/* Spa */ /* SPDX-FileCopyrightText: Copyright © 2018 Wim Taymans */ /* SPDX-License-Identifier: MIT */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SPA_LOG_TOPIC_DEFINE_STATIC(log_topic, "spa.loop"); #undef SPA_LOG_TOPIC_DEFAULT #define SPA_LOG_TOPIC_DEFAULT &log_topic #define MAX_ALIGN 8 #define ITEM_ALIGN 8 #define DATAS_SIZE (4096*8) #define MAX_EP 32 /* the number of concurrent queues for invoke. This is also the number * of threads that can concurrently invoke. When there are more, the * retry timeout will be used to retry. */ #define QUEUES_MAX 128 #define DEFAULT_RETRY (1 * SPA_USEC_PER_SEC) /** \cond */ struct invoke_item { size_t item_size; spa_invoke_func_t func; uint32_t seq; uint32_t count; void *data; size_t size; bool block; void *user_data; int res; }; static int loop_signal_event(void *object, struct spa_source *source); struct queue; #define IDX_INVALID ((uint16_t)0xffff) union tag { struct { uint16_t idx; uint16_t count; } t; uint32_t v; }; struct impl { struct spa_handle handle; struct spa_loop loop; struct spa_loop_control control; struct spa_loop_utils utils; struct spa_log *log; struct spa_system *system; struct spa_list source_list; struct spa_list destroy_list; struct spa_hook_list hooks_list; struct spa_ratelimit rate_limit; int retry_timeout; union tag head; uint32_t n_queues; struct queue *queues[QUEUES_MAX]; pthread_mutex_t queue_lock; int poll_fd; pthread_t thread; int enter_count; struct spa_source *wakeup; uint32_t count; uint32_t flush_count; unsigned int polling:1; }; struct queue { struct impl *impl; uint16_t idx; uint16_t next; int ack_fd; bool close_fd; struct queue *overflow; struct spa_ringbuffer buffer; uint8_t *buffer_data; uint8_t buffer_mem[DATAS_SIZE + MAX_ALIGN]; }; struct source_impl { struct spa_source source; struct impl *impl; struct spa_list link; union { spa_source_io_func_t io; spa_source_idle_func_t idle; spa_source_event_func_t event; spa_source_timer_func_t timer; spa_source_signal_func_t signal; } func; struct spa_source *fallback; bool close; bool enabled; }; /** \endcond */ static inline uint64_t get_time_ns(struct spa_system *system) { struct timespec ts; spa_system_clock_gettime(system, CLOCK_MONOTONIC, &ts); return SPA_TIMESPEC_TO_NSEC(&ts); } static int loop_add_source(void *object, struct spa_source *source) { struct impl *impl = object; source->loop = &impl->loop; source->priv = NULL; source->rmask = 0; return spa_system_pollfd_add(impl->system, impl->poll_fd, source->fd, source->mask, source); } static int loop_update_source(void *object, struct spa_source *source) { struct impl *impl = object; spa_assert(source->loop == &impl->loop); return spa_system_pollfd_mod(impl->system, impl->poll_fd, source->fd, source->mask, source); } static void detach_source(struct spa_source *source) { struct spa_poll_event *e; source->loop = NULL; source->rmask = 0; if ((e = source->priv)) { /* active in an iteration of the loop, remove it from there */ e->data = NULL; source->priv = NULL; } } static int remove_from_poll(struct impl *impl, struct spa_source *source) { spa_assert(source->loop == &impl->loop); return spa_system_pollfd_del(impl->system, impl->poll_fd, source->fd); } static int loop_remove_source(void *object, struct spa_source *source) { struct impl *impl = object; spa_assert(!impl->polling); int res = remove_from_poll(impl, source); detach_source(source); return res; } static void loop_queue_destroy(void *data) { struct queue *queue = data; struct impl *impl = queue->impl; if (queue->close_fd) spa_system_close(impl->system, queue->ack_fd); if (queue->overflow) loop_queue_destroy(queue->overflow); spa_log_info(impl->log, "%p destroyed queue %p idx:%d", impl, queue, queue->idx); free(queue); } static struct queue *loop_create_queue(void *object, bool with_fd) { struct impl *impl = object; struct queue *queue; int res; queue = calloc(1, sizeof(struct queue)); if (queue == NULL) return NULL; queue->idx = IDX_INVALID; queue->next = IDX_INVALID; queue->impl = impl; queue->buffer_data = SPA_PTR_ALIGN(queue->buffer_mem, MAX_ALIGN, uint8_t); spa_ringbuffer_init(&queue->buffer); if (with_fd) { if ((res = spa_system_eventfd_create(impl->system, SPA_FD_EVENT_SEMAPHORE | SPA_FD_CLOEXEC)) < 0) { spa_log_error(impl->log, "%p: can't create ack event: %s", impl, spa_strerror(res)); goto error; } queue->ack_fd = res; queue->close_fd = true; while (true) { uint16_t idx = SPA_ATOMIC_LOAD(impl->n_queues); if (idx >= QUEUES_MAX) { /* this is pretty bad, there are QUEUES_MAX concurrent threads * that are doing an invoke */ spa_log_error(impl->log, "max queues %d exceeded!", idx); res = -ENOSPC; goto error; } queue->idx = idx; if (SPA_ATOMIC_CAS(impl->queues[queue->idx], NULL, queue)) { SPA_ATOMIC_INC(impl->n_queues); break; } } } spa_log_info(impl->log, "%p created queue %p idx:%d %p", impl, queue, queue->idx, (void*)pthread_self()); return queue; error: loop_queue_destroy(queue); errno = -res; return NULL; } static inline struct queue *get_queue(struct impl *impl) { union tag head, next; head.v = SPA_ATOMIC_LOAD(impl->head.v); while (true) { struct queue *queue; if (SPA_UNLIKELY(head.t.idx == IDX_INVALID)) return NULL; queue = impl->queues[head.t.idx]; next.t.idx = queue->next; next.t.count = head.t.count+1; if (SPA_LIKELY(__atomic_compare_exchange_n(&impl->head.v, &head.v, next.v, 0, __ATOMIC_ACQ_REL, __ATOMIC_RELAXED))) { spa_log_trace(impl->log, "%p idx:%d %p", queue, queue->idx, (void*)pthread_self()); return queue; } } return NULL; } static inline void put_queue(struct impl *impl, struct queue *queue) { union tag head, next; spa_log_trace(impl->log, "%p idx:%d %p", queue, queue->idx, (void*)pthread_self()); head.v = SPA_ATOMIC_LOAD(impl->head.v); while (true) { queue->next = head.t.idx; next.t.idx = queue->idx; next.t.count = head.t.count+1; if (SPA_LIKELY(__atomic_compare_exchange_n(&impl->head.v, &head.v, next.v, 0, __ATOMIC_ACQ_REL, __ATOMIC_RELAXED))) break; } } static inline int32_t item_compare(struct invoke_item *a, struct invoke_item *b) { return (int32_t)(a->count - b->count); } static void flush_all_queues(struct impl *impl) { uint32_t flush_count; int res; flush_count = SPA_ATOMIC_INC(impl->flush_count); while (true) { struct queue *cqueue, *queue = NULL; struct invoke_item *citem, *item = NULL; uint32_t cindex, index; spa_invoke_func_t func; bool block; uint32_t i, n_queues; n_queues = SPA_ATOMIC_LOAD(impl->n_queues); for (i = 0; i < n_queues; i++) { /* loop over all queues and overflow queues */ for (cqueue = impl->queues[i]; cqueue != NULL; cqueue = SPA_ATOMIC_LOAD(cqueue->overflow)) { if (spa_ringbuffer_get_read_index(&cqueue->buffer, &cindex) < (int32_t)sizeof(struct invoke_item)) continue; citem = SPA_PTROFF(cqueue->buffer_data, cindex & (DATAS_SIZE - 1), struct invoke_item); if (item == NULL || item_compare(citem, item) < 0) { item = citem; queue = cqueue; index = cindex; } } } if (item == NULL) break; spa_log_trace_fp(impl->log, "%p: flush item %p", queue, item); /* first we remove the function from the item so that recursive * calls don't call the callback again. We can't update the * read index before we call the function because then the item * might get overwritten. */ func = spa_steal_ptr(item->func); if (func) { item->res = func(&impl->loop, true, item->seq, item->data, item->size, item->user_data); } /* if this function did a recursive invoke, it now flushed the * ringbuffer and we can exit */ if (flush_count != SPA_ATOMIC_LOAD(impl->flush_count)) break; index += item->item_size; block = item->block; spa_ringbuffer_read_update(&queue->buffer, index); if (block && queue->ack_fd != -1) { if ((res = spa_system_eventfd_write(impl->system, queue->ack_fd, 1)) < 0) spa_log_warn(impl->log, "%p: failed to write event fd:%d: %s", queue, queue->ack_fd, spa_strerror(res)); } } } static int loop_queue_invoke(void *object, spa_invoke_func_t func, uint32_t seq, const void *data, size_t size, bool block, void *user_data) { struct queue *queue = object, *orig = queue, *overflow; struct impl *impl = queue->impl; struct invoke_item *item; int res; int32_t filled; uint32_t avail, idx, offset, l0; bool in_thread; pthread_t loop_thread, current_thread = pthread_self(); again: loop_thread = impl->thread; in_thread = (loop_thread == 0 || pthread_equal(loop_thread, current_thread)); filled = spa_ringbuffer_get_write_index(&queue->buffer, &idx); spa_assert_se(filled >= 0 && filled <= DATAS_SIZE && "queue xrun"); avail = (uint32_t)(DATAS_SIZE - filled); if (avail < sizeof(struct invoke_item)) goto xrun; offset = idx & (DATAS_SIZE - 1); /* l0 is remaining size in ringbuffer, this should always be larger than * invoke_item, see below */ l0 = DATAS_SIZE - offset; item = SPA_PTROFF(queue->buffer_data, offset, struct invoke_item); item->func = func; item->seq = seq; item->count = SPA_ATOMIC_INC(impl->count); item->size = size; item->block = in_thread ? false : block; item->user_data = user_data; item->res = 0; item->item_size = SPA_ROUND_UP_N(sizeof(struct invoke_item) + size, ITEM_ALIGN); spa_log_trace(impl->log, "%p: add item %p filled:%d block:%d", queue, item, filled, block); if (l0 >= item->item_size) { /* item + size fit in current ringbuffer idx */ item->data = SPA_PTROFF(item, sizeof(struct invoke_item), void); if (l0 < sizeof(struct invoke_item) + item->item_size) { /* not enough space for next invoke_item, fill up till the end * so that the next item will be at the start */ item->item_size = l0; } } else { /* item does not fit, place the invoke_item at idx and start the * data at the start of the ringbuffer */ item->data = queue->buffer_data; item->item_size = SPA_ROUND_UP_N(l0 + size, ITEM_ALIGN); } if (avail < item->item_size) goto xrun; if (data && size > 0) memcpy(item->data, data, size); spa_ringbuffer_write_update(&queue->buffer, idx + item->item_size); if (in_thread) { put_queue(impl, orig); /* when there is no thread running the loop we flush the queues from * this invoking thread but we need to serialize the flushing here with * a mutex */ if (loop_thread == 0) pthread_mutex_lock(&impl->queue_lock); flush_all_queues(impl); if (loop_thread == 0) pthread_mutex_unlock(&impl->queue_lock); res = item->res; } else { loop_signal_event(impl, impl->wakeup); if (block && queue->ack_fd != -1) { uint64_t count = 1; spa_loop_control_hook_before(&impl->hooks_list); if ((res = spa_system_eventfd_read(impl->system, queue->ack_fd, &count)) < 0) spa_log_warn(impl->log, "%p: failed to read event fd:%d: %s", queue, queue->ack_fd, spa_strerror(res)); spa_loop_control_hook_after(&impl->hooks_list); res = item->res; } else { if (seq != SPA_ID_INVALID) res = SPA_RESULT_RETURN_ASYNC(seq); else res = 0; } put_queue(impl, orig); } return res; xrun: /* we overflow, make a new queue that shares the same fd * and place it in the overflow array. We hold the queue so there * is only ever one writer to the overflow field. */ overflow = queue->overflow; if (overflow == NULL) { overflow = loop_create_queue(impl, false); if (overflow == NULL) return -errno; overflow->ack_fd = queue->ack_fd; SPA_ATOMIC_STORE(queue->overflow, overflow); } queue = overflow; goto again; } static void wakeup_func(void *data, uint64_t count) { struct impl *impl = data; flush_all_queues(impl); } static int loop_invoke(void *object, spa_invoke_func_t func, uint32_t seq, const void *data, size_t size, bool block, void *user_data) { struct impl *impl = object; struct queue *queue; int res = 0, suppressed; uint64_t nsec; while (true) { queue = get_queue(impl); if (SPA_UNLIKELY(queue == NULL)) queue = loop_create_queue(impl, true); if (SPA_UNLIKELY(queue == NULL)) { if (SPA_UNLIKELY(errno != ENOSPC)) return -errno; /* there was no space for a new queue. This means QUEUE_MAX * threads are concurrently doing an invoke. We can wait a little * and retry to get a queue */ if (impl->retry_timeout == 0) return -EPIPE; nsec = get_time_ns(impl->system); if ((suppressed = spa_ratelimit_test(&impl->rate_limit, nsec)) >= 0) { spa_log_warn(impl->log, "%p: out of queues, retrying (%d suppressed)", impl, suppressed); } usleep(impl->retry_timeout); } else { res = loop_queue_invoke(queue, func, seq, data, size, block, user_data); break; } } return res; } static int loop_get_fd(void *object) { struct impl *impl = object; return impl->poll_fd; } static void loop_add_hook(void *object, struct spa_hook *hook, const struct spa_loop_control_hooks *hooks, void *data) { struct impl *impl = object; spa_return_if_fail(SPA_CALLBACK_CHECK(hooks, before, 0)); spa_return_if_fail(SPA_CALLBACK_CHECK(hooks, after, 0)); spa_hook_list_append(&impl->hooks_list, hook, hooks, data); } static void loop_enter(void *object) { struct impl *impl = object; pthread_t thread_id = pthread_self(); if (impl->enter_count == 0) { spa_return_if_fail(impl->thread == 0); impl->thread = thread_id; impl->enter_count = 1; } else { spa_return_if_fail(impl->enter_count > 0); spa_return_if_fail(pthread_equal(impl->thread, thread_id)); impl->enter_count++; } spa_log_trace_fp(impl->log, "%p: enter %p", impl, (void *) impl->thread); } static void loop_leave(void *object) { struct impl *impl = object; pthread_t thread_id = pthread_self(); spa_return_if_fail(impl->enter_count > 0); spa_return_if_fail(pthread_equal(impl->thread, thread_id)); spa_log_trace_fp(impl->log, "%p: leave %p", impl, (void *) impl->thread); if (--impl->enter_count == 0) { impl->thread = 0; flush_all_queues(impl); impl->polling = false; } } static int loop_check(void *object) { struct impl *impl = object; pthread_t thread_id = pthread_self(); return (impl->thread == 0 || pthread_equal(impl->thread, thread_id)) ? 1 : 0; } static inline void free_source(struct source_impl *s) { detach_source(&s->source); free(s); } static inline void process_destroy(struct impl *impl) { struct source_impl *source, *tmp; spa_list_for_each_safe(source, tmp, &impl->destroy_list, link) free_source(source); spa_list_init(&impl->destroy_list); } struct cancellation_handler_data { struct spa_poll_event *ep; int ep_count; }; static void cancellation_handler(void *closure) { const struct cancellation_handler_data *data = closure; for (int i = 0; i < data->ep_count; i++) { struct spa_source *s = data->ep[i].data; if (SPA_LIKELY(s)) { s->rmask = 0; s->priv = NULL; } } } static int loop_iterate_cancel(void *object, int timeout) { struct impl *impl = object; struct spa_poll_event ep[MAX_EP], *e; int i, nfds; impl->polling = true; spa_loop_control_hook_before(&impl->hooks_list); nfds = spa_system_pollfd_wait(impl->system, impl->poll_fd, ep, SPA_N_ELEMENTS(ep), timeout); spa_loop_control_hook_after(&impl->hooks_list); impl->polling = false; struct cancellation_handler_data cdata = { ep, nfds }; pthread_cleanup_push(cancellation_handler, &cdata); /* first we set all the rmasks, then call the callbacks. The reason is that * some callback might also want to look at other sources it manages and * can then reset the rmask to suppress the callback */ for (i = 0; i < nfds; i++) { struct spa_source *s = ep[i].data; spa_assert(s->loop == &impl->loop); s->rmask = ep[i].events; /* already active in another iteration of the loop, * remove it from that iteration */ if (SPA_UNLIKELY(e = s->priv)) e->data = NULL; s->priv = &ep[i]; } if (SPA_UNLIKELY(!spa_list_is_empty(&impl->destroy_list))) process_destroy(impl); for (i = 0; i < nfds; i++) { struct spa_source *s = ep[i].data; if (SPA_LIKELY(s && s->rmask)) s->func(s); } pthread_cleanup_pop(true); return nfds; } static int loop_iterate(void *object, int timeout) { struct impl *impl = object; struct spa_poll_event ep[MAX_EP], *e; int i, nfds; impl->polling = true; spa_loop_control_hook_before(&impl->hooks_list); nfds = spa_system_pollfd_wait(impl->system, impl->poll_fd, ep, SPA_N_ELEMENTS(ep), timeout); spa_loop_control_hook_after(&impl->hooks_list); impl->polling = false; /* first we set all the rmasks, then call the callbacks. The reason is that * some callback might also want to look at other sources it manages and * can then reset the rmask to suppress the callback */ for (i = 0; i < nfds; i++) { struct spa_source *s = ep[i].data; s->rmask = ep[i].events; /* already active in another iteration of the loop, * remove it from that iteration */ if (SPA_UNLIKELY(e = s->priv)) e->data = NULL; s->priv = &ep[i]; } if (SPA_UNLIKELY(!spa_list_is_empty(&impl->destroy_list))) process_destroy(impl); for (i = 0; i < nfds; i++) { struct spa_source *s = ep[i].data; if (SPA_LIKELY(s && s->rmask)) s->func(s); } for (i = 0; i < nfds; i++) { struct spa_source *s = ep[i].data; if (SPA_LIKELY(s)) { s->rmask = 0; s->priv = NULL; } } return nfds; } static void source_io_func(struct spa_source *source) { struct source_impl *s = SPA_CONTAINER_OF(source, struct source_impl, source); spa_log_trace_fp(s->impl->log, "%p: io %08x", s, source->rmask); s->func.io(source->data, source->fd, source->rmask); } static struct spa_source *loop_add_io(void *object, int fd, uint32_t mask, bool close, spa_source_io_func_t func, void *data) { struct impl *impl = object; struct source_impl *source; int res; source = calloc(1, sizeof(struct source_impl)); if (source == NULL) goto error_exit; source->source.func = source_io_func; source->source.data = data; source->source.fd = fd; source->source.mask = mask; source->impl = impl; source->close = close; source->func.io = func; if ((res = loop_add_source(impl, &source->source)) < 0) { if (res != -EPERM) goto error_exit_free; /* file fds (stdin/stdout/...) give EPERM in epoll. Those fds always * return from epoll with the mask set, so we can handle this with * an idle source */ source->source.rmask = mask; source->fallback = spa_loop_utils_add_idle(&impl->utils, mask & (SPA_IO_IN | SPA_IO_OUT) ? true : false, (spa_source_idle_func_t) source_io_func, source); spa_log_trace(impl->log, "%p: adding fallback %p", impl, source->fallback); } spa_list_insert(&impl->source_list, &source->link); return &source->source; error_exit_free: free(source); errno = -res; error_exit: return NULL; } static int loop_update_io(void *object, struct spa_source *source, uint32_t mask) { struct impl *impl = object; struct source_impl *s = SPA_CONTAINER_OF(source, struct source_impl, source); int res; spa_assert(s->impl == object); spa_assert(source->func == source_io_func); spa_log_trace(impl->log, "%p: update %08x -> %08x", s, source->mask, mask); source->mask = mask; if (s->fallback) res = spa_loop_utils_enable_idle(&impl->utils, s->fallback, mask & (SPA_IO_IN | SPA_IO_OUT) ? true : false); else res = loop_update_source(object, source); return res; } static void source_idle_func(struct spa_source *source) { struct source_impl *s = SPA_CONTAINER_OF(source, struct source_impl, source); s->func.idle(source->data); } static int loop_enable_idle(void *object, struct spa_source *source, bool enabled) { struct source_impl *s = SPA_CONTAINER_OF(source, struct source_impl, source); int res = 0; spa_assert(s->impl == object); spa_assert(source->func == source_idle_func); if (enabled && !s->enabled) { if ((res = spa_system_eventfd_write(s->impl->system, source->fd, 1)) < 0) spa_log_warn(s->impl->log, "%p: failed to write idle fd:%d: %s", source, source->fd, spa_strerror(res)); } else if (!enabled && s->enabled) { uint64_t count; if ((res = spa_system_eventfd_read(s->impl->system, source->fd, &count)) < 0) spa_log_warn(s->impl->log, "%p: failed to read idle fd:%d: %s", source, source->fd, spa_strerror(res)); } s->enabled = enabled; return res; } static struct spa_source *loop_add_idle(void *object, bool enabled, spa_source_idle_func_t func, void *data) { struct impl *impl = object; struct source_impl *source; int res; source = calloc(1, sizeof(struct source_impl)); if (source == NULL) goto error_exit; if ((res = spa_system_eventfd_create(impl->system, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK)) < 0) goto error_exit_free; source->source.func = source_idle_func; source->source.data = data; source->source.fd = res; source->impl = impl; source->close = true; source->source.mask = SPA_IO_IN; source->func.idle = func; if ((res = loop_add_source(impl, &source->source)) < 0) goto error_exit_close; spa_list_insert(&impl->source_list, &source->link); if (enabled) loop_enable_idle(impl, &source->source, true); return &source->source; error_exit_close: spa_system_close(impl->system, source->source.fd); error_exit_free: free(source); errno = -res; error_exit: return NULL; } static void source_event_func(struct spa_source *source) { struct source_impl *s = SPA_CONTAINER_OF(source, struct source_impl, source); uint64_t count = 0; int res; if ((res = spa_system_eventfd_read(s->impl->system, source->fd, &count)) < 0) { if (res != -EAGAIN) spa_log_warn(s->impl->log, "%p: failed to read event fd:%d: %s", source, source->fd, spa_strerror(res)); return; } s->func.event(source->data, count); } static struct spa_source *loop_add_event(void *object, spa_source_event_func_t func, void *data) { struct impl *impl = object; struct source_impl *source; int res; source = calloc(1, sizeof(struct source_impl)); if (source == NULL) goto error_exit; if ((res = spa_system_eventfd_create(impl->system, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK)) < 0) goto error_exit_free; source->source.func = source_event_func; source->source.data = data; source->source.fd = res; source->source.mask = SPA_IO_IN; source->impl = impl; source->close = true; source->func.event = func; if ((res = loop_add_source(impl, &source->source)) < 0) goto error_exit_close; spa_list_insert(&impl->source_list, &source->link); return &source->source; error_exit_close: spa_system_close(impl->system, source->source.fd); error_exit_free: free(source); errno = -res; error_exit: return NULL; } static int loop_signal_event(void *object, struct spa_source *source) { struct source_impl *s = SPA_CONTAINER_OF(source, struct source_impl, source); int res; spa_assert(s->impl == object); spa_assert(source->func == source_event_func); if (SPA_UNLIKELY((res = spa_system_eventfd_write(s->impl->system, source->fd, 1)) < 0)) spa_log_warn(s->impl->log, "%p: failed to write event fd:%d: %s", source, source->fd, spa_strerror(res)); return res; } static void source_timer_func(struct spa_source *source) { struct source_impl *s = SPA_CONTAINER_OF(source, struct source_impl, source); uint64_t expirations = 0; int res; if (SPA_UNLIKELY((res = spa_system_timerfd_read(s->impl->system, source->fd, &expirations)) < 0)) { if (res != -EAGAIN) spa_log_warn(s->impl->log, "%p: failed to read timer fd:%d: %s", source, source->fd, spa_strerror(res)); return; } s->func.timer(source->data, expirations); } static struct spa_source *loop_add_timer(void *object, spa_source_timer_func_t func, void *data) { struct impl *impl = object; struct source_impl *source; int res; source = calloc(1, sizeof(struct source_impl)); if (source == NULL) goto error_exit; if ((res = spa_system_timerfd_create(impl->system, CLOCK_MONOTONIC, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK)) < 0) goto error_exit_free; source->source.func = source_timer_func; source->source.data = data; source->source.fd = res; source->source.mask = SPA_IO_IN; source->impl = impl; source->close = true; source->func.timer = func; if ((res = loop_add_source(impl, &source->source)) < 0) goto error_exit_close; spa_list_insert(&impl->source_list, &source->link); return &source->source; error_exit_close: spa_system_close(impl->system, source->source.fd); error_exit_free: free(source); errno = -res; error_exit: return NULL; } static int loop_update_timer(void *object, struct spa_source *source, struct timespec *value, struct timespec *interval, bool absolute) { struct source_impl *s = SPA_CONTAINER_OF(source, struct source_impl, source); struct itimerspec its; int flags = 0, res; spa_assert(s->impl == object); spa_assert(source->func == source_timer_func); spa_zero(its); if (SPA_LIKELY(value)) { its.it_value = *value; } else if (interval) { // timer initially fires after one interval its.it_value = *interval; absolute = false; } if (SPA_UNLIKELY(interval)) its.it_interval = *interval; if (SPA_LIKELY(absolute)) flags |= SPA_FD_TIMER_ABSTIME; if (SPA_UNLIKELY((res = spa_system_timerfd_settime(s->impl->system, source->fd, flags, &its, NULL)) < 0)) return res; return 0; } static void source_signal_func(struct spa_source *source) { struct source_impl *s = SPA_CONTAINER_OF(source, struct source_impl, source); int res, signal_number = 0; if ((res = spa_system_signalfd_read(s->impl->system, source->fd, &signal_number)) < 0) { if (res != -EAGAIN) spa_log_warn(s->impl->log, "%p: failed to read signal fd:%d: %s", source, source->fd, spa_strerror(res)); return; } s->func.signal(source->data, signal_number); } static struct spa_source *loop_add_signal(void *object, int signal_number, spa_source_signal_func_t func, void *data) { struct impl *impl = object; struct source_impl *source; int res; source = calloc(1, sizeof(struct source_impl)); if (source == NULL) goto error_exit; if ((res = spa_system_signalfd_create(impl->system, signal_number, SPA_FD_CLOEXEC | SPA_FD_NONBLOCK)) < 0) goto error_exit_free; source->source.func = source_signal_func; source->source.data = data; source->source.fd = res; source->source.mask = SPA_IO_IN; source->impl = impl; source->close = true; source->func.signal = func; if ((res = loop_add_source(impl, &source->source)) < 0) goto error_exit_close; spa_list_insert(&impl->source_list, &source->link); return &source->source; error_exit_close: spa_system_close(impl->system, source->source.fd); error_exit_free: free(source); errno = -res; error_exit: return NULL; } static void loop_destroy_source(void *object, struct spa_source *source) { struct source_impl *s = SPA_CONTAINER_OF(source, struct source_impl, source); spa_assert(s->impl == object); spa_log_trace(s->impl->log, "%p ", s); spa_list_remove(&s->link); if (s->fallback) loop_destroy_source(s->impl, s->fallback); else remove_from_poll(s->impl, source); if (source->fd != -1 && s->close) { spa_system_close(s->impl->system, source->fd); source->fd = -1; } if (!s->impl->polling) free_source(s); else spa_list_insert(&s->impl->destroy_list, &s->link); } static const struct spa_loop_methods impl_loop = { SPA_VERSION_LOOP_METHODS, .add_source = loop_add_source, .update_source = loop_update_source, .remove_source = loop_remove_source, .invoke = loop_invoke, }; static const struct spa_loop_control_methods impl_loop_control_cancel = { SPA_VERSION_LOOP_CONTROL_METHODS, .get_fd = loop_get_fd, .add_hook = loop_add_hook, .enter = loop_enter, .leave = loop_leave, .iterate = loop_iterate_cancel, .check = loop_check, }; static const struct spa_loop_control_methods impl_loop_control = { SPA_VERSION_LOOP_CONTROL_METHODS, .get_fd = loop_get_fd, .add_hook = loop_add_hook, .enter = loop_enter, .leave = loop_leave, .iterate = loop_iterate, .check = loop_check, }; static const struct spa_loop_utils_methods impl_loop_utils = { SPA_VERSION_LOOP_UTILS_METHODS, .add_io = loop_add_io, .update_io = loop_update_io, .add_idle = loop_add_idle, .enable_idle = loop_enable_idle, .add_event = loop_add_event, .signal_event = loop_signal_event, .add_timer = loop_add_timer, .update_timer = loop_update_timer, .add_signal = loop_add_signal, .destroy_source = loop_destroy_source, }; static int impl_get_interface(struct spa_handle *handle, const char *type, void **interface) { struct impl *impl; spa_return_val_if_fail(handle != NULL, -EINVAL); spa_return_val_if_fail(interface != NULL, -EINVAL); impl = (struct impl *) handle; if (spa_streq(type, SPA_TYPE_INTERFACE_Loop)) *interface = &impl->loop; else if (spa_streq(type, SPA_TYPE_INTERFACE_LoopControl)) *interface = &impl->control; else if (spa_streq(type, SPA_TYPE_INTERFACE_LoopUtils)) *interface = &impl->utils; else return -ENOENT; return 0; } static int impl_clear(struct spa_handle *handle) { struct impl *impl; struct source_impl *source; uint32_t i; spa_return_val_if_fail(handle != NULL, -EINVAL); impl = (struct impl *) handle; spa_log_debug(impl->log, "%p: clear", impl); if (impl->enter_count != 0 || impl->polling) spa_log_warn(impl->log, "%p: loop is entered %d times polling:%d", impl, impl->enter_count, impl->polling); spa_list_consume(source, &impl->source_list, link) loop_destroy_source(impl, &source->source); for (i = 0; i < impl->n_queues; i++) loop_queue_destroy(impl->queues[i]); spa_system_close(impl->system, impl->poll_fd); pthread_mutex_destroy(&impl->queue_lock); return 0; } static size_t impl_get_size(const struct spa_handle_factory *factory, const struct spa_dict *params) { return sizeof(struct impl); } #define CHECK(expression,label) \ do { \ if ((errno = (expression)) != 0) { \ res = -errno; \ spa_log_error(impl->log, #expression ": %s", strerror(errno)); \ goto label; \ } \ } while(false); static int impl_init(const struct spa_handle_factory *factory, struct spa_handle *handle, const struct spa_dict *info, const struct spa_support *support, uint32_t n_support) { struct impl *impl; const char *str; pthread_mutexattr_t attr; int res; spa_return_val_if_fail(factory != NULL, -EINVAL); spa_return_val_if_fail(handle != NULL, -EINVAL); handle->get_interface = impl_get_interface; handle->clear = impl_clear; impl = (struct impl *) handle; impl->loop.iface = SPA_INTERFACE_INIT( SPA_TYPE_INTERFACE_Loop, SPA_VERSION_LOOP, &impl_loop, impl); impl->control.iface = SPA_INTERFACE_INIT( SPA_TYPE_INTERFACE_LoopControl, SPA_VERSION_LOOP_CONTROL, &impl_loop_control, impl); impl->utils.iface = SPA_INTERFACE_INIT( SPA_TYPE_INTERFACE_LoopUtils, SPA_VERSION_LOOP_UTILS, &impl_loop_utils, impl); impl->rate_limit.interval = 2 * SPA_NSEC_PER_SEC; impl->rate_limit.burst = 1; impl->retry_timeout = DEFAULT_RETRY; if (info) { if ((str = spa_dict_lookup(info, "loop.cancel")) != NULL && spa_atob(str)) impl->control.iface.cb.funcs = &impl_loop_control_cancel; if ((str = spa_dict_lookup(info, "loop.retry-timeout")) != NULL) impl->retry_timeout = atoi(str); } CHECK(pthread_mutexattr_init(&attr), error_exit); CHECK(pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE), error_exit); CHECK(pthread_mutex_init(&impl->queue_lock, &attr), error_exit); impl->log = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_Log); spa_log_topic_init(impl->log, &log_topic); impl->system = spa_support_find(support, n_support, SPA_TYPE_INTERFACE_System); if (impl->system == NULL) { spa_log_error(impl->log, "%p: a System is needed", impl); res = -EINVAL; goto error_exit_free_mutex; } if ((res = spa_system_pollfd_create(impl->system, SPA_FD_CLOEXEC)) < 0) { spa_log_error(impl->log, "%p: can't create pollfd: %s", impl, spa_strerror(res)); goto error_exit_free_mutex; } impl->poll_fd = res; spa_list_init(&impl->source_list); spa_list_init(&impl->destroy_list); spa_hook_list_init(&impl->hooks_list); impl->wakeup = loop_add_event(impl, wakeup_func, impl); if (impl->wakeup == NULL) { res = -errno; spa_log_error(impl->log, "%p: can't create wakeup event: %m", impl); goto error_exit_free_poll; } impl->head.t.idx = IDX_INVALID; spa_log_debug(impl->log, "%p: initialized", impl); return 0; error_exit_free_poll: spa_system_close(impl->system, impl->poll_fd); error_exit_free_mutex: pthread_mutex_destroy(&impl->queue_lock); error_exit: return res; } static const struct spa_interface_info impl_interfaces[] = { {SPA_TYPE_INTERFACE_Loop,}, {SPA_TYPE_INTERFACE_LoopControl,}, {SPA_TYPE_INTERFACE_LoopUtils,}, }; static int impl_enum_interface_info(const struct spa_handle_factory *factory, const struct spa_interface_info **info, uint32_t *index) { spa_return_val_if_fail(factory != NULL, -EINVAL); spa_return_val_if_fail(info != NULL, -EINVAL); spa_return_val_if_fail(index != NULL, -EINVAL); if (*index >= SPA_N_ELEMENTS(impl_interfaces)) return 0; *info = &impl_interfaces[(*index)++]; return 1; } const struct spa_handle_factory spa_support_loop_factory = { SPA_VERSION_HANDLE_FACTORY, SPA_NAME_SUPPORT_LOOP, NULL, impl_get_size, impl_init, impl_enum_interface_info };