/* Spa SCO Source */ /* SPDX-FileCopyrightText: Copyright © 2019 Collabora Ltd. */ /* SPDX-License-Identifier: MIT */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "defs.h" #ifdef HAVE_LC3 #include #endif SPA_LOG_TOPIC_DEFINE_STATIC(log_topic, "spa.bluez5.source.sco"); #undef SPA_LOG_TOPIC_DEFAULT #define SPA_LOG_TOPIC_DEFAULT &log_topic #include "decode-buffer.h" #define DEFAULT_CLOCK_NAME "clock.system.monotonic" struct props { char clock_name[64]; }; #define MAX_BUFFERS 32 struct buffer { uint32_t id; unsigned int outstanding:1; struct spa_buffer *buf; struct spa_meta_header *h; struct spa_list link; }; struct port { struct spa_audio_info current_format; int frame_size; unsigned int have_format:1; uint64_t info_all; struct spa_port_info info; struct spa_io_buffers *io; struct spa_io_rate_match *rate_match; struct spa_latency_info latency; #define IDX_EnumFormat 0 #define IDX_Meta 1 #define IDX_IO 2 #define IDX_Format 3 #define IDX_Buffers 4 #define IDX_Latency 5 #define N_PORT_PARAMS 6 struct spa_param_info params[N_PORT_PARAMS]; struct buffer buffers[MAX_BUFFERS]; uint32_t n_buffers; struct spa_list free; struct spa_list ready; struct spa_bt_decode_buffer buffer; }; struct impl { struct spa_handle handle; struct spa_node node; struct spa_log *log; struct spa_loop *data_loop; struct spa_system *data_system; struct spa_hook_list hooks; struct spa_callbacks callbacks; uint32_t quantum_limit; uint64_t info_all; struct spa_node_info info; #define IDX_PropInfo 0 #define IDX_Props 1 #define IDX_NODE_IO 2 #define N_NODE_PARAMS 3 struct spa_param_info params[N_NODE_PARAMS]; struct props props; struct spa_bt_transport *transport; struct spa_hook transport_listener; struct port port; unsigned int started:1; unsigned int start_ready:1; unsigned int transport_started:1; unsigned int following:1; unsigned int matching:1; unsigned int resampling:1; unsigned int io_error:1; unsigned int is_internal:1; struct spa_source timer_source; int timerfd; struct spa_io_clock *clock; struct spa_io_position *position; uint64_t current_time; uint64_t next_time; /* Codecs */ bool h2_seq_initialized; uint8_t h2_seq; /* mSBC/LC3 frame parsing */ uint8_t recv_buffer[HFP_CODEC_PACKET_SIZE]; uint8_t recv_buffer_pos; /* mSBC */ sbc_t msbc; /* LC3 */ #ifdef HAVE_LC3 lc3_decoder_t lc3; #else void *lc3; #endif struct timespec now; }; #define CHECK_PORT(this,d,p) ((d) == SPA_DIRECTION_OUTPUT && (p) == 0) static void reset_props(struct props *props) { strncpy(props->clock_name, DEFAULT_CLOCK_NAME, sizeof(props->clock_name)); } static int impl_node_enum_params(void *object, int seq, uint32_t id, uint32_t start, uint32_t num, const struct spa_pod *filter) { struct impl *this = object; struct spa_pod *param; struct spa_pod_builder b = { 0 }; uint8_t buffer[1024]; struct spa_result_node_params result; uint32_t count = 0; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(num != 0, -EINVAL); result.id = id; result.next = start; next: result.index = result.next++; spa_pod_builder_init(&b, buffer, sizeof(buffer)); switch (id) { case SPA_PARAM_PropInfo: { switch (result.index) { default: return 0; } break; } case SPA_PARAM_Props: { switch (result.index) { default: return 0; } break; } default: return -ENOENT; } if (spa_pod_filter(&b, &result.param, param, filter) < 0) goto next; spa_node_emit_result(&this->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result); if (++count != num) goto next; return 0; } static int set_timeout(struct impl *this, uint64_t time) { struct itimerspec ts; ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC; ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC; ts.it_interval.tv_sec = 0; ts.it_interval.tv_nsec = 0; return spa_system_timerfd_settime(this->data_system, this->timerfd, SPA_FD_TIMER_ABSTIME, &ts, NULL); } static int set_timers(struct impl *this) { struct timespec now; spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &now); this->next_time = SPA_TIMESPEC_TO_NSEC(&now); return set_timeout(this, this->following ? 0 : this->next_time); } static int do_reassign_follower(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct impl *this = user_data; struct port *port = &this->port; set_timers(this); if (this->transport_started) spa_bt_decode_buffer_recover(&port->buffer); return 0; } static inline bool is_following(struct impl *this) { return this->position && this->clock && this->position->clock.id != this->clock->id; } static int impl_node_set_io(void *object, uint32_t id, void *data, size_t size) { struct impl *this = object; bool following; spa_return_val_if_fail(this != NULL, -EINVAL); switch (id) { case SPA_IO_Clock: this->clock = data; if (this->clock != NULL) { spa_scnprintf(this->clock->name, sizeof(this->clock->name), "%s", this->props.clock_name); } break; case SPA_IO_Position: this->position = data; break; default: return -ENOENT; } following = is_following(this); if (this->started && following != this->following) { spa_log_debug(this->log, "%p: reassign follower %d->%d", this, this->following, following); this->following = following; spa_loop_invoke(this->data_loop, do_reassign_follower, 0, NULL, 0, true, this); } return 0; } static void emit_node_info(struct impl *this, bool full); static int apply_props(struct impl *this, const struct spa_pod *param) { struct props new_props = this->props; int changed = 0; if (param == NULL) { reset_props(&new_props); } else { /* noop */ } changed = (memcmp(&new_props, &this->props, sizeof(struct props)) != 0); this->props = new_props; return changed; } static int impl_node_set_param(void *object, uint32_t id, uint32_t flags, const struct spa_pod *param) { struct impl *this = object; spa_return_val_if_fail(this != NULL, -EINVAL); switch (id) { case SPA_PARAM_Props: { if (apply_props(this, param) > 0) { this->info.change_mask |= SPA_NODE_CHANGE_MASK_PARAMS; this->params[IDX_Props].flags ^= SPA_PARAM_INFO_SERIAL; emit_node_info(this, false); } break; } default: return -ENOENT; } return 0; } static void reset_buffers(struct port *port) { uint32_t i; spa_list_init(&port->free); spa_list_init(&port->ready); for (i = 0; i < port->n_buffers; i++) { struct buffer *b = &port->buffers[i]; spa_list_append(&port->free, &b->link); b->outstanding = false; } } static void recycle_buffer(struct impl *this, struct port *port, uint32_t buffer_id) { struct buffer *b = &port->buffers[buffer_id]; if (b->outstanding) { spa_log_trace(this->log, "%p: recycle buffer %u", this, buffer_id); spa_list_append(&port->free, &b->link); b->outstanding = false; } } /* Append data to recv buffer, syncing buffer start to headers */ static void recv_buffer_append_byte(struct impl *this, uint8_t byte) { /* Parse H2 sync header */ if (this->recv_buffer_pos == 0) { if (byte != 0x01) { this->recv_buffer_pos = 0; return; } } else if (this->recv_buffer_pos == 1) { if (!((byte & 0x0F) == 0x08 && ((byte >> 4) & 1) == ((byte >> 5) & 1) && ((byte >> 6) & 1) == ((byte >> 7) & 1))) { this->recv_buffer_pos = 0; return; } } else if (this->transport->codec == HFP_AUDIO_CODEC_MSBC) { /* Beginning of MSBC frame: SYNCWORD + 2 nul bytes */ if (this->recv_buffer_pos == 2) { if (byte != 0xAD) { this->recv_buffer_pos = 0; return; } } else if (this->recv_buffer_pos == 3) { if (byte != 0x00) { this->recv_buffer_pos = 0; return; } } else if (this->recv_buffer_pos == 4) { if (byte != 0x00) { this->recv_buffer_pos = 0; return; } } } if (this->recv_buffer_pos >= HFP_CODEC_PACKET_SIZE) { /* Packet completed. Reset. */ this->recv_buffer_pos = 0; recv_buffer_append_byte(this, byte); return; } this->recv_buffer[this->recv_buffer_pos] = byte; ++this->recv_buffer_pos; } /* Helper function for debugging */ static SPA_UNUSED void hexdump_to_log(struct impl *this, uint8_t *data, size_t size) { char buf[2048]; size_t i, col = 0, pos = 0; buf[0] = '\0'; for (i = 0; i < size; ++i) { int res; res = spa_scnprintf(buf + pos, sizeof(buf) - pos, "%s%02x", (col == 0) ? "\n\t" : " ", data[i]); if (res < 0) break; pos += res; col = (col + 1) % 16; } spa_log_trace(this->log, "hexdump (%d bytes):%s", (int)size, buf); } /* helper function to detect if a packet consists only of zeros */ static bool is_zero_packet(uint8_t *data, int size) { for (int i = 0; i < size; ++i) { if (data[i] != 0) { return false; } } return true; } static int lc3_decode_frame(struct impl *this, const void *src, size_t src_size, void *dst, size_t dst_size, size_t *dst_out) { #ifdef HAVE_LC3 int res; if (src_size != LC3_SWB_PAYLOAD_SIZE) return -EINVAL; if (dst_size < LC3_SWB_DECODED_SIZE) return -EINVAL; res = lc3_decode(this->lc3, src, src_size, LC3_PCM_FORMAT_S24, dst, 1); if (res != 0) return -EINVAL; *dst_out = LC3_SWB_DECODED_SIZE; return LC3_SWB_DECODED_SIZE; #else return -EOPNOTSUPP; #endif } static uint32_t preprocess_and_decode_codec_data(void *userdata, uint8_t *read_data, int size_read, uint64_t now) { struct impl *this = userdata; struct port *port = &this->port; uint32_t decoded = 0; int i; uint32_t decoded_size = (this->transport->codec == HFP_AUDIO_CODEC_MSBC) ? MSBC_DECODED_SIZE : LC3_SWB_DECODED_SIZE; spa_log_trace(this->log, "handling mSBC/LC3 data"); /* * Check if the packet contains only zeros - if so ignore the packet. * This is necessary, because some kernels insert bogus "all-zero" packets * into the datastream. * See https://gitlab.freedesktop.org/pipewire/pipewire/-/issues/549 */ if (is_zero_packet(read_data, size_read)) return 0; for (i = 0; i < size_read; ++i) { void *buf; uint32_t avail; int seq, processed; size_t written; recv_buffer_append_byte(this, read_data[i]); if (this->recv_buffer_pos != HFP_CODEC_PACKET_SIZE) continue; /* * Handle found mSBC/LC3 packet */ buf = spa_bt_decode_buffer_get_write(&port->buffer, &avail); /* Check sequence number */ seq = ((this->recv_buffer[1] >> 4) & 1) | ((this->recv_buffer[1] >> 6) & 2); spa_log_trace(this->log, "mSBC/LC3 packet seq=%u", seq); if (!this->h2_seq_initialized) { this->h2_seq_initialized = true; this->h2_seq = seq; } else if (seq != this->h2_seq) { /* TODO: PLC (too late to insert data now) */ spa_log_info(this->log, "missing mSBC/LC3 packet: %u != %u", seq, this->h2_seq); this->h2_seq = seq; } this->h2_seq = (this->h2_seq + 1) % 4; if (this->transport->codec == HFP_AUDIO_CODEC_MSBC) { if (avail < decoded_size) spa_log_warn(this->log, "Output buffer full, dropping msbc data"); /* decode frame */ processed = sbc_decode( &this->msbc, this->recv_buffer + 2, HFP_CODEC_PACKET_SIZE - 3, buf, avail, &written); } else { processed = lc3_decode_frame(this, this->recv_buffer + 2, HFP_CODEC_PACKET_SIZE - 2, buf, avail, &written); } if (processed < 0) { spa_log_warn(this->log, "decode failed: %d", processed); /* TODO: manage errors */ continue; } spa_bt_decode_buffer_write_packet(&port->buffer, written, now); decoded += written; } return decoded; } static int sco_source_cb(void *userdata, uint8_t *read_data, int size_read) { struct impl *this = userdata; struct port *port = &this->port; uint32_t decoded; uint64_t dt; /* Drop data when not started */ if (!this->started) return 0; if (this->transport == NULL) { spa_log_debug(this->log, "no transport, stop reading"); goto stop; } /* update the current pts */ dt = SPA_TIMESPEC_TO_NSEC(&this->now); spa_system_clock_gettime(this->data_system, CLOCK_MONOTONIC, &this->now); dt = SPA_TIMESPEC_TO_NSEC(&this->now) - dt; /* handle data read from socket */ #if 0 hexdump_to_log(this, read_data, size_read); #endif if (this->transport->codec == HFP_AUDIO_CODEC_MSBC || this->transport->codec == HFP_AUDIO_CODEC_LC3_SWB) { decoded = preprocess_and_decode_codec_data(userdata, read_data, size_read, SPA_TIMESPEC_TO_NSEC(&this->now)); } else { uint32_t avail; uint8_t *packet; if (size_read != 48 && is_zero_packet(read_data, size_read)) { /* Adapter is returning non-standard CVSD stream. For example * Intel 8087:0029 at Firmware revision 0.0 build 191 week 21 2021 * on kernel 5.13.19 produces such data. */ return 0; } if (size_read % port->frame_size != 0) { /* Unaligned data: reception or adapter problem. * Consider the whole packet lost and report. */ spa_log_debug(this->log, "received bad Bluetooth SCO CVSD packet"); return 0; } packet = spa_bt_decode_buffer_get_write(&port->buffer, &avail); avail = SPA_MIN(avail, (uint32_t)size_read); spa_memmove(packet, read_data, avail); spa_bt_decode_buffer_write_packet(&port->buffer, avail, SPA_TIMESPEC_TO_NSEC(&this->now)); decoded = avail; } spa_log_trace(this->log, "read socket data size:%d decoded frames:%d dt:%d dms", size_read, decoded / port->frame_size, (int)(dt / 100000)); return 0; stop: this->io_error = true; return 1; } static int setup_matching(struct impl *this) { struct port *port = &this->port; if (!this->transport_started) port->buffer.corr = 1.0; if (this->position && port->rate_match) { port->rate_match->rate = 1 / port->buffer.corr; this->matching = this->following; this->resampling = this->matching || (port->current_format.info.raw.rate != this->position->clock.target_rate.denom); } else { this->matching = false; this->resampling = false; } if (port->rate_match) SPA_FLAG_UPDATE(port->rate_match->flags, SPA_IO_RATE_MATCH_FLAG_ACTIVE, this->matching); return 0; } static int produce_buffer(struct impl *this); static void sco_on_timeout(struct spa_source *source) { struct impl *this = source->data; struct port *port = &this->port; uint64_t exp, duration; uint32_t rate; uint64_t prev_time, now_time; int res; if (this->started) { if ((res = spa_system_timerfd_read(this->data_system, this->timerfd, &exp)) < 0) { if (res != -EAGAIN) spa_log_warn(this->log, "error reading timerfd: %s", spa_strerror(res)); return; } } prev_time = this->current_time; now_time = this->current_time = this->next_time; spa_log_trace(this->log, "%p: timer %"PRIu64" %"PRIu64"", this, now_time, now_time - prev_time); if (SPA_LIKELY(this->position)) { duration = this->position->clock.target_duration; rate = this->position->clock.target_rate.denom; } else { duration = 1024; rate = 48000; } setup_matching(this); this->next_time = (uint64_t)(now_time + duration * SPA_NSEC_PER_SEC / port->buffer.corr / rate); if (SPA_LIKELY(this->clock)) { this->clock->nsec = now_time; this->clock->rate = this->clock->target_rate; this->clock->position += this->clock->duration; this->clock->duration = duration; this->clock->rate_diff = port->buffer.corr; this->clock->next_nsec = this->next_time; } if (port->io) { int io_status = port->io->status; int status = produce_buffer(this); spa_log_trace(this->log, "%p: io:%d->%d status:%d", this, io_status, port->io->status, status); } spa_node_call_ready(&this->callbacks, SPA_STATUS_HAVE_DATA); set_timeout(this, this->next_time); } static int do_add_source(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct impl *this = user_data; spa_bt_sco_io_set_source_cb(this->transport->sco_io, sco_source_cb, this); return 0; } static int transport_start(struct impl *this) { struct port *port = &this->port; int res; /* Don't do anything if the node has already started */ if (this->transport_started) return 0; if (!this->start_ready) return -EIO; spa_log_debug(this->log, "%p: start transport", this); /* Make sure the transport is valid */ spa_return_val_if_fail (this->transport != NULL, -EIO); /* Reset the buffers and sample count */ reset_buffers(port); spa_bt_decode_buffer_clear(&port->buffer); if ((res = spa_bt_decode_buffer_init(&port->buffer, this->log, port->frame_size, port->current_format.info.raw.rate, this->quantum_limit, this->quantum_limit)) < 0) return res; /* 40 ms max buffer (on top of duration) */ spa_bt_decode_buffer_set_max_extra_latency(&port->buffer, port->current_format.info.raw.rate * 40 / 1000); /* Init mSBC/LC3 if needed */ if (this->transport->codec == HFP_AUDIO_CODEC_MSBC) { res = sbc_init_msbc(&this->msbc, 0); if (res < 0) return res; /* Libsbc expects audio samples by default in host endianness, mSBC requires little endian */ this->msbc.endian = SBC_LE; this->h2_seq_initialized = false; this->recv_buffer_pos = 0; } else if (this->transport->codec == HFP_AUDIO_CODEC_LC3_SWB) { #ifdef HAVE_LC3 this->lc3 = lc3_setup_decoder(7500, 32000, 0, calloc(1, lc3_decoder_size(7500, 32000))); if (!this->lc3) return -EINVAL; spa_assert(lc3_frame_samples(7500, 32000) * port->frame_size == LC3_SWB_DECODED_SIZE); this->h2_seq_initialized = false; this->recv_buffer_pos = 0; #else res = -EINVAL; goto fail; #endif } this->io_error = false; /* Start socket i/o */ if ((res = spa_bt_transport_ensure_sco_io(this->transport, this->data_loop)) < 0) goto fail; spa_loop_invoke(this->data_loop, do_add_source, 0, NULL, 0, true, this); /* Set the started flag */ this->transport_started = true; return 0; fail: sbc_finish(&this->msbc); free(this->lc3); this->lc3 = NULL; return res; } static int do_start(struct impl *this) { bool do_accept; int res; if (this->started) return 0; spa_return_val_if_fail(this->transport, -EIO); this->following = is_following(this); this->start_ready = true; spa_log_debug(this->log, "%p: start following:%d", this, this->following); /* Do accept if Gateway; otherwise do connect for Head Unit */ do_accept = this->transport->profile & SPA_BT_PROFILE_HEADSET_AUDIO_GATEWAY; /* acquire the socket fd (false -> connect | true -> accept) */ if ((res = spa_bt_transport_acquire(this->transport, do_accept)) < 0) { this->start_ready = false; return res; } /* Start timer */ this->timer_source.data = this; this->timer_source.fd = this->timerfd; this->timer_source.func = sco_on_timeout; this->timer_source.mask = SPA_IO_IN; this->timer_source.rmask = 0; spa_loop_add_source(this->data_loop, &this->timer_source); setup_matching(this); set_timers(this); this->started = true; return 0; } static int do_remove_source(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct impl *this = user_data; if (this->timer_source.loop) spa_loop_remove_source(this->data_loop, &this->timer_source); set_timeout(this, 0); return 0; } static int do_remove_transport_source(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct impl *this = user_data; this->transport_started = false; if (this->transport && this->transport->sco_io) spa_bt_sco_io_set_source_cb(this->transport->sco_io, NULL, NULL); return 0; } static void transport_stop(struct impl *this) { struct port *port = &this->port; if (!this->transport_started) return; spa_log_debug(this->log, "sco-source %p: transport stop", this); spa_loop_invoke(this->data_loop, do_remove_transport_source, 0, NULL, 0, true, this); spa_bt_decode_buffer_clear(&port->buffer); sbc_finish(&this->msbc); free(this->lc3); this->lc3 = NULL; } static int do_stop(struct impl *this) { int res; if (!this->started) return 0; spa_log_debug(this->log, "%p: stop", this); this->start_ready = false; spa_loop_invoke(this->data_loop, do_remove_source, 0, NULL, 0, true, this); transport_stop(this); if (this->transport) res = spa_bt_transport_release(this->transport); else res = 0; this->started = false; return res; } static int impl_node_send_command(void *object, const struct spa_command *command) { struct impl *this = object; struct port *port; int res; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(command != NULL, -EINVAL); port = &this->port; switch (SPA_NODE_COMMAND_ID(command)) { case SPA_NODE_COMMAND_Start: if (!port->have_format) return -EIO; if (port->n_buffers == 0) return -EIO; if ((res = do_start(this)) < 0) return res; break; case SPA_NODE_COMMAND_Pause: case SPA_NODE_COMMAND_Suspend: if ((res = do_stop(this)) < 0) return res; break; default: return -ENOTSUP; } return 0; } static void emit_node_info(struct impl *this, bool full) { const struct spa_dict_item hu_node_info_items[] = { { SPA_KEY_DEVICE_API, "bluez5" }, { SPA_KEY_MEDIA_CLASS, this->is_internal ? "Audio/Source/Internal" : "Audio/Source" }, { SPA_KEY_NODE_DRIVER, "true" }, }; const struct spa_dict_item ag_node_info_items[] = { { SPA_KEY_DEVICE_API, "bluez5" }, { SPA_KEY_MEDIA_CLASS, "Stream/Output/Audio" }, { "media.name", ((this->transport && this->transport->device->name) ? this->transport->device->name : "HSP/HFP") }, { SPA_KEY_MEDIA_ROLE, "Communication" }, }; bool is_ag = this->transport && (this->transport->profile & SPA_BT_PROFILE_HEADSET_AUDIO_GATEWAY); uint64_t old = full ? this->info.change_mask : 0; if (full) this->info.change_mask = this->info_all; if (this->info.change_mask) { this->info.props = is_ag ? &SPA_DICT_INIT_ARRAY(ag_node_info_items) : &SPA_DICT_INIT_ARRAY(hu_node_info_items); spa_node_emit_info(&this->hooks, &this->info); this->info.change_mask = old; } } static void emit_port_info(struct impl *this, struct port *port, bool full) { uint64_t old = full ? port->info.change_mask : 0; if (full) port->info.change_mask = port->info_all; if (port->info.change_mask) { spa_node_emit_port_info(&this->hooks, SPA_DIRECTION_OUTPUT, 0, &port->info); port->info.change_mask = old; } } static int impl_node_add_listener(void *object, struct spa_hook *listener, const struct spa_node_events *events, void *data) { struct impl *this = object; struct spa_hook_list save; spa_return_val_if_fail(this != NULL, -EINVAL); spa_hook_list_isolate(&this->hooks, &save, listener, events, data); emit_node_info(this, true); emit_port_info(this, &this->port, true); spa_hook_list_join(&this->hooks, &save); return 0; } static int impl_node_set_callbacks(void *object, const struct spa_node_callbacks *callbacks, void *data) { struct impl *this = object; spa_return_val_if_fail(this != NULL, -EINVAL); this->callbacks = SPA_CALLBACKS_INIT(callbacks, data); return 0; } static int impl_node_sync(void *object, int seq) { struct impl *this = object; spa_return_val_if_fail(this != NULL, -EINVAL); spa_node_emit_result(&this->hooks, seq, 0, 0, NULL); return 0; } static int impl_node_add_port(void *object, enum spa_direction direction, uint32_t port_id, const struct spa_dict *props) { return -ENOTSUP; } static int impl_node_remove_port(void *object, enum spa_direction direction, uint32_t port_id) { return -ENOTSUP; } static int impl_node_port_enum_params(void *object, int seq, enum spa_direction direction, uint32_t port_id, uint32_t id, uint32_t start, uint32_t num, const struct spa_pod *filter) { struct impl *this = object; struct port *port; struct spa_pod *param; struct spa_pod_builder b = { 0 }; uint8_t buffer[1024]; struct spa_result_node_params result; uint32_t count = 0; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(num != 0, -EINVAL); spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL); port = &this->port; result.id = id; result.next = start; next: result.index = result.next++; spa_pod_builder_init(&b, buffer, sizeof(buffer)); switch (id) { case SPA_PARAM_EnumFormat: if (result.index > 0) return 0; if (this->transport == NULL) return -EIO; /* set the info structure */ struct spa_audio_info_raw info = { 0, }; if (this->transport->codec == HFP_AUDIO_CODEC_LC3_SWB) info.format = SPA_AUDIO_FORMAT_S24_32_LE; else info.format = SPA_AUDIO_FORMAT_S16_LE; info.channels = 1; info.position[0] = SPA_AUDIO_CHANNEL_MONO; /* CVSD format has a rate of 8kHz * MSBC format has a rate of 16kHz * LC3-SWB format has a rate of 32kHz */ if (this->transport->codec == HFP_AUDIO_CODEC_LC3_SWB) info.rate = 32000; else if (this->transport->codec == HFP_AUDIO_CODEC_MSBC) info.rate = 16000; else info.rate = 8000; /* build the param */ param = spa_format_audio_raw_build(&b, id, &info); break; case SPA_PARAM_Format: if (!port->have_format) return -EIO; if (result.index > 0) return 0; param = spa_format_audio_raw_build(&b, id, &port->current_format.info.raw); break; case SPA_PARAM_Buffers: if (!port->have_format) return -EIO; if (result.index > 0) return 0; param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_ParamBuffers, id, SPA_PARAM_BUFFERS_buffers, SPA_POD_CHOICE_RANGE_Int(2, 1, MAX_BUFFERS), SPA_PARAM_BUFFERS_blocks, SPA_POD_Int(1), SPA_PARAM_BUFFERS_size, SPA_POD_CHOICE_RANGE_Int( this->quantum_limit * port->frame_size, 16 * port->frame_size, INT32_MAX), SPA_PARAM_BUFFERS_stride, SPA_POD_Int(port->frame_size)); break; case SPA_PARAM_Meta: switch (result.index) { case 0: param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_ParamMeta, id, SPA_PARAM_META_type, SPA_POD_Id(SPA_META_Header), SPA_PARAM_META_size, SPA_POD_Int(sizeof(struct spa_meta_header))); break; default: return 0; } break; case SPA_PARAM_IO: switch (result.index) { case 0: param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_ParamIO, id, SPA_PARAM_IO_id, SPA_POD_Id(SPA_IO_Buffers), SPA_PARAM_IO_size, SPA_POD_Int(sizeof(struct spa_io_buffers))); break; case 1: param = spa_pod_builder_add_object(&b, SPA_TYPE_OBJECT_ParamIO, id, SPA_PARAM_IO_id, SPA_POD_Id(SPA_IO_RateMatch), SPA_PARAM_IO_size, SPA_POD_Int(sizeof(struct spa_io_rate_match))); break; default: return 0; } break; case SPA_PARAM_Latency: switch (result.index) { case 0: param = spa_latency_build(&b, id, &port->latency); break; default: return 0; } break; default: return -ENOENT; } if (spa_pod_filter(&b, &result.param, param, filter) < 0) goto next; spa_node_emit_result(&this->hooks, seq, 0, SPA_RESULT_TYPE_NODE_PARAMS, &result); if (++count != num) goto next; return 0; } static int clear_buffers(struct impl *this, struct port *port) { do_stop(this); if (port->n_buffers > 0) { spa_list_init(&port->free); spa_list_init(&port->ready); port->n_buffers = 0; } return 0; } static int port_set_format(struct impl *this, struct port *port, uint32_t flags, const struct spa_pod *format) { int err; if (format == NULL) { spa_log_debug(this->log, "clear format"); clear_buffers(this, port); port->have_format = false; } else { struct spa_audio_info info = { 0 }; if (!this->transport) return -EIO; if ((err = spa_format_parse(format, &info.media_type, &info.media_subtype)) < 0) return err; if (info.media_type != SPA_MEDIA_TYPE_audio || info.media_subtype != SPA_MEDIA_SUBTYPE_raw) return -EINVAL; if (spa_format_audio_raw_parse(format, &info.info.raw) < 0) return -EINVAL; if (info.info.raw.rate == 0 || info.info.raw.channels != 1) return -EINVAL; switch (info.info.raw.format) { case SPA_AUDIO_FORMAT_S16_LE: if (this->transport->codec == HFP_AUDIO_CODEC_LC3_SWB) return -EINVAL; port->frame_size = info.info.raw.channels * 2; break; case SPA_AUDIO_FORMAT_S24_32_LE: if (this->transport->codec != HFP_AUDIO_CODEC_LC3_SWB) return -EINVAL; port->frame_size = info.info.raw.channels * 4; break; default: return -EINVAL; } port->current_format = info; port->have_format = true; } port->info.change_mask |= SPA_PORT_CHANGE_MASK_PARAMS; if (port->have_format) { port->info.change_mask |= SPA_PORT_CHANGE_MASK_RATE; port->info.rate = SPA_FRACTION(1, port->current_format.info.raw.rate); port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_READWRITE); port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, SPA_PARAM_INFO_READ); port->params[IDX_Latency].flags ^= SPA_PARAM_INFO_SERIAL; } else { port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_WRITE); port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, 0); } emit_port_info(this, port, false); return 0; } static int impl_node_port_set_param(void *object, enum spa_direction direction, uint32_t port_id, uint32_t id, uint32_t flags, const struct spa_pod *param) { struct impl *this = object; struct port *port; int res; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(CHECK_PORT(node, direction, port_id), -EINVAL); port = &this->port; switch (id) { case SPA_PARAM_Format: res = port_set_format(this, port, flags, param); break; case SPA_PARAM_Latency: res = 0; break; default: res = -ENOENT; break; } return res; } static int impl_node_port_use_buffers(void *object, enum spa_direction direction, uint32_t port_id, uint32_t flags, struct spa_buffer **buffers, uint32_t n_buffers) { struct impl *this = object; struct port *port; uint32_t i; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL); port = &this->port; spa_log_debug(this->log, "use buffers %d", n_buffers); clear_buffers(this, port); if (n_buffers > 0 && !port->have_format) return -EIO; if (n_buffers > MAX_BUFFERS) return -ENOSPC; for (i = 0; i < n_buffers; i++) { struct buffer *b = &port->buffers[i]; struct spa_data *d = buffers[i]->datas; b->buf = buffers[i]; b->id = i; b->h = spa_buffer_find_meta_data(buffers[i], SPA_META_Header, sizeof(*b->h)); if (d[0].data == NULL) { spa_log_error(this->log, "%p: need mapped memory", this); return -EINVAL; } spa_list_append(&port->free, &b->link); b->outstanding = false; } port->n_buffers = n_buffers; return 0; } static int impl_node_port_set_io(void *object, enum spa_direction direction, uint32_t port_id, uint32_t id, void *data, size_t size) { struct impl *this = object; struct port *port; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(CHECK_PORT(this, direction, port_id), -EINVAL); port = &this->port; switch (id) { case SPA_IO_Buffers: port->io = data; break; case SPA_IO_RateMatch: port->rate_match = data; break; default: return -ENOENT; } return 0; } static int impl_node_port_reuse_buffer(void *object, uint32_t port_id, uint32_t buffer_id) { struct impl *this = object; struct port *port; spa_return_val_if_fail(this != NULL, -EINVAL); spa_return_val_if_fail(port_id == 0, -EINVAL); port = &this->port; if (port->n_buffers == 0) return -EIO; if (buffer_id >= port->n_buffers) return -EINVAL; recycle_buffer(this, port, buffer_id); return 0; } static uint32_t get_samples(struct impl *this, uint32_t *result_duration) { struct port *port = &this->port; uint32_t samples, rate_denom; uint64_t duration; if (SPA_LIKELY(this->position)) { duration = this->position->clock.duration; rate_denom = this->position->clock.rate.denom; } else { duration = 1024; rate_denom = port->current_format.info.raw.rate; } *result_duration = duration * port->current_format.info.raw.rate / rate_denom; if (SPA_LIKELY(port->rate_match) && this->resampling) samples = port->rate_match->size; else samples = *result_duration; return samples; } #define WARN_ONCE(cond, ...) \ if (SPA_UNLIKELY(cond)) { static bool __once; if (!__once) { __once = true; spa_log_warn(__VA_ARGS__); } } static void process_buffering(struct impl *this) { struct port *port = &this->port; uint32_t duration; const uint32_t samples = get_samples(this, &duration); void *buf; uint32_t avail; spa_bt_decode_buffer_process(&port->buffer, samples, duration, this->position ? this->position->clock.rate_diff : 1.0, this->position ? this->position->clock.next_nsec : 0); setup_matching(this); buf = spa_bt_decode_buffer_get_read(&port->buffer, &avail); /* copy data to buffers */ if (!spa_list_is_empty(&port->free)) { struct buffer *buffer; struct spa_data *datas; uint32_t data_size; buffer = spa_list_first(&port->free, struct buffer, link); datas = buffer->buf->datas; data_size = samples * port->frame_size; WARN_ONCE(datas[0].maxsize < data_size && !this->following, this->log, "source buffer too small (%u < %u)", datas[0].maxsize, data_size); data_size = SPA_MIN(data_size, SPA_ROUND_DOWN(datas[0].maxsize, port->frame_size)); avail = SPA_MIN(avail, data_size); spa_bt_decode_buffer_read(&port->buffer, avail); spa_list_remove(&buffer->link); spa_log_trace(this->log, "dequeue %d", buffer->id); datas[0].chunk->offset = 0; datas[0].chunk->size = data_size; datas[0].chunk->stride = port->frame_size; memcpy(datas[0].data, buf, avail); /* pad with silence */ if (avail < data_size) memset(SPA_PTROFF(datas[0].data, avail, void), 0, data_size - avail); /* ready buffer if full */ spa_log_trace(this->log, "queue %d frames:%d", buffer->id, (int)samples); spa_list_append(&port->ready, &buffer->link); } } static int produce_buffer(struct impl *this) { struct buffer *buffer; struct port *port = &this->port; struct spa_io_buffers *io = port->io; if (io == NULL) return -EIO; /* Return if we already have a buffer */ if (io->status == SPA_STATUS_HAVE_DATA && (this->following || port->rate_match == NULL)) return SPA_STATUS_HAVE_DATA; /* Recycle */ if (io->buffer_id < port->n_buffers) { recycle_buffer(this, port, io->buffer_id); io->buffer_id = SPA_ID_INVALID; } if (this->io_error) { io->status = -EIO; return SPA_STATUS_STOPPED; } /* Handle buffering */ if (this->transport_started) process_buffering(this); /* Return if there are no buffers ready to be processed */ if (spa_list_is_empty(&port->ready)) return SPA_STATUS_OK; /* Get the new buffer from the ready list */ buffer = spa_list_first(&port->ready, struct buffer, link); spa_list_remove(&buffer->link); buffer->outstanding = true; /* Set the new buffer in IO */ io->buffer_id = buffer->id; io->status = SPA_STATUS_HAVE_DATA; /* Notify we have a buffer ready to be processed */ return SPA_STATUS_HAVE_DATA; } static int impl_node_process(void *object) { struct impl *this = object; struct port *port; struct spa_io_buffers *io; spa_return_val_if_fail(this != NULL, -EINVAL); port = &this->port; if ((io = port->io) == NULL) return -EIO; if (!this->started || !this->transport_started) return SPA_STATUS_OK; spa_log_trace(this->log, "%p status:%d", this, io->status); /* Return if we already have a buffer */ if (io->status == SPA_STATUS_HAVE_DATA) return SPA_STATUS_HAVE_DATA; /* Recycle */ if (io->buffer_id < port->n_buffers) { recycle_buffer(this, port, io->buffer_id); io->buffer_id = SPA_ID_INVALID; } /* Follower produces buffers here, driver in timeout */ if (this->following) return produce_buffer(this); else return SPA_STATUS_OK; } static const struct spa_node_methods impl_node = { SPA_VERSION_NODE_METHODS, .add_listener = impl_node_add_listener, .set_callbacks = impl_node_set_callbacks, .sync = impl_node_sync, .enum_params = impl_node_enum_params, .set_param = impl_node_set_param, .set_io = impl_node_set_io, .send_command = impl_node_send_command, .add_port = impl_node_add_port, .remove_port = impl_node_remove_port, .port_enum_params = impl_node_port_enum_params, .port_set_param = impl_node_port_set_param, .port_use_buffers = impl_node_port_use_buffers, .port_set_io = impl_node_port_set_io, .port_reuse_buffer = impl_node_port_reuse_buffer, .process = impl_node_process, }; static void transport_state_changed(void *data, enum spa_bt_transport_state old, enum spa_bt_transport_state state) { struct impl *this = data; spa_log_debug(this->log, "%p: transport %p state %d->%d", this, this->transport, old, state); if (state == SPA_BT_TRANSPORT_STATE_ACTIVE) transport_start(this); else if (state < SPA_BT_TRANSPORT_STATE_ACTIVE) transport_stop(this); if (state == SPA_BT_TRANSPORT_STATE_ERROR) { uint8_t buffer[1024]; struct spa_pod_builder b = { 0 }; spa_pod_builder_init(&b, buffer, sizeof(buffer)); spa_node_emit_event(&this->hooks, spa_pod_builder_add_object(&b, SPA_TYPE_EVENT_Node, SPA_NODE_EVENT_Error)); } } static int do_transport_destroy(struct spa_loop *loop, bool async, uint32_t seq, const void *data, size_t size, void *user_data) { struct impl *this = user_data; this->transport = NULL; return 0; } static void transport_destroy(void *data) { struct impl *this = data; spa_log_debug(this->log, "transport %p destroy", this->transport); spa_loop_invoke(this->data_loop, do_transport_destroy, 0, NULL, 0, true, this); } static const struct spa_bt_transport_events transport_events = { SPA_VERSION_BT_TRANSPORT_EVENTS, .state_changed = transport_state_changed, .destroy = transport_destroy, }; static int impl_get_interface(struct spa_handle *handle, const char *type, void **interface) { struct impl *this; spa_return_val_if_fail(handle != NULL, -EINVAL); spa_return_val_if_fail(interface != NULL, -EINVAL); this = (struct impl *) handle; if (spa_streq(type, SPA_TYPE_INTERFACE_Node)) *interface = &this->node; else return -ENOENT; return 0; } static int impl_clear(struct spa_handle *handle) { struct impl *this = (struct impl *) handle; do_stop(this); if (this->transport) spa_hook_remove(&this->transport_listener); spa_system_close(this->data_system, this->timerfd); spa_bt_decode_buffer_clear(&this->port.buffer); return 0; } static size_t impl_get_size(const struct spa_handle_factory *factory, const struct spa_dict *params) { return sizeof(struct impl); } static int impl_init(const struct spa_handle_factory *factory, struct spa_handle *handle, const struct spa_dict *info, const struct spa_support *support, uint32_t n_support) { struct impl *this; struct port *port; const char *str; spa_return_val_if_fail(factory != NULL, -EINVAL); spa_return_val_if_fail(handle != NULL, -EINVAL); handle->get_interface = impl_get_interface; handle->clear = impl_clear; this = (struct impl *) handle; this->log = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_Log); this->data_loop = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_DataLoop); this->data_system = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_DataSystem); spa_log_topic_init(this->log, &log_topic); if (this->data_loop == NULL) { spa_log_error(this->log, "a data loop is needed"); return -EINVAL; } if (this->data_system == NULL) { spa_log_error(this->log, "a data system is needed"); return -EINVAL; } this->node.iface = SPA_INTERFACE_INIT( SPA_TYPE_INTERFACE_Node, SPA_VERSION_NODE, &impl_node, this); spa_hook_list_init(&this->hooks); reset_props(&this->props); /* set the node info */ this->info_all = SPA_NODE_CHANGE_MASK_FLAGS | SPA_NODE_CHANGE_MASK_PROPS | SPA_NODE_CHANGE_MASK_PARAMS; this->info = SPA_NODE_INFO_INIT(); this->info.flags = SPA_NODE_FLAG_RT; this->params[IDX_PropInfo] = SPA_PARAM_INFO(SPA_PARAM_PropInfo, SPA_PARAM_INFO_READ); this->params[IDX_Props] = SPA_PARAM_INFO(SPA_PARAM_Props, SPA_PARAM_INFO_READWRITE); this->params[IDX_NODE_IO] = SPA_PARAM_INFO(SPA_PARAM_IO, SPA_PARAM_INFO_READ); this->info.params = this->params; this->info.n_params = N_NODE_PARAMS; /* set the port info */ port = &this->port; port->info_all = SPA_PORT_CHANGE_MASK_FLAGS | SPA_PORT_CHANGE_MASK_PARAMS; port->info = SPA_PORT_INFO_INIT(); port->info.change_mask = SPA_PORT_CHANGE_MASK_FLAGS; port->info.flags = SPA_PORT_FLAG_LIVE | SPA_PORT_FLAG_PHYSICAL | SPA_PORT_FLAG_TERMINAL; port->params[IDX_EnumFormat] = SPA_PARAM_INFO(SPA_PARAM_EnumFormat, SPA_PARAM_INFO_READ); port->params[IDX_Meta] = SPA_PARAM_INFO(SPA_PARAM_Meta, SPA_PARAM_INFO_READ); port->params[IDX_IO] = SPA_PARAM_INFO(SPA_PARAM_IO, SPA_PARAM_INFO_READ); port->params[IDX_Format] = SPA_PARAM_INFO(SPA_PARAM_Format, SPA_PARAM_INFO_WRITE); port->params[IDX_Buffers] = SPA_PARAM_INFO(SPA_PARAM_Buffers, 0); port->params[IDX_Latency] = SPA_PARAM_INFO(SPA_PARAM_Latency, SPA_PARAM_INFO_READWRITE); port->info.params = port->params; port->info.n_params = N_PORT_PARAMS; port->latency = SPA_LATENCY_INFO(SPA_DIRECTION_OUTPUT); port->latency.min_quantum = 1.0f; port->latency.max_quantum = 1.0f; /* Init the buffer lists */ spa_list_init(&port->ready); spa_list_init(&port->free); this->quantum_limit = 8192; if (info && (str = spa_dict_lookup(info, "clock.quantum-limit"))) spa_atou32(str, &this->quantum_limit, 0); if (info && (str = spa_dict_lookup(info, "api.bluez5.internal")) != NULL) this->is_internal = spa_atob(str); if (info && (str = spa_dict_lookup(info, SPA_KEY_API_BLUEZ5_TRANSPORT))) sscanf(str, "pointer:%p", &this->transport); if (this->transport == NULL) { spa_log_error(this->log, "a transport is needed"); return -EINVAL; } spa_bt_transport_add_listener(this->transport, &this->transport_listener, &transport_events, this); this->timerfd = spa_system_timerfd_create(this->data_system, CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK); return 0; } static const struct spa_interface_info impl_interfaces[] = { {SPA_TYPE_INTERFACE_Node,}, }; static int impl_enum_interface_info(const struct spa_handle_factory *factory, const struct spa_interface_info **info, uint32_t *index) { spa_return_val_if_fail(factory != NULL, -EINVAL); spa_return_val_if_fail(info != NULL, -EINVAL); spa_return_val_if_fail(index != NULL, -EINVAL); switch (*index) { case 0: *info = &impl_interfaces[*index]; break; default: return 0; } (*index)++; return 1; } static const struct spa_dict_item info_items[] = { { SPA_KEY_FACTORY_AUTHOR, "Collabora Ltd. " }, { SPA_KEY_FACTORY_DESCRIPTION, "Capture bluetooth audio with hsp/hfp" }, { SPA_KEY_FACTORY_USAGE, SPA_KEY_API_BLUEZ5_TRANSPORT"=" }, }; static const struct spa_dict info = SPA_DICT_INIT_ARRAY(info_items); const struct spa_handle_factory spa_sco_source_factory = { SPA_VERSION_HANDLE_FACTORY, SPA_NAME_API_BLUEZ5_SCO_SOURCE, &info, impl_get_size, impl_init, impl_enum_interface_info, };