1
0
Fork 0
qemu/roms/skiboot/hw/imc.c
Daniel Baumann ea34ddeea6
Adding upstream version 1:10.0.2+ds.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 14:27:05 +02:00

1255 lines
29 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/*
* In-Memory Counters (IMC)
* Sometimes called IMA, but that's also a different thing.
*
* Copyright 2016-2019 IBM Corp.
*/
#define pr_fmt(fmt) "IMC: " fmt
#include <skiboot.h>
#include <slw.h>
#include <xscom.h>
#include <imc.h>
#include <chip.h>
#include <libxz/xz.h>
#include <device.h>
#include <p9_stop_api.H>
/*
* IMC trace scom values
*/
#define IMC_TRACE_CPMC1 0 /* select cpmc1 */
#define IMC_TRACE_CPMC2 1 /* select cpmc2 */
#define IMC_TRACE_CPMCLOAD_VAL 0xfa /*
* Value to be loaded into cpmc2
* at sampling start
*/
/* Event: CPM_32MHZ_CYC */
#define IMC_TRACE_CPMC2SEL_VAL 2
#define IMC_TRACE_CPMC1SEL_VAL 4
#define IMC_TRACE_BUFF_SIZE 0 /*
* b000- 4K entries * 64 per
* entry = 256K buffersize
*/
static uint64_t TRACE_IMC_ADDR;
static uint64_t CORE_IMC_EVENT_MASK_ADDR;
static uint64_t trace_scom_val;
/*
* Initialise these with the pdbar and htm scom port address array
* at run time, based on the processor version.
*/
static unsigned int *pdbar_scom_index;
static unsigned int *htm_scom_index;
/*
* Nest IMC PMU names along with their bit values as represented in the
* imc_chip_avl_vector(in struct imc_chip_cb, look at include/imc.h).
* nest_pmus[] is an array containing all the possible nest IMC PMU node names.
*/
static const char *nest_pmus_p9[] = {
"powerbus0",
"mcs0",
"mcs1",
"mcs2",
"mcs3",
"mcs4",
"mcs5",
"mcs6",
"mcs7",
"mba0",
"mba1",
"mba2",
"mba3",
"mba4",
"mba5",
"mba6",
"mba7",
"centaur0",
"centaur1",
"centaur2",
"centaur3",
"centaur4",
"centaur5",
"centaur6",
"centaur7",
"xlink0",
"xlink1",
"xlink2",
"mcd0",
"mcd1",
"phb0",
"phb1",
"phb2",
"phb3",
"phb4",
"phb5",
"nx",
"capp0",
"capp1",
"vas",
"int",
"alink0",
"alink1",
"alink2",
"alink3",
"nvlink0",
"nvlink1",
"nvlink2",
"nvlink3",
"nvlink4",
"nvlink5",
/* reserved bits : 51 - 63 */
};
static const char *nest_pmus_p10[] = {
"pb",
"mcs0",
"mcs1",
"mcs2",
"mcs3",
"mcs4",
"mcs5",
"mcs6",
"mcs7",
"pec0",
"pec1",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"phb0",
"phb1",
"phb2",
"phb3",
"phb4",
"phb5",
"ocmb0",
"ocmb1",
"ocmb2",
"ocmb3",
"ocmb4",
"ocmb5",
"ocmb6",
"ocmb7",
"ocmb8",
"ocmb9",
"ocmb10",
"ocmb11",
"ocmb12",
"ocmb13",
"ocmb14",
"ocmb15",
"nx",
};
/*
* Due to Nest HW/OCC restriction, microcode will not support individual unit
* events for these nest units mcs0, mcs1 ... mcs7 in the accumulation mode.
* And events to monitor each mcs units individually will be supported only
* in the debug mode (which will be supported by microcode in the future).
* These will be advertised only when OPAL provides interface for the it.
*/
static char const *debug_mode_units[] = {
"mcs0",
"mcs1",
"mcs2",
"mcs3",
"mcs4",
"mcs5",
"mcs6",
"mcs7",
};
/*
* Combined unit node events are counted when any of the individual
* unit is enabled in the availability vector. That is,
* ex, mcs01 unit node should be enabled only when mcs0 or mcs1 enabled.
* mcs23 unit node should be enabled only when mcs2 or mcs3 is enabled
*/
static struct combined_units_node cu_node[] = {
{ .name = "mcs01", .unit1 = PPC_BIT(1), .unit2 = PPC_BIT(2) },
{ .name = "mcs23", .unit1 = PPC_BIT(3), .unit2 = PPC_BIT(4) },
{ .name = "mcs45", .unit1 = PPC_BIT(5), .unit2 = PPC_BIT(6) },
{ .name = "mcs67", .unit1 = PPC_BIT(7), .unit2 = PPC_BIT(8) },
};
static char *compress_buf;
static size_t compress_buf_size;
const char **prop_to_fix(struct dt_node *node);
static const char *props_to_fix[] = {"events", NULL};
static bool is_nest_mem_initialized(struct imc_chip_cb *ptr)
{
/*
* Non zero value in "Status" field indicate memory initialized.
*/
if (!ptr->imc_chip_run_status)
return false;
return true;
}
/*
* A Quad contains 4 cores in Power 9, and there are 4 addresses for
* the Core Hardware Trace Macro (CHTM) attached to each core.
* So, for core index 0 to core index 3, we have a sequential range of
* SCOM port addresses in the arrays below, each for Hardware Trace Macro (HTM)
* mode and PDBAR.
*/
static unsigned int pdbar_scom_index_p9[] = {
0x1001220B,
0x1001230B,
0x1001260B,
0x1001270B
};
static unsigned int htm_scom_index_p9[] = {
0x10012200,
0x10012300,
0x10012600,
0x10012700
};
static unsigned int pdbar_scom_index_p10[] = {
0x2001868B,
0x2001468B,
0x2001268B,
0x2001168B
};
static unsigned int htm_scom_index_p10[] = {
0x20018680,
0x20014680,
0x20012680,
0x20011680
};
static struct imc_chip_cb *get_imc_cb(uint32_t chip_id)
{
struct proc_chip *chip = get_chip(chip_id);
struct imc_chip_cb *cb;
if (!chip->homer_base)
return NULL; /* The No Homers Club */
cb = (struct imc_chip_cb *)(chip->homer_base + P9_CB_STRUCT_OFFSET);
if (!is_nest_mem_initialized(cb))
return NULL;
return cb;
}
static int pause_microcode_at_boot(void)
{
struct proc_chip *chip;
struct imc_chip_cb *cb;
for_each_chip(chip) {
cb = get_imc_cb(chip->id);
if (cb)
cb->imc_chip_command = cpu_to_be64(NEST_IMC_DISABLE);
else
return -1; /* ucode is not init-ed */
}
return 0;
}
/*
* Function return list of properties names for the fixup
*/
const char **prop_to_fix(struct dt_node *node)
{
if (dt_node_is_compatible(node, "ibm,imc-counters"))
return props_to_fix;
return NULL;
}
/* Helper to get the IMC device type for a device node */
static int get_imc_device_type(struct dt_node *node)
{
const struct dt_property *type;
u32 val=0;
if (!node)
return -1;
type = dt_find_property(node, "type");
if (!type)
return -1;
val = dt_prop_get_u32(node, "type");
switch (val){
case IMC_COUNTER_CHIP:
return IMC_COUNTER_CHIP;
case IMC_COUNTER_CORE:
return IMC_COUNTER_CORE;
case IMC_COUNTER_THREAD:
return IMC_COUNTER_THREAD;
case IMC_COUNTER_TRACE:
return IMC_COUNTER_TRACE;
default:
break;
}
/* Unknown/Unsupported IMC device type */
return -1;
}
static bool is_nest_node(struct dt_node *node)
{
if (get_imc_device_type(node) == IMC_COUNTER_CHIP)
return true;
return false;
}
static bool is_imc_device_type_supported(struct dt_node *node)
{
u32 val = get_imc_device_type(node);
struct proc_chip *chip = get_chip(this_cpu()->chip_id);
uint64_t pvr;
if ((val == IMC_COUNTER_CHIP) || (val == IMC_COUNTER_CORE) ||
(val == IMC_COUNTER_THREAD))
return true;
if (val == IMC_COUNTER_TRACE) {
pvr = mfspr(SPR_PVR);
switch (chip->type) {
case PROC_CHIP_P9_NIMBUS:
/*
* Trace mode is supported in Nimbus DD2.2
* and later versions.
*/
if ((PVR_VERS_MAJ(pvr) == 2) &&
(PVR_VERS_MIN(pvr) >= 2))
return true;
break;
case PROC_CHIP_P10:
return true;
default:
return false;
}
}
return false;
}
/*
* Helper to check for the imc device type in the incoming device tree.
* Remove unsupported device node.
*/
static void check_imc_device_type(struct dt_node *dev)
{
struct dt_node *node;
dt_for_each_compatible(dev, node, "ibm,imc-counters") {
if (!is_imc_device_type_supported(node)) {
/*
* ah nice, found a device type which I didnt know.
* Remove it and also mark node as NULL, since dt_next
* will try to fetch info for "prev" which is removed
* by dt_free.
*/
dt_free(node);
node = NULL;
}
}
return;
}
static void imc_dt_exports_prop_add(struct dt_node *dev)
{
struct dt_node *node;
struct proc_chip *chip;
const struct dt_property *type;
uint32_t offset = 0, size = 0;
uint64_t baddr;
char namebuf[32];
dt_for_each_compatible(dev, node, "ibm,imc-counters") {
type = dt_find_property(node, "type");
if (type && is_nest_node(node)) {
offset = dt_prop_get_u32(node, "offset");
size = dt_prop_get_u32(node, "size");
}
}
/*
* Enable only if we have valid values.
*/
if (!size && !offset)
return;
node = dt_find_by_name(opal_node, "exports");
if (!node)
return;
for_each_chip(chip) {
snprintf(namebuf, sizeof(namebuf), "imc_nest_chip_%x", chip->id);
baddr = chip->homer_base;
baddr += offset;
dt_add_property_u64s(node, namebuf, baddr, size);
}
}
/*
* Remove the PMU device nodes from the incoming new subtree, if they are not
* available in the hardware. The availability is described by the
* control block's imc_chip_avl_vector.
* Each bit represents a device unit. If the device is available, then
* the bit is set else its unset.
*/
static void disable_unavailable_units(struct dt_node *dev)
{
uint64_t avl_vec;
struct imc_chip_cb *cb;
struct dt_node *target;
int i, j;
bool disable_all_nests = false;
struct proc_chip *chip;
/*
* Check the state of ucode in all the chip.
* Disable the nest unit if ucode is not initialized
* in any of the chip.
*/
for_each_chip(chip) {
cb = get_imc_cb(chip->id);
if (!cb) {
/*
* At least currently, if one chip isn't functioning,
* none of the IMC Nest units will be functional.
* So while you may *think* this should be per chip,
* it isn't.
*/
disable_all_nests = true;
break;
}
}
/* Add a property to "exports" node in opal_node */
imc_dt_exports_prop_add(dev);
/* Fetch the IMC control block structure */
cb = get_imc_cb(this_cpu()->chip_id);
if (cb && !disable_all_nests)
avl_vec = be64_to_cpu(cb->imc_chip_avl_vector);
else {
avl_vec = 0; /* Remove only nest imc device nodes */
/* Incase of mambo, just fake it */
if (proc_chip_quirks & QUIRK_MAMBO_CALLOUTS)
avl_vec = (0xffULL) << 56;
}
if (proc_gen == proc_gen_p9) {
for (i = 0; i < ARRAY_SIZE(nest_pmus_p9); i++) {
if (!(PPC_BIT(i) & avl_vec)) {
/* Check if the device node exists */
target = dt_find_by_name_before_addr(dev, nest_pmus_p9[i]);
if (!target)
continue;
/* Remove the device node */
dt_free(target);
}
}
} else if (proc_gen == proc_gen_p10 || proc_gen == proc_gen_p11) {
int val;
char name[8];
for (i = 0; i < 11; i++) {
if (!(PPC_BIT(i) & avl_vec)) {
/* Check if the device node exists */
target = dt_find_by_name_before_addr(dev, nest_pmus_p10[i]);
if (!target)
continue;
/* Remove the device node */
dt_free(target);
}
}
for (i = 35; i < 41; i++) {
if (!(PPC_BIT(i) & avl_vec)) {
/* Check if the device node exists for phb */
for (j = 0; j < 3; j++) {
snprintf(name, sizeof(name), "phb%d_%d", (i-35), j);
target = dt_find_by_name_before_addr(dev, name);
if (!target)
continue;
/* Remove the device node */
dt_free(target);
}
}
}
for (i = 41; i < 58; i++) {
if (!(PPC_BIT(i) & avl_vec)) {
/* Check if the device node exists */
target = dt_find_by_name_before_addr(dev, nest_pmus_p10[i]);
if (!target)
continue;
/* Remove the device node */
dt_free(target);
}
}
for (i = 0; i < 8; i++) {
val = ((avl_vec & (0x7ULL << (29 + (3 * i)))) >> (29 + (3 * i)));
switch (val) {
case 0x5: //xlink configured and functional
snprintf(name, sizeof(name), "alink%1d", (7-i));
target = dt_find_by_name_before_addr(dev, name);
if (target)
dt_free(target);
snprintf(name, sizeof(name), "otl%1d_0", (7-i));
target = dt_find_by_name_before_addr(dev, name);
if (target)
dt_free(target);
snprintf(name, sizeof(name), "otl%1d_1", (7-i));
target = dt_find_by_name_before_addr(dev, name);
if (target)
dt_free(target);
break;
case 0x6: //alink configured and functional
snprintf(name, sizeof(name), "xlink%1d", (7-i));
target = dt_find_by_name_before_addr(dev, name);
if (target)
dt_free(target);
snprintf(name, sizeof(name), "otl%1d_0", (7-i));
target = dt_find_by_name_before_addr(dev, name);
if (target)
dt_free(target);
snprintf(name, sizeof(name), "otl%1d_1", (7-i));
target = dt_find_by_name_before_addr(dev, name);
if (target)
dt_free(target);
break;
case 0x7: //CAPI configured and functional
snprintf(name, sizeof(name), "alink%1d", (7-i));
target = dt_find_by_name_before_addr(dev, name);
if (target)
dt_free(target);
snprintf(name, sizeof(name), "xlink%1d", (7-i));
target = dt_find_by_name_before_addr(dev, name);
if (target)
dt_free(target);
break;
default:
snprintf(name, sizeof(name), "xlink%1d", (7-i));
target = dt_find_by_name_before_addr(dev, name);
if (target)
dt_free(target);
snprintf(name, sizeof(name), "alink%1d", (7-i));
target = dt_find_by_name_before_addr(dev, name);
if (target)
dt_free(target);
snprintf(name, sizeof(name), "otl%1d_0", (7-i));
target = dt_find_by_name_before_addr(dev, name);
if (target)
dt_free(target);
snprintf(name, sizeof(name), "otl%1d_1", (7-i));
target = dt_find_by_name_before_addr(dev, name);
if (target)
dt_free(target);
break;
}
}
}
/*
* Loop to detect debug mode units and remove them
* since the microcode does not support debug mode function yet.
*/
for (i = 0; i < ARRAY_SIZE(debug_mode_units); i++) {
target = dt_find_by_name(dev, debug_mode_units[i]);
if (!target)
continue;
/* Remove the device node */
dt_free(target);
}
/*
* Based on availability unit vector from control block,
* check and enable combined unit nodes in the device tree.
*/
for (i = 0; i < MAX_NEST_COMBINED_UNITS ; i++ ) {
if (!(cu_node[i].unit1 & avl_vec) &&
!(cu_node[i].unit2 & avl_vec)) {
target = dt_find_by_name(dev, cu_node[i].name);
if (!target)
continue;
/* Remove the device node */
dt_free(target);
}
}
return;
}
static void disable_imc_type_from_dt(struct dt_node *dev, int imc_type)
{
struct dt_node *node;
dt_for_each_compatible(dev, node, "ibm,imc-counters") {
if (get_imc_device_type(node) == imc_type) {
dt_free(node);
node = NULL;
}
}
return;
}
/*
* Function to queue the loading of imc catalog data
* from the IMC pnor partition.
*/
void imc_catalog_preload(void)
{
uint32_t pvr = (mfspr(SPR_PVR) & ~(0xf0ff));
int ret = OPAL_SUCCESS;
compress_buf_size = MAX_COMPRESSED_IMC_DTB_SIZE;
if (proc_chip_quirks & (QUIRK_MAMBO_CALLOUTS | QUIRK_BML))
return;
/* Enable only for power 9/10 */
if (proc_gen < proc_gen_p9)
return;
compress_buf = malloc(MAX_COMPRESSED_IMC_DTB_SIZE);
if (!compress_buf) {
prerror("Memory allocation for catalog failed\n");
return;
}
ret = start_preload_resource(RESOURCE_ID_IMA_CATALOG,
pvr, compress_buf, &compress_buf_size);
if (ret != OPAL_SUCCESS) {
prerror("Failed to load IMA_CATALOG: %d\n", ret);
free(compress_buf);
compress_buf = NULL;
}
return;
}
static void imc_dt_update_nest_node(struct dt_node *dev)
{
struct proc_chip *chip;
__be64 *base_addr = NULL;
__be32 *chipids = NULL;
int i=0, nr_chip = nr_chips();
struct dt_node *node;
const struct dt_property *type;
/* Add the base_addr and chip-id properties for the nest node */
base_addr = malloc(sizeof(u64) * nr_chip);
chipids = malloc(sizeof(u32) * nr_chip);
for_each_chip(chip) {
base_addr[i] = cpu_to_be64(chip->homer_base);
chipids[i] = cpu_to_be32(chip->id);
i++;
}
dt_for_each_compatible(dev, node, "ibm,imc-counters") {
type = dt_find_property(node, "type");
if (type && is_nest_node(node)) {
dt_add_property(node, "base-addr", base_addr, (i * sizeof(u64)));
dt_add_property(node, "chip-id", chipids, (i * sizeof(u32)));
}
}
}
static struct xz_decompress *imc_xz;
void imc_decompress_catalog(void)
{
void *decompress_buf = NULL;
uint32_t pvr = (mfspr(SPR_PVR) & ~(0xf0ff));
int ret;
/* Check we succeeded in starting the preload */
if (compress_buf == NULL)
return;
ret = wait_for_resource_loaded(RESOURCE_ID_IMA_CATALOG, pvr);
if (ret != OPAL_SUCCESS) {
prerror("IMC Catalog load failed\n");
return;
}
/*
* Memory for decompression.
*/
decompress_buf = malloc(MAX_DECOMPRESSED_IMC_DTB_SIZE);
if (!decompress_buf) {
prerror("No memory for decompress_buf \n");
return;
}
/*
* Decompress the compressed buffer
*/
imc_xz = malloc(sizeof(struct xz_decompress));
if (!imc_xz) {
prerror("No memory to decompress IMC catalog\n");
free(decompress_buf);
return;
}
imc_xz->dst = decompress_buf;
imc_xz->src = compress_buf;
imc_xz->dst_size = MAX_DECOMPRESSED_IMC_DTB_SIZE;
imc_xz->src_size = compress_buf_size;
xz_start_decompress(imc_xz);
}
static int setup_imc_scoms(void)
{
switch (proc_gen) {
case proc_gen_p9:
CORE_IMC_EVENT_MASK_ADDR = CORE_IMC_EVENT_MASK_ADDR_P9;
TRACE_IMC_ADDR = TRACE_IMC_ADDR_P9;
pdbar_scom_index = pdbar_scom_index_p9;
htm_scom_index = htm_scom_index_p9;
trace_scom_val = TRACE_IMC_SCOM(IMC_TRACE_CPMC2,
IMC_TRACE_CPMCLOAD_VAL,
IMC_TRACE_CPMC1SEL_VAL,
IMC_TRACE_CPMC2SEL_VAL,
IMC_TRACE_BUFF_SIZE);
return 0;
case proc_gen_p10:
case proc_gen_p11:
CORE_IMC_EVENT_MASK_ADDR = CORE_IMC_EVENT_MASK_ADDR_P10;
TRACE_IMC_ADDR = TRACE_IMC_ADDR_P10;
pdbar_scom_index = pdbar_scom_index_p10;
htm_scom_index = htm_scom_index_p10;
trace_scom_val = TRACE_IMC_SCOM(IMC_TRACE_CPMC1,
IMC_TRACE_CPMCLOAD_VAL,
IMC_TRACE_CPMC1SEL_VAL,
IMC_TRACE_CPMC2SEL_VAL,
IMC_TRACE_BUFF_SIZE);
return 0;
default:
prerror("%s: Unknown cpu type\n", __func__);
break;
}
return -1;
}
/*
* Load the IMC pnor partition and find the appropriate sub-partition
* based on the platform's PVR.
* Decompress the sub-partition and link the imc device tree to the
* existing device tree.
*/
void imc_init(void)
{
struct dt_node *dev;
int err_flag = -1;
if (proc_chip_quirks & (QUIRK_MAMBO_CALLOUTS | QUIRK_BML)) {
dev = dt_find_compatible_node(dt_root, NULL,
"ibm,opal-in-memory-counters");
if (!dev)
return;
goto imc_mambo_bml;
}
/* Enable only for power 9/10 */
if (proc_gen < proc_gen_p9)
return;
if (!imc_xz)
return;
wait_xz_decompress(imc_xz);
if (imc_xz->status != OPAL_SUCCESS) {
prerror("IMC: xz_decompress failed\n");
goto err;
}
/*
* Flow of the data from PNOR to main device tree:
*
* PNOR -> compressed local buffer (compress_buf)
* compressed local buffer -> decompressed local buf (decompress_buf)
* decompress local buffer -> main device tree
* free compressed local buffer
*/
/* Create a device tree entry for imc counters */
dev = dt_new_root("imc-counters");
if (!dev) {
prerror("IMC: Failed to add an imc-counters root node\n");
goto err;
}
/*
* Attach the new decompress_buf to the imc-counters node.
* dt_expand_node() does sanity checks for fdt_header, piggyback
*/
if (dt_expand_node(dev, imc_xz->dst, 0) < 0) {
dt_free(dev);
prerror("IMC: dt_expand_node failed\n");
goto err;
}
imc_mambo_bml:
if (setup_imc_scoms()) {
prerror("IMC: Failed to setup the scoms\n");
goto err;
}
/* Check and remove unsupported imc device types */
check_imc_device_type(dev);
/*
* Check and remove unsupported nest unit nodes by the microcode,
* from the incoming device tree.
*/
disable_unavailable_units(dev);
/* Fix the phandle in the incoming device tree */
dt_adjust_subtree_phandle(dev, prop_to_fix);
/* Update the base_addr and chip-id for nest nodes */
imc_dt_update_nest_node(dev);
if (proc_chip_quirks & (QUIRK_MAMBO_CALLOUTS | QUIRK_BML))
return;
/*
* IMC nest counters has both in-band (ucode access) and out of band
* access to it. Since not all nest counter configurations are supported
* by ucode, out of band tools are used to characterize other
* configuration.
*
* If the ucode not paused and OS does not have IMC driver support,
* then out to band tools will race with ucode and end up getting
* undesirable values. Hence pause the ucode if it is already running.
*/
if (pause_microcode_at_boot()) {
prerror("IMC: Pausing ucode failed, disabling nest imc\n");
disable_imc_type_from_dt(dev, IMC_COUNTER_CHIP);
}
/*
* If the dt_attach_root() fails, "imc-counters" node will not be
* seen in the device-tree and hence OS should not make any
* OPAL_IMC_* calls.
*/
if (!dt_attach_root(dt_root, dev)) {
dt_free(dev);
prerror("IMC: Failed to attach imc-counter node to dt root\n");
goto err;
}
err_flag = OPAL_SUCCESS;
err:
if (err_flag != OPAL_SUCCESS)
prerror("IMC Devices not added\n");
free(compress_buf);
free(imc_xz->dst);
free(imc_xz);
}
static int stop_api_init(struct proc_chip *chip, int phys_core_id,
uint32_t scoms, uint64_t data,
const ScomOperation_t operation,
const ScomSection_t section,
const char *type)
{
int ret;
prlog(PR_DEBUG, "Configuring stopapi for IMC\n");
ret = p9_stop_save_scom((void *)chip->homer_base, scoms,
data, operation, section);
if (ret) {
prerror("IMC %s stopapi ret = %d, scoms = %x (core id = %x)\n",\
type, ret, scoms, phys_core_id);
if (ret != STOP_SAVE_SCOM_ENTRY_UPDATE_FAILED)
wakeup_engine_state = WAKEUP_ENGINE_FAILED;
else
prerror("SCOM entries are full\n");
return OPAL_HARDWARE;
}
return ret;
}
/* Function to return the scom address for the specified core */
static uint32_t get_imc_scom_addr_for_core(int core, uint64_t addr)
{
uint32_t scom_addr;
switch (proc_gen) {
case proc_gen_p9:
scom_addr = XSCOM_ADDR_P9_EC(core, addr);
return scom_addr;
case proc_gen_p10:
case proc_gen_p11:
scom_addr = XSCOM_ADDR_P10_EC(core, addr);
return scom_addr;
default:
return 0;
}
}
/* Function to return the scom address for the specified core in the quad */
static uint32_t get_imc_scom_addr_for_quad(int core, uint64_t addr)
{
uint32_t scom_addr;
switch (proc_gen) {
case proc_gen_p9:
scom_addr = XSCOM_ADDR_P9_EQ(core, addr);
return scom_addr;
case proc_gen_p10:
case proc_gen_p11:
scom_addr = XSCOM_ADDR_P10_EQ(core, addr);
return scom_addr;
default:
return 0;
}
}
static int64_t core_imc_counters_init(uint64_t addr, int port_id,
int phys_core_id, struct cpu_thread *c)
{
uint32_t pdbar_addr, event_mask_addr, htm_addr;
int ret;
/* Get the scom address for this core, based on the platform */
pdbar_addr = get_imc_scom_addr_for_quad(phys_core_id,
pdbar_scom_index[port_id]);
event_mask_addr = get_imc_scom_addr_for_core(phys_core_id,
CORE_IMC_EVENT_MASK_ADDR);
/*
* Core IMC hardware mandate initing of three scoms
* to enbale or disable of the Core IMC engine.
*
* PDBAR: Scom contains the real address to store per-core
* counter data in memory along with other bits.
*
* EventMask: Scom contain bits to denote event to multiplex
* at different MSR[HV PR] values, along with bits for
* sampling duration.
*
* HTM Scom: scom to enable counter data movement to memory.
*/
if (xscom_write(c->chip_id, pdbar_addr,
(u64)(CORE_IMC_PDBAR_MASK & addr))) {
prerror("error in xscom_write for pdbar\n");
return OPAL_HARDWARE;
}
if (has_deep_states) {
if (wakeup_engine_state == WAKEUP_ENGINE_PRESENT) {
struct proc_chip *chip = get_chip(c->chip_id);
ret = stop_api_init(chip, phys_core_id, pdbar_addr,
(u64)(CORE_IMC_PDBAR_MASK & addr),
P9_STOP_SCOM_REPLACE,
P9_STOP_SECTION_EQ_SCOM,
"pdbar");
if (ret)
return ret;
ret = stop_api_init(chip, phys_core_id,
event_mask_addr,
(u64)CORE_IMC_EVENT_MASK,
P9_STOP_SCOM_REPLACE,
P9_STOP_SECTION_CORE_SCOM,
"event_mask");
if (ret)
return ret;
} else {
prerror("IMC: Wakeup engine not present!");
return OPAL_HARDWARE;
}
}
if (xscom_write(c->chip_id, event_mask_addr,
(u64)CORE_IMC_EVENT_MASK)) {
prerror("error in xscom_write for event mask\n");
return OPAL_HARDWARE;
}
/* Get the scom address for htm_mode scom based on the platform */
htm_addr = get_imc_scom_addr_for_quad(phys_core_id,
htm_scom_index[port_id]);
if (xscom_write(c->chip_id, htm_addr,
(u64)CORE_IMC_HTM_MODE_DISABLE)) {
prerror("error in xscom_write for htm mode\n");
return OPAL_HARDWARE;
}
return OPAL_SUCCESS;
}
/*
* opal_imc_counters_init : This call initialize the IMC engine.
*
* For Nest IMC, this is no-op and returns OPAL_SUCCESS at this point.
* For Core IMC, this initializes core IMC Engine, by initializing
* these scoms "PDBAR", "HTM_MODE" and the "EVENT_MASK" in a given cpu.
*/
static int64_t opal_imc_counters_init(uint32_t type, uint64_t addr, uint64_t cpu_pir)
{
struct cpu_thread *c = find_cpu_by_pir(cpu_pir);
int port_id, phys_core_id;
int ret;
uint32_t htm_addr, trace_addr;
switch (type) {
case OPAL_IMC_COUNTERS_NEST:
return OPAL_SUCCESS;
case OPAL_IMC_COUNTERS_CORE:
if (!c)
return OPAL_PARAMETER;
/*
* Core IMC hardware mandates setting of htm_mode and
* pdbar in specific scom ports. port_id are in
* pdbar_scom_index[] and htm_scom_index[].
*/
phys_core_id = pir_to_core_id(c->pir);
port_id = phys_core_id % 4;
if (proc_chip_quirks & QUIRK_MAMBO_CALLOUTS)
return OPAL_SUCCESS;
ret = core_imc_counters_init(addr, port_id, phys_core_id, c);
if (ret < 0)
return ret;
/*
* If fused core is supported, do the scoms for the
* secondary core also.
*/
if (this_cpu()->is_fused_core) {
struct cpu_thread *c1 = find_cpu_by_pir(cpu_pir ^ 1);
phys_core_id = pir_to_core_id(c1->pir);
port_id = phys_core_id % 4;
ret = core_imc_counters_init(addr, port_id, phys_core_id, c1);
if (ret < 0)
return ret;
}
return ret;
case OPAL_IMC_COUNTERS_TRACE:
if (!c)
return OPAL_PARAMETER;
phys_core_id = pir_to_core_id(c->pir);
port_id = phys_core_id % 4;
if (proc_chip_quirks & QUIRK_MAMBO_CALLOUTS)
return OPAL_SUCCESS;
trace_addr = get_imc_scom_addr_for_core(phys_core_id,
TRACE_IMC_ADDR);
htm_addr = get_imc_scom_addr_for_quad(phys_core_id,
htm_scom_index[port_id]);
if (has_deep_states) {
if (wakeup_engine_state == WAKEUP_ENGINE_PRESENT) {
struct proc_chip *chip = get_chip(c->chip_id);
ret = stop_api_init(chip, phys_core_id,
trace_addr,
trace_scom_val,
P9_STOP_SCOM_REPLACE,
P9_STOP_SECTION_CORE_SCOM,
"trace_imc");
if (ret)
return ret;
} else {
prerror("IMC-trace:Wakeup engine not present!");
return OPAL_HARDWARE;
}
}
if (xscom_write(c->chip_id, htm_addr, (u64)CORE_IMC_HTM_MODE_DISABLE)) {
prerror("IMC-trace: error in xscom_write for htm mode\n");
return OPAL_HARDWARE;
}
if (xscom_write(c->chip_id, trace_addr, trace_scom_val)) {
prerror("IMC-trace: error in xscom_write for trace mode\n");
return OPAL_HARDWARE;
}
return OPAL_SUCCESS;
}
return OPAL_SUCCESS;
}
opal_call(OPAL_IMC_COUNTERS_INIT, opal_imc_counters_init, 3);
/* opal_imc_counters_control_start: This call starts the nest/core imc engine. */
static int64_t opal_imc_counters_start(uint32_t type, uint64_t cpu_pir)
{
u64 op;
struct cpu_thread *c = find_cpu_by_pir(cpu_pir);
struct imc_chip_cb *cb;
int port_id, phys_core_id;
uint32_t htm_addr;
if (!c)
return OPAL_PARAMETER;
switch (type) {
case OPAL_IMC_COUNTERS_NEST:
/* Fetch the IMC control block structure */
cb = get_imc_cb(c->chip_id);
if (!cb)
return OPAL_HARDWARE;
/* Set the run command */
op = NEST_IMC_ENABLE;
if (proc_chip_quirks & QUIRK_MAMBO_CALLOUTS)
return OPAL_SUCCESS;
/* Write the command to the control block now */
cb->imc_chip_command = cpu_to_be64(op);
return OPAL_SUCCESS;
case OPAL_IMC_COUNTERS_CORE:
case OPAL_IMC_COUNTERS_TRACE:
/*
* Core IMC hardware mandates setting of htm_mode in specific
* scom ports (port_id are in htm_scom_index[])
*/
phys_core_id = pir_to_core_id(c->pir);
port_id = phys_core_id % 4;
if (proc_chip_quirks & QUIRK_MAMBO_CALLOUTS)
return OPAL_SUCCESS;
htm_addr = get_imc_scom_addr_for_quad(phys_core_id,
htm_scom_index[port_id]);
/*
* Enables the core imc engine by appropriately setting
* bits 4-9 of the HTM_MODE scom port. No initialization
* is done in this call. This just enables the the counters
* to count with the previous initialization.
*/
if (xscom_write(c->chip_id, htm_addr, (u64)CORE_IMC_HTM_MODE_ENABLE)) {
prerror("IMC OPAL_start: error in xscom_write for htm_mode\n");
return OPAL_HARDWARE;
}
return OPAL_SUCCESS;
}
return OPAL_SUCCESS;
}
opal_call(OPAL_IMC_COUNTERS_START, opal_imc_counters_start, 2);
/* opal_imc_counters_control_stop: This call stops the nest imc engine. */
static int64_t opal_imc_counters_stop(uint32_t type, uint64_t cpu_pir)
{
u64 op;
struct imc_chip_cb *cb;
struct cpu_thread *c = find_cpu_by_pir(cpu_pir);
int port_id, phys_core_id;
uint32_t htm_addr;
if (!c)
return OPAL_PARAMETER;
switch (type) {
case OPAL_IMC_COUNTERS_NEST:
/* Fetch the IMC control block structure */
cb = get_imc_cb(c->chip_id);
if (!cb)
return OPAL_HARDWARE;
/* Set the run command */
op = NEST_IMC_DISABLE;
if (proc_chip_quirks & QUIRK_MAMBO_CALLOUTS)
return OPAL_SUCCESS;
/* Write the command to the control block */
cb->imc_chip_command = cpu_to_be64(op);
return OPAL_SUCCESS;
case OPAL_IMC_COUNTERS_CORE:
case OPAL_IMC_COUNTERS_TRACE:
/*
* Core IMC hardware mandates setting of htm_mode in specific
* scom ports (port_id are in htm_scom_index[])
*/
phys_core_id = pir_to_core_id(c->pir);
port_id = phys_core_id % 4;
if (proc_chip_quirks & QUIRK_MAMBO_CALLOUTS)
return OPAL_SUCCESS;
htm_addr = get_imc_scom_addr_for_quad(phys_core_id,
htm_scom_index[port_id]);
/*
* Disables the core imc engine by clearing
* bits 4-9 of the HTM_MODE scom port.
*/
if (xscom_write(c->chip_id, htm_addr, (u64) CORE_IMC_HTM_MODE_DISABLE)) {
prerror("error in xscom_write for htm_mode\n");
return OPAL_HARDWARE;
}
return OPAL_SUCCESS;
}
return OPAL_SUCCESS;
}
opal_call(OPAL_IMC_COUNTERS_STOP, opal_imc_counters_stop, 2);