1
0
Fork 0
qemu/hw/ppc/pnv_occ.c
Daniel Baumann ea34ddeea6
Adding upstream version 1:10.0.2+ds.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 14:27:05 +02:00

923 lines
31 KiB
C

/*
* QEMU PowerPC PowerNV Emulation of a few OCC related registers
*
* Copyright (c) 2015-2017, IBM Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "target/ppc/cpu.h"
#include "qapi/error.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_chip.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/ppc/pnv_occ.h"
#define P8_HOMER_OPAL_DATA_OFFSET 0x1F8000
#define P9_HOMER_OPAL_DATA_OFFSET 0x0E2000
#define OCB_OCI_OCCMISC 0x4020
#define OCB_OCI_OCCMISC_AND 0x4021
#define OCB_OCI_OCCMISC_OR 0x4022
#define OCCMISC_PSI_IRQ PPC_BIT(0)
#define OCCMISC_IRQ_SHMEM PPC_BIT(3)
/* OCC sensors */
#define OCC_SENSOR_DATA_BLOCK_OFFSET 0x0000
#define OCC_SENSOR_DATA_VALID 0x0001
#define OCC_SENSOR_DATA_VERSION 0x0002
#define OCC_SENSOR_DATA_READING_VERSION 0x0004
#define OCC_SENSOR_DATA_NR_SENSORS 0x0008
#define OCC_SENSOR_DATA_NAMES_OFFSET 0x0010
#define OCC_SENSOR_DATA_READING_PING_OFFSET 0x0014
#define OCC_SENSOR_DATA_READING_PONG_OFFSET 0x000c
#define OCC_SENSOR_DATA_NAME_LENGTH 0x000d
#define OCC_SENSOR_NAME_STRUCTURE_TYPE 0x0023
#define OCC_SENSOR_LOC_CORE 0x0022
#define OCC_SENSOR_LOC_GPU 0x0020
#define OCC_SENSOR_TYPE_POWER 0x0003
#define OCC_SENSOR_NAME 0x0005
#define HWMON_SENSORS_MASK 0x001e
static void pnv_occ_set_misc(PnvOCC *occ, uint64_t val)
{
val &= PPC_BITMASK(0, 18); /* Mask out unimplemented bits */
occ->occmisc = val;
/*
* OCCMISC IRQ bit triggers the interrupt on a 0->1 edge, but not clear
* how that is handled in PSI so it is level-triggered here, which is not
* really correct (but skiboot is okay with it).
*/
qemu_set_irq(occ->psi_irq, !!(val & OCCMISC_PSI_IRQ));
}
static void pnv_occ_raise_msg_irq(PnvOCC *occ)
{
pnv_occ_set_misc(occ, occ->occmisc | OCCMISC_PSI_IRQ | OCCMISC_IRQ_SHMEM);
}
static uint64_t pnv_occ_power8_xscom_read(void *opaque, hwaddr addr,
unsigned size)
{
PnvOCC *occ = PNV_OCC(opaque);
uint32_t offset = addr >> 3;
uint64_t val = 0;
switch (offset) {
case OCB_OCI_OCCMISC:
val = occ->occmisc;
break;
default:
qemu_log_mask(LOG_UNIMP, "OCC Unimplemented register: Ox%"
HWADDR_PRIx "\n", addr >> 3);
}
return val;
}
static void pnv_occ_power8_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvOCC *occ = PNV_OCC(opaque);
uint32_t offset = addr >> 3;
switch (offset) {
case OCB_OCI_OCCMISC_AND:
pnv_occ_set_misc(occ, occ->occmisc & val);
break;
case OCB_OCI_OCCMISC_OR:
pnv_occ_set_misc(occ, occ->occmisc | val);
break;
case OCB_OCI_OCCMISC:
pnv_occ_set_misc(occ, val);
break;
default:
qemu_log_mask(LOG_UNIMP, "OCC Unimplemented register: Ox%"
HWADDR_PRIx "\n", addr >> 3);
}
}
static uint64_t pnv_occ_common_area_read(void *opaque, hwaddr addr,
unsigned width)
{
switch (addr) {
/*
* occ-sensor sanity check that asserts the sensor
* header block
*/
case OCC_SENSOR_DATA_BLOCK_OFFSET:
case OCC_SENSOR_DATA_VALID:
case OCC_SENSOR_DATA_VERSION:
case OCC_SENSOR_DATA_READING_VERSION:
case OCC_SENSOR_DATA_NR_SENSORS:
case OCC_SENSOR_DATA_NAMES_OFFSET:
case OCC_SENSOR_DATA_READING_PING_OFFSET:
case OCC_SENSOR_DATA_READING_PONG_OFFSET:
case OCC_SENSOR_NAME_STRUCTURE_TYPE:
return 1;
case OCC_SENSOR_DATA_NAME_LENGTH:
return 0x30;
case OCC_SENSOR_LOC_CORE:
return 0x0040;
case OCC_SENSOR_TYPE_POWER:
return 0x0080;
case OCC_SENSOR_NAME:
return 0x1000;
case HWMON_SENSORS_MASK:
case OCC_SENSOR_LOC_GPU:
return 0x8e00;
}
return 0;
}
static void pnv_occ_common_area_write(void *opaque, hwaddr addr,
uint64_t val, unsigned width)
{
/* callback function defined to occ common area write */
return;
}
static const MemoryRegionOps pnv_occ_power8_xscom_ops = {
.read = pnv_occ_power8_xscom_read,
.write = pnv_occ_power8_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
const MemoryRegionOps pnv_occ_sram_ops = {
.read = pnv_occ_common_area_read,
.write = pnv_occ_common_area_write,
.valid.min_access_size = 1,
.valid.max_access_size = 8,
.impl.min_access_size = 1,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static void pnv_occ_power8_class_init(ObjectClass *klass, void *data)
{
PnvOCCClass *poc = PNV_OCC_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "PowerNV OCC Controller (POWER8)";
poc->opal_shared_memory_offset = P8_HOMER_OPAL_DATA_OFFSET;
poc->opal_shared_memory_version = 0x02;
poc->xscom_size = PNV_XSCOM_OCC_SIZE;
poc->xscom_ops = &pnv_occ_power8_xscom_ops;
}
static const TypeInfo pnv_occ_power8_type_info = {
.name = TYPE_PNV8_OCC,
.parent = TYPE_PNV_OCC,
.instance_size = sizeof(PnvOCC),
.class_init = pnv_occ_power8_class_init,
};
#define P9_OCB_OCI_OCCMISC 0x6080
#define P9_OCB_OCI_OCCMISC_CLEAR 0x6081
#define P9_OCB_OCI_OCCMISC_OR 0x6082
static uint64_t pnv_occ_power9_xscom_read(void *opaque, hwaddr addr,
unsigned size)
{
PnvOCC *occ = PNV_OCC(opaque);
uint32_t offset = addr >> 3;
uint64_t val = 0;
switch (offset) {
case P9_OCB_OCI_OCCMISC:
val = occ->occmisc;
break;
default:
qemu_log_mask(LOG_UNIMP, "OCC Unimplemented register: Ox%"
HWADDR_PRIx "\n", addr >> 3);
}
return val;
}
static void pnv_occ_power9_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvOCC *occ = PNV_OCC(opaque);
uint32_t offset = addr >> 3;
switch (offset) {
case P9_OCB_OCI_OCCMISC_CLEAR:
pnv_occ_set_misc(occ, 0);
break;
case P9_OCB_OCI_OCCMISC_OR:
pnv_occ_set_misc(occ, occ->occmisc | val);
break;
case P9_OCB_OCI_OCCMISC:
pnv_occ_set_misc(occ, val);
break;
default:
qemu_log_mask(LOG_UNIMP, "OCC Unimplemented register: Ox%"
HWADDR_PRIx "\n", addr >> 3);
}
}
static const MemoryRegionOps pnv_occ_power9_xscom_ops = {
.read = pnv_occ_power9_xscom_read,
.write = pnv_occ_power9_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static void pnv_occ_power9_class_init(ObjectClass *klass, void *data)
{
PnvOCCClass *poc = PNV_OCC_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "PowerNV OCC Controller (POWER9)";
poc->opal_shared_memory_offset = P9_HOMER_OPAL_DATA_OFFSET;
poc->opal_shared_memory_version = 0x90;
poc->xscom_size = PNV9_XSCOM_OCC_SIZE;
poc->xscom_ops = &pnv_occ_power9_xscom_ops;
assert(!dc->user_creatable);
}
static const TypeInfo pnv_occ_power9_type_info = {
.name = TYPE_PNV9_OCC,
.parent = TYPE_PNV_OCC,
.instance_size = sizeof(PnvOCC),
.class_init = pnv_occ_power9_class_init,
};
static void pnv_occ_power10_class_init(ObjectClass *klass, void *data)
{
PnvOCCClass *poc = PNV_OCC_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "PowerNV OCC Controller (POWER10)";
poc->opal_shared_memory_offset = P9_HOMER_OPAL_DATA_OFFSET;
poc->opal_shared_memory_version = 0xA0;
poc->xscom_size = PNV9_XSCOM_OCC_SIZE;
poc->xscom_ops = &pnv_occ_power9_xscom_ops;
assert(!dc->user_creatable);
}
static const TypeInfo pnv_occ_power10_type_info = {
.name = TYPE_PNV10_OCC,
.parent = TYPE_PNV_OCC,
.class_init = pnv_occ_power10_class_init,
};
static bool occ_init_homer_memory(PnvOCC *occ, Error **errp);
static bool occ_model_tick(PnvOCC *occ);
/* Relatively arbitrary */
#define OCC_POLL_MS 100
static void occ_state_machine_timer(void *opaque)
{
PnvOCC *occ = opaque;
uint64_t next = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + OCC_POLL_MS;
if (occ_model_tick(occ)) {
timer_mod(&occ->state_machine_timer, next);
}
}
static void pnv_occ_realize(DeviceState *dev, Error **errp)
{
PnvOCC *occ = PNV_OCC(dev);
PnvOCCClass *poc = PNV_OCC_GET_CLASS(occ);
PnvHomer *homer = occ->homer;
assert(homer);
if (!occ_init_homer_memory(occ, errp)) {
return;
}
occ->occmisc = 0;
/* XScom region for OCC registers */
pnv_xscom_region_init(&occ->xscom_regs, OBJECT(dev), poc->xscom_ops,
occ, "xscom-occ", poc->xscom_size);
/* OCC common area mmio region for OCC SRAM registers */
memory_region_init_io(&occ->sram_regs, OBJECT(dev), &pnv_occ_sram_ops,
occ, "occ-common-area",
PNV_OCC_SENSOR_DATA_BLOCK_SIZE);
qdev_init_gpio_out(dev, &occ->psi_irq, 1);
timer_init_ms(&occ->state_machine_timer, QEMU_CLOCK_VIRTUAL,
occ_state_machine_timer, occ);
timer_mod(&occ->state_machine_timer, OCC_POLL_MS);
}
static const Property pnv_occ_properties[] = {
DEFINE_PROP_LINK("homer", PnvOCC, homer, TYPE_PNV_HOMER, PnvHomer *),
};
static void pnv_occ_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = pnv_occ_realize;
device_class_set_props(dc, pnv_occ_properties);
dc->user_creatable = false;
}
static const TypeInfo pnv_occ_type_info = {
.name = TYPE_PNV_OCC,
.parent = TYPE_DEVICE,
.instance_size = sizeof(PnvOCC),
.class_init = pnv_occ_class_init,
.class_size = sizeof(PnvOCCClass),
.abstract = true,
};
static void pnv_occ_register_types(void)
{
type_register_static(&pnv_occ_type_info);
type_register_static(&pnv_occ_power8_type_info);
type_register_static(&pnv_occ_power9_type_info);
type_register_static(&pnv_occ_power10_type_info);
}
type_init(pnv_occ_register_types);
/*
* From skiboot/hw/occ.c with following changes:
* - tab to space conversion
* - Type conversions u8->uint8_t s8->int8_t __be16->uint16_t etc
* - __packed -> QEMU_PACKED
*/
/* OCC Communication Area for PStates */
#define OPAL_DYNAMIC_DATA_OFFSET 0x0B80
/* relative to HOMER_OPAL_DATA_OFFSET */
#define MAX_PSTATES 256
#define MAX_P8_CORES 12
#define MAX_P9_CORES 24
#define MAX_P10_CORES 32
#define MAX_OPAL_CMD_DATA_LENGTH 4090
#define MAX_OCC_RSP_DATA_LENGTH 8698
#define P8_PIR_CORE_MASK 0xFFF8
#define P9_PIR_QUAD_MASK 0xFFF0
#define P10_PIR_CHIP_MASK 0x0000
#define FREQ_MAX_IN_DOMAIN 0
#define FREQ_MOST_RECENTLY_SET 1
/**
* OCC-OPAL Shared Memory Region
*
* Reference document :
* https://github.com/open-power/docs/blob/master/occ/OCC_OpenPwr_FW_Interfaces.pdf
*
* Supported layout versions:
* - 0x01, 0x02 : P8
* https://github.com/open-power/occ/blob/master_p8/src/occ/proc/proc_pstate.h
*
* - 0x90 : P9
* https://github.com/open-power/occ/blob/master/src/occ_405/proc/proc_pstate.h
* In 0x90 the data is separated into :-
* -- Static Data (struct occ_pstate_table): Data is written once by OCC
* -- Dynamic Data (struct occ_dynamic_data): Data is updated at runtime
*
* struct occ_pstate_table - Pstate table layout
* @valid: Indicates if data is valid
* @version: Layout version [Major/Minor]
* @v2.throttle: Reason for limiting the max pstate
* @v9.occ_role: OCC role (Master/Slave)
* @v#.pstate_min: Minimum pstate ever allowed
* @v#.pstate_nom: Nominal pstate
* @v#.pstate_turbo: Maximum turbo pstate
* @v#.pstate_ultra_turbo: Maximum ultra turbo pstate and the maximum
* pstate ever allowed
* @v#.pstates: Pstate-id and frequency list from Pmax to Pmin
* @v#.pstates.id: Pstate-id
* @v#.pstates.flags: Pstate-flag(reserved)
* @v2.pstates.vdd: Voltage Identifier
* @v2.pstates.vcs: Voltage Identifier
* @v#.pstates.freq_khz: Frequency in KHz
* @v#.core_max[1..N]: Max pstate with N active cores
* @spare/reserved/pad: Unused data
*/
struct occ_pstate_table {
uint8_t valid;
uint8_t version;
union QEMU_PACKED {
struct QEMU_PACKED { /* Version 0x01 and 0x02 */
uint8_t throttle;
int8_t pstate_min;
int8_t pstate_nom;
int8_t pstate_turbo;
int8_t pstate_ultra_turbo;
uint8_t spare;
uint64_t reserved;
struct QEMU_PACKED {
int8_t id;
uint8_t flags;
uint8_t vdd;
uint8_t vcs;
uint32_t freq_khz;
} pstates[MAX_PSTATES];
int8_t core_max[MAX_P8_CORES];
uint8_t pad[100];
} v2;
struct QEMU_PACKED { /* Version 0x90 */
uint8_t occ_role;
uint8_t pstate_min;
uint8_t pstate_nom;
uint8_t pstate_turbo;
uint8_t pstate_ultra_turbo;
uint8_t spare;
uint64_t reserved1;
uint64_t reserved2;
struct QEMU_PACKED {
uint8_t id;
uint8_t flags;
uint16_t reserved;
uint32_t freq_khz;
} pstates[MAX_PSTATES];
uint8_t core_max[MAX_P9_CORES];
uint8_t pad[56];
} v9;
struct QEMU_PACKED { /* Version 0xA0 */
uint8_t occ_role;
uint8_t pstate_min;
uint8_t pstate_fixed_freq;
uint8_t pstate_base;
uint8_t pstate_ultra_turbo;
uint8_t pstate_fmax;
uint8_t minor;
uint8_t pstate_bottom_throttle;
uint8_t spare;
uint8_t spare1;
uint32_t reserved_32;
uint64_t reserved_64;
struct QEMU_PACKED {
uint8_t id;
uint8_t valid;
uint16_t reserved;
uint32_t freq_khz;
} pstates[MAX_PSTATES];
uint8_t core_max[MAX_P10_CORES];
uint8_t pad[48];
} v10;
};
} QEMU_PACKED;
/**
* OPAL-OCC Command Response Interface
*
* OPAL-OCC Command Buffer
*
* ---------------------------------------------------------------------
* | OPAL | Cmd | OPAL | | Cmd Data | Cmd Data | OPAL |
* | Cmd | Request | OCC | Reserved | Length | Length | Cmd |
* | Flags | ID | Cmd | | (MSB) | (LSB) | Data... |
* ---------------------------------------------------------------------
* | ….OPAL Command Data up to max of Cmd Data Length 4090 bytes |
* | |
* ---------------------------------------------------------------------
*
* OPAL Command Flag
*
* -----------------------------------------------------------------
* | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
* | (msb) | | | | | | | (lsb) |
* -----------------------------------------------------------------
* |Cmd | | | | | | | |
* |Ready | | | | | | | |
* -----------------------------------------------------------------
*
* struct opal_command_buffer - Defines the layout of OPAL command buffer
* @flag: Provides general status of the command
* @request_id: Token to identify request
* @cmd: Command sent
* @data_size: Command data length
* @data: Command specific data
* @spare: Unused byte
*/
struct opal_command_buffer {
uint8_t flag;
uint8_t request_id;
uint8_t cmd;
uint8_t spare;
uint16_t data_size;
uint8_t data[MAX_OPAL_CMD_DATA_LENGTH];
} QEMU_PACKED;
/**
* OPAL-OCC Response Buffer
*
* ---------------------------------------------------------------------
* | OCC | Cmd | OPAL | Response | Rsp Data | Rsp Data | OPAL |
* | Rsp | Request | OCC | Status | Length | Length | Rsp |
* | Flags | ID | Cmd | | (MSB) | (LSB) | Data... |
* ---------------------------------------------------------------------
* | ….OPAL Response Data up to max of Rsp Data Length 8698 bytes |
* | |
* ---------------------------------------------------------------------
*
* OCC Response Flag
*
* -----------------------------------------------------------------
* | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
* | (msb) | | | | | | | (lsb) |
* -----------------------------------------------------------------
* | | | | | | |OCC in | Rsp |
* | | | | | | |progress|Ready |
* -----------------------------------------------------------------
*
* struct occ_response_buffer - Defines the layout of OCC response buffer
* @flag: Provides general status of the response
* @request_id: Token to identify request
* @cmd: Command requested
* @status: Indicates success/failure status of
* the command
* @data_size: Response data length
* @data: Response specific data
*/
struct occ_response_buffer {
uint8_t flag;
uint8_t request_id;
uint8_t cmd;
uint8_t status;
uint16_t data_size;
uint8_t data[MAX_OCC_RSP_DATA_LENGTH];
} QEMU_PACKED;
/**
* OCC-OPAL Shared Memory Interface Dynamic Data Vx90
*
* struct occ_dynamic_data - Contains runtime attributes
* @occ_state: Current state of OCC
* @major_version: Major version number
* @minor_version: Minor version number (backwards compatible)
* Version 1 indicates GPU presence populated
* @gpus_present: Bitmask of GPUs present (on systems where GPU
* presence is detected through APSS)
* @cpu_throttle: Reason for limiting the max pstate
* @mem_throttle: Reason for throttling memory
* @quick_pwr_drop: Indicates if QPD is asserted
* @pwr_shifting_ratio: Indicates the current percentage of power to
* take away from the CPU vs GPU when shifting
* power to maintain a power cap. Value of 100
* means take all power from CPU.
* @pwr_cap_type: Indicates type of power cap in effect
* @hard_min_pwr_cap: Hard minimum system power cap in Watts.
* Guaranteed unless hardware failure
* @max_pwr_cap: Maximum allowed system power cap in Watts
* @cur_pwr_cap: Current system power cap
* @soft_min_pwr_cap: Soft powercap minimum. OCC may or may not be
* able to maintain this
* @spare/reserved: Unused data
* @cmd: Opal Command Buffer
* @rsp: OCC Response Buffer
*/
struct occ_dynamic_data {
uint8_t occ_state;
uint8_t major_version;
uint8_t minor_version;
uint8_t gpus_present;
union QEMU_PACKED {
struct QEMU_PACKED { /* Version 0x90 */
uint8_t spare1;
} v9;
struct QEMU_PACKED { /* Version 0xA0 */
uint8_t wof_enabled;
} v10;
};
uint8_t cpu_throttle;
uint8_t mem_throttle;
uint8_t quick_pwr_drop;
uint8_t pwr_shifting_ratio;
uint8_t pwr_cap_type;
uint16_t hard_min_pwr_cap;
uint16_t max_pwr_cap;
uint16_t cur_pwr_cap;
uint16_t soft_min_pwr_cap;
uint8_t pad[110];
struct opal_command_buffer cmd;
struct occ_response_buffer rsp;
} QEMU_PACKED;
enum occ_response_status {
OCC_RSP_SUCCESS = 0x00,
OCC_RSP_INVALID_COMMAND = 0x11,
OCC_RSP_INVALID_CMD_DATA_LENGTH = 0x12,
OCC_RSP_INVALID_DATA = 0x13,
OCC_RSP_INTERNAL_ERROR = 0x15,
};
#define OCC_ROLE_SLAVE 0x00
#define OCC_ROLE_MASTER 0x01
#define OCC_FLAG_RSP_READY 0x01
#define OCC_FLAG_CMD_IN_PROGRESS 0x02
#define OPAL_FLAG_CMD_READY 0x80
#define PCAP_MAX_POWER_W 100
#define PCAP_SOFT_MIN_POWER_W 20
#define PCAP_HARD_MIN_POWER_W 10
static bool occ_write_static_data(PnvOCC *occ,
struct occ_pstate_table *static_data,
Error **errp)
{
PnvOCCClass *poc = PNV_OCC_GET_CLASS(occ);
PnvHomer *homer = occ->homer;
hwaddr static_addr = homer->base + poc->opal_shared_memory_offset;
MemTxResult ret;
ret = address_space_write(&address_space_memory, static_addr,
MEMTXATTRS_UNSPECIFIED, static_data,
sizeof(*static_data));
if (ret != MEMTX_OK) {
error_setg(errp, "OCC: cannot write OCC-OPAL static data");
return false;
}
return true;
}
static bool occ_read_dynamic_data(PnvOCC *occ,
struct occ_dynamic_data *dynamic_data,
Error **errp)
{
PnvOCCClass *poc = PNV_OCC_GET_CLASS(occ);
PnvHomer *homer = occ->homer;
hwaddr static_addr = homer->base + poc->opal_shared_memory_offset;
hwaddr dynamic_addr = static_addr + OPAL_DYNAMIC_DATA_OFFSET;
MemTxResult ret;
ret = address_space_read(&address_space_memory, dynamic_addr,
MEMTXATTRS_UNSPECIFIED, dynamic_data,
sizeof(*dynamic_data));
if (ret != MEMTX_OK) {
error_setg(errp, "OCC: cannot read OCC-OPAL dynamic data");
return false;
}
return true;
}
static bool occ_write_dynamic_data(PnvOCC *occ,
struct occ_dynamic_data *dynamic_data,
Error **errp)
{
PnvOCCClass *poc = PNV_OCC_GET_CLASS(occ);
PnvHomer *homer = occ->homer;
hwaddr static_addr = homer->base + poc->opal_shared_memory_offset;
hwaddr dynamic_addr = static_addr + OPAL_DYNAMIC_DATA_OFFSET;
MemTxResult ret;
ret = address_space_write(&address_space_memory, dynamic_addr,
MEMTXATTRS_UNSPECIFIED, dynamic_data,
sizeof(*dynamic_data));
if (ret != MEMTX_OK) {
error_setg(errp, "OCC: cannot write OCC-OPAL dynamic data");
return false;
}
return true;
}
static bool occ_opal_send_response(PnvOCC *occ,
struct occ_dynamic_data *dynamic_data,
enum occ_response_status status,
uint8_t *data, uint16_t datalen)
{
struct opal_command_buffer *cmd = &dynamic_data->cmd;
struct occ_response_buffer *rsp = &dynamic_data->rsp;
rsp->request_id = cmd->request_id;
rsp->cmd = cmd->cmd;
rsp->status = status;
rsp->data_size = cpu_to_be16(datalen);
if (datalen) {
memcpy(rsp->data, data, datalen);
}
if (!occ_write_dynamic_data(occ, dynamic_data, NULL)) {
return false;
}
/* Would be a memory barrier here */
rsp->flag = OCC_FLAG_RSP_READY;
cmd->flag = 0;
if (!occ_write_dynamic_data(occ, dynamic_data, NULL)) {
return false;
}
pnv_occ_raise_msg_irq(occ);
return true;
}
/* Returns error status */
static bool occ_opal_process_command(PnvOCC *occ,
struct occ_dynamic_data *dynamic_data)
{
struct opal_command_buffer *cmd = &dynamic_data->cmd;
struct occ_response_buffer *rsp = &dynamic_data->rsp;
if (rsp->flag == 0) {
/* Spend one "tick" in the in-progress state */
rsp->flag = OCC_FLAG_CMD_IN_PROGRESS;
return occ_write_dynamic_data(occ, dynamic_data, NULL);
} else if (rsp->flag != OCC_FLAG_CMD_IN_PROGRESS) {
return occ_opal_send_response(occ, dynamic_data,
OCC_RSP_INTERNAL_ERROR,
NULL, 0);
}
switch (cmd->cmd) {
case 0xD1: { /* SET_POWER_CAP */
uint16_t data;
if (be16_to_cpu(cmd->data_size) != 2) {
return occ_opal_send_response(occ, dynamic_data,
OCC_RSP_INVALID_CMD_DATA_LENGTH,
(uint8_t *)&dynamic_data->cur_pwr_cap,
2);
}
data = be16_to_cpu(*(uint16_t *)cmd->data);
if (data == 0) { /* clear power cap */
dynamic_data->pwr_cap_type = 0x00; /* none */
data = PCAP_MAX_POWER_W;
} else {
dynamic_data->pwr_cap_type = 0x02; /* user set in-band */
if (data < PCAP_HARD_MIN_POWER_W) {
data = PCAP_HARD_MIN_POWER_W;
} else if (data > PCAP_MAX_POWER_W) {
data = PCAP_MAX_POWER_W;
}
}
dynamic_data->cur_pwr_cap = cpu_to_be16(data);
return occ_opal_send_response(occ, dynamic_data,
OCC_RSP_SUCCESS,
(uint8_t *)&dynamic_data->cur_pwr_cap, 2);
}
default:
return occ_opal_send_response(occ, dynamic_data,
OCC_RSP_INVALID_COMMAND,
NULL, 0);
}
g_assert_not_reached();
}
static bool occ_model_tick(PnvOCC *occ)
{
struct occ_dynamic_data dynamic_data;
if (!occ_read_dynamic_data(occ, &dynamic_data, NULL)) {
/* Can't move OCC state field to safe because we can't map it! */
qemu_log("OCC: failed to read HOMER data, shutting down OCC\n");
return false;
}
if (dynamic_data.cmd.flag == OPAL_FLAG_CMD_READY) {
if (!occ_opal_process_command(occ, &dynamic_data)) {
qemu_log("OCC: failed to write HOMER data, shutting down OCC\n");
return false;
}
}
return true;
}
static bool occ_init_homer_memory(PnvOCC *occ, Error **errp)
{
PnvOCCClass *poc = PNV_OCC_GET_CLASS(occ);
PnvHomer *homer = occ->homer;
PnvChip *chip = homer->chip;
struct occ_pstate_table static_data;
struct occ_dynamic_data dynamic_data;
int i;
memset(&static_data, 0, sizeof(static_data));
static_data.valid = 1;
static_data.version = poc->opal_shared_memory_version;
switch (poc->opal_shared_memory_version) {
case 0x02:
static_data.v2.throttle = 0;
static_data.v2.pstate_min = -2;
static_data.v2.pstate_nom = -1;
static_data.v2.pstate_turbo = -1;
static_data.v2.pstate_ultra_turbo = 0;
static_data.v2.pstates[0].id = 0;
static_data.v2.pstates[1].freq_khz = cpu_to_be32(4000000);
static_data.v2.pstates[1].id = -1;
static_data.v2.pstates[1].freq_khz = cpu_to_be32(3000000);
static_data.v2.pstates[2].id = -2;
static_data.v2.pstates[2].freq_khz = cpu_to_be32(2000000);
for (i = 0; i < chip->nr_cores; i++) {
static_data.v2.core_max[i] = 1;
}
break;
case 0x90:
if (chip->chip_id == 0) {
static_data.v9.occ_role = OCC_ROLE_MASTER;
} else {
static_data.v9.occ_role = OCC_ROLE_SLAVE;
}
static_data.v9.pstate_min = 2;
static_data.v9.pstate_nom = 1;
static_data.v9.pstate_turbo = 1;
static_data.v9.pstate_ultra_turbo = 0;
static_data.v9.pstates[0].id = 0;
static_data.v9.pstates[0].freq_khz = cpu_to_be32(4000000);
static_data.v9.pstates[1].id = 1;
static_data.v9.pstates[1].freq_khz = cpu_to_be32(3000000);
static_data.v9.pstates[2].id = 2;
static_data.v9.pstates[2].freq_khz = cpu_to_be32(2000000);
for (i = 0; i < chip->nr_cores; i++) {
static_data.v9.core_max[i] = 1;
}
break;
case 0xA0:
if (chip->chip_id == 0) {
static_data.v10.occ_role = OCC_ROLE_MASTER;
} else {
static_data.v10.occ_role = OCC_ROLE_SLAVE;
}
static_data.v10.pstate_min = 4;
static_data.v10.pstate_fixed_freq = 3;
static_data.v10.pstate_base = 2;
static_data.v10.pstate_ultra_turbo = 0;
static_data.v10.pstate_fmax = 1;
static_data.v10.minor = 0x01;
static_data.v10.pstates[0].valid = 1;
static_data.v10.pstates[0].id = 0;
static_data.v10.pstates[0].freq_khz = cpu_to_be32(4200000);
static_data.v10.pstates[1].valid = 1;
static_data.v10.pstates[1].id = 1;
static_data.v10.pstates[1].freq_khz = cpu_to_be32(4000000);
static_data.v10.pstates[2].valid = 1;
static_data.v10.pstates[2].id = 2;
static_data.v10.pstates[2].freq_khz = cpu_to_be32(3800000);
static_data.v10.pstates[3].valid = 1;
static_data.v10.pstates[3].id = 3;
static_data.v10.pstates[3].freq_khz = cpu_to_be32(3000000);
static_data.v10.pstates[4].valid = 1;
static_data.v10.pstates[4].id = 4;
static_data.v10.pstates[4].freq_khz = cpu_to_be32(2000000);
for (i = 0; i < chip->nr_cores; i++) {
static_data.v10.core_max[i] = 1;
}
break;
default:
g_assert_not_reached();
}
if (!occ_write_static_data(occ, &static_data, errp)) {
return false;
}
memset(&dynamic_data, 0, sizeof(dynamic_data));
dynamic_data.occ_state = 0x3; /* active */
dynamic_data.major_version = 0x0;
dynamic_data.hard_min_pwr_cap = cpu_to_be16(PCAP_HARD_MIN_POWER_W);
dynamic_data.max_pwr_cap = cpu_to_be16(PCAP_MAX_POWER_W);
dynamic_data.cur_pwr_cap = cpu_to_be16(PCAP_MAX_POWER_W);
dynamic_data.soft_min_pwr_cap = cpu_to_be16(PCAP_SOFT_MIN_POWER_W);
switch (poc->opal_shared_memory_version) {
case 0xA0:
dynamic_data.minor_version = 0x1;
dynamic_data.v10.wof_enabled = 0x1;
break;
case 0x90:
dynamic_data.minor_version = 0x1;
break;
case 0x02:
dynamic_data.minor_version = 0x0;
break;
default:
g_assert_not_reached();
}
if (!occ_write_dynamic_data(occ, &dynamic_data, errp)) {
return false;
}
return true;
}