1
0
Fork 0
qemu/hw/intc/aspeed_intc.c
Daniel Baumann ea34ddeea6
Adding upstream version 1:10.0.2+ds.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 14:27:05 +02:00

688 lines
20 KiB
C

/*
* ASPEED INTC Controller
*
* Copyright (C) 2024 ASPEED Technology Inc.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "hw/intc/aspeed_intc.h"
#include "hw/irq.h"
#include "qemu/log.h"
#include "trace.h"
#include "hw/registerfields.h"
#include "qapi/error.h"
/*
* INTC Registers
*
* values below are offset by - 0x1000 from datasheet
* because its memory region is start at 0x1000
*
*/
REG32(GICINT128_EN, 0x000)
REG32(GICINT128_STATUS, 0x004)
REG32(GICINT129_EN, 0x100)
REG32(GICINT129_STATUS, 0x104)
REG32(GICINT130_EN, 0x200)
REG32(GICINT130_STATUS, 0x204)
REG32(GICINT131_EN, 0x300)
REG32(GICINT131_STATUS, 0x304)
REG32(GICINT132_EN, 0x400)
REG32(GICINT132_STATUS, 0x404)
REG32(GICINT133_EN, 0x500)
REG32(GICINT133_STATUS, 0x504)
REG32(GICINT134_EN, 0x600)
REG32(GICINT134_STATUS, 0x604)
REG32(GICINT135_EN, 0x700)
REG32(GICINT135_STATUS, 0x704)
REG32(GICINT136_EN, 0x800)
REG32(GICINT136_STATUS, 0x804)
REG32(GICINT192_201_EN, 0xB00)
REG32(GICINT192_201_STATUS, 0xB04)
/*
* INTCIO Registers
*
* values below are offset by - 0x100 from datasheet
* because its memory region is start at 0x100
*
*/
REG32(GICINT192_EN, 0x00)
REG32(GICINT192_STATUS, 0x04)
REG32(GICINT193_EN, 0x10)
REG32(GICINT193_STATUS, 0x14)
REG32(GICINT194_EN, 0x20)
REG32(GICINT194_STATUS, 0x24)
REG32(GICINT195_EN, 0x30)
REG32(GICINT195_STATUS, 0x34)
REG32(GICINT196_EN, 0x40)
REG32(GICINT196_STATUS, 0x44)
REG32(GICINT197_EN, 0x50)
REG32(GICINT197_STATUS, 0x54)
static const AspeedINTCIRQ *aspeed_intc_get_irq(AspeedINTCClass *aic,
uint32_t reg)
{
int i;
for (i = 0; i < aic->irq_table_count; i++) {
if (aic->irq_table[i].enable_reg == reg ||
aic->irq_table[i].status_reg == reg) {
return &aic->irq_table[i];
}
}
/*
* Invalid reg.
*/
g_assert_not_reached();
}
/*
* Update the state of an interrupt controller pin by setting
* the specified output pin to the given level.
* The input pin index should be between 0 and the number of input pins.
* The output pin index should be between 0 and the number of output pins.
*/
static void aspeed_intc_update(AspeedINTCState *s, int inpin_idx,
int outpin_idx, int level)
{
AspeedINTCClass *aic = ASPEED_INTC_GET_CLASS(s);
const char *name = object_get_typename(OBJECT(s));
assert((outpin_idx < aic->num_outpins) && (inpin_idx < aic->num_inpins));
trace_aspeed_intc_update_irq(name, inpin_idx, outpin_idx, level);
qemu_set_irq(s->output_pins[outpin_idx], level);
}
static void aspeed_intc_set_irq_handler(AspeedINTCState *s,
const AspeedINTCIRQ *intc_irq,
uint32_t select)
{
const char *name = object_get_typename(OBJECT(s));
uint32_t status_reg;
int outpin_idx;
int inpin_idx;
status_reg = intc_irq->status_reg;
outpin_idx = intc_irq->outpin_idx;
inpin_idx = intc_irq->inpin_idx;
if ((s->mask[inpin_idx] & select) || (s->regs[status_reg] & select)) {
/*
* a. mask is not 0 means in ISR mode
* sources interrupt routine are executing.
* b. status register value is not 0 means previous
* source interrupt does not be executed, yet.
*
* save source interrupt to pending variable.
*/
s->pending[inpin_idx] |= select;
trace_aspeed_intc_pending_irq(name, inpin_idx, s->pending[inpin_idx]);
} else {
/*
* notify firmware which source interrupt are coming
* by setting status register
*/
s->regs[status_reg] = select;
trace_aspeed_intc_trigger_irq(name, inpin_idx, outpin_idx,
s->regs[status_reg]);
aspeed_intc_update(s, inpin_idx, outpin_idx, 1);
}
}
static void aspeed_intc_set_irq_handler_multi_outpins(AspeedINTCState *s,
const AspeedINTCIRQ *intc_irq, uint32_t select)
{
const char *name = object_get_typename(OBJECT(s));
uint32_t status_reg;
int num_outpins;
int outpin_idx;
int inpin_idx;
int i;
num_outpins = intc_irq->num_outpins;
status_reg = intc_irq->status_reg;
outpin_idx = intc_irq->outpin_idx;
inpin_idx = intc_irq->inpin_idx;
for (i = 0; i < num_outpins; i++) {
if (select & BIT(i)) {
if (s->mask[inpin_idx] & BIT(i) ||
s->regs[status_reg] & BIT(i)) {
/*
* a. mask bit is not 0 means in ISR mode sources interrupt
* routine are executing.
* b. status bit is not 0 means previous source interrupt
* does not be executed, yet.
*
* save source interrupt to pending bit.
*/
s->pending[inpin_idx] |= BIT(i);
trace_aspeed_intc_pending_irq(name, inpin_idx,
s->pending[inpin_idx]);
} else {
/*
* notify firmware which source interrupt are coming
* by setting status bit
*/
s->regs[status_reg] |= BIT(i);
trace_aspeed_intc_trigger_irq(name, inpin_idx, outpin_idx + i,
s->regs[status_reg]);
aspeed_intc_update(s, inpin_idx, outpin_idx + i, 1);
}
}
}
}
/*
* GICINT192_201 maps 1:10 to input IRQ 0 and output IRQs 0 to 9.
* GICINT128 to GICINT136 map 1:1 to input IRQs 1 to 9 and output
* IRQs 10 to 18. The value of input IRQ should be between 0 and
* the number of input pins.
*/
static void aspeed_intc_set_irq(void *opaque, int irq, int level)
{
AspeedINTCState *s = (AspeedINTCState *)opaque;
AspeedINTCClass *aic = ASPEED_INTC_GET_CLASS(s);
const char *name = object_get_typename(OBJECT(s));
const AspeedINTCIRQ *intc_irq;
uint32_t select = 0;
uint32_t enable;
int num_outpins;
int inpin_idx;
int i;
assert(irq < aic->num_inpins);
intc_irq = &aic->irq_table[irq];
num_outpins = intc_irq->num_outpins;
inpin_idx = intc_irq->inpin_idx;
trace_aspeed_intc_set_irq(name, inpin_idx, level);
enable = s->enable[inpin_idx];
if (!level) {
return;
}
for (i = 0; i < aic->num_lines; i++) {
if (s->orgates[inpin_idx].levels[i]) {
if (enable & BIT(i)) {
select |= BIT(i);
}
}
}
if (!select) {
return;
}
trace_aspeed_intc_select(name, select);
if (num_outpins > 1) {
aspeed_intc_set_irq_handler_multi_outpins(s, intc_irq, select);
} else {
aspeed_intc_set_irq_handler(s, intc_irq, select);
}
}
static void aspeed_intc_enable_handler(AspeedINTCState *s, hwaddr offset,
uint64_t data)
{
AspeedINTCClass *aic = ASPEED_INTC_GET_CLASS(s);
const char *name = object_get_typename(OBJECT(s));
const AspeedINTCIRQ *intc_irq;
uint32_t reg = offset >> 2;
uint32_t old_enable;
uint32_t change;
int inpin_idx;
intc_irq = aspeed_intc_get_irq(aic, reg);
inpin_idx = intc_irq->inpin_idx;
assert(inpin_idx < aic->num_inpins);
/*
* The enable registers are used to enable source interrupts.
* They also handle masking and unmasking of source interrupts
* during the execution of the source ISR.
*/
/* disable all source interrupt */
if (!data && !s->enable[inpin_idx]) {
s->regs[reg] = data;
return;
}
old_enable = s->enable[inpin_idx];
s->enable[inpin_idx] |= data;
/* enable new source interrupt */
if (old_enable != s->enable[inpin_idx]) {
trace_aspeed_intc_enable(name, s->enable[inpin_idx]);
s->regs[reg] = data;
return;
}
/* mask and unmask source interrupt */
change = s->regs[reg] ^ data;
if (change & data) {
s->mask[inpin_idx] &= ~change;
trace_aspeed_intc_unmask(name, change, s->mask[inpin_idx]);
} else {
s->mask[inpin_idx] |= change;
trace_aspeed_intc_mask(name, change, s->mask[inpin_idx]);
}
s->regs[reg] = data;
}
static void aspeed_intc_status_handler(AspeedINTCState *s, hwaddr offset,
uint64_t data)
{
AspeedINTCClass *aic = ASPEED_INTC_GET_CLASS(s);
const char *name = object_get_typename(OBJECT(s));
const AspeedINTCIRQ *intc_irq;
uint32_t reg = offset >> 2;
int outpin_idx;
int inpin_idx;
if (!data) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid data 0\n", __func__);
return;
}
intc_irq = aspeed_intc_get_irq(aic, reg);
outpin_idx = intc_irq->outpin_idx;
inpin_idx = intc_irq->inpin_idx;
assert(inpin_idx < aic->num_inpins);
/* clear status */
s->regs[reg] &= ~data;
/*
* These status registers are used for notify sources ISR are executed.
* If one source ISR is executed, it will clear one bit.
* If it clear all bits, it means to initialize this register status
* rather than sources ISR are executed.
*/
if (data == 0xffffffff) {
return;
}
/* All source ISR execution are done */
if (!s->regs[reg]) {
trace_aspeed_intc_all_isr_done(name, inpin_idx);
if (s->pending[inpin_idx]) {
/*
* handle pending source interrupt
* notify firmware which source interrupt are pending
* by setting status register
*/
s->regs[reg] = s->pending[inpin_idx];
s->pending[inpin_idx] = 0;
trace_aspeed_intc_trigger_irq(name, inpin_idx, outpin_idx,
s->regs[reg]);
aspeed_intc_update(s, inpin_idx, outpin_idx, 1);
} else {
/* clear irq */
trace_aspeed_intc_clear_irq(name, inpin_idx, outpin_idx, 0);
aspeed_intc_update(s, inpin_idx, outpin_idx, 0);
}
}
}
static void aspeed_intc_status_handler_multi_outpins(AspeedINTCState *s,
hwaddr offset, uint64_t data)
{
const char *name = object_get_typename(OBJECT(s));
AspeedINTCClass *aic = ASPEED_INTC_GET_CLASS(s);
const AspeedINTCIRQ *intc_irq;
uint32_t reg = offset >> 2;
int num_outpins;
int outpin_idx;
int inpin_idx;
int i;
if (!data) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid data 0\n", __func__);
return;
}
intc_irq = aspeed_intc_get_irq(aic, reg);
num_outpins = intc_irq->num_outpins;
outpin_idx = intc_irq->outpin_idx;
inpin_idx = intc_irq->inpin_idx;
assert(inpin_idx < aic->num_inpins);
/* clear status */
s->regs[reg] &= ~data;
/*
* The status registers are used for notify sources ISR are executed.
* If one source ISR is executed, it will clear one bit.
* If it clear all bits, it means to initialize this register status
* rather than sources ISR are executed.
*/
if (data == 0xffffffff) {
return;
}
for (i = 0; i < num_outpins; i++) {
/* All source ISR executions are done from a specific bit */
if (data & BIT(i)) {
trace_aspeed_intc_all_isr_done_bit(name, inpin_idx, i);
if (s->pending[inpin_idx] & BIT(i)) {
/*
* Handle pending source interrupt.
* Notify firmware which source interrupt is pending
* by setting the status bit.
*/
s->regs[reg] |= BIT(i);
s->pending[inpin_idx] &= ~BIT(i);
trace_aspeed_intc_trigger_irq(name, inpin_idx, outpin_idx + i,
s->regs[reg]);
aspeed_intc_update(s, inpin_idx, outpin_idx + i, 1);
} else {
/* clear irq for the specific bit */
trace_aspeed_intc_clear_irq(name, inpin_idx, outpin_idx + i, 0);
aspeed_intc_update(s, inpin_idx, outpin_idx + i, 0);
}
}
}
}
static uint64_t aspeed_intc_read(void *opaque, hwaddr offset, unsigned int size)
{
AspeedINTCState *s = ASPEED_INTC(opaque);
const char *name = object_get_typename(OBJECT(s));
uint32_t reg = offset >> 2;
uint32_t value = 0;
value = s->regs[reg];
trace_aspeed_intc_read(name, offset, size, value);
return value;
}
static void aspeed_intc_write(void *opaque, hwaddr offset, uint64_t data,
unsigned size)
{
AspeedINTCState *s = ASPEED_INTC(opaque);
const char *name = object_get_typename(OBJECT(s));
uint32_t reg = offset >> 2;
trace_aspeed_intc_write(name, offset, size, data);
switch (reg) {
case R_GICINT128_EN:
case R_GICINT129_EN:
case R_GICINT130_EN:
case R_GICINT131_EN:
case R_GICINT132_EN:
case R_GICINT133_EN:
case R_GICINT134_EN:
case R_GICINT135_EN:
case R_GICINT136_EN:
case R_GICINT192_201_EN:
aspeed_intc_enable_handler(s, offset, data);
break;
case R_GICINT128_STATUS:
case R_GICINT129_STATUS:
case R_GICINT130_STATUS:
case R_GICINT131_STATUS:
case R_GICINT132_STATUS:
case R_GICINT133_STATUS:
case R_GICINT134_STATUS:
case R_GICINT135_STATUS:
case R_GICINT136_STATUS:
aspeed_intc_status_handler(s, offset, data);
break;
case R_GICINT192_201_STATUS:
aspeed_intc_status_handler_multi_outpins(s, offset, data);
break;
default:
s->regs[reg] = data;
break;
}
return;
}
static uint64_t aspeed_intcio_read(void *opaque, hwaddr offset,
unsigned int size)
{
AspeedINTCState *s = ASPEED_INTC(opaque);
const char *name = object_get_typename(OBJECT(s));
uint32_t reg = offset >> 2;
uint32_t value = 0;
value = s->regs[reg];
trace_aspeed_intc_read(name, offset, size, value);
return value;
}
static void aspeed_intcio_write(void *opaque, hwaddr offset, uint64_t data,
unsigned size)
{
AspeedINTCState *s = ASPEED_INTC(opaque);
const char *name = object_get_typename(OBJECT(s));
uint32_t reg = offset >> 2;
trace_aspeed_intc_write(name, offset, size, data);
switch (reg) {
case R_GICINT192_EN:
case R_GICINT193_EN:
case R_GICINT194_EN:
case R_GICINT195_EN:
case R_GICINT196_EN:
case R_GICINT197_EN:
aspeed_intc_enable_handler(s, offset, data);
break;
case R_GICINT192_STATUS:
case R_GICINT193_STATUS:
case R_GICINT194_STATUS:
case R_GICINT195_STATUS:
case R_GICINT196_STATUS:
case R_GICINT197_STATUS:
aspeed_intc_status_handler(s, offset, data);
break;
default:
s->regs[reg] = data;
break;
}
return;
}
static const MemoryRegionOps aspeed_intc_ops = {
.read = aspeed_intc_read,
.write = aspeed_intc_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
}
};
static const MemoryRegionOps aspeed_intcio_ops = {
.read = aspeed_intcio_read,
.write = aspeed_intcio_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
}
};
static void aspeed_intc_instance_init(Object *obj)
{
AspeedINTCState *s = ASPEED_INTC(obj);
AspeedINTCClass *aic = ASPEED_INTC_GET_CLASS(s);
int i;
assert(aic->num_inpins <= ASPEED_INTC_MAX_INPINS);
for (i = 0; i < aic->num_inpins; i++) {
object_initialize_child(obj, "intc-orgates[*]", &s->orgates[i],
TYPE_OR_IRQ);
object_property_set_int(OBJECT(&s->orgates[i]), "num-lines",
aic->num_lines, &error_abort);
}
}
static void aspeed_intc_reset(DeviceState *dev)
{
AspeedINTCState *s = ASPEED_INTC(dev);
AspeedINTCClass *aic = ASPEED_INTC_GET_CLASS(s);
memset(s->regs, 0, aic->nr_regs << 2);
memset(s->enable, 0, sizeof(s->enable));
memset(s->mask, 0, sizeof(s->mask));
memset(s->pending, 0, sizeof(s->pending));
}
static void aspeed_intc_realize(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
AspeedINTCState *s = ASPEED_INTC(dev);
AspeedINTCClass *aic = ASPEED_INTC_GET_CLASS(s);
int i;
memory_region_init(&s->iomem_container, OBJECT(s),
TYPE_ASPEED_INTC ".container", aic->mem_size);
sysbus_init_mmio(sbd, &s->iomem_container);
s->regs = g_new(uint32_t, aic->nr_regs);
memory_region_init_io(&s->iomem, OBJECT(s), aic->reg_ops, s,
TYPE_ASPEED_INTC ".regs", aic->nr_regs << 2);
memory_region_add_subregion(&s->iomem_container, aic->reg_offset,
&s->iomem);
qdev_init_gpio_in(dev, aspeed_intc_set_irq, aic->num_inpins);
for (i = 0; i < aic->num_inpins; i++) {
if (!qdev_realize(DEVICE(&s->orgates[i]), NULL, errp)) {
return;
}
}
for (i = 0; i < aic->num_outpins; i++) {
sysbus_init_irq(sbd, &s->output_pins[i]);
}
}
static void aspeed_intc_unrealize(DeviceState *dev)
{
AspeedINTCState *s = ASPEED_INTC(dev);
g_free(s->regs);
s->regs = NULL;
}
static void aspeed_intc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedINTCClass *aic = ASPEED_INTC_CLASS(klass);
dc->desc = "ASPEED INTC Controller";
dc->realize = aspeed_intc_realize;
dc->unrealize = aspeed_intc_unrealize;
device_class_set_legacy_reset(dc, aspeed_intc_reset);
dc->vmsd = NULL;
aic->reg_ops = &aspeed_intc_ops;
}
static const TypeInfo aspeed_intc_info = {
.name = TYPE_ASPEED_INTC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = aspeed_intc_instance_init,
.instance_size = sizeof(AspeedINTCState),
.class_init = aspeed_intc_class_init,
.class_size = sizeof(AspeedINTCClass),
.abstract = true,
};
static AspeedINTCIRQ aspeed_2700_intc_irqs[ASPEED_INTC_MAX_INPINS] = {
{0, 0, 10, R_GICINT192_201_EN, R_GICINT192_201_STATUS},
{1, 10, 1, R_GICINT128_EN, R_GICINT128_STATUS},
{2, 11, 1, R_GICINT129_EN, R_GICINT129_STATUS},
{3, 12, 1, R_GICINT130_EN, R_GICINT130_STATUS},
{4, 13, 1, R_GICINT131_EN, R_GICINT131_STATUS},
{5, 14, 1, R_GICINT132_EN, R_GICINT132_STATUS},
{6, 15, 1, R_GICINT133_EN, R_GICINT133_STATUS},
{7, 16, 1, R_GICINT134_EN, R_GICINT134_STATUS},
{8, 17, 1, R_GICINT135_EN, R_GICINT135_STATUS},
{9, 18, 1, R_GICINT136_EN, R_GICINT136_STATUS},
};
static void aspeed_2700_intc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedINTCClass *aic = ASPEED_INTC_CLASS(klass);
dc->desc = "ASPEED 2700 INTC Controller";
aic->num_lines = 32;
aic->num_inpins = 10;
aic->num_outpins = 19;
aic->mem_size = 0x4000;
aic->nr_regs = 0xB08 >> 2;
aic->reg_offset = 0x1000;
aic->irq_table = aspeed_2700_intc_irqs;
aic->irq_table_count = ARRAY_SIZE(aspeed_2700_intc_irqs);
}
static const TypeInfo aspeed_2700_intc_info = {
.name = TYPE_ASPEED_2700_INTC,
.parent = TYPE_ASPEED_INTC,
.class_init = aspeed_2700_intc_class_init,
};
static AspeedINTCIRQ aspeed_2700_intcio_irqs[ASPEED_INTC_MAX_INPINS] = {
{0, 0, 1, R_GICINT192_EN, R_GICINT192_STATUS},
{1, 1, 1, R_GICINT193_EN, R_GICINT193_STATUS},
{2, 2, 1, R_GICINT194_EN, R_GICINT194_STATUS},
{3, 3, 1, R_GICINT195_EN, R_GICINT195_STATUS},
{4, 4, 1, R_GICINT196_EN, R_GICINT196_STATUS},
{5, 5, 1, R_GICINT197_EN, R_GICINT197_STATUS},
};
static void aspeed_2700_intcio_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedINTCClass *aic = ASPEED_INTC_CLASS(klass);
dc->desc = "ASPEED 2700 INTC IO Controller";
aic->num_lines = 32;
aic->num_inpins = 6;
aic->num_outpins = 6;
aic->mem_size = 0x400;
aic->nr_regs = 0x58 >> 2;
aic->reg_offset = 0x100;
aic->reg_ops = &aspeed_intcio_ops;
aic->irq_table = aspeed_2700_intcio_irqs;
aic->irq_table_count = ARRAY_SIZE(aspeed_2700_intcio_irqs);
}
static const TypeInfo aspeed_2700_intcio_info = {
.name = TYPE_ASPEED_2700_INTCIO,
.parent = TYPE_ASPEED_INTC,
.class_init = aspeed_2700_intcio_class_init,
};
static void aspeed_intc_register_types(void)
{
type_register_static(&aspeed_intc_info);
type_register_static(&aspeed_2700_intc_info);
type_register_static(&aspeed_2700_intcio_info);
}
type_init(aspeed_intc_register_types);