS_SET(b->flags, BUFFER_FLAG_OUT)) { spa_log_trace_fp(this->log, "%p: recycle buffer %u", this, buffer_id); spa_list_append(&this->free, &b->link); SPA_FLAG_CLEAR(b->flags, BUFFER_FLAG_OUT); } } static snd_pcm_uframes_t push_frames(struct state *state, const snd_pcm_channel_area_t *my_areas, snd_pcm_uframes_t offset, snd_pcm_uframes_t frames) { snd_pcm_uframes_t total_frames = 0; if (spa_list_is_empty(&state->free)) { spa_log_warn(state->log, "%s: no more buffers", state->name); total_frames = frames; } else { size_t n_bytes, left, frame_size = state->frame_size; struct buffer *b; struct spa_data *d; uint32_t i, avail, l0, l1; b = spa_list_first(&state->free, struct buffer, link); spa_list_remove(&b->link); if (b->h) { b->h->seq = state->sample_count; b->h->pts = state->next_time; b->h->dts_offset = 0; } d = b->buf->datas; avail = d[0].maxsize / frame_size; total_frames = SPA_MIN(avail, frames); n_bytes = total_frames * frame_size; if (my_areas) { left = state->buffer_frames - offset; l0 = SPA_MIN(n_bytes, left * frame_size); l1 = n_bytes - l0; for (i = 0; i < b->buf->n_datas; i++) { spa_memcpy(d[i].data, channel_area_addr(&my_areas[i], offset), l0); if (SPA_UNLIKELY(l1 > 0)) spa_memcpy(SPA_PTROFF(d[i].data, l0, void), channel_area_addr(&my_areas[i], 0), l1); d[i].chunk->offset = 0; d[i].chunk->size = n_bytes; d[i].chunk->stride = frame_size; } } else { void *bufs[b->buf->n_datas]; for (i = 0; i < b->buf->n_datas; i++) { bufs[i] = d[i].data; d[i].chunk->offset = 0; d[i].chunk->size = n_bytes; d[i].chunk->stride = frame_size; } if (state->planar) { snd_pcm_readn(state->hndl, bufs, total_frames); } else { snd_pcm_readi(state->hndl, bufs[0], total_frames); } } spa_log_trace_fp(state->log, "%p: wrote %ld frames into buffer %d", state, total_frames, b->id); spa_list_append(&state->ready, &b->link); } return total_frames; } static int alsa_read_sync(struct state *state, uint64_t current_time) { int res, suppressed; snd_pcm_uframes_t avail, delay, target, max_read; bool following = state->following; if (SPA_UNLIKELY(!state->alsa_started)) return 0; if (SPA_UNLIKELY((res = check_position_config(state, false)) < 0)) return res; if (SPA_UNLIKELY((res = get_status(state, current_time, &avail, &delay, &target)) < 0)) { spa_log_error(state->log, "get_status error: %s", spa_strerror(res)); state->next_time += (uint64_t)(state->threshold * 1e9 / state->rate); return res; } if (SPA_UNLIKELY(!following && avail < state->read_size)) { spa_log_trace(state->log, "%p: early wakeup %ld %ld %ld %d", state, delay, avail, target, state->read_size); state->next_time = current_time + (state->read_size - avail) * SPA_NSEC_PER_SEC / state->rate; return -EAGAIN; } if (SPA_UNLIKELY((res = update_time(state, current_time, delay, target, following)) < 0)) return res; max_read = state->buffer_frames; if (following && !state->linked) { if (state->alsa_sync) { enum spa_log_level lev; if (SPA_UNLIKELY(state->alsa_sync_warning)) lev = SPA_LOG_LEVEL_WARN; else lev = SPA_LOG_LEVEL_INFO; if ((suppressed = spa_ratelimit_test(&state->rate_limit, current_time)) < 0) lev = SPA_LOG_LEVEL_DEBUG; spa_log_lev(state->log, lev, "%s: follower delay:%ld target:%ld thr:%u " "resample:%d, resync (%d suppressed)", state->name, delay, target, state->threshold, state->resample, suppressed); if (avail < target) max_read = target - avail; else if (avail > target) { snd_pcm_forward(state->hndl, avail - target); avail = target; } state->alsa_sync = false; spa_dll_init(&state->dll); } else state->alsa_sync_warning = true; if (avail < state->read_size) max_read = 0; } state->max_read = SPA_MIN(max_read, state->read_size); return 0; } static int alsa_read_frames(struct state *state) { snd_pcm_t *hndl = state->hndl; snd_pcm_uframes_t total_read = 0, avail; const snd_pcm_channel_area_t *my_areas; snd_pcm_uframes_t read, frames, offset; snd_pcm_sframes_t commitres; int res = 0; frames = state->max_read; if (state->use_mmap) { avail = state->buffer_frames; if ((res = snd_pcm_mmap_begin(hndl, &my_areas, &offset, &avail)) < 0) { spa_log_error(state->log, "%s: snd_pcm_mmap_begin error: %s", state->name, snd_strerror(res)); alsa_recover(state); return res; } spa_log_trace_fp(state->log, "%p: begin offs:%ld frames:%ld avail:%ld thres:%d", state, offset, frames, avail, state->threshold); } else { my_areas = NULL; offset = 0; } if (frames > 0) { read = push_frames(state, my_areas, offset, frames); total_read += read; } else { spa_alsa_skip(state); total_read += state->read_size; read = 0; } if (state->use_mmap && read > 0) { spa_log_trace_fp(state->log, "%p: commit offs:%ld read:%ld count:%"PRIi64, state, offset, read, state->sample_count); if ((commitres = snd_pcm_mmap_commit(hndl, offset, read)) < 0) { enum spa_log_level lev; if (SPA_UNLIKELY(state->alsa_sync_warning)) lev = SPA_LOG_LEVEL_ERROR; else lev = SPA_LOG_LEVEL_INFO; spa_log_lev(state->log, lev, "%s: snd_pcm_mmap_commit error %lu %lu %lu: %s", state->name, frames, avail, read, snd_strerror(commitres)); if (commitres != -EPIPE && commitres != -ESTRPIPE) return res; } if (commitres > 0 && read != (snd_pcm_uframes_t) commitres) { spa_log_warn(state->log, "%s: mmap_commit read %ld instead of %ld", state->name, commitres, read); } } state->sample_count += total_read; return 0; } int spa_alsa_read(struct state *state) { if (state->following && state->rt.driver == NULL) { uint64_t current_time = state->position->clock.nsec; alsa_read_sync(state, current_time); } return alsa_read_frames(state); } int spa_alsa_skip(struct state *state) { struct buffer *b; struct spa_data *d; uint32_t i, avail, total_frames, n_bytes, frames; if (SPA_UNLIKELY(spa_list_is_empty(&state->free))) { spa_log_warn(state->log, "%s: no more buffers", state->name); return -EPIPE; } frames = state->read_size; b = spa_list_first(&state->free, struct buffer, link); spa_list_remove(&b->link); d = b->buf->datas; avail = d[0].maxsize / state->frame_size; total_frames = SPA_MIN(avail, frames); n_bytes = total_frames * state->frame_size; for (i = 0; i < b->buf->n_datas; i++) { memset(d[i].data, 0, n_bytes); d[i].chunk->offset = 0; d[i].chunk->size = n_bytes; d[i].chunk->stride = state->frame_size; } spa_list_append(&state->ready, &b->link); return 0; } static int playback_ready(struct state *state) { struct spa_io_buffers *io = state->io; spa_log_trace_fp(state->log, "%p: %d", state, io->status); update_sources(state, false); io->status = SPA_STATUS_NEED_DATA; return spa_node_call_ready(&state->callbacks, SPA_STATUS_NEED_DATA); } static int capture_ready(struct state *state) { struct spa_io_buffers *io; bool have_data; have_data = !spa_list_is_empty(&state->ready); io = state->io; if (io != NULL && (io->status != SPA_STATUS_HAVE_DATA || state->rate_match != NULL)) { struct buffer *b; if (SPA_LIKELY(io->buffer_id < state->n_buffers)) spa_alsa_recycle_buffer(state, io->buffer_id); if (SPA_LIKELY(have_data)) { b = spa_list_first(&state->ready, struct buffer, link); spa_list_remove(&b->link); SPA_FLAG_SET(b->flags, BUFFER_FLAG_OUT); io->buffer_id = b->id; io->status = SPA_STATUS_HAVE_DATA; } else { io->buffer_id = SPA_ID_INVALID; } spa_log_trace_fp(state->log, "%p: output buffer:%d", state, io->buffer_id); } if (have_data) spa_node_call_ready(&state->callbacks, SPA_STATUS_HAVE_DATA); return 0; } static uint64_t get_time_ns(struct state *state) { struct timespec now; if (spa_system_clock_gettime(state->data_system, CLOCK_MONOTONIC, &now) < 0) return 0; return SPA_TIMESPEC_TO_NSEC(&now); } static inline int alsa_do_wakeup_work(struct state *state, uint64_t current_time) { struct state *follower; int res; /* first do all the sync */ if (state->stream == SND_PCM_STREAM_CAPTURE) res = alsa_read_sync(state, current_time); else res = alsa_write_sync(state, current_time); /* we can get -EAGAIN when we need to wait some more */ if (SPA_UNLIKELY(res == -EAGAIN)) return res; spa_list_for_each(follower, &state->rt.followers, rt.driver_link) { if (follower == state) continue; if (follower->stream == SND_PCM_STREAM_CAPTURE) alsa_read_sync(follower, current_time); else alsa_write_sync(follower, current_time); } /* then read this source, the sinks will be written to when the * graph completes. We can't read other follower sources yet because * the resampler first needs to run. */ if (state->stream == SND_PCM_STREAM_CAPTURE) alsa_read_frames(state); /* and then trigger the graph */ if (state->stream == SND_PCM_STREAM_PLAYBACK) playback_ready(state); else capture_ready(state); return 0; } static void alsa_irq_wakeup_event(struct spa_source *source) { struct state *state = source->data; uint64_t current_time; int res, err; unsigned short revents; snd_pcm_uframes_t havail; snd_htimestamp_t tstamp; // First, take a snapshot of the wakeup time current_time = get_time_ns(state); // If the hi-res timestamps are working, we will get a timestamp that // is earlier then current_time if ((res = snd_pcm_htimestamp(state->hndl, &havail, &tstamp)) == 0) { uint64_t htime = SPA_TIMESPEC_TO_NSEC(&tstamp); if (htime < current_time) { current_time = htime; } } for (int i = 0; i < state->n_fds; i++) { state->pfds[i].revents = state->source[i].rmask; /* Reset so that we only handle all our sources' events once */ state->source[i].rmask = 0; } /* ALSA poll fds need to be "demangled" to know whether it's a real wakeup */ if (SPA_UNLIKELY(err = snd_pcm_poll_descriptors_revents(state->hndl, state->pfds, state->n_fds, &revents))) { spa_log_error(state->log, "Could not look up revents: %s", snd_strerror(err)); return; } if (!revents) { spa_log_trace_fp(state->log, "Woken up with no work to do"); return; } if (revents & POLLERR) { spa_log_trace_fp(state->log, "poll error"); if ((res = alsa_recover(state)) < 0) return; } alsa_do_wakeup_work(state, current_time); } static void alsa_timer_wakeup_event(struct spa_source *source) { struct state *state = source->data; uint64_t expire, current_time; int res, suppressed; if (SPA_LIKELY(state->started)) { if (SPA_UNLIKELY((res = spa_system_timerfd_read(state->data_system, state->timerfd, &expire)) < 0)) { /* we can get here when the timer is changed since the last * timerfd wakeup, for example by do_reassign_follower() executed * in the same epoll wakeup cycle */ if (res != -EAGAIN) spa_log_warn(state->log, "%p: error reading timerfd: %s", state, spa_strerror(res)); return; } } current_time = state->next_time; alsa_do_wakeup_work(state, current_time); if (state->next_time > current_time + SPA_NSEC_PER_SEC || current_time > state->next_time + SPA_NSEC_PER_SEC) { if ((suppressed = spa_ratelimit_test(&state->rate_limit, current_time)) >= 0) { spa_log_error(state->log, "%s: impossible timeout %" PRIu64" %"PRIu64" %"PRIi64" %d %"PRIi64" (%d suppressed)", state->name, current_time, state->next_time, state->next_time - current_time, state->threshold, state->sample_count, suppressed); } state->next_time = (uint64_t)(current_time + state->threshold * 1e9 / state->rate); } set_timeout(state, state->next_time); } static void remove_sources(struct state *state) { int i; if (state->rt.sources_added) { for (i = 0; i < state->n_fds; i++) spa_loop_remove_source(state->data_loop, &state->source[i]); state->rt.sources_added = false; } } static void add_sources(struct state *state) { int i; if (!state->rt.sources_added) { for (i = 0; i < state->n_fds; i++) spa_loop_add_source(state->data_loop, &state->source[i]); state->rt.sources_added = true; } } static int do_state_sync(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct state *state = user_data; struct rt_state *rt = &state->rt; if (state->started) { state->next_time = get_time_ns(state); if (rt->driver != state->driver) { spa_dll_init(&state->dll); if (rt->driver != NULL) spa_list_remove(&rt->driver_link); if (state->driver != NULL) spa_list_append(&state->driver->rt.followers, &rt->driver_link); rt->driver = state->driver; spa_log_debug(state->log, "state:%p -> driver:%p", state, state->driver); if(state->linked && state->matching) try_unlink(state); } if (state->following) { remove_sources(state); set_timeout(state, 0); } else { add_sources(state); if (!state->disable_tsched) set_timeout(state, state->next_time); } } else { if (rt->driver) { spa_list_remove(&rt->driver_link); rt->driver = NULL; } if (!state->disable_tsched) set_timeout(state, 0); remove_sources(state); } return 0; } int spa_alsa_prepare(struct state *state) { struct state *follower; int err; if (!state->opened) return -EIO; spa_alsa_pause(state); if (state->prepared) return 0; if (check_position_config(state, true) < 0) { spa_log_error(state->log, "%s: invalid position config", state->name); return -EIO; } if ((err = do_prepare(state)) < 0) return err; spa_list_for_each(follower, &state->followers, driver_link) { if (follower != state && !follower->matching) { if (spa_alsa_prepare(follower) < 0) continue; if (!follower->linked && state->auto_link) do_link(state, follower); } } state->prepared = true; return 0; } int spa_alsa_start(struct state *state) { struct state *follower; int err; if (state->started) return 0; else if (!state->opened) return -EIO; spa_alsa_prepare(state); if (!state->disable_tsched) { /* Timer-based scheduling */ state->source[0].func = alsa_timer_wakeup_event; state->source[0].data = state; state->source[0].fd = state->timerfd; state->source[0].mask = SPA_IO_IN; state->source[0].rmask = 0; state->n_fds = 1; } else { /* ALSA period-based scheduling */ err = snd_pcm_poll_descriptors_count(state->hndl); if (err < 0) { spa_log_error(state->log, "Could not get poll descriptor count: %s", snd_strerror(err)); return err; } if (err > MAX_POLL) { spa_log_error(state->log, "Unsupported poll descriptor count: %d", err); return -EIO; } state->n_fds = err; if ((err = snd_pcm_poll_descriptors(state->hndl, state->pfds, state->n_fds)) < 0) { spa_log_error(state->log, "Could not get poll descriptors: %s", snd_strerror(err)); return err; } /* We only add the source to the data loop if we're driving. * This is done in add_sources() */ for (int i = 0; i < state->n_fds; i++) { state->source[i].func = alsa_irq_wakeup_event; state->source[i].data = state; state->source[i].fd = state->pfds[i].fd; state->source[i].mask = state->pfds[i].events; state->source[i].rmask = 0; } } spa_list_for_each(follower, &state->followers, driver_link) if (follower != state) spa_alsa_start(follower); /* start capture now. We should have some data when the timer or IRQ * goes off later */ if (state->stream == SND_PCM_STREAM_CAPTURE) { if ((err = do_start(state)) < 0) return err; } /* playback will start after first write. Without tsched, we start * right away so that the fds become active in poll right away. */ if (state->stream == SND_PCM_STREAM_PLAYBACK) { if (state->disable_tsched || state->start_delay > 0) if ((err = do_start(state)) < 0) return err; } state->started = true; spa_loop_invoke(state->data_loop, do_state_sync, 0, NULL, 0, true, state); return 0; } static struct state *find_state(uint32_t id) { struct state *state; spa_list_for_each(state, &states, link) { if (state->clock != NULL && state->clock->id == id) return state; } return NULL; } int spa_alsa_reassign_follower(struct state *state) { bool following, freewheel; struct spa_io_position *pos = state->position; struct spa_io_clock *clock = state->clock; struct state *driver; if (clock != NULL) spa_scnprintf(clock->name, sizeof(clock->name), "%s", state->clock_name); following = pos && clock && pos->clock.id != clock->id; driver = pos != NULL ? find_state(pos->clock.id) : NULL; if (driver != state->driver) { spa_log_debug(state->log, "%p: reassign driver %p->%p", state, state->driver, driver); if (state->driver != NULL) spa_list_remove(&state->driver_link); if (driver != NULL) { spa_list_append(&driver->followers, &state->driver_link); } state->driver = driver; } if (following != state->following) { spa_log_debug(state->log, "%p: reassign follower %d->%d", state, state->following, following); state->following = following; } setup_matching(state); if (state->started) spa_loop_invoke(state->data_loop, do_state_sync, 0, NULL, 0, true, state); else if (state->want_started) spa_alsa_start(state); freewheel = pos != NULL && SPA_FLAG_IS_SET(pos->clock.flags, SPA_IO_CLOCK_FLAG_FREEWHEEL); if (state->freewheel != freewheel) { spa_log_debug(state->log, "%p: freewheel %d->%d", state, state->freewheel, freewheel); state->freewheel = freewheel; if (state->started) { if (freewheel) snd_pcm_pause(state->hndl, 1); else snd_pcm_pause(state->hndl, 0); } } state->alsa_sync_warning = false; return 0; } int spa_alsa_pause(struct state *state) { struct state *follower; if (!state->started) return 0; spa_log_debug(state->log, "%p: pause", state); state->started = false; spa_loop_invoke(state->data_loop, do_state_sync, 0, NULL, 0, true, state); spa_list_for_each(follower, &state->followers, driver_link) spa_alsa_pause(follower); do_drop(state); state->prepared = false; return 0; } void spa_alsa_emit_node_info(struct state *state, bool full) { uint64_t old = full ? state->info.change_mask : 0; if (full) state->info.change_mask = state->info_all; if (state->info.change_mask) { struct spa_dict_item items[7]; uint32_t i, n_items = 0; char latency[64] = "", period[64] = "", nperiods[64] = "", headroom[64] = ""; items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_DEVICE_API, "alsa"); items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_MEDIA_CLASS, state->props.media_class); items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_NODE_DRIVER, "true"); if (state->have_format) snprintf(latency, sizeof(latency), "%lu/%d", state->buffer_frames / (2 * state->frame_scale), state->rate); items[n_items++] = SPA_DICT_ITEM_INIT(SPA_KEY_NODE_MAX_LATENCY, latency[0] ? latency : NULL); if (state->have_format) snprintf(period, sizeof(period), "%lu", state->period_frames); else if (state->default_period_size) snprintf(period, sizeof(period), "%u", state->default_period_size); items[n_items++] = SPA_DICT_ITEM_INIT("api.alsa.period-size", period[0] ? period : NULL); if (state->have_format) snprintf(nperiods, sizeof(nperiods), "%lu", state->period_frames != 0 ? state->buffer_frames / state->period_frames : 0); else if (state->default_period_num) snprintf(nperiods, sizeof(nperiods), "%u", state->default_period_size); items[n_items++] = SPA_DICT_ITEM_INIT("api.alsa.period-num", nperiods[0] ? nperiods : NULL); if (state->have_format) snprintf(headroom, sizeof(headroom), "%u", state->headroom); else if (state->default_headroom) snprintf(headroom, sizeof(headroom), "%u", state->default_headroom); items[n_items++] = SPA_DICT_ITEM_INIT("api.alsa.headroom", headroom[0] ? headroom : NULL); state->info.props = &SPA_DICT_INIT(items, n_items); if (state->info.change_mask & SPA_NODE_CHANGE_MASK_PARAMS) { for (i = 0; i < state->info.n_params; i++) { if (state->params[i].user > 0) { state->params[i].flags ^= SPA_PARAM_INFO_SERIAL; state->params[i].user = 0; } } } spa_node_emit_info(&state->hooks, &state->info); state->info.change_mask = old; } } void spa_alsa_emit_port_info(struct state *state, bool full) { uint64_t old = full ? state->port_info.change_mask : 0; if (full) state->port_info.change_mask = state->port_info_all; if (state->port_info.change_mask) { uint32_t i; static const struct spa_dict_item info_items[] = { { SPA_KEY_PORT_GROUP, "stream.0" }, }; state->port_info.props = &SPA_DICT_INIT_ARRAY(info_items); if (state->port_info.change_mask & SPA_PORT_CHANGE_MASK_PARAMS) { for (i = 0; i < state->port_info.n_params; i++) { if (state->port_params[i].user > 0) { state->port_params[i].flags ^= SPA_PARAM_INFO_SERIAL; state->port_params[i].user = 0; } } } spa_node_emit_port_info(&state->hooks, state->stream == SND_PCM_STREAM_PLAYBACK ? SPA_DIRECTION_INPUT : SPA_DIRECTION_OUTPUT, 0, &state->port_info); state->port_info.change_mask = old; } }