1
0
Fork 0
qemu/roms/skiboot/core/hmi.c
Daniel Baumann ea34ddeea6
Adding upstream version 1:10.0.2+ds.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 14:27:05 +02:00

1582 lines
52 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/*
* Deal with Hypervisor Maintenance Interrupts
*
* Copyright 2013-2019 IBM Corp.
*/
#define pr_fmt(fmt) "HMI: " fmt
#include <skiboot.h>
#include <opal.h>
#include <opal-msg.h>
#include <processor.h>
#include <chiptod.h>
#include <xscom.h>
#include <xscom-p8-regs.h>
#include <xscom-p9-regs.h>
#include <xscom-p10-regs.h>
#include <pci.h>
#include <cpu.h>
#include <chip.h>
#include <pau-regs.h>
#include <npu-regs.h>
#include <npu2-regs.h>
#include <pau.h>
#include <npu2.h>
#include <npu.h>
#include <capp.h>
#include <nvram.h>
#include <cpu.h>
/*
* P9 HMER register layout:
* +===+==========+============================+========+===================+
* |Bit|Name |Description |PowerKVM|Action |
* | | | |HMI | |
* | | | |enabled | |
* | | | |for this| |
* | | | |bit ? | |
* +===+==========+============================+========+===================+
* |0 |malfunctio|A processor core in the |Yes |Raise attn from |
* | |n_allert |system has checkstopped | |sapphire resulting |
* | | |(failed recovery) and has | |xstop |
* | | |requested a CP Sparing | | |
* | | |to occur. This is | | |
* | | |broadcasted to every | | |
* | | |processor in the system | | |
* |---+----------+----------------------------+--------+-------------------|
* |1 |Reserved |reserved |n/a | |
* |---+----------+----------------------------+--------+-------------------|
* |2 |proc_recv_|Processor recovery occurred |Yes |Log message and |
* | |done |error-bit in fir not masked | |continue working. |
* | | |(see bit 11) | | |
* |---+----------+----------------------------+--------+-------------------|
* |3 |proc_recv_|Processor went through |Yes |Log message and |
* | |error_mask|recovery for an error which | |continue working. |
* | |ed |is actually masked for | | |
* | | |reporting | | |
* |---+----------+----------------------------+--------+-------------------|
* |4 | |Timer facility experienced |Yes |Raise attn from |
* | |tfac_error|an error. | |sapphire resulting |
* | | |TB, DEC, HDEC, PURR or SPURR| |xstop |
* | | |may be corrupted (details in| | |
* | | |TFMR) | | |
* |---+----------+----------------------------+--------+-------------------|
* |5 | |TFMR SPR itself is |Yes |Raise attn from |
* | |tfmr_parit|corrupted. | |sapphire resulting |
* | |y_error |Entire timing facility may | |xstop |
* | | |be compromised. | | |
* |---+----------+----------------------------+--------+-------------------|
* |6 |ha_overflo| UPS (Uniterrupted Power |No |N/A |
* | |w_warning |System) Overflow indication | | |
* | | |indicating that the UPS | | |
* | | |DirtyAddrTable has | | |
* | | |reached a limit where it | | |
* | | |requires PHYP unload support| | |
* |---+----------+----------------------------+--------+-------------------|
* |7 |reserved |reserved |n/a |n/a |
* |---+----------+----------------------------+--------+-------------------|
* |8 |xscom_fail|An XSCOM operation caused by|No |We handle it by |
* | | |a cache inhibited load/store| |manually reading |
* | | |from this thread failed. A | |HMER register. |
* | | |trap register is | | |
* | | |available. | | |
* | | | | | |
* |---+----------+----------------------------+--------+-------------------|
* |9 |xscom_done|An XSCOM operation caused by|No |We handle it by |
* | | |a cache inhibited load/store| |manually reading |
* | | |from this thread completed. | |HMER register. |
* | | |If hypervisor | | |
* | | |intends to use this bit, it | | |
* | | |is responsible for clearing | | |
* | | |it before performing the | | |
* | | |xscom operation. | | |
* | | |NOTE: this bit should always| | |
* | | |be masked in HMEER | | |
* |---+----------+----------------------------+--------+-------------------|
* |10 |reserved |reserved |n/a |n/a |
* |---+----------+----------------------------+--------+-------------------|
* |11 |proc_recv_|Processor recovery occurred |y |Log message and |
* | |again |again before bit2 or bit3 | |continue working. |
* | | |was cleared | | |
* |---+----------+----------------------------+--------+-------------------|
* |12-|reserved |was temperature sensor |n/a |n/a |
* |15 | |passed the critical point on| | |
* | | |the way up | | |
* |---+----------+----------------------------+--------+-------------------|
* |16 | |SCOM has set a reserved FIR |No |n/a |
* | |scom_fir_h|bit to cause recovery | | |
* | |m | | | |
* |---+----------+----------------------------+--------+-------------------|
* |17 |trig_fir_h|Debug trigger has set a |No |n/a |
* | |mi |reserved FIR bit to cause | | |
* | | |recovery | | |
* |---+----------+----------------------------+--------+-------------------|
* |18 |reserved |reserved |n/a |n/a |
* |---+----------+----------------------------+--------+-------------------|
* |19 |reserved |reserved |n/a |n/a |
* |---+----------+----------------------------+--------+-------------------|
* |20 |hyp_resour|A hypervisor resource error |y |Raise attn from |
* | |ce_err |occurred: data parity error | |sapphire resulting |
* | | |on, SPRC0:3; SPR_Modereg or | |xstop. |
* | | |HMEER. | | |
* | | |Note: this bit will cause an| | |
* | | |check_stop when (HV=1, PR=0 | | |
* | | |and EE=0) | | |
* |---+----------+----------------------------+--------+-------------------|
* |21-| |if bit 8 is active, the |No |We handle it by |
* |23 |xscom_stat|reason will be detailed in | |Manually reading |
* | |us |these bits. see chapter 11.1| |HMER register. |
* | | |This bits are information | | |
* | | |only and always masked | | |
* | | |(mask = '0') | | |
* | | |If hypervisor intends to use| | |
* | | |this bit, it is responsible | | |
* | | |for clearing it before | | |
* | | |performing the xscom | | |
* | | |operation. | | |
* |---+----------+----------------------------+--------+-------------------|
* |24-|Not |Not implemented |n/a |n/a |
* |63 |implemente| | | |
* | |d | | | |
* +-- +----------+----------------------------+--------+-------------------+
*
* Above HMER bits can be enabled/disabled by modifying
* SPR_HMEER_HMI_ENABLE_MASK #define in include/processor.h
* If you modify support for any of the bits listed above, please make sure
* you change the above table to refelct that.
*
* NOTE: Per Dave Larson, never enable 8,9,21-23
*/
/*
* P10 HMER register layout:
* Bit Name Description
* 0 malfunction_alert A processor core in the system has checkstopped
* (failed recovery). This is broadcasted to every
* processor in the system
*
* 1 reserved reserved
*
* 2 proc_rcvy_done Processor recovery occurred error-bit in fir not
* masked (see bit 11)
*
* 3 reserved reserved
*
* 4 tfac_error Timer facility experienced an error. TB, DEC,
* HDEC, PURR or SPURR may be corrupted (details in
* TFMR)
*
* 5 tfx_error Error occurred on transfer from tfac shadow to
* core
*
* 6 spurr_scale_limit Nominal frequency exceeded 399 percent
*
* 7 reserved reserved
*
* 8 xscom_fail An XSCOM operation caused by a cache inhibited
* load/store from this thread failed. A trap
* register is available.
*
* 9 xscom_done An XSCOM operation caused by a cache inhibited
* load/store from this thread completed. If
* hypervisor intends to use this bit, it is
* responsible for clearing it before performing the
* xscom operation. NOTE: this bit should always be
* masked in HMEER
*
* 10 reserved reserved
*
* 11 proc_rcvy_again Processor recovery occurred again before bit 2
* was cleared
*
* 12-15 reserved reserved
*
* 16 scom_fir_hmi An error inject to PC FIR has occurred to set HMI.
* This error inject can also set FIR(61) to cause
* recovery.
*
* 17 reserved reserved
*
* 18 trig_fir_hmi Debug trigger has occurred to set HMI. This
* trigger can also set FIR(60) to cause recovery
*
* 19-20 reserved reserved
*
* 21-23 xscom_status If bit 8 is active, the reason will be detailed in
* these bits. These bits are information only and
* always masked (mask = 0) If hypervisor intends
* to use this field, it is responsible for clearing
* it before performing the xscom operation.
*
* 24:63 Not implemented Not implemented.
*
* P10 HMEER enabled bits:
* Name Action
* malfunction_alert Decode and log FIR bits.
* proc_rcvy_done Log and continue.
* tfac_error Log and attempt to recover time facilities.
* tfx_error Log and attempt to recover time facilities.
* spurr_scale_limit Log and continue. XXX?
* proc_rcvy_again Log and continue.
*/
/* Used for tracking cpu threads inside hmi handling. */
#define HMI_STATE_CLEANUP_DONE 0x100
#define CORE_THREAD_MASK 0x0ff
#define SUBCORE_THREAD_MASK(s_id, t_count) \
((((1UL) << (t_count)) - 1) << ((s_id) * (t_count)))
#define SINGLE_THREAD_MASK(t_id) ((1UL) << (t_id))
/*
* Number of iterations for the various timeouts. We can't use the timebase
* as it might be broken. We measured experimentally that 40 millions loops
* of cpu_relax() gives us more than 1s. The margin is comfortable enough.
*/
#define TIMEOUT_LOOPS 40000000
/* TFMR other errors. (other than bit 26 and 45) */
#define SPR_TFMR_OTHER_ERRORS \
(SPR_TFMR_TBST_CORRUPT | SPR_TFMR_TB_MISSING_SYNC | \
SPR_TFMR_TB_MISSING_STEP | SPR_TFMR_FW_CONTROL_ERR | \
SPR_TFMR_PURR_PARITY_ERR | SPR_TFMR_SPURR_PARITY_ERR | \
SPR_TFMR_DEC_PARITY_ERR | SPR_TFMR_TFMR_CORRUPT | \
SPR_TFMR_CHIP_TOD_INTERRUPT)
/* TFMR "all core" errors (sent to all threads) */
#define SPR_TFMR_CORE_ERRORS \
(SPR_TFMR_TBST_CORRUPT | SPR_TFMR_TB_MISSING_SYNC | \
SPR_TFMR_TB_MISSING_STEP | SPR_TFMR_FW_CONTROL_ERR | \
SPR_TFMR_TFMR_CORRUPT | SPR_TFMR_TB_RESIDUE_ERR | \
SPR_TFMR_HDEC_PARITY_ERROR | SPR_TFMR_TFAC_XFER_ERROR)
/* TFMR "thread" errors */
#define SPR_TFMR_THREAD_ERRORS \
(SPR_TFMR_PURR_PARITY_ERR | SPR_TFMR_SPURR_PARITY_ERR | \
SPR_TFMR_DEC_PARITY_ERR)
/*
* Starting from p9, core inits are setup to escalate all core
* local checkstop to system checkstop. Review this list when that changes.
*/
static const struct core_xstop_bit_info {
uint8_t bit; /* CORE FIR bit number */
enum OpalHMI_CoreXstopReason reason;
} xstop_bits[] = {
{ 3, CORE_CHECKSTOP_IFU_REGFILE },
{ 5, CORE_CHECKSTOP_IFU_LOGIC },
{ 8, CORE_CHECKSTOP_PC_DURING_RECOV },
{ 10, CORE_CHECKSTOP_ISU_REGFILE },
{ 12, CORE_CHECKSTOP_ISU_LOGIC },
{ 21, CORE_CHECKSTOP_FXU_LOGIC },
{ 25, CORE_CHECKSTOP_VSU_LOGIC },
{ 26, CORE_CHECKSTOP_PC_RECOV_IN_MAINT_MODE },
{ 32, CORE_CHECKSTOP_LSU_REGFILE },
{ 36, CORE_CHECKSTOP_PC_FWD_PROGRESS },
{ 38, CORE_CHECKSTOP_LSU_LOGIC },
{ 45, CORE_CHECKSTOP_PC_LOGIC },
{ 48, CORE_CHECKSTOP_PC_HYP_RESOURCE },
{ 52, CORE_CHECKSTOP_PC_HANG_RECOV_FAILED },
{ 54, CORE_CHECKSTOP_PC_AMBI_HANG_DETECTED },
{ 63, CORE_CHECKSTOP_PC_SPRD_HYP_ERR_INJ },
};
struct core_fir_bit_info {
uint8_t bit; /* CORE FIR bit number */
const char *reason;
};
static const struct core_fir_bit_info p9_recoverable_bits[] = {
{ 0, "IFU - SRAM (ICACHE parity, etc)" },
{ 2, "IFU - RegFile" },
{ 4, "IFU - Logic" },
{ 9, "ISU - RegFile" },
{ 11, "ISU - Logic" },
{ 13, "ISU - Recoverable due to not in MT window" },
{ 24, "VSU - Logic" },
{ 27, "VSU - DFU logic" },
{ 29, "LSU - SRAM (DCACHE parity, etc)" },
{ 31, "LSU - RegFile" },
/* The following 3 bits may be set by SRAM errors. */
{ 33, "LSU - TLB multi hit" },
{ 34, "LSU - SLB multi hit" },
{ 35, "LSU - ERAT multi hit" },
{ 37, "LSU - Logic" },
{ 39, "LSU - Recoverable due to not in MT window" },
{ 43, "PC - Thread hang recovery" },
};
static const struct core_fir_bit_info p10_core_fir_bits[] = {
{ 0, "IFU - SRAM recoverable error (ICACHE parity error, etc.)" },
{ 1, "PC - TC checkstop" },
{ 2, "IFU - RegFile recoverable error" },
{ 3, "IFU - RegFile core checkstop" },
{ 4, "IFU - Logic recoverable error" },
{ 5, "IFU - Logic core checkstop" },
{ 7, "VSU - Inference accumulator recoverable error" },
{ 8, "PC - Recovery core checkstop" },
{ 9, "VSU - Slice Target File (STF) recoverable error" },
{ 11, "ISU - Logic recoverable error" },
{ 12, "ISU - Logic core checkstop" },
{ 14, "ISU - Machine check received while ME=0 checkstop" },
{ 15, "ISU - UE from L2" },
{ 16, "ISU - Number of UEs from L2 above threshold" },
{ 17, "ISU - UE on CI load" },
{ 18, "MMU - TLB recoverable error" },
{ 19, "MMU - SLB error" },
{ 21, "MMU - CXT recoverable error" },
{ 22, "MMU - Logic core checkstop" },
{ 23, "MMU - MMU system checkstop" },
{ 24, "VSU - Logic recoverable error" },
{ 25, "VSU - Logic core checkstop" },
{ 26, "PC - In maint mode and recovery in progress" },
{ 28, "PC - PC system checkstop" },
{ 29, "LSU - SRAM recoverable error (DCACHE parity error, etc.)" },
{ 30, "LSU - Set deleted" },
{ 31, "LSU - RegFile recoverable error" },
{ 32, "LSU - RegFile core checkstop" },
{ 33, "MMU - TLB multi hit error occurred" },
{ 34, "MMU - SLB multi hit error occurred" },
{ 35, "LSU - ERAT multi hit error occurred" },
{ 36, "PC - Forward progress error" },
{ 37, "LSU - Logic recoverable error" },
{ 38, "LSU - Logic core checkstop" },
{ 41, "LSU - System checkstop" },
{ 43, "PC - Thread hang recoverable error" },
{ 45, "PC - Logic core checkstop" },
{ 47, "PC - TimeBase facility checkstop" },
{ 52, "PC - Hang recovery failed core checkstop" },
{ 53, "PC - Core internal hang detected" },
{ 55, "PC - Nest hang detected" },
{ 56, "PC - Other core chiplet recoverable error" },
{ 57, "PC - Other core chiplet core checkstop" },
{ 58, "PC - Other core chiplet system checkstop" },
{ 59, "PC - SCOM satellite error detected" },
{ 60, "PC - Debug trigger error inject" },
{ 61, "PC - SCOM or firmware recoverable error inject" },
{ 62, "PC - Firmware checkstop error inject" },
{ 63, "PC - Firmware SPRC / SPRD checkstop" },
};
static const struct nx_xstop_bit_info {
uint8_t bit; /* NX FIR bit number */
enum OpalHMI_NestAccelXstopReason reason;
} nx_dma_xstop_bits[] = {
{ 1, NX_CHECKSTOP_SHM_INVAL_STATE_ERR },
{ 15, NX_CHECKSTOP_DMA_INVAL_STATE_ERR_1 },
{ 16, NX_CHECKSTOP_DMA_INVAL_STATE_ERR_2 },
{ 20, NX_CHECKSTOP_DMA_CH0_INVAL_STATE_ERR },
{ 21, NX_CHECKSTOP_DMA_CH1_INVAL_STATE_ERR },
{ 22, NX_CHECKSTOP_DMA_CH2_INVAL_STATE_ERR },
{ 23, NX_CHECKSTOP_DMA_CH3_INVAL_STATE_ERR },
{ 24, NX_CHECKSTOP_DMA_CH4_INVAL_STATE_ERR },
{ 25, NX_CHECKSTOP_DMA_CH5_INVAL_STATE_ERR },
{ 26, NX_CHECKSTOP_DMA_CH6_INVAL_STATE_ERR },
{ 27, NX_CHECKSTOP_DMA_CH7_INVAL_STATE_ERR },
{ 31, NX_CHECKSTOP_DMA_CRB_UE },
{ 32, NX_CHECKSTOP_DMA_CRB_SUE },
};
static const struct nx_xstop_bit_info nx_pbi_xstop_bits[] = {
{ 12, NX_CHECKSTOP_PBI_ISN_UE },
};
static struct lock hmi_lock = LOCK_UNLOCKED;
static uint32_t malf_alert_scom;
static uint32_t nx_status_reg;
static uint32_t nx_dma_engine_fir;
static uint32_t nx_pbi_fir;
static int setup_scom_addresses(void)
{
switch (proc_gen) {
case proc_gen_p8:
malf_alert_scom = P8_MALFUNC_ALERT;
nx_status_reg = P8_NX_STATUS_REG;
nx_dma_engine_fir = P8_NX_DMA_ENGINE_FIR;
nx_pbi_fir = P8_NX_PBI_FIR;
return 1;
case proc_gen_p9:
malf_alert_scom = P9_MALFUNC_ALERT;
nx_status_reg = P9_NX_STATUS_REG;
nx_dma_engine_fir = P9_NX_DMA_ENGINE_FIR;
nx_pbi_fir = P9_NX_PBI_FIR;
return 1;
case proc_gen_p10:
case proc_gen_p11:
malf_alert_scom = P10_MALFUNC_ALERT;
nx_status_reg = P10_NX_STATUS_REG;
nx_dma_engine_fir = P10_NX_DMA_ENGINE_FIR;
nx_pbi_fir = P10_NX_PBI_FIR;
return 1;
default:
prerror("%s: Unknown CPU type\n", __func__);
break;
}
return 0;
}
static int queue_hmi_event(struct OpalHMIEvent *hmi_evt, int recover, uint64_t *out_flags)
{
size_t size;
/* Don't queue up event if recover == -1 */
if (recover == -1)
return 0;
/* set disposition */
if (recover == 1)
hmi_evt->disposition = OpalHMI_DISPOSITION_RECOVERED;
else if (recover == 0)
hmi_evt->disposition = OpalHMI_DISPOSITION_NOT_RECOVERED;
/*
* V2 of struct OpalHMIEvent is of (5 * 64 bits) size and well packed
* structure. Hence use uint64_t pointer to pass entire structure
* using 5 params in generic message format. Instead of hard coding
* num_params divide the struct size by 8 bytes to get exact
* num_params value.
*/
size = ALIGN_UP(sizeof(*hmi_evt), sizeof(u64));
*out_flags |= OPAL_HMI_FLAGS_NEW_EVENT;
/* queue up for delivery to host. */
return _opal_queue_msg(OPAL_MSG_HMI_EVT, NULL, NULL,
size, hmi_evt);
}
static int read_core_fir(uint32_t chip_id, uint32_t core_id, uint64_t *core_fir)
{
int rc;
switch (proc_gen) {
case proc_gen_p8:
rc = xscom_read(chip_id,
XSCOM_ADDR_P8_EX(core_id, P8_CORE_FIR), core_fir);
break;
case proc_gen_p9:
rc = xscom_read(chip_id,
XSCOM_ADDR_P9_EC(core_id, P9_CORE_FIR), core_fir);
break;
case proc_gen_p10:
case proc_gen_p11:
rc = xscom_read(chip_id,
XSCOM_ADDR_P10_EC(core_id, P10_CORE_FIR), core_fir);
break;
default:
rc = OPAL_HARDWARE;
}
return rc;
}
static int read_core_wof(uint32_t chip_id, uint32_t core_id, uint64_t *core_wof)
{
int rc;
switch (proc_gen) {
case proc_gen_p9:
rc = xscom_read(chip_id,
XSCOM_ADDR_P9_EC(core_id, P9_CORE_WOF), core_wof);
break;
case proc_gen_p10:
case proc_gen_p11:
rc = xscom_read(chip_id,
XSCOM_ADDR_P10_EC(core_id, P10_CORE_WOF), core_wof);
break;
default:
rc = OPAL_HARDWARE;
}
return rc;
}
static bool decode_core_fir(struct cpu_thread *cpu,
struct OpalHMIEvent *hmi_evt)
{
uint64_t core_fir;
uint32_t core_id;
int i, swkup_rc;
bool found = false;
int64_t ret;
const char *loc;
/* Sanity check */
if (!cpu || !hmi_evt)
return false;
core_id = pir_to_core_id(cpu->pir);
/* Force the core to wakeup, otherwise reading core_fir is unrealiable
* if stop-state 5 is enabled.
*/
swkup_rc = dctl_set_special_wakeup(cpu);
/* Get CORE FIR register value. */
ret = read_core_fir(cpu->chip_id, core_id, &core_fir);
if (!swkup_rc)
dctl_clear_special_wakeup(cpu);
if (ret == OPAL_WRONG_STATE) {
/*
* CPU is asleep, so it probably didn't cause the checkstop.
* If no other HMI cause is found a "catchall" checkstop
* will be raised, so if this CPU should've been awake the
* error will be handled appropriately.
*/
prlog(PR_DEBUG,
"FIR read failed, chip %d core %d asleep\n",
cpu->chip_id, core_id);
return false;
} else if (ret != OPAL_SUCCESS) {
prerror("XSCOM error reading CORE FIR\n");
/* If the FIR can't be read, we should checkstop. */
return true;
}
if (!core_fir)
return false;
loc = chip_loc_code(cpu->chip_id);
prlog(PR_INFO, "[Loc: %s]: CHIP ID: %x, CORE ID: %x, FIR: %016llx\n",
loc ? loc : "Not Available",
cpu->chip_id, core_id, core_fir);
if (proc_gen == proc_gen_p10 || proc_gen == proc_gen_p11) {
for (i = 0; i < ARRAY_SIZE(p10_core_fir_bits); i++) {
if (core_fir & PPC_BIT(p10_core_fir_bits[i].bit))
prlog(PR_INFO, " %s\n", p10_core_fir_bits[i].reason);
}
}
/* Check CORE FIR bits and populate HMI event with error info. */
for (i = 0; i < ARRAY_SIZE(xstop_bits); i++) {
if (core_fir & PPC_BIT(xstop_bits[i].bit)) {
found = true;
hmi_evt->u.xstop_error.xstop_reason
|= cpu_to_be32(xstop_bits[i].reason);
}
}
return found;
}
static void find_core_checkstop_reason(struct OpalHMIEvent *hmi_evt,
uint64_t *out_flags)
{
struct cpu_thread *cpu;
/* Initialize HMI event */
hmi_evt->severity = OpalHMI_SEV_FATAL;
hmi_evt->type = OpalHMI_ERROR_MALFUNC_ALERT;
hmi_evt->u.xstop_error.xstop_type = CHECKSTOP_TYPE_CORE;
/*
* Check CORE FIRs and find the reason for core checkstop.
* Send a separate HMI event for each core that has checkstopped.
*/
for_each_cpu(cpu) {
/* GARDed CPUs are marked unavailable. Skip them. */
if (cpu->state == cpu_state_unavailable)
continue;
/* Only check on primaries (ie. core), not threads */
if (cpu->is_secondary)
continue;
/* Initialize xstop_error fields. */
hmi_evt->u.xstop_error.xstop_reason = 0;
hmi_evt->u.xstop_error.u.pir = cpu_to_be32(cpu->pir);
if (decode_core_fir(cpu, hmi_evt))
queue_hmi_event(hmi_evt, 0, out_flags);
}
}
static void find_capp_checkstop_reason(int flat_chip_id,
struct OpalHMIEvent *hmi_evt,
uint64_t *out_flags)
{
struct capp_info info;
struct phb *phb;
uint64_t capp_fir;
uint64_t capp_fir_mask;
uint64_t capp_fir_action0;
uint64_t capp_fir_action1;
uint64_t reg;
int64_t rc;
/* CAPP exists on P8 and P9 only */
if (proc_gen != proc_gen_p8 && proc_gen != proc_gen_p9)
return;
/* Find the CAPP on the chip associated with the HMI. */
for_each_phb(phb) {
/* get the CAPP info */
rc = capp_get_info(flat_chip_id, phb, &info);
if (rc == OPAL_PARAMETER)
continue;
if (xscom_read(flat_chip_id, info.capp_fir_reg, &capp_fir) ||
xscom_read(flat_chip_id, info.capp_fir_mask_reg,
&capp_fir_mask) ||
xscom_read(flat_chip_id, info.capp_fir_action0_reg,
&capp_fir_action0) ||
xscom_read(flat_chip_id, info.capp_fir_action1_reg,
&capp_fir_action1)) {
prerror("CAPP: Couldn't read CAPP#%d (PHB:#%x) FIR registers by XSCOM!\n",
info.capp_index, info.phb_index);
continue;
}
if (!(capp_fir & ~capp_fir_mask))
continue;
prlog(PR_DEBUG, "CAPP#%d (PHB:#%x): FIR 0x%016llx mask 0x%016llx\n",
info.capp_index, info.phb_index, capp_fir,
capp_fir_mask);
prlog(PR_DEBUG, "CAPP#%d (PHB:#%x): ACTION0 0x%016llx, ACTION1 0x%016llx\n",
info.capp_index, info.phb_index, capp_fir_action0,
capp_fir_action1);
/*
* If this bit is set (=1) a Recoverable Error has been
* detected
*/
xscom_read(flat_chip_id, info.capp_err_status_ctrl_reg, &reg);
if ((reg & PPC_BIT(0)) != 0) {
phb_lock(phb);
phb->ops->set_capp_recovery(phb);
phb_unlock(phb);
hmi_evt->severity = OpalHMI_SEV_NO_ERROR;
hmi_evt->type = OpalHMI_ERROR_CAPP_RECOVERY;
queue_hmi_event(hmi_evt, 1, out_flags);
return;
}
}
}
static void find_nx_checkstop_reason(int flat_chip_id,
struct OpalHMIEvent *hmi_evt,
uint64_t *out_flags)
{
uint64_t nx_status;
uint64_t nx_dma_fir;
uint64_t nx_pbi_fir_val;
int i;
/* Get NX status register value. */
if (xscom_read(flat_chip_id, nx_status_reg, &nx_status) != 0) {
prerror("XSCOM error reading NX_STATUS_REG\n");
return;
}
/* Check if NX has driven an HMI interrupt. */
if (!(nx_status & NX_HMI_ACTIVE))
return;
/* Initialize HMI event */
hmi_evt->severity = OpalHMI_SEV_FATAL;
hmi_evt->type = OpalHMI_ERROR_MALFUNC_ALERT;
hmi_evt->u.xstop_error.xstop_type = CHECKSTOP_TYPE_NX;
hmi_evt->u.xstop_error.u.chip_id = cpu_to_be32(flat_chip_id);
/* Get DMA & Engine FIR data register value. */
if (xscom_read(flat_chip_id, nx_dma_engine_fir, &nx_dma_fir) != 0) {
prerror("XSCOM error reading NX_DMA_ENGINE_FIR\n");
return;
}
/* Get PowerBus Interface FIR data register value. */
if (xscom_read(flat_chip_id, nx_pbi_fir, &nx_pbi_fir_val) != 0) {
prerror("XSCOM error reading NX_PBI_FIR\n");
return;
}
/* Find NX checkstop reason and populate HMI event with error info. */
for (i = 0; i < ARRAY_SIZE(nx_dma_xstop_bits); i++)
if (nx_dma_fir & PPC_BIT(nx_dma_xstop_bits[i].bit))
hmi_evt->u.xstop_error.xstop_reason
|= cpu_to_be32(nx_dma_xstop_bits[i].reason);
for (i = 0; i < ARRAY_SIZE(nx_pbi_xstop_bits); i++)
if (nx_pbi_fir_val & PPC_BIT(nx_pbi_xstop_bits[i].bit))
hmi_evt->u.xstop_error.xstop_reason
|= cpu_to_be32(nx_pbi_xstop_bits[i].reason);
/*
* Set NXDMAENGFIR[38] to signal PRD that service action is required.
* Without this inject, PRD will not be able to do NX unit checkstop
* error analysis. NXDMAENGFIR[38] is a spare bit and used to report
* a software initiated attention.
*
* The behavior of this bit and all FIR bits are documented in
* RAS spreadsheet.
*/
xscom_write(flat_chip_id, nx_dma_engine_fir, PPC_BIT(38));
/* Send an HMI event. */
queue_hmi_event(hmi_evt, 0, out_flags);
}
static void add_npu_xstop_reason(uint32_t *xstop_reason, uint8_t reason)
{
int i, reason_count;
uint8_t *ptr;
reason_count = sizeof(*xstop_reason) / sizeof(reason);
ptr = (uint8_t *) xstop_reason;
for (i = 0; i < reason_count; i++) {
if (*ptr == 0) {
*ptr = reason;
break;
}
ptr++;
}
}
static void encode_npu_xstop_reason(uint32_t *xstop_reason,
uint64_t fir, int fir_number)
{
int bit;
uint8_t reason;
/*
* There are three 64-bit FIRs but the xstop reason field of
* the hmi event is only 32-bit. Encode which FIR bit is set as:
* - 2 bits for the FIR number
* - 6 bits for the bit number (0 -> 63)
*
* So we could even encode up to 4 reasons for the HMI, if
* that can ever happen
*/
while (fir) {
bit = ilog2(fir);
reason = fir_number << 6;
reason |= (63 - bit); // IBM numbering
add_npu_xstop_reason(xstop_reason, reason);
fir ^= 1ULL << bit;
}
}
static bool npu_fir_errors(struct phb *phb, int flat_chip_id,
uint32_t *xstop_reason)
{
uint64_t fir, fir_mask;
uint64_t fir_action0, fir_action1;
uint64_t fir_reg, fir_mask_reg;
uint64_t fir_action0_reg, fir_action1_reg;
uint64_t fatal_errors;
uint64_t xscom_base;
bool fir_errors = false;
int fir_regs;
const char *loc;
struct npu *npu;
struct npu2 *npu2 = NULL;
struct npu2_dev *dev;
struct pau *pau = NULL;
fir_regs = (phb->phb_type == phb_type_pcie_v3) ? 1 : 3;
for (uint32_t i = 0; i < fir_regs; i++) {
switch (phb->phb_type) {
case phb_type_pcie_v3:
fir_reg = NX_FIR;
fir_mask_reg = NX_FIR_MASK;
fir_action0_reg = NX_FIR_ACTION0;
fir_action1_reg = NX_FIR_ACTION1;
npu = phb_to_npu(phb);
if (npu != NULL)
xscom_base = npu->at_xscom;
else
continue;
break;
case phb_type_npu_v2:
fir_reg = NPU2_FIR(i);
fir_mask_reg = NPU2_FIR_MASK(i);
fir_action0_reg = NPU2_FIR_ACTION0(i);
fir_action1_reg = NPU2_FIR_ACTION1(i);
npu2 = phb_to_npu2_nvlink(phb);
xscom_base = npu2->xscom_base;
break;
case phb_type_npu_v2_opencapi:
fir_reg = NPU2_FIR(i);
fir_mask_reg = NPU2_FIR_MASK(i);
fir_action0_reg = NPU2_FIR_ACTION0(i);
fir_action1_reg = NPU2_FIR_ACTION1(i);
dev = phb_to_npu2_dev_ocapi(phb);
npu2 = dev->npu;
xscom_base = npu2->xscom_base;
break;
case phb_type_pau_opencapi:
fir_reg = PAU_FIR(i);
fir_mask_reg = PAU_FIR_MASK(i);
fir_action0_reg = PAU_FIR_ACTION0(i);
fir_action1_reg = PAU_FIR_ACTION1(i);
pau = ((struct pau_dev *)(pau_phb_to_opencapi_dev(phb)))->pau;
xscom_base = pau->xscom_base;
break;
default:
continue;
}
if (xscom_read(flat_chip_id, xscom_base + fir_reg, &fir) ||
xscom_read(flat_chip_id, xscom_base + fir_mask_reg, &fir_mask) ||
xscom_read(flat_chip_id, xscom_base + fir_action0_reg, &fir_action0) ||
xscom_read(flat_chip_id, xscom_base + fir_action1_reg, &fir_action1)) {
prerror("HMI: Couldn't read NPU/PAU FIR register%d with XSCOM\n", i);
continue;
}
fatal_errors = fir & ~fir_mask & fir_action0 & fir_action1;
if (fatal_errors) {
loc = chip_loc_code(flat_chip_id);
if (!loc)
loc = "Not Available";
prlog(PR_ERR, "NPU/PAU: [Loc: %s] P:%d FIR#%d "
"FIR 0x%016llx mask 0x%016llx\n",
loc, flat_chip_id, i, fir, fir_mask);
prlog(PR_ERR, "NPU/PAU: [Loc: %s] P:%d ACTION0 "
"0x%016llx, ACTION1 0x%016llx\n",
loc, flat_chip_id, fir_action0, fir_action1);
if (phb->phb_type != phb_type_pcie_v3)
encode_npu_xstop_reason(xstop_reason,
fatal_errors,
i);
fir_errors = true;
}
}
/* dump registers */
if (fir_errors) {
switch (phb->phb_type) {
case phb_type_npu_v2:
case phb_type_npu_v2_opencapi:
npu2_dump_scoms(npu2, flat_chip_id);
break;
case phb_type_pau_opencapi:
pau_opencapi_dump_scoms(pau);
break;
default:
break;
}
prlog(PR_ERR, " _________________________ \n");
prlog(PR_ERR, "< It's Debug time! >\n");
prlog(PR_ERR, " ------------------------- \n");
prlog(PR_ERR, " \\ ,__, \n");
prlog(PR_ERR, " \\ (oo)____ \n");
prlog(PR_ERR, " (__) )\\ \n");
prlog(PR_ERR, " ||--|| * \n");
}
return fir_errors;
}
static void find_npu_checkstop_reason(int flat_chip_id,
struct OpalHMIEvent *hmi_evt,
uint64_t *out_flags)
{
struct phb *phb;
struct dt_node *dn;
uint32_t xstop_reason = 0;
/* Only check for NPU errors if the chip has a NPU/PAU */
if ((PVR_TYPE(mfspr(SPR_PVR)) != PVR_TYPE_P8NVL) &&
(PVR_TYPE(mfspr(SPR_PVR)) != PVR_TYPE_P9) &&
(PVR_TYPE(mfspr(SPR_PVR)) != PVR_TYPE_P10))
return;
/* Find the NPU/PAU on the chip associated with the HMI. */
for_each_phb(phb) {
dn = phb->dt_node;
if (!(dt_node_is_compatible(dn, "ibm,power8-npu-pciex") ||
dt_node_is_compatible(dn, "ibm,power9-npu-pciex") ||
dt_node_is_compatible(dn, "ibm,power9-npu-opencapi-pciex") ||
dt_node_is_compatible(dn, "ibm,power10-pau-opencapi-pciex")))
continue;
if (dt_get_chip_id(dn) != flat_chip_id)
continue;
/* Read all the registers necessary to find a checkstop condition. */
if (!npu_fir_errors(phb, flat_chip_id, &xstop_reason))
continue;
if (phb->phb_type == phb_type_pcie_v3) {
/* Set the NPU to fenced since it can't recover. */
npu_set_fence_state(phb_to_npu(phb), true);
}
/* Set up the HMI event */
hmi_evt->severity = OpalHMI_SEV_WARNING;
hmi_evt->type = OpalHMI_ERROR_MALFUNC_ALERT;
hmi_evt->u.xstop_error.xstop_type = CHECKSTOP_TYPE_NPU;
hmi_evt->u.xstop_error.xstop_reason = cpu_to_be32(xstop_reason);
hmi_evt->u.xstop_error.u.chip_id = cpu_to_be32(flat_chip_id);
/* Marking the event as recoverable so that we don't crash */
queue_hmi_event(hmi_evt, 1, out_flags);
}
}
static void decode_malfunction(struct OpalHMIEvent *hmi_evt, uint64_t *out_flags)
{
int i;
uint64_t malf_alert, flags;
flags = 0;
if (!setup_scom_addresses()) {
prerror("Failed to setup scom addresses\n");
/* Send an unknown HMI event. */
hmi_evt->u.xstop_error.xstop_type = CHECKSTOP_TYPE_UNKNOWN;
hmi_evt->u.xstop_error.xstop_reason = 0;
queue_hmi_event(hmi_evt, false, out_flags);
return;
}
xscom_read(this_cpu()->chip_id, malf_alert_scom, &malf_alert);
if (!malf_alert)
return;
for (i = 0; i < 64; i++) {
if (malf_alert & PPC_BIT(i)) {
xscom_write(this_cpu()->chip_id, malf_alert_scom,
~PPC_BIT(i));
find_capp_checkstop_reason(i, hmi_evt, &flags);
if (proc_gen != proc_gen_p10 && proc_gen != proc_gen_p11)
find_nx_checkstop_reason(i, hmi_evt, &flags);
find_npu_checkstop_reason(i, hmi_evt, &flags);
}
}
find_core_checkstop_reason(hmi_evt, &flags);
/*
* If we fail to find checkstop reason, send an unknown HMI event.
*/
if (!(flags & OPAL_HMI_FLAGS_NEW_EVENT)) {
hmi_evt->u.xstop_error.xstop_type = CHECKSTOP_TYPE_UNKNOWN;
hmi_evt->u.xstop_error.xstop_reason = 0;
queue_hmi_event(hmi_evt, false, &flags);
}
*out_flags |= flags;
}
/*
* This will "rendez-vous" all threads on the core to the rendez-vous
* id "sig". You need to make sure that "sig" is different from the
* previous rendez vous. The sig value must be between 0 and 7 with
* boot time being set to 0.
*
* Note: in theory, we could just use a flip flop "sig" in the thread
* structure (binary rendez-vous with no argument). This is a bit more
* debuggable and better at handling timeouts (arguably).
*
* This should be called with the no lock held
*/
static void hmi_rendez_vous(uint32_t sig)
{
struct cpu_thread *t = this_cpu();
uint32_t my_id = cpu_get_thread_index(t);
uint32_t my_shift = my_id << 2;
uint32_t *sptr = t->core_hmi_state_ptr;
uint32_t val, prev, shift, i;
uint64_t timeout;
assert(sig <= 0x7);
/*
* Mark ourselves as having reached the rendez vous point with
* the exit bit cleared
*/
do {
val = prev = *sptr;
val &= ~(0xfu << my_shift);
val |= sig << my_shift;
} while (cmpxchg32(sptr, prev, val) != prev);
/*
* Wait for everybody else to reach that point, ignore the
* exit bit as another thread could have already set it.
*/
for (i = 0; i < cpu_thread_count; i++) {
shift = i << 2;
timeout = TIMEOUT_LOOPS;
while (((*sptr >> shift) & 0x7) != sig && --timeout)
cpu_relax();
if (!timeout)
prlog(PR_ERR, "Rendez-vous stage 1 timeout, CPU 0x%x"
" waiting for thread %d (sptr=%08x)\n",
t->pir, i, *sptr);
}
/* Set the exit bit */
do {
val = prev = *sptr;
val &= ~(0xfu << my_shift);
val |= (sig | 8) << my_shift;
} while (cmpxchg32(sptr, prev, val) != prev);
/* At this point, we need to wait for everybody else to have a value
* that is *not* sig. IE. they either have set the exit bit *or* they
* have changed the rendez-vous (meaning they have moved on to another
* rendez vous point).
*/
for (i = 0; i < cpu_thread_count; i++) {
shift = i << 2;
timeout = TIMEOUT_LOOPS;
while (((*sptr >> shift) & 0xf) == sig && --timeout)
cpu_relax();
if (!timeout)
prlog(PR_ERR, "Rendez-vous stage 2 timeout, CPU 0x%x"
" waiting for thread %d (sptr=%08x)\n",
t->pir, i, *sptr);
}
}
static void hmi_print_debug(const uint8_t *msg, uint64_t hmer)
{
const char *loc;
uint32_t core_id, thread_index;
core_id = pir_to_core_id(this_cpu()->pir);
thread_index = cpu_get_thread_index(this_cpu());
loc = chip_loc_code(this_cpu()->chip_id);
if (!loc)
loc = "Not Available";
/* Also covers P10 SPR_HMER_TFAC_SHADOW_XFER_ERROR */
if (hmer & (SPR_HMER_TFAC_ERROR | SPR_HMER_TFMR_PARITY_ERROR)) {
prlog(PR_DEBUG, "[Loc: %s]: P:%d C:%d T:%d: TFMR(%016lx) %s\n",
loc, this_cpu()->chip_id, core_id, thread_index,
mfspr(SPR_TFMR), msg);
} else {
prlog(PR_DEBUG, "[Loc: %s]: P:%d C:%d T:%d: %s\n",
loc, this_cpu()->chip_id, core_id, thread_index,
msg);
}
}
static int handle_thread_tfac_error(uint64_t tfmr, uint64_t *out_flags)
{
int recover = 1;
if (tfmr & SPR_TFMR_DEC_PARITY_ERR)
*out_flags |= OPAL_HMI_FLAGS_DEC_LOST;
if (!tfmr_recover_local_errors(tfmr))
recover = 0;
tfmr &= ~(SPR_TFMR_PURR_PARITY_ERR |
SPR_TFMR_SPURR_PARITY_ERR |
SPR_TFMR_DEC_PARITY_ERR);
return recover;
}
static int64_t opal_handle_hmi(void);
static void opal_handle_hmi_job(void *data __unused)
{
opal_handle_hmi();
}
/*
* Queue hmi handling job If secondaries are still in OPAL
* This function is called by thread 0.
*/
static struct cpu_job **hmi_kick_secondaries(void)
{
struct cpu_thread *ts = this_cpu();
struct cpu_job **hmi_jobs = NULL;
int job_sz = sizeof(struct cpu_job *) * cpu_thread_count;
int i;
for (i = 1; i < cpu_thread_count; i++) {
ts = next_cpu(ts);
/* Is this thread still in OPAL ? */
if (ts->state == cpu_state_active) {
if (!hmi_jobs) {
hmi_jobs = zalloc(job_sz);
assert(hmi_jobs);
}
prlog(PR_DEBUG, "Sending hmi job to thread %d\n", i);
hmi_jobs[i] = cpu_queue_job(ts, "handle_hmi_job",
opal_handle_hmi_job, NULL);
}
}
return hmi_jobs;
}
static int handle_all_core_tfac_error(uint64_t tfmr, uint64_t *out_flags)
{
struct cpu_thread *t, *t0;
int recover = -1;
struct cpu_job **hmi_jobs = NULL;
bool hmi_with_no_error = false;
t = this_cpu();
t0 = find_cpu_by_pir(cpu_get_thread0(t));
if (t == t0 && t0->state == cpu_state_os)
hmi_jobs = hmi_kick_secondaries();
/*
* Handle special case: If TB is in invalid state and no TB error
* reported in TFMR for this HMI, then treat this as TFMR corrupt error
* to force the recovery procedure recover_corrupt_tfmr(). This will
* also reset the core level TB erorrs including Missing step. Do this
* only on thread 0, otherwise every thread will repeat the same
* procedure unnecessarily.
*/
if (t == t0 && !(tfmr & SPR_TFMR_CORE_ERRORS) && this_cpu()->tb_invalid) {
tfmr |= SPR_TFMR_TFMR_CORRUPT;
hmi_with_no_error = true;
}
/* Rendez vous all threads */
hmi_rendez_vous(1);
/* We use a lock here as some of the TFMR bits are shared and I
* prefer avoiding doing the cleanup simultaneously.
*/
lock(&hmi_lock);
/* First handle corrupt TFMR otherwise we can't trust anything.
* We'll use a lock here so that the threads don't try to do it at
* the same time
*/
if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
/* Check if it's still in error state */
if (hmi_with_no_error || mfspr(SPR_TFMR) & SPR_TFMR_TFMR_CORRUPT)
if (!recover_corrupt_tfmr()) {
unlock(&hmi_lock);
recover = 0;
goto error_out;
}
tfmr = mfspr(SPR_TFMR);
/* We could have got new thread errors in the meantime */
if (tfmr & SPR_TFMR_THREAD_ERRORS) {
recover = handle_thread_tfac_error(tfmr, out_flags);
tfmr &= ~SPR_TFMR_THREAD_ERRORS;
}
if (!recover) {
unlock(&hmi_lock);
goto error_out;
}
}
/* Tell the OS ... */
if (tfmr & SPR_TFMR_HDEC_PARITY_ERROR)
*out_flags |= OPAL_HMI_FLAGS_HDEC_LOST;
/* Cleanup bad HDEC or TB on all threads or subcures before we clear
* the error conditions
*/
tfmr_cleanup_core_errors(tfmr);
/* Unlock before next rendez-vous */
unlock(&hmi_lock);
/* Second rendez vous, ensure the above cleanups are all done before
* we proceed further
*/
hmi_rendez_vous(2);
/* We can now clear the error conditions in the core. */
recover = tfmr_clear_core_errors(tfmr);
if (recover == 0)
goto error_out;
/* Third rendez-vous. We could in theory do the timebase resync as
* part of the previous one, but I prefer having all the error
* conditions cleared before we start trying.
*/
hmi_rendez_vous(3);
/* Now perform the actual TB recovery on thread 0 */
if (t == t0)
recover = chiptod_recover_tb_errors(&this_cpu()->tb_resynced);
error_out:
/* Last rendez-vous */
hmi_rendez_vous(4);
/* Now all threads have gone past rendez-vous 3 and not yet past another
* rendez-vous 1, so the value of tb_resynced of thread 0 of the core
* contains an accurate indication as to whether the timebase was lost.
*/
if (t0->tb_resynced)
*out_flags |= OPAL_HMI_FLAGS_TB_RESYNC;
if (t == t0 && hmi_jobs) {
int i;
for (i = 1; i < cpu_thread_count; i++)
if (hmi_jobs[i])
cpu_wait_job(hmi_jobs[i], true);
free(hmi_jobs);
}
return recover;
}
static uint64_t read_tfmr_t0(void)
{
uint64_t tfmr_t0;
uint32_t chip_id = this_cpu()->chip_id;
uint32_t core_id = pir_to_core_id(this_cpu()->pir);
lock(&hmi_lock);
xscom_write(chip_id, XSCOM_ADDR_P9_EC(core_id, P9_SCOM_SPRC),
SETFIELD(P9_SCOMC_SPR_SELECT, 0, P9_SCOMC_TFMR_T0));
xscom_read(chip_id, XSCOM_ADDR_P9_EC(core_id, P9_SCOM_SPRD),
&tfmr_t0);
unlock(&hmi_lock);
return tfmr_t0;
}
/* P9 errata: In theory, an HDEC error is sent to all threads. However,
* due to an errata on P9 where TFMR bit 26 (HDEC parity) cannot be
* cleared on thread 1..3, I am not confident we can do a rendez-vous
* in all cases.
*
* Our current approach is to ignore that error unless it is present
* on thread 0 TFMR. Also, ignore TB residue error due to a similar
* errata as above.
*/
static void validate_latched_errors(uint64_t *tfmr)
{
if ((*tfmr & (SPR_TFMR_HDEC_PARITY_ERROR | SPR_TFMR_TB_RESIDUE_ERR))
&& this_cpu()->is_secondary) {
uint64_t tfmr_t0 = read_tfmr_t0();
if (!(tfmr_t0 & SPR_TFMR_HDEC_PARITY_ERROR))
*tfmr &= ~SPR_TFMR_HDEC_PARITY_ERROR;
if (!(tfmr_t0 & SPR_TFMR_TB_RESIDUE_ERR))
*tfmr &= ~SPR_TFMR_TB_RESIDUE_ERR;
}
}
static int handle_tfac_errors(struct OpalHMIEvent *hmi_evt, uint64_t *out_flags)
{
int recover = -1;
uint64_t tfmr = mfspr(SPR_TFMR);
/* Initialize the hmi event with old value of TFMR */
hmi_evt->tfmr = cpu_to_be64(tfmr);
/* A TFMR parity/corrupt error makes us ignore all the local stuff.*/
if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
/* Mark TB as invalid for now as we don't trust TFMR, we'll fix
* it up later
*/
this_cpu()->tb_invalid = true;
goto bad_tfmr;
}
this_cpu()->tb_invalid = !(tfmr & SPR_TFMR_TB_VALID);
if (proc_gen == proc_gen_p9)
validate_latched_errors(&tfmr);
/* First, handle thread local errors */
if (tfmr & SPR_TFMR_THREAD_ERRORS) {
recover = handle_thread_tfac_error(tfmr, out_flags);
tfmr &= ~SPR_TFMR_THREAD_ERRORS;
}
bad_tfmr:
/* Let's see if we still have a all-core error to deal with, if
* not, we just bail out
*/
if (tfmr & SPR_TFMR_CORE_ERRORS) {
int recover2;
/* Only update "recover" if it's not already 0 (non-recovered)
*/
recover2 = handle_all_core_tfac_error(tfmr, out_flags);
if (recover != 0)
recover = recover2;
} else if (tfmr & SPR_TFMR_CHIP_TOD_INTERRUPT) {
int recover2;
/*
* There are some TOD errors which do not affect working of
* TOD and TB. They stay in valid state. Hence we don't need
* rendez vous.
*
* TOD errors that affects TOD/TB will report a global error
* on TFMR alongwith bit 51, and they will go in rendez vous.
*/
recover2 = chiptod_recover_tod_errors();
if (recover != 0)
recover = recover2;
} else if (this_cpu()->tb_invalid) {
int recover2;
/*
* This shouldn't happen, TB is invalid and no global error was
* reported. However, On p10, in a very rare situation when
* core is waking up from stop2 or higher stop state, timer
* facility goes into error state due to Missing step, causing
* an HMI with no error reason set in TFMR register other than
* TFMR[41]=0 (tb_valid) and TFMR[28:31]=9 (tbst_encoded).
* Ideally, "Missing step" error should be reported in
* TFMR[44]=1. It looks like in this rare case, while
* generating HMI, HW fails to sync up the TFMR register with
* the core which is waking up from stop2.
*
* To be able to recover, follow down to recovery method as if
* we got core level TB error and treat this as TFMR corrupt
* error and reset all core errors including Missing step.
*/
prlog(PR_ERR, "HMI: TB invalid without core error reported ! "
"CPU=%x, TFMR=0x%016lx\n", this_cpu()->pir,
mfspr(SPR_TFMR));
recover2 = handle_all_core_tfac_error(tfmr, out_flags);
if (recover != 0)
recover = recover2;
}
if (recover != -1 && hmi_evt) {
hmi_evt->severity = OpalHMI_SEV_ERROR_SYNC;
hmi_evt->type = OpalHMI_ERROR_TFAC;
queue_hmi_event(hmi_evt, recover, out_flags);
}
/* Set the TB state looking at TFMR register before we head out. */
this_cpu()->tb_invalid = !(mfspr(SPR_TFMR) & SPR_TFMR_TB_VALID);
if (this_cpu()->tb_invalid) {
*out_flags |= OPAL_HMI_FLAGS_TOD_TB_FAIL;
prlog(PR_WARNING, "Failed to get TB in running state! "
"CPU=%x, TFMR=%016lx\n", this_cpu()->pir,
mfspr(SPR_TFMR));
}
return recover;
}
static int handle_hmi_exception(uint64_t hmer, struct OpalHMIEvent *hmi_evt,
uint64_t *out_flags)
{
struct cpu_thread *cpu = this_cpu();
int recover = 1;
uint64_t handled = 0;
prlog(PR_DEBUG, "Received HMI interrupt: HMER = 0x%016llx\n", hmer);
/* Initialize the hmi event with old value of HMER */
if (hmi_evt)
hmi_evt->hmer = cpu_to_be64(hmer);
/* Handle Timer/TOD errors separately */
if (hmer & (SPR_HMER_TFAC_ERROR | SPR_HMER_TFMR_PARITY_ERROR)) {
hmi_print_debug("Timer Facility Error", hmer);
handled = hmer & (SPR_HMER_TFAC_ERROR | SPR_HMER_TFMR_PARITY_ERROR);
mtspr(SPR_HMER, ~handled);
recover = handle_tfac_errors(hmi_evt, out_flags);
handled = 0;
}
lock(&hmi_lock);
/*
* Not all HMIs would move TB into invalid state. Set the TB state
* looking at TFMR register. TFMR will tell us correct state of
* TB register.
*/
if (hmer & SPR_HMER_PROC_RECV_DONE) {
uint32_t chip_id = pir_to_chip_id(cpu->pir);
uint32_t core_id = pir_to_core_id(cpu->pir);
uint64_t core_wof;
hmi_print_debug("Processor recovery occurred.", hmer);
if (!read_core_wof(chip_id, core_id, &core_wof)) {
int i;
prlog(PR_DEBUG, "Core WOF = 0x%016llx recovered error:\n", core_wof);
if (proc_gen <= proc_gen_p9) {
for (i = 0; i < ARRAY_SIZE(p9_recoverable_bits); i++) {
if (core_wof & PPC_BIT(p9_recoverable_bits[i].bit))
prlog(PR_DEBUG, " %s\n", p9_recoverable_bits[i].reason);
}
} else if (proc_gen == proc_gen_p10 || proc_gen == proc_gen_p11) {
for (i = 0; i < ARRAY_SIZE(p10_core_fir_bits); i++) {
if (core_wof & PPC_BIT(p10_core_fir_bits[i].bit))
prlog(PR_DEBUG, " %s\n", p10_core_fir_bits[i].reason);
}
}
}
handled |= SPR_HMER_PROC_RECV_DONE;
if (cpu_is_thread0(cpu) && hmi_evt) {
hmi_evt->severity = OpalHMI_SEV_NO_ERROR;
hmi_evt->type = OpalHMI_ERROR_PROC_RECOV_DONE;
queue_hmi_event(hmi_evt, recover, out_flags);
}
}
if ((proc_gen <= proc_gen_p9) && (hmer & SPR_HMER_PROC_RECV_ERROR_MASKED)) {
handled |= SPR_HMER_PROC_RECV_ERROR_MASKED;
if (cpu_is_thread0(cpu) && hmi_evt) {
hmi_evt->severity = OpalHMI_SEV_NO_ERROR;
hmi_evt->type = OpalHMI_ERROR_PROC_RECOV_MASKED;
queue_hmi_event(hmi_evt, recover, out_flags);
}
hmi_print_debug("Processor recovery Done (masked).", hmer);
}
if (hmer & SPR_HMER_PROC_RECV_AGAIN) {
handled |= SPR_HMER_PROC_RECV_AGAIN;
if (cpu_is_thread0(cpu) && hmi_evt) {
hmi_evt->severity = OpalHMI_SEV_NO_ERROR;
hmi_evt->type = OpalHMI_ERROR_PROC_RECOV_DONE_AGAIN;
queue_hmi_event(hmi_evt, recover, out_flags);
}
hmi_print_debug("Processor recovery occurred again before"
"bit2 was cleared\n", hmer);
}
/* XXX: what to do with this? */
if (hmer & SPR_HMER_SPURR_SCALE_LIMIT) {
handled |= SPR_HMER_SPURR_SCALE_LIMIT;
if (cpu_is_thread0(cpu) && hmi_evt) {
hmi_evt->severity = OpalHMI_SEV_NO_ERROR;
hmi_evt->type = OpalHMI_ERROR_PROC_RECOV_DONE;
queue_hmi_event(hmi_evt, recover, out_flags);
}
hmi_print_debug("Turbo versus nominal frequency exceeded limit.", hmer);
}
/* Assert if we see malfunction alert, we can not continue. */
if (hmer & SPR_HMER_MALFUNCTION_ALERT) {
handled |= SPR_HMER_MALFUNCTION_ALERT;
hmi_print_debug("Malfunction Alert", hmer);
recover = 0;
if (hmi_evt)
decode_malfunction(hmi_evt, out_flags);
}
/* Assert if we see Hypervisor resource error, we can not continue. */
if ((proc_gen <= proc_gen_p9) && (hmer & SPR_HMER_HYP_RESOURCE_ERR)) {
handled |= SPR_HMER_HYP_RESOURCE_ERR;
hmi_print_debug("Hypervisor resource error", hmer);
recover = 0;
if (hmi_evt) {
hmi_evt->severity = OpalHMI_SEV_FATAL;
hmi_evt->type = OpalHMI_ERROR_HYP_RESOURCE;
queue_hmi_event(hmi_evt, recover, out_flags);
}
}
/* XXX: what to do with this? */
if ((proc_gen <= proc_gen_p9) && (hmer & SPR_HMER_THD_WAKE_BLOCKED_TM_SUSPEND)) {
handled |= SPR_HMER_THD_WAKE_BLOCKED_TM_SUSPEND;
hmer &= ~SPR_HMER_THD_WAKE_BLOCKED_TM_SUSPEND;
hmi_print_debug("Attempted to wake thread when threads in TM suspend mode.", hmer);
if (hmi_evt) {
hmi_evt->severity = OpalHMI_SEV_NO_ERROR;
hmi_evt->type = OpalHMI_ERROR_PROC_RECOV_DONE,
queue_hmi_event(hmi_evt, recover, out_flags);
}
}
if ((proc_gen <= proc_gen_p9) && (hmer & SPR_HMER_TRIG_FIR_HMI)) {
handled |= SPR_HMER_TRIG_FIR_HMI;
hmer &= ~SPR_HMER_TRIG_FIR_HMI;
hmi_print_debug("Clearing unknown debug trigger", hmer);
if (hmi_evt) {
hmi_evt->severity = OpalHMI_SEV_NO_ERROR;
hmi_evt->type = OpalHMI_ERROR_DEBUG_TRIG_FIR,
queue_hmi_event(hmi_evt, recover, out_flags);
}
}
if ((proc_gen == proc_gen_p10 || proc_gen == proc_gen_p11)
&& (hmer & SPR_HMER_P10_TRIG_FIR_HMI)) {
handled |= SPR_HMER_P10_TRIG_FIR_HMI;
hmer &= ~SPR_HMER_P10_TRIG_FIR_HMI;
hmi_print_debug("Clearing unknown debug trigger", hmer);
if (hmi_evt) {
hmi_evt->severity = OpalHMI_SEV_NO_ERROR;
hmi_evt->type = OpalHMI_ERROR_DEBUG_TRIG_FIR,
queue_hmi_event(hmi_evt, recover, out_flags);
}
}
if (recover == 0)
disable_fast_reboot("Unrecoverable HMI");
/*
* HMER bits are sticky, once set to 1 they remain set to 1 until
* they are set to 0. Reset the error source bit to 0, otherwise
* we keep getting HMI interrupt again and again. Writing to HMER
* acts as an AND, so we write mask of all 1's except for the bits
* we want to clear.
*/
mtspr(SPR_HMER, ~handled);
unlock(&hmi_lock);
return recover;
}
static int64_t opal_handle_hmi(void)
{
uint64_t hmer, dummy_flags;
struct OpalHMIEvent hmi_evt;
/*
* Compiled time check to see size of OpalHMIEvent do not exceed
* that of struct opal_msg.
*/
BUILD_ASSERT(sizeof(struct opal_msg) >= sizeof(struct OpalHMIEvent));
memset(&hmi_evt, 0, sizeof(struct OpalHMIEvent));
hmi_evt.version = OpalHMIEvt_V2;
hmer = mfspr(SPR_HMER); /* Get HMER register value */
handle_hmi_exception(hmer, &hmi_evt, &dummy_flags);
return OPAL_SUCCESS;
}
opal_call(OPAL_HANDLE_HMI, opal_handle_hmi, 0);
static int64_t opal_handle_hmi2(__be64 *out_flags)
{
uint64_t hmer, flags = 0;
struct OpalHMIEvent hmi_evt;
/*
* Compiled time check to see size of OpalHMIEvent do not exceed
* that of struct opal_msg.
*/
BUILD_ASSERT(sizeof(struct opal_msg) >= sizeof(struct OpalHMIEvent));
memset(&hmi_evt, 0, sizeof(struct OpalHMIEvent));
hmi_evt.version = OpalHMIEvt_V2;
hmer = mfspr(SPR_HMER); /* Get HMER register value */
handle_hmi_exception(hmer, &hmi_evt, &flags);
*out_flags = cpu_to_be64(flags);
return OPAL_SUCCESS;
}
opal_call(OPAL_HANDLE_HMI2, opal_handle_hmi2, 1);