1
0
Fork 0
pipewire/spa/plugins/alsa/test-timer.c
Daniel Baumann 6b016a712f
Adding upstream version 1.4.2.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 21:40:42 +02:00

290 lines
7.8 KiB
C

/* Spa */
/* SPDX-FileCopyrightText: Copyright © 2020 Wim Taymans */
/* SPDX-License-Identifier: MIT */
#include <stdio.h>
#include <stdbool.h>
#include <limits.h>
#include <getopt.h>
#include <math.h>
#include <sys/timerfd.h>
#include <alsa/asoundlib.h>
#include <spa/utils/dll.h>
#include <spa/utils/defs.h>
#define DEFAULT_DEVICE "hw:0"
#define M_PI_M2f (float)(M_PI+M_PI)
#define BW_PERIOD (SPA_NSEC_PER_SEC * 3)
struct state {
const char *device;
unsigned int format;
unsigned int rate;
unsigned int channels;
snd_pcm_uframes_t period;
snd_pcm_uframes_t buffer_frames;
snd_pcm_t *hndl;
int timerfd;
double max_error;
float accumulator;
uint64_t next_time;
uint64_t prev_time;
struct spa_dll dll;
};
static int set_timeout(struct state *state, uint64_t time)
{
struct itimerspec ts;
ts.it_value.tv_sec = time / SPA_NSEC_PER_SEC;
ts.it_value.tv_nsec = time % SPA_NSEC_PER_SEC;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
return timerfd_settime(state->timerfd, TFD_TIMER_ABSTIME, &ts, NULL);
}
#define CHECK(s,msg,...) { \
int __err; \
if ((__err = (s)) < 0) { \
fprintf(stderr, msg ": %s\n", ##__VA_ARGS__, snd_strerror(__err)); \
return __err; \
} \
}
#define LOOP(type,areas,scale) { \
uint32_t i, j; \
type *samples, v; \
samples = (type*)((uint8_t*)areas[0].addr + (areas[0].first + offset*areas[0].step) / 8); \
for (i = 0; i < frames; i++) { \
state->accumulator += M_PI_M2f * 440.0f / state->rate; \
if (state->accumulator >= M_PI_M2f) \
state->accumulator -= M_PI_M2f; \
v = (type)(sin(state->accumulator) * scale); \
for (j = 0; j < state->channels; j++) \
*samples++ = v; \
} \
}
static int write_period(struct state *state)
{
snd_pcm_uframes_t frames = state->period;
snd_pcm_uframes_t offset;
const snd_pcm_channel_area_t* areas;
snd_pcm_mmap_begin(state->hndl, &areas, &offset, &frames);
switch (state->format) {
case SND_PCM_FORMAT_S32_LE:
LOOP(int32_t, areas, 0x7fffffff);
break;
case SND_PCM_FORMAT_S16_LE:
LOOP(int16_t, areas, 0x7fff);
break;
default:
break;
}
snd_pcm_mmap_commit(state->hndl, offset, frames) ;
return 0;
}
static int on_timer_wakeup(struct state *state)
{
snd_pcm_sframes_t delay;
double error, corr;
#if 1
snd_pcm_sframes_t avail;
CHECK(snd_pcm_avail_delay(state->hndl, &avail, &delay), "delay");
#else
snd_pcm_uframes_t avail;
snd_htimestamp_t tstamp;
uint64_t then;
CHECK(snd_pcm_htimestamp(state->hndl, &avail, &tstamp), "htimestamp");
delay = state->buffer_frames - avail;
then = SPA_TIMESPEC_TO_NSEC(&tstamp);
if (then != 0) {
if (then < state->next_time) {
delay -= (state->next_time - then) * state->rate / SPA_NSEC_PER_SEC;
} else {
delay += (then - state->next_time) * state->rate / SPA_NSEC_PER_SEC;
}
}
#endif
/* calculate the error, we want to have exactly 1 period of
* samples remaining in the device when we wakeup. */
error = (double)delay - (double)state->period;
if (error > state->max_error)
error = state->max_error;
else if (error < -state->max_error)
error = -state->max_error;
/* update the dll with the error, this gives a rate correction */
corr = spa_dll_update(&state->dll, error);
/* set our new adjusted timeout. alternatively, this value can
* instead be used to drive a resampler if this device is
* slaved. */
state->next_time += (uint64_t)(state->period / corr * 1e9 / state->rate);
set_timeout(state, state->next_time);
if (state->next_time - state->prev_time > BW_PERIOD) {
state->prev_time = state->next_time;
fprintf(stdout, "corr:%f error:%f bw:%f\n",
corr, error, state->dll.bw);
}
/* pull in new samples write a new period */
write_period(state);
return 0;
}
static unsigned int format_from_string(const char *str)
{
if (strcmp(str, "S32_LE") == 0)
return SND_PCM_FORMAT_S32_LE;
else if (strcmp(str, "S32_BE") == 0)
return SND_PCM_FORMAT_S32_BE;
else if (strcmp(str, "S24_LE") == 0)
return SND_PCM_FORMAT_S24_LE;
else if (strcmp(str, "S24_BE") == 0)
return SND_PCM_FORMAT_S24_BE;
else if (strcmp(str, "S24_3LE") == 0)
return SND_PCM_FORMAT_S24_3LE;
else if (strcmp(str, "S24_3_BE") == 0)
return SND_PCM_FORMAT_S24_3BE;
else if (strcmp(str, "S16_LE") == 0)
return SND_PCM_FORMAT_S16_LE;
else if (strcmp(str, "S16_BE") == 0)
return SND_PCM_FORMAT_S16_BE;
return 0;
}
static void show_help(const char *name, bool error)
{
fprintf(error ? stderr : stdout, "%s [options]\n"
" -h, --help Show this help\n"
" -D, --device device name (default %s)\n",
name, DEFAULT_DEVICE);
}
int main(int argc, char *argv[])
{
struct state state = { 0, };
snd_pcm_hw_params_t *hparams;
snd_pcm_sw_params_t *sparams;
struct timespec now;
int c;
static const struct option long_options[] = {
{ "help", no_argument, NULL, 'h' },
{ "device", required_argument, NULL, 'D' },
{ "format", required_argument, NULL, 'f' },
{ "rate", required_argument, NULL, 'r' },
{ "channels", required_argument, NULL, 'c' },
{ NULL, 0, NULL, 0}
};
state.device = DEFAULT_DEVICE;
state.format = SND_PCM_FORMAT_S16_LE;
state.rate = 44100;
state.channels = 2;
state.period = 1024;
while ((c = getopt_long(argc, argv, "hD:f:r:c:", long_options, NULL)) != -1) {
switch (c) {
case 'h':
show_help(argv[0], false);
return 0;
case 'D':
state.device = optarg;
break;
case 'f':
state.format = format_from_string(optarg);
break;
case 'r':
state.rate = atoi(optarg);
break;
case 'c':
state.channels = atoi(optarg);
break;
default:
show_help(argv[0], true);
return -1;
}
}
CHECK(snd_pcm_open(&state.hndl, state.device, SND_PCM_STREAM_PLAYBACK, 0),
"open %s failed", state.device);
/* hw params */
snd_pcm_hw_params_alloca(&hparams);
snd_pcm_hw_params_any(state.hndl, hparams);
CHECK(snd_pcm_hw_params_set_access(state.hndl, hparams,
SND_PCM_ACCESS_MMAP_INTERLEAVED), "set interleaved");
CHECK(snd_pcm_hw_params_set_format(state.hndl, hparams,
state.format), "set format");
CHECK(snd_pcm_hw_params_set_channels_near(state.hndl, hparams,
&state.channels), "set channels");
CHECK(snd_pcm_hw_params_set_rate_near(state.hndl, hparams,
&state.rate, 0), "set rate");
CHECK(snd_pcm_hw_params(state.hndl, hparams), "hw_params");
CHECK(snd_pcm_hw_params_get_buffer_size(hparams, &state.buffer_frames), "get_buffer_size_max");
fprintf(stdout, "opened format:%s rate:%u channels:%u\n",
snd_pcm_format_name(state.format),
state.rate, state.channels);
snd_pcm_sw_params_alloca(&sparams);
#if 0
CHECK(snd_pcm_sw_params_current(state.hndl, sparams), "sw_params_current");
CHECK(snd_pcm_sw_params_set_tstamp_mode(state.hndl, sparams, SND_PCM_TSTAMP_ENABLE),
"sw_params_set_tstamp_type");
CHECK(snd_pcm_sw_params_set_tstamp_type(state.hndl, sparams, SND_PCM_TSTAMP_TYPE_MONOTONIC),
"sw_params_set_tstamp_type");
CHECK(snd_pcm_sw_params(state.hndl, sparams), "sw_params");
#endif
spa_dll_init(&state.dll);
spa_dll_set_bw(&state.dll, SPA_DLL_BW_MAX, state.period, state.rate);
state.max_error = SPA_MAX(256.0, state.period / 2.0f);
if ((state.timerfd = timerfd_create(CLOCK_MONOTONIC, 0)) < 0)
perror("timerfd");
CHECK(snd_pcm_prepare(state.hndl), "prepare");
/* before we start, write one period */
write_period(&state);
/* set our first timeout for now */
clock_gettime(CLOCK_MONOTONIC, &now);
state.prev_time = state.next_time = SPA_TIMESPEC_TO_NSEC(&now);
set_timeout(&state, state.next_time);
/* and start playback */
CHECK(snd_pcm_start(state.hndl), "start");
/* wait for timer to expire and call the wakeup function,
* this can be done in a poll loop as well */
while (true) {
uint64_t expirations;
CHECK(read(state.timerfd, &expirations, sizeof(expirations)), "read");
on_timer_wakeup(&state);
}
snd_pcm_drain(state.hndl);
snd_pcm_close(state.hndl);
close(state.timerfd);
return EXIT_SUCCESS;
}