1
0
Fork 0
qemu/roms/skiboot/hw/pau.c
Daniel Baumann ea34ddeea6
Adding upstream version 1:10.0.2+ds.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 14:27:05 +02:00

2097 lines
57 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
* Copyright 2021 IBM Corp.
*/
#include <interrupts.h>
#include <pci-slot.h>
#include <phys-map.h>
#include <xive.h>
#include <pau.h>
#include <pau-regs.h>
#include <xscom-p10-regs.h>
/* Number of PEs supported */
#define PAU_MAX_PE_NUM 16
#define PAU_RESERVED_PE_NUM 15
#define PAU_TL_MAX_TEMPLATE 63
#define PAU_TL_RATE_BUF_SIZE 32
#define PAU_SLOT_NORMAL PCI_SLOT_STATE_NORMAL
#define PAU_SLOT_LINK PCI_SLOT_STATE_LINK
#define PAU_SLOT_LINK_START (PAU_SLOT_LINK + 1)
#define PAU_SLOT_LINK_WAIT (PAU_SLOT_LINK + 2)
#define PAU_SLOT_LINK_TRAINED (PAU_SLOT_LINK + 3)
#define PAU_SLOT_FRESET PCI_SLOT_STATE_FRESET
#define PAU_SLOT_FRESET_START (PAU_SLOT_FRESET + 1)
#define PAU_SLOT_FRESET_INIT (PAU_SLOT_FRESET + 2)
#define PAU_SLOT_FRESET_ASSERT_DELAY (PAU_SLOT_FRESET + 3)
#define PAU_SLOT_FRESET_DEASSERT_DELAY (PAU_SLOT_FRESET + 4)
#define PAU_SLOT_FRESET_INIT_DELAY (PAU_SLOT_FRESET + 5)
#define PAU_LINK_TRAINING_RETRIES 2
#define PAU_LINK_TRAINING_TIMEOUT 15000 /* ms */
#define PAU_LINK_STATE_TRAINED 0x7
struct pau_dev *pau_next_dev(struct pau *pau, struct pau_dev *dev,
enum pau_dev_type type)
{
uint32_t i = 0;
if (dev)
i = dev->index + 1;
for (; i < pau->links; i++) {
dev = &pau->devices[i];
if (dev->type == type || type == PAU_DEV_TYPE_ANY)
return dev;
}
return NULL;
}
static void pau_opencapi_dump_scom_reg(struct pau *pau, uint64_t reg)
{
PAUDBG(pau, "0x%llx = 0x%016llx\n", reg, pau_read(pau, reg));
}
void pau_opencapi_dump_scoms(struct pau *pau)
{
struct pau_dev *dev;
uint64_t cq_sm;
for (uint32_t i = 1; i < 4; i++) {
cq_sm = PAU_BLOCK_CQ_SM(i);
pau_opencapi_dump_scom_reg(pau, cq_sm + PAU_REG_OFFSET(PAU_MCP_MISC_CERR_MESSAGE0));
pau_opencapi_dump_scom_reg(pau, cq_sm + PAU_REG_OFFSET(PAU_MCP_MISC_CERR_MESSAGE1));
pau_opencapi_dump_scom_reg(pau, cq_sm + PAU_REG_OFFSET(PAU_MCP_MISC_CERR_MESSAGE2));
pau_opencapi_dump_scom_reg(pau, cq_sm + PAU_REG_OFFSET(PAU_MCP_MISC_CERR_MESSAGE3));
pau_opencapi_dump_scom_reg(pau, cq_sm + PAU_REG_OFFSET(PAU_MCP_MISC_CERR_MESSAGE4));
pau_opencapi_dump_scom_reg(pau, cq_sm + PAU_REG_OFFSET(PAU_MCP_MISC_CERR_MESSAGE5));
pau_opencapi_dump_scom_reg(pau, cq_sm + PAU_REG_OFFSET(PAU_MCP_MISC_CERR_MESSAGE6));
pau_opencapi_dump_scom_reg(pau, cq_sm + PAU_REG_OFFSET(PAU_MCP_MISC_CERR_MESSAGE7));
pau_opencapi_dump_scom_reg(pau, cq_sm + PAU_REG_OFFSET(PAU_MCP_MISC_CERR_FIRST0));
pau_opencapi_dump_scom_reg(pau, cq_sm + PAU_REG_OFFSET(PAU_MCP_MISC_CERR_FIRST1));
pau_opencapi_dump_scom_reg(pau, cq_sm + PAU_REG_OFFSET(PAU_MCP_MISC_CERR_FIRST2));
}
pau_opencapi_dump_scom_reg(pau, PAU_CTL_MISC_CERR_MESSAGE0);
pau_opencapi_dump_scom_reg(pau, PAU_CTL_MISC_CERR_MESSAGE1);
pau_opencapi_dump_scom_reg(pau, PAU_CTL_MISC_CERR_MESSAGE2);
pau_opencapi_dump_scom_reg(pau, PAU_CTL_MISC_CERR_FIRST0);
pau_opencapi_dump_scom_reg(pau, PAU_CTL_MISC_CERR_FIRST1);
pau_opencapi_dump_scom_reg(pau, PAU_DAT_MISC_CERR_ECC_HOLD);
pau_opencapi_dump_scom_reg(pau, PAU_DAT_MISC_CERR_ECC_MASK);
pau_opencapi_dump_scom_reg(pau, PAU_DAT_MISC_CERR_ECC_FIRST);
pau_for_each_opencapi_dev(dev, pau) {
pau_opencapi_dump_scom_reg(pau, PAU_OTL_MISC_ERR_RPT_HOLD0(dev->index));
pau_opencapi_dump_scom_reg(pau, PAU_OTL_MISC_OTL_REM0(dev->index));
pau_opencapi_dump_scom_reg(pau, PAU_OTL_MISC_ERROR_SIG_RXI(dev->index));
pau_opencapi_dump_scom_reg(pau, PAU_OTL_MISC_ERROR_SIG_RXO(dev->index));
pau_opencapi_dump_scom_reg(pau, PAU_OTL_MISC_ERR_RPT_HOLD1(dev->index));
}
}
static void pau_dt_create_link(struct dt_node *pau, uint32_t pau_index,
uint32_t dev_index)
{
struct dt_node *link;
uint32_t phy_lane_mask = 0, pau_unit = 0;
uint32_t op_unit = 0, odl_index = 0;
link = dt_new_addr(pau, "link", dev_index);
dt_add_property_string(link, "compatible", "ibm,pau-link");
dt_add_property_cells(link, "reg", dev_index);
dt_add_property_cells(link, "ibm,pau-link-index", dev_index);
/* pau_index Interface Link - OPxA/B
* 0 OPT0 -- PAU0
* OPT1 -- no PAU, SMP only
* OPT2 -- no PAU, SMP only
* 1 OPT3 -- PAU3
* 2 OPT4 -- PAU4 by default, but can be muxed to use PAU5
* 3 OPT5 -- PAU5 by default, but can be muxed to use PAU4
* 4 OPT6 -- PAU6 by default, but can be muxed to use PAU7
* 5 OPT7 -- PAU7 by default, but can be muxed to use PAU6
*/
switch (pau_index) {
case 0:
/* OP0A - OP0B */
pau_unit = 0;
op_unit = 0;
break;
case 1:
/* OP3A - OP3B */
pau_unit = 3;
op_unit = 3;
break;
case 2:
/* OP4A - OP4B or OP5A - OP5B (TO DO) */
pau_unit = 4;
op_unit = 4;
break;
case 3:
/* OP5A - OP5B or OP4A - OP4B (TO DO) */
pau_unit = 5;
op_unit = 5;
break;
case 4:
/* OP6A - OP6B or OP7A - OP7B (TO DO) */
pau_unit = 6;
op_unit = 6;
break;
case 5:
/* OP7A - OP7B or OP6A - OP6B (TO DO) */
pau_unit = 7;
op_unit = 7;
break;
default:
return;
}
/* ODL0 is hooked up to OTL0 */
if (dev_index == 0) {
odl_index = 0;
phy_lane_mask = PPC_BITMASK32(0, 3);
phy_lane_mask |= PPC_BITMASK32(5, 8);
} else if (dev_index == 1) {
odl_index = 1;
phy_lane_mask = PPC_BITMASK32(9, 12);
phy_lane_mask |= PPC_BITMASK32(14, 17);
}
dt_add_property_cells(link, "ibm,odl-index", odl_index);
dt_add_property_cells(link, "ibm,pau-unit", pau_unit);
dt_add_property_cells(link, "ibm,op-unit", op_unit);
dt_add_property_cells(link, "ibm,pau-lane-mask", phy_lane_mask);
dt_add_property_cells(link, "ibm,phb-index", pau_get_phb_index(pau_index, dev_index));
}
static void pau_dt_create_pau(struct dt_node *xscom, uint32_t pau_index)
{
const uint32_t pau_base[] = { 0x10010800, 0x11010800,
0x12010800, 0x12011000,
0x13010800, 0x13011000};
struct dt_node *pau;
uint32_t links;
assert(pau_index < PAU_NBR);
pau = dt_new_addr(xscom, "pau", pau_base[pau_index]);
dt_add_property_cells(pau, "#size-cells", 0);
dt_add_property_cells(pau, "#address-cells", 1);
dt_add_property_cells(pau, "reg", pau_base[pau_index], 0x2c);
dt_add_property_string(pau, "compatible", "ibm,power10-pau");
dt_add_property_cells(pau, "ibm,pau-chiplet", pau_base[pau_index] >> 24);
dt_add_property_cells(pau, "ibm,pau-index", pau_index);
links = PAU_LINKS_OPENCAPI_PER_PAU;
for (uint32_t i = 0; i < links; i++)
pau_dt_create_link(pau, pau_index, i);
}
static bool pau_dt_create(void)
{
struct dt_node *xscom;
/* P10 chips only */
if (proc_gen < proc_gen_p10)
return false;
dt_for_each_compatible(dt_root, xscom, "ibm,xscom")
for (uint32_t i = 0; i < PAU_NBR; i++)
pau_dt_create_pau(xscom, i);
return true;
}
static struct pau *pau_create(struct dt_node *dn)
{
struct pau *pau;
struct dt_node *link;
struct pau_dev *dev;
char *path;
uint32_t i;
pau = zalloc(sizeof(*pau));
assert(pau);
init_lock(&pau->lock);
init_lock(&pau->procedure_state.lock);
pau->dt_node = dn;
pau->index = dt_prop_get_u32(dn, "ibm,pau-index");
pau->xscom_base = dt_get_address(dn, 0, NULL);
pau->chip_id = dt_get_chip_id(dn);
pau->op_chiplet = dt_prop_get_u32(dn, "ibm,pau-chiplet");
assert(get_chip(pau->chip_id));
pau->links = PAU_LINKS_OPENCAPI_PER_PAU;
dt_for_each_compatible(dn, link, "ibm,pau-link") {
i = dt_prop_get_u32(link, "ibm,pau-link-index");
assert(i < PAU_LINKS_OPENCAPI_PER_PAU);
dev = &pau->devices[i];
dev->index = i;
dev->pau = pau;
dev->dn = link;
dev->odl_index = dt_prop_get_u32(link, "ibm,odl-index");
dev->pau_unit = dt_prop_get_u32(link, "ibm,pau-unit");
dev->op_unit = dt_prop_get_u32(link, "ibm,op-unit");
dev->phy_lane_mask = dt_prop_get_u32(link, "ibm,pau-lane-mask");
};
path = dt_get_path(dn);
PAUINF(pau, "Found %s\n", path);
PAUINF(pau, "SCOM base: 0x%llx\n", pau->xscom_base);
free(path);
return pau;
}
static void pau_device_detect_fixup(struct pau_dev *dev)
{
struct dt_node *dn = dev->dn;
if (dev->type == PAU_DEV_TYPE_OPENCAPI) {
PAUDEVDBG(dev, "Link type opencapi\n");
dt_add_property_strings(dn, "ibm,pau-link-type", "opencapi");
return;
}
PAUDEVDBG(dev, "Link type unknown\n");
dt_add_property_strings(dn, "ibm,pau-link-type", "unknown");
}
int64_t pau_opencapi_map_atsd_lpar(struct phb *phb, uint64_t __unused bdf,
uint64_t lparid, uint64_t __unused lpcr)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(phb);
struct pau *pau = dev->pau;
uint64_t val;
if (lparid >= PAU_XTS_ATSD_MAX)
return OPAL_PARAMETER;
lock(&pau->lock);
/* We need to allocate an ATSD per link */
val = SETFIELD(PAU_XTS_ATSD_HYP_LPARID, 0ull, lparid);
if (!lparid)
val |= PAU_XTS_ATSD_HYP_MSR_HV;
pau_write(pau, PAU_XTS_ATSD_HYP(lparid), val);
unlock(&pau->lock);
return OPAL_SUCCESS;
}
int64_t pau_opencapi_spa_setup(struct phb *phb, uint32_t __unused bdfn,
uint64_t addr, uint64_t PE_mask)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(phb);
struct pau *pau = dev->pau;
uint64_t reg, val;
int64_t rc;
lock(&pau->lock);
reg = PAU_XSL_OSL_SPAP_AN(dev->index);
val = pau_read(pau, reg);
if ((addr && (val & PAU_XSL_OSL_SPAP_AN_EN)) ||
(!addr && !(val & PAU_XSL_OSL_SPAP_AN_EN))) {
rc = OPAL_BUSY;
goto out;
}
/* SPA is disabled by passing a NULL address */
val = addr;
if (addr)
val = addr | PAU_XSL_OSL_SPAP_AN_EN;
pau_write(pau, reg, val);
/*
* set the PE mask that the OS uses for PASID -> PE handle
* conversion
*/
reg = PAU_OTL_MISC_CFG0(dev->index);
val = pau_read(pau, reg);
val = SETFIELD(PAU_OTL_MISC_CFG0_PE_MASK, val, PE_mask);
pau_write(pau, reg, val);
rc = OPAL_SUCCESS;
out:
unlock(&pau->lock);
return rc;
}
int64_t pau_opencapi_spa_clear_cache(struct phb *phb,
uint32_t __unused bdfn,
uint64_t PE_handle)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(phb);
struct pau *pau = dev->pau;
uint64_t reg, val;
int64_t rc, retries = 5;
lock(&pau->lock);
reg = PAU_XSL_OSL_CCINV;
val = pau_read(pau, reg);
if (val & PAU_XSL_OSL_CCINV_PENDING) {
rc = OPAL_BUSY;
goto out;
}
val = PAU_XSL_OSL_CCINV_REMOVE;
val |= SETFIELD(PAU_XSL_OSL_CCINV_PE_HANDLE, val, PE_handle);
if (dev->index)
val |= PAU_XSL_OSL_CCINV_BRICK;
pau_write(pau, reg, val);
rc = OPAL_HARDWARE;
while (retries--) {
val = pau_read(pau, reg);
if (!(val & PAU_XSL_OSL_CCINV_PENDING)) {
rc = OPAL_SUCCESS;
break;
}
/* the bit expected to flip in less than 200us */
time_wait_us(200);
}
out:
unlock(&pau->lock);
return rc;
}
static int pau_opencapi_get_templ_rate(unsigned int templ,
char *rate_buf)
{
int shift, idx, val;
/*
* Each rate is encoded over 4 bits (0->15), with 15 being the
* slowest. The buffer is a succession of rates for all the
* templates. The first 4 bits are for template 63, followed
* by 4 bits for template 62, ... etc. So the rate for
* template 0 is at the very end of the buffer.
*/
idx = (PAU_TL_MAX_TEMPLATE - templ) / 2;
shift = 4 * (1 - ((PAU_TL_MAX_TEMPLATE - templ) % 2));
val = rate_buf[idx] >> shift;
return val;
}
static bool pau_opencapi_is_templ_supported(unsigned int templ,
long capabilities)
{
return !!(capabilities & (1ull << templ));
}
int64_t pau_opencapi_tl_set(struct phb *phb, uint32_t __unused bdfn,
long capabilities, char *rate_buf)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(phb);
struct pau *pau;
uint64_t reg, val, templ_rate;
int i, rate_pos;
if (!dev)
return OPAL_PARAMETER;
pau = dev->pau;
/* The 'capabilities' argument defines what TL template the
* device can receive. OpenCAPI 5.0 defines 64 templates, so
* that's one bit per template.
*
* For each template, the device processing time may vary, so
* the device advertises at what rate a message of a given
* template can be sent. That's encoded in the 'rate' buffer.
*
* On P10, PAU only knows about TL templates 0 -> 3.
* Per the spec, template 0 must be supported.
*/
if (!pau_opencapi_is_templ_supported(0, capabilities))
return OPAL_PARAMETER;
reg = PAU_OTL_MISC_CFG_TX(dev->index);
val = pau_read(pau, reg);
val &= ~PAU_OTL_MISC_CFG_TX_TEMP1_EN;
val &= ~PAU_OTL_MISC_CFG_TX_TEMP2_EN;
val &= ~PAU_OTL_MISC_CFG_TX_TEMP3_EN;
for (i = 0; i < 4; i++) {
/* Skip template 0 as it is implicitly enabled.
* Enable other template If supported by AFU
*/
if (i && pau_opencapi_is_templ_supported(i, capabilities))
val |= PAU_OTL_MISC_CFG_TX_TEMP_EN(i);
/* The tx rate should still be set for template 0 */
templ_rate = pau_opencapi_get_templ_rate(i, rate_buf);
rate_pos = 8 + i * 4;
val = SETFIELD(PAU_OTL_MISC_CFG_TX_TEMP_RATE(rate_pos, rate_pos + 3),
val, templ_rate);
}
pau_write(pau, reg, val);
PAUDEVDBG(dev, "OTL configuration register set to %llx\n", val);
return OPAL_SUCCESS;
}
static int64_t pau_opencapi_afu_memory_bars(struct pau_dev *dev,
uint64_t size,
__be64 *bar)
{
struct pau *pau = dev->pau;
uint64_t addr, psize;
uint64_t reg, val;
PAUDEVDBG(dev, "Setup AFU Memory BARs\n");
if (dev->memory_bar.enable) {
PAUDEVERR(dev, "AFU memory allocation failed - BAR already in use\n");
return OPAL_RESOURCE;
}
phys_map_get(pau->chip_id, OCAPI_MEM,
dev->index,
&addr, &psize);
if (size > psize) {
PAUDEVERR(dev, "Invalid AFU memory BAR allocation size "
"requested: 0x%llx bytes (limit 0x%llx)\n",
size, psize);
return OPAL_PARAMETER;
}
if (size < (1 << 30))
size = 1 << 30;
dev->memory_bar.enable = true;
dev->memory_bar.addr = addr;
dev->memory_bar.size = size;
reg = PAU_GPU_MEM_BAR(dev->index);
val = PAU_GPU_MEM_BAR_ENABLE |
PAU_GPU_MEM_BAR_POISON;
val = SETFIELD(PAU_GPU_MEM_BAR_ADDR, val, addr >> 30);
if (!is_pow2(size))
size = 1ull << (ilog2(size) + 1);
size = (size >> 30) - 1;
val = SETFIELD(PAU_GPU_MEM_BAR_SIZE, val, size);
pau_write(pau, reg, val);
reg = PAU_CTL_MISC_GPU_MEM_BAR(dev->index);
pau_write(pau, reg, val);
reg = PAU_XSL_GPU_MEM_BAR(dev->index);
pau_write(pau, reg, val);
*bar = cpu_to_be64(addr);
return OPAL_SUCCESS;
}
int64_t pau_opencapi_mem_alloc(struct phb *phb, uint32_t __unused bdfn,
uint64_t size, __be64 *bar)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(phb);
int64_t rc;
if (!dev)
return OPAL_PARAMETER;
if (!opal_addr_valid(bar))
return OPAL_PARAMETER;
lock(&dev->pau->lock);
rc = pau_opencapi_afu_memory_bars(dev, size, bar);
unlock(&dev->pau->lock);
return rc;
}
int64_t pau_opencapi_mem_release(struct phb *phb, uint32_t __unused bdfn)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(phb);
if (!dev)
return OPAL_PARAMETER;
lock(&dev->pau->lock);
pau_write(dev->pau, PAU_GPU_MEM_BAR(dev->index), 0ull);
pau_write(dev->pau, PAU_CTL_MISC_GPU_MEM_BAR(dev->index), 0ull);
pau_write(dev->pau, PAU_XSL_GPU_MEM_BAR(dev->index), 0ull);
dev->memory_bar.enable = false;
dev->memory_bar.addr = 0ull;
dev->memory_bar.size = 0ull;
unlock(&dev->pau->lock);
return OPAL_SUCCESS;
}
#define CQ_CTL_STATUS_TIMEOUT 10 /* milliseconds */
static int pau_opencapi_set_fence_control(struct pau_dev *dev,
uint8_t state_requested)
{
uint64_t timeout = mftb() + msecs_to_tb(CQ_CTL_STATUS_TIMEOUT);
uint8_t status;
struct pau *pau = dev->pau;
uint64_t reg, val;
reg = PAU_CTL_MISC_FENCE_CTRL(dev->index);
val = pau_read(pau, reg);
val = SETFIELD(PAU_CTL_MISC_FENCE_REQUEST, val, state_requested);
pau_write(pau, reg, val);
/* Wait for fence status to update */
do {
reg = PAU_CTL_MISC_STATUS(dev->index);
val = pau_read(pau, reg);
status = GETFIELD(PAU_CTL_MISC_STATUS_AM_FENCED(dev->index), val);
if (status == state_requested)
return OPAL_SUCCESS;
time_wait_ms(1);
} while (tb_compare(mftb(), timeout) == TB_ABEFOREB);
/*
* @fwts-label OCAPIFenceStatusTimeout
* @fwts-advice The PAU fence status did not update as expected. This
* could be the result of a firmware or hardware bug. OpenCAPI
* functionality could be broken.
*/
PAUDEVERR(dev, "Bad fence status: expected 0x%x, got 0x%x\n",
state_requested, status);
return OPAL_HARDWARE;
}
#define PAU_DEV_STATUS_BROKEN 0x1
static void pau_opencapi_set_broken(struct pau_dev *dev)
{
PAUDEVDBG(dev, "Update status to broken\n");
dev->status = PAU_DEV_STATUS_BROKEN;
}
static void pau_opencapi_mask_firs(struct pau *pau)
{
uint64_t reg, val;
reg = pau->xscom_base + PAU_FIR_MASK(1);
xscom_read(pau->chip_id, reg, &val);
val |= PAU_FIR1_NDL_BRICKS_0_5;
val |= PAU_FIR1_NDL_BRICKS_6_11;
xscom_write(pau->chip_id, reg, val);
reg = pau->xscom_base + PAU_FIR_MASK(2);
xscom_read(pau->chip_id, reg, &val);
val |= PAU_FIR2_OTL_PERR;
xscom_write(pau->chip_id, reg, val);
}
static void pau_opencapi_assign_bars(struct pau *pau)
{
struct pau_dev *dev;
uint64_t addr, size, val;
/* Global MMIO bar (per pau)
* 16M aligned address -> 0x1000000 (bit 24)
*/
phys_map_get(pau->chip_id, PAU_REGS, pau->index, &addr, &size);
val = SETFIELD(PAU_MMIO_BAR_ADDR, 0ull, addr >> 24);
val |= PAU_MMIO_BAR_ENABLE;
pau_write(pau, PAU_MMIO_BAR, val);
PAUINF(pau, "MMIO base: 0x%016llx (%lldMB)\n", addr, size >> 20);
pau->regs[0] = addr;
pau->regs[1] = size;
/* NTL bar (per device)
* 64K aligned address -> 0x10000 (bit 16)
*/
pau_for_each_dev(dev, pau) {
if (dev->type == PAU_DEV_TYPE_UNKNOWN)
continue;
phys_map_get(pau->chip_id, PAU_OCAPI_MMIO,
pau_dev_index(dev, PAU_LINKS_OPENCAPI_PER_PAU),
&addr, &size);
val = SETFIELD(PAU_NTL_BAR_ADDR, 0ull, addr >> 16);
val = SETFIELD(PAU_NTL_BAR_SIZE, val, ilog2(size >> 16));
pau_write(pau, PAU_NTL_BAR(dev->index), val);
val = SETFIELD(PAU_CTL_MISC_MMIOPA_CONFIG_BAR_ADDR, 0ull, addr >> 16);
val = SETFIELD(PAU_CTL_MISC_MMIOPA_CONFIG_BAR_SIZE, val, ilog2(size >> 16));
pau_write(pau, PAU_CTL_MISC_MMIOPA_CONFIG(dev->index), val);
dev->ntl_bar.addr = addr;
dev->ntl_bar.size = size;
}
/* GENID bar (logically divided per device)
* 512K aligned address -> 0x80000 (bit 19)
*/
phys_map_get(pau->chip_id, PAU_GENID, pau->index, &addr, &size);
val = SETFIELD(PAU_GENID_BAR_ADDR, 0ull, addr >> 19);
pau_write(pau, PAU_GENID_BAR, val);
pau_for_each_dev(dev, pau) {
if (dev->type == PAU_DEV_TYPE_UNKNOWN)
continue;
dev->genid_bar.size = size;
/* +320K = Bricks 0-4 Config Addr/Data registers */
dev->genid_bar.cfg = addr + 0x50000;
}
}
static uint64_t pau_opencapi_ipi_attributes(struct irq_source *is,
uint32_t isn)
{
struct pau *pau = is->data;
uint32_t level = isn - pau->irq_base;
if (level >= 37 && level <= 40) {
/* level 37-40: OTL/XSL interrupt */
return IRQ_ATTR_TARGET_OPAL |
IRQ_ATTR_TARGET_RARE |
IRQ_ATTR_TYPE_MSI;
}
return IRQ_ATTR_TARGET_LINUX;
}
static void pau_opencapi_ipi_interrupt(struct irq_source *is,
uint32_t isn)
{
struct pau *pau = is->data;
uint32_t level = isn - pau->irq_base;
struct pau_dev *dev;
switch (level) {
case 37 ... 40:
pau_for_each_opencapi_dev(dev, pau)
pau_opencapi_set_broken(dev);
opal_update_pending_evt(OPAL_EVENT_PCI_ERROR,
OPAL_EVENT_PCI_ERROR);
break;
default:
PAUERR(pau, "Received unknown interrupt %d\n", level);
return;
}
}
#define PAU_IRQ_LEVELS 60
static char *pau_opencapi_ipi_name(struct irq_source *is, uint32_t isn)
{
struct pau *pau = is->data;
uint32_t level = isn - pau->irq_base;
switch (level) {
case 0 ... 19:
return strdup("Reserved");
case 20:
return strdup("An error event related to PAU CQ functions");
case 21:
return strdup("An error event related to PAU MISC functions");
case 22 ... 34:
return strdup("Reserved");
case 35:
return strdup("Translation failure for OCAPI link 0");
case 36:
return strdup("Translation failure for OCAPI link 1");
case 37:
return strdup("An error event related to OTL for link 0");
case 38:
return strdup("An error event related to OTL for link 1");
case 39:
return strdup("An error event related to XSL for link 0");
case 40:
return strdup("An error event related to XSL for link 1");
case 41 ... 59:
return strdup("Reserved");
}
return strdup("Unknown");
}
static const struct irq_source_ops pau_opencapi_ipi_ops = {
.attributes = pau_opencapi_ipi_attributes,
.interrupt = pau_opencapi_ipi_interrupt,
.name = pau_opencapi_ipi_name,
};
static void pau_opencapi_setup_irqs(struct pau *pau)
{
uint64_t reg, val;
uint32_t base;
base = xive2_alloc_ipi_irqs(pau->chip_id, PAU_IRQ_LEVELS, 64);
if (base == XIVE_IRQ_ERROR) {
PAUERR(pau, "Failed to allocate interrupt sources\n");
return;
}
xive2_register_ipi_source(base, PAU_IRQ_LEVELS, pau, &pau_opencapi_ipi_ops);
/* Set IPI configuration */
reg = PAU_MISC_CONFIG;
val = pau_read(pau, reg);
val = SETFIELD(PAU_MISC_CONFIG_IPI_PS, val, PAU_MISC_CONFIG_IPI_PS_64K);
val = SETFIELD(PAU_MISC_CONFIG_IPI_OS, val, PAU_MISC_CONFIG_IPI_OS_AIX);
pau_write(pau, reg, val);
/* Set IRQ base */
reg = PAU_MISC_INT_BAR;
val = SETFIELD(PAU_MISC_INT_BAR_ADDR, 0ull,
(uint64_t)xive2_get_trigger_port(base) >> 12);
pau_write(pau, reg, val);
pau->irq_base = base;
}
static void pau_opencapi_enable_bars(struct pau_dev *dev, bool enable)
{
struct pau *pau = dev->pau;
uint64_t reg, val;
if (dev->ntl_bar.enable == enable) /* No state change */
return;
dev->ntl_bar.enable = enable;
dev->genid_bar.enable = enable;
reg = PAU_NTL_BAR(dev->index);
val = pau_read(pau, reg);
val = SETFIELD(PAU_NTL_BAR_ENABLE, val, enable);
pau_write(pau, reg, val);
/*
* Generation IDs are a single space in the hardware but we split them
* per device. Only disable in hardware if every device has disabled.
*/
if (!enable)
pau_for_each_dev(dev, pau)
if (dev->genid_bar.enable)
return;
reg = PAU_GENID_BAR;
val = pau_read(pau, reg);
val = SETFIELD(PAU_GENID_BAR_ENABLE, val, enable);
pau_write(pau, reg, val);
}
static int64_t pau_opencapi_creset(struct pci_slot *slot)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(slot->phb);
PAUDEVERR(dev, "creset not supported\n");
return OPAL_UNSUPPORTED;
}
static int64_t pau_opencapi_hreset(struct pci_slot *slot)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(slot->phb);
PAUDEVERR(dev, "hreset not supported\n");
return OPAL_UNSUPPORTED;
}
static void pau_opencapi_assert_odl_reset(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
uint64_t reg, val;
reg = P10_OB_ODL_CONFIG(dev->op_unit, dev->odl_index);
val = P10_OB_ODL_CONFIG_RESET;
val = SETFIELD(P10_OB_ODL_CONFIG_VERSION, val, 0b000100); // OCAPI 4
val = SETFIELD(P10_OB_ODL_CONFIG_TRAIN_MODE, val, 0b0101); // ts2
val = SETFIELD(P10_OB_ODL_CONFIG_SUPPORTED_MODES, val, 0b0010);
val |= P10_OB_ODL_CONFIG_X4_BACKOFF_ENABLE;
val = SETFIELD(P10_OB_ODL_CONFIG_PHY_CNTR_LIMIT, val, 0b1111);
val |= P10_OB_ODL_CONFIG_DEBUG_ENABLE;
val = SETFIELD(P10_OB_ODL_CONFIG_FWD_PROGRESS_TIMER, val, 0b0110);
xscom_write(pau->chip_id, reg, val);
}
static void pau_opencapi_deassert_odl_reset(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
uint64_t reg, val;
reg = P10_OB_ODL_CONFIG(dev->op_unit, dev->odl_index);
xscom_read(pau->chip_id, reg, &val);
val &= ~P10_OB_ODL_CONFIG_RESET;
xscom_write(pau->chip_id, reg, val);
}
static void pau_opencapi_training_mode(struct pau_dev *dev,
uint8_t pattern)
{
struct pau *pau = dev->pau;
uint64_t reg, val;
reg = P10_OB_ODL_CONFIG(dev->op_unit, dev->odl_index);
xscom_read(pau->chip_id, reg, &val);
val = SETFIELD(P10_OB_ODL_CONFIG_TRAIN_MODE, val, pattern);
xscom_write(pau->chip_id, reg, val);
}
static int64_t pau_opencapi_assert_adapter_reset(struct pau_dev *dev)
{
int64_t rc = OPAL_PARAMETER;
if (platform.ocapi->i2c_assert_reset)
rc = platform.ocapi->i2c_assert_reset(dev->i2c_bus_id);
if (rc)
PAUDEVERR(dev, "Error writing I2C reset signal: %lld\n", rc);
return rc;
}
static int64_t pau_opencapi_deassert_adapter_reset(struct pau_dev *dev)
{
int64_t rc = OPAL_PARAMETER;
if (platform.ocapi->i2c_deassert_reset)
rc = platform.ocapi->i2c_deassert_reset(dev->i2c_bus_id);
if (rc)
PAUDEVERR(dev, "Error writing I2C reset signal: %lld\n", rc);
return rc;
}
static void pau_opencapi_fence_brick(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
PAUDEVDBG(dev, "Fencing brick\n");
pau_opencapi_set_fence_control(dev, 0b11);
/* Place all bricks into Fence state */
pau_write(pau, PAU_MISC_FENCE_STATE,
PAU_MISC_FENCE_STATE_SET(pau_dev_index(dev, PAU_LINKS_OPENCAPI_PER_PAU)));
}
static void pau_opencapi_unfence_brick(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
PAUDEVDBG(dev, "Unfencing brick\n");
pau_write(pau, PAU_MISC_FENCE_STATE,
PAU_MISC_FENCE_STATE_CLEAR(pau_dev_index(dev, PAU_LINKS_OPENCAPI_PER_PAU)));
pau_opencapi_set_fence_control(dev, 0b10);
pau_opencapi_set_fence_control(dev, 0b00);
}
static int64_t pau_opencapi_freset(struct pci_slot *slot)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(slot->phb);
uint8_t presence = 1;
int64_t rc = OPAL_SUCCESS;
switch (slot->state) {
case PAU_SLOT_NORMAL:
case PAU_SLOT_FRESET_START:
PAUDEVDBG(dev, "FRESET: Starts\n");
if (slot->ops.get_presence_state)
slot->ops.get_presence_state(slot, &presence);
if (!presence) {
/*
* FIXME: if there's no card on the link, we
* should consider powering off the unused
* lanes to save energy
*/
PAUDEVINF(dev, "no card detected\n");
return OPAL_SUCCESS;
}
slot->link_retries = PAU_LINK_TRAINING_RETRIES;
/* fall-through */
case PAU_SLOT_FRESET_INIT:
pau_opencapi_fence_brick(dev);
pau_opencapi_enable_bars(dev, false);
pau_opencapi_assert_odl_reset(dev);
pau_opencapi_assert_adapter_reset(dev);
pci_slot_set_state(slot, PAU_SLOT_FRESET_ASSERT_DELAY);
/* assert for 5ms */
return pci_slot_set_sm_timeout(slot, msecs_to_tb(5));
case PAU_SLOT_FRESET_ASSERT_DELAY:
rc = pau_dev_phy_reset(dev);
if (rc) {
PAUDEVERR(dev, "FRESET: PHY reset error\n");
return OPAL_HARDWARE;
}
pau_opencapi_deassert_odl_reset(dev);
pau_opencapi_deassert_adapter_reset(dev);
pci_slot_set_state(slot, PAU_SLOT_FRESET_DEASSERT_DELAY);
/* give 250ms to device to be ready */
return pci_slot_set_sm_timeout(slot, msecs_to_tb(250));
case PAU_SLOT_FRESET_DEASSERT_DELAY:
pau_opencapi_unfence_brick(dev);
pau_opencapi_enable_bars(dev, true);
pau_opencapi_training_mode(dev, 0b0001); /* send pattern A */
pci_slot_set_state(slot, PAU_SLOT_FRESET_INIT_DELAY);
return pci_slot_set_sm_timeout(slot, msecs_to_tb(5));
case PAU_SLOT_FRESET_INIT_DELAY:
pau_opencapi_training_mode(dev, 0b1000); /* enable training */
dev->train_start = mftb();
dev->train_timeout = dev->train_start +
msecs_to_tb(PAU_LINK_TRAINING_TIMEOUT);
pci_slot_set_state(slot, PAU_SLOT_LINK_START);
return slot->ops.poll_link(slot);
default:
PAUDEVERR(dev, "FRESET: unexpected slot state %08x\n",
slot->state);
}
pci_slot_set_state(slot, PAU_SLOT_NORMAL);
return OPAL_HARDWARE;
}
static uint64_t pau_opencapi_get_odl_endpoint_info(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
uint64_t val;
xscom_read(pau->chip_id,
P10_OB_ODL_DLX_INFO(dev->op_unit, dev->odl_index),
&val);
return val;
}
static uint64_t pau_opencapi_get_odl_training_status(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
uint64_t val;
xscom_read(pau->chip_id,
P10_OB_ODL_TRAIN_STAT(dev->op_unit, dev->odl_index),
&val);
return val;
}
static uint64_t pau_opencapi_get_odl_status(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
uint64_t val;
xscom_read(pau->chip_id,
P10_OB_ODL_STATUS(dev->op_unit, dev->odl_index),
&val);
return val;
}
static uint64_t pau_opencapi_get_odl_link_speed_status(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
uint64_t val;
xscom_read(pau->chip_id,
P10_OB_ODL_LINK_SPEED_STATUS(dev->op_unit, dev->odl_index),
&val);
return val;
}
static enum OpalShpcLinkState pau_opencapi_get_link_width(uint64_t status)
{
uint64_t tx_lanes, rx_lanes, state;
state = GETFIELD(P10_OB_ODL_STATUS_TRAINING_STATE, status);
if (state != PAU_LINK_STATE_TRAINED)
return OPAL_SHPC_LINK_DOWN;
rx_lanes = GETFIELD(P10_OB_ODL_STATUS_RX_TRAINED_LANES, status);
tx_lanes = GETFIELD(P10_OB_ODL_STATUS_TX_TRAINED_LANES, status);
if ((rx_lanes != 0xFF) || (tx_lanes != 0xFF))
return OPAL_SHPC_LINK_UP_x4;
else
return OPAL_SHPC_LINK_UP_x8;
}
static int64_t pau_opencapi_get_link_state(struct pci_slot *slot,
uint8_t *val)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(slot->phb);
uint64_t status;
status = pau_opencapi_get_odl_status(dev);
*val = pau_opencapi_get_link_width(status);
return OPAL_SUCCESS;
}
static int64_t pau_opencapi_get_power_state(struct pci_slot *slot,
uint8_t *val)
{
*val = slot->power_state;
return OPAL_SUCCESS;
}
static int64_t pau_opencapi_get_presence_state(struct pci_slot __unused * slot,
uint8_t *val)
{
/*
* Presence detection for OpenCAPI is currently done at the start of
* PAU initialisation, and we only create slots if a device is present.
* As such we will never be asked to get the presence of a slot that's
* empty.
*
* This may change if we ever support hotplug down the track.
*/
*val = OPAL_PCI_SLOT_PRESENT;
return OPAL_SUCCESS;
}
static void pau_opencapi_check_trained_link(struct pau_dev *dev,
uint64_t status)
{
if (pau_opencapi_get_link_width(status) != OPAL_SHPC_LINK_UP_x8) {
PAUDEVERR(dev, "Link trained in degraded mode (%016llx)\n",
status);
PAUDEVDBG(dev, "Link endpoint info: %016llx\n",
pau_opencapi_get_odl_endpoint_info(dev));
}
}
static int64_t pau_opencapi_retry_state(struct pci_slot *slot,
uint64_t status)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(slot->phb);
if (!slot->link_retries--) {
/**
* @fwts-label OCAPILinkTrainingFailed
* @fwts-advice The OpenCAPI link training procedure failed.
* This indicates a hardware or firmware bug. OpenCAPI
* functionality will not be available on this link.
*/
PAUDEVERR(dev,
"Link failed to train, final link status: %016llx\n",
status);
PAUDEVDBG(dev, "Final link training status: %016llx (Link Speed Status: %016llx)\n",
pau_opencapi_get_odl_training_status(dev),
pau_opencapi_get_odl_link_speed_status(dev));
return OPAL_HARDWARE;
}
PAUDEVERR(dev, "Link failed to train, retrying\n");
PAUDEVERR(dev, "Link status: %016llx, training status: %016llx "
"(Link Speed Status: %016llx)\n",
status,
pau_opencapi_get_odl_training_status(dev),
pau_opencapi_get_odl_link_speed_status(dev));
pci_slot_set_state(slot, PAU_SLOT_FRESET_INIT);
return pci_slot_set_sm_timeout(slot, msecs_to_tb(1));
}
static void pau_opencapi_otl_tx_send_enable(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
uint64_t reg, val;
/* Allows OTL TX to send out packets to AFU */
PAUDEVDBG(dev, "OTL TX Send Enable\n");
reg = PAU_OTL_MISC_CFG_TX2(dev->index);
val = pau_read(pau, reg);
val |= PAU_OTL_MISC_CFG_TX2_SEND_EN;
pau_write(pau, reg, val);
}
static void pau_opencapi_setup_perf_counters(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
uint64_t reg, val;
PAUDEVDBG(dev, "Setup perf counter\n");
reg = P10_OB_ODL_PERF_MON_CONFIG(dev->op_unit);
xscom_read(pau->chip_id, reg, &val);
val = SETFIELD(P10_OB_ODL_PERF_MON_CONFIG_ENABLE, val,
P10_OB_ODL_PERF_MON_CONFIG_LINK0 >> dev->index);
val = SETFIELD(P10_OB_ODL_PERF_MON_CONFIG_SIZE, val,
P10_OB_ODL_PERF_MON_CONFIG_SIZE16);
xscom_write(pau->chip_id, reg, val);
PAUDEVDBG(dev, "perf counter config %llx = %llx\n", reg, val);
reg = P10_OB_ODL_PERF_MON_SELECT(dev->op_unit);
xscom_read(pau->chip_id, reg, &val);
val = SETFIELD(P10_OB_ODL_PERF_MON_SELECT_COUNTER >> (dev->index * 16),
val, P10_OB_ODL_PERF_MON_SELECT_CRC_ODL);
val = SETFIELD(P10_OB_ODL_PERF_MON_SELECT_COUNTER >> ((dev->index * 16) + 8),
val, P10_OB_ODL_PERF_MON_SELECT_CRC_DLX);
xscom_write(pau->chip_id, reg, val);
PAUDEVDBG(dev, "perf counter select %llx = %llx\n", reg, val);
}
static void pau_opencapi_check_perf_counters(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
uint64_t reg, val;
reg = P10_OB_PERF_COUNTER0(dev->op_unit);
xscom_read(pau->chip_id, reg, &val);
if (val)
PAUDEVERR(dev, "CRC error count perf_counter0..3=0%#llx\n",
val);
}
static int64_t pau_opencapi_poll_link(struct pci_slot *slot)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(slot->phb);
uint64_t status;
switch (slot->state) {
case PAU_SLOT_NORMAL:
case PAU_SLOT_LINK_START:
PAUDEVDBG(dev, "Start polling\n");
pci_slot_set_state(slot, PAU_SLOT_LINK_WAIT);
/* fall-through */
case PAU_SLOT_LINK_WAIT:
status = pau_opencapi_get_odl_status(dev);
if (GETFIELD(P10_OB_ODL_STATUS_TRAINING_STATE, status) ==
PAU_LINK_STATE_TRAINED) {
PAUDEVINF(dev, "link trained in %ld ms (Link Speed Status: %016llx)\n",
tb_to_msecs(mftb() - dev->train_start),
pau_opencapi_get_odl_link_speed_status(dev));
pau_opencapi_check_trained_link(dev, status);
pci_slot_set_state(slot, PAU_SLOT_LINK_TRAINED);
return pci_slot_set_sm_timeout(slot, msecs_to_tb(1));
}
if (tb_compare(mftb(), dev->train_timeout) == TB_AAFTERB)
return pau_opencapi_retry_state(slot, status);
return pci_slot_set_sm_timeout(slot, msecs_to_tb(1));
case PAU_SLOT_LINK_TRAINED:
pau_opencapi_otl_tx_send_enable(dev);
pci_slot_set_state(slot, PAU_SLOT_NORMAL);
if (dev->status & PAU_DEV_STATUS_BROKEN) {
PAUDEVERR(dev, "Resetting a device which hit a "
"previous error. Device recovery "
"is not supported, so future behavior is undefined\n");
dev->status &= ~PAU_DEV_STATUS_BROKEN;
}
pau_opencapi_check_perf_counters(dev);
dev->phb.scan_map = 1;
return OPAL_SUCCESS;
default:
PAUDEVERR(dev, "unexpected slot state %08x\n", slot->state);
}
pci_slot_set_state(slot, PAU_SLOT_NORMAL);
return OPAL_HARDWARE;
}
static void pau_opencapi_prepare_link_change(struct pci_slot *slot __unused,
bool up __unused)
{
/*
* PCI hotplug wants it defined, but we don't need to do anything
*/
}
static int64_t pau_opencapi_set_power_state(struct pci_slot *slot,
uint8_t val)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(slot->phb);
switch (val) {
case PCI_SLOT_POWER_OFF:
PAUDEVDBG(dev, "Fake power off\n");
pau_opencapi_fence_brick(dev);
pau_opencapi_assert_adapter_reset(dev);
slot->power_state = PCI_SLOT_POWER_OFF;
return OPAL_SUCCESS;
case PCI_SLOT_POWER_ON:
if (slot->power_state != PCI_SLOT_POWER_OFF)
return OPAL_SUCCESS;
PAUDEVDBG(dev, "Fake power on\n");
slot->power_state = PCI_SLOT_POWER_ON;
slot->state = PAU_SLOT_NORMAL;
return OPAL_SUCCESS;
default:
return OPAL_UNSUPPORTED;
}
}
static void pau_opencapi_create_phb_slot(struct pau_dev *dev)
{
struct pci_slot *slot;
slot = pci_slot_alloc(&dev->phb, NULL);
if (!slot) {
/**
* @fwts-label OCAPICannotCreatePHBSlot
* @fwts-advice Firmware probably ran out of memory creating
* PAU slot. OpenCAPI functionality could be broken.
*/
PAUDEVERR(dev, "Cannot create PHB slot\n");
}
/* Elementary functions */
slot->ops.creset = pau_opencapi_creset;
slot->ops.hreset = pau_opencapi_hreset;
slot->ops.freset = pau_opencapi_freset;
slot->ops.get_link_state = pau_opencapi_get_link_state;
slot->ops.get_power_state = pau_opencapi_get_power_state;
slot->ops.get_presence_state = pau_opencapi_get_presence_state;
slot->ops.poll_link = pau_opencapi_poll_link;
slot->ops.prepare_link_change = pau_opencapi_prepare_link_change;
slot->ops.set_power_state = pau_opencapi_set_power_state;
/* hotplug capability */
slot->pluggable = 1;
}
static int64_t pau_opencapi_pcicfg_check(struct pau_dev *dev,
uint32_t offset,
uint32_t size)
{
if (!dev || offset > 0xfff || (offset & (size - 1)))
return OPAL_PARAMETER;
return OPAL_SUCCESS;
}
static int64_t pau_opencapi_pcicfg_read(struct phb *phb, uint32_t bdfn,
uint32_t offset, uint32_t size,
void *data)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(phb);
uint64_t cfg_addr, genid_base;
int64_t rc;
rc = pau_opencapi_pcicfg_check(dev, offset, size);
if (rc)
return rc;
/* Config Address for Brick 0 Offset 0
* Config Address for Brick 1 Offset 256
*/
genid_base = dev->genid_bar.cfg + (dev->index << 8);
cfg_addr = PAU_CTL_MISC_CFG_ADDR_ENABLE;
cfg_addr = SETFIELD(PAU_CTL_MISC_CFG_ADDR_BUS_NBR |
PAU_CTL_MISC_CFG_ADDR_DEVICE_NBR |
PAU_CTL_MISC_CFG_ADDR_FUNCTION_NBR,
cfg_addr, bdfn);
cfg_addr = SETFIELD(PAU_CTL_MISC_CFG_ADDR_REGISTER_NBR,
cfg_addr, offset & ~3u);
out_be64((__be64 *)genid_base, cfg_addr);
sync();
switch (size) {
case 1:
*((uint8_t *)data) =
in_8((uint8_t *)(genid_base + 128 + (offset & 3)));
break;
case 2:
*((uint16_t *)data) =
in_le16((__le16 *)(genid_base + 128 + (offset & 2)));
break;
case 4:
*((uint32_t *)data) = in_le32((__le32 *)(genid_base + 128));
break;
default:
return OPAL_PARAMETER;
}
return OPAL_SUCCESS;
}
#define PAU_OPENCAPI_PCI_CFG_READ(size, type) \
static int64_t pau_opencapi_pcicfg_read##size(struct phb *phb, uint32_t bdfn, \
uint32_t offset, type * data) \
{ \
/* Initialize data in case of error */ \
*data = (type)0xffffffff; \
return pau_opencapi_pcicfg_read(phb, bdfn, offset, sizeof(type), data); \
}
static int64_t pau_opencapi_pcicfg_write(struct phb *phb, uint32_t bdfn,
uint32_t offset, uint32_t size,
uint32_t data)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(phb);
uint64_t genid_base, cfg_addr;
int64_t rc;
rc = pau_opencapi_pcicfg_check(dev, offset, size);
if (rc)
return rc;
/* Config Address for Brick 0 Offset 0
* Config Address for Brick 1 Offset 256
*/
genid_base = dev->genid_bar.cfg + (dev->index << 8);
cfg_addr = PAU_CTL_MISC_CFG_ADDR_ENABLE;
cfg_addr = SETFIELD(PAU_CTL_MISC_CFG_ADDR_BUS_NBR |
PAU_CTL_MISC_CFG_ADDR_DEVICE_NBR |
PAU_CTL_MISC_CFG_ADDR_FUNCTION_NBR,
cfg_addr, bdfn);
cfg_addr = SETFIELD(PAU_CTL_MISC_CFG_ADDR_REGISTER_NBR,
cfg_addr, offset & ~3u);
out_be64((__be64 *)genid_base, cfg_addr);
sync();
switch (size) {
case 1:
out_8((uint8_t *)(genid_base + 128 + (offset & 3)), data);
break;
case 2:
out_le16((__le16 *)(genid_base + 128 + (offset & 2)), data);
break;
case 4:
out_le32((__le32 *)(genid_base + 128), data);
break;
default:
return OPAL_PARAMETER;
}
return OPAL_SUCCESS;
}
#define PAU_OPENCAPI_PCI_CFG_WRITE(size, type) \
static int64_t pau_opencapi_pcicfg_write##size(struct phb *phb, uint32_t bdfn, \
uint32_t offset, type data) \
{ \
return pau_opencapi_pcicfg_write(phb, bdfn, offset, sizeof(type), data);\
}
PAU_OPENCAPI_PCI_CFG_READ(8, u8)
PAU_OPENCAPI_PCI_CFG_READ(16, u16)
PAU_OPENCAPI_PCI_CFG_READ(32, u32)
PAU_OPENCAPI_PCI_CFG_WRITE(8, u8)
PAU_OPENCAPI_PCI_CFG_WRITE(16, u16)
PAU_OPENCAPI_PCI_CFG_WRITE(32, u32)
static int64_t pau_opencapi_eeh_freeze_status(struct phb *phb __unused,
uint64_t pe_num __unused,
uint8_t *freeze_state,
uint16_t *pci_error_type,
uint16_t *severity)
{
*freeze_state = OPAL_EEH_STOPPED_NOT_FROZEN;
*pci_error_type = OPAL_EEH_NO_ERROR;
if (severity)
*severity = OPAL_EEH_SEV_NO_ERROR;
return OPAL_SUCCESS;
}
static int64_t pau_opencapi_ioda_reset(struct phb __unused * phb,
bool __unused purge)
{
/* Not relevant to OpenCAPI - we do this just to silence the error */
return OPAL_SUCCESS;
}
static int64_t pau_opencapi_next_error(struct phb *phb,
uint64_t *first_frozen_pe,
uint16_t *pci_error_type,
uint16_t *severity)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(phb);
struct pau *pau = dev->pau;
uint32_t pe_num;
uint64_t val;
if (!first_frozen_pe || !pci_error_type || !severity)
return OPAL_PARAMETER;
if (dev->status & PAU_DEV_STATUS_BROKEN) {
val = pau_read(pau, PAU_MISC_BDF2PE_CFG(dev->index));
pe_num = GETFIELD(PAU_MISC_BDF2PE_CFG_PE, val);
PAUDEVDBG(dev, "Reporting device as broken\n");
PAUDEVDBG(dev, "Brick %d fenced! (pe_num: %08x\n",
pau_dev_index(dev, PAU_LINKS_OPENCAPI_PER_PAU),
pe_num);
*first_frozen_pe = pe_num;
*pci_error_type = OPAL_EEH_PHB_ERROR;
*severity = OPAL_EEH_SEV_PHB_DEAD;
} else {
*first_frozen_pe = -1;
*pci_error_type = OPAL_EEH_NO_ERROR;
*severity = OPAL_EEH_SEV_NO_ERROR;
}
return OPAL_SUCCESS;
}
static uint32_t pau_opencapi_dev_interrupt_level(struct pau_dev *dev)
{
/* Interrupt Levels
* 35: Translation failure for OCAPI link 0
* 36: Translation failure for OCAPI link 1
*/
const uint32_t level[2] = {35, 36};
return level[dev->index];
}
static int pau_opencapi_dt_add_interrupts(struct phb *phb,
struct pci_device *pd,
void *data __unused)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(phb);
struct pau *pau = dev->pau;
uint64_t dsisr, dar, tfc, handle;
uint32_t irq;
irq = pau->irq_base + pau_opencapi_dev_interrupt_level(dev);
/* When an address translation fail causes the PAU to send an
* interrupt, information is stored in three registers for use
* by the interrupt handler. The OS accesses them by mmio.
*/
dsisr = pau->regs[0] + PAU_OTL_MISC_PSL_DSISR_AN(dev->index);
dar = pau->regs[0] + PAU_OTL_MISC_PSL_DAR_AN(dev->index);
tfc = pau->regs[0] + PAU_OTL_MISC_PSL_TFC_AN(dev->index);
handle = pau->regs[0] + PAU_OTL_MISC_PSL_PEHANDLE_AN(dev->index);
dt_add_property_cells(pd->dn, "ibm,opal-xsl-irq", irq);
dt_add_property_cells(pd->dn, "ibm,opal-xsl-mmio",
hi32(dsisr), lo32(dsisr),
hi32(dar), lo32(dar),
hi32(tfc), lo32(tfc),
hi32(handle), lo32(handle));
return 0;
}
static void pau_opencapi_phb_final_fixup(struct phb *phb)
{
pci_walk_dev(phb, NULL, pau_opencapi_dt_add_interrupts, NULL);
}
static int64_t pau_opencapi_set_pe(struct phb *phb,
uint64_t pe_num,
uint64_t bdfn,
uint8_t bcompare,
uint8_t dcompare,
uint8_t fcompare,
uint8_t action)
{
struct pau_dev *dev = pau_phb_to_opencapi_dev(phb);
struct pau *pau = dev->pau;
uint64_t val;
PAUDEVDBG(dev, "Set partitionable endpoint = %08llx, bdfn = %08llx\n",
pe_num, bdfn);
if (action != OPAL_MAP_PE && action != OPAL_UNMAP_PE)
return OPAL_PARAMETER;
if (pe_num >= PAU_MAX_PE_NUM)
return OPAL_PARAMETER;
if (bcompare != OpalPciBusAll ||
dcompare != OPAL_COMPARE_RID_DEVICE_NUMBER ||
fcompare != OPAL_COMPARE_RID_FUNCTION_NUMBER)
return OPAL_UNSUPPORTED;
val = PAU_MISC_BDF2PE_CFG_ENABLE;
val = SETFIELD(PAU_MISC_BDF2PE_CFG_PE, val, pe_num);
val = SETFIELD(PAU_MISC_BDF2PE_CFG_BDF, val, 0);
pau_write(pau, PAU_MISC_BDF2PE_CFG(dev->index), val);
return OPAL_SUCCESS;
}
static const struct phb_ops pau_opencapi_ops = {
.cfg_read8 = pau_opencapi_pcicfg_read8,
.cfg_read16 = pau_opencapi_pcicfg_read16,
.cfg_read32 = pau_opencapi_pcicfg_read32,
.cfg_write8 = pau_opencapi_pcicfg_write8,
.cfg_write16 = pau_opencapi_pcicfg_write16,
.cfg_write32 = pau_opencapi_pcicfg_write32,
.eeh_freeze_status = pau_opencapi_eeh_freeze_status,
.next_error = pau_opencapi_next_error,
.ioda_reset = pau_opencapi_ioda_reset,
.phb_final_fixup = pau_opencapi_phb_final_fixup,
.set_pe = pau_opencapi_set_pe,
};
static void pau_opencapi_create_phb(struct pau_dev *dev)
{
struct phb *phb = &dev->phb;
uint64_t mm_win[2];
mm_win[0] = dev->ntl_bar.addr;
mm_win[1] = dev->ntl_bar.size;
phb->phb_type = phb_type_pau_opencapi;
phb->scan_map = 0;
phb->ops = &pau_opencapi_ops;
phb->dt_node = dt_new_addr(dt_root, "pciex", mm_win[0]);
assert(phb->dt_node);
pci_register_phb(phb, pau_get_opal_id(dev->pau->chip_id,
pau_get_phb_index(dev->pau->index, dev->index)));
pau_opencapi_create_phb_slot(dev);
}
static void pau_dt_add_mmio_atsd(struct pau_dev *dev)
{
struct dt_node *dn = dev->phb.dt_node;
struct pau *pau = dev->pau;
uint64_t mmio_atsd[PAU_XTS_ATSD_MAX];
for (uint32_t i = 0; i < PAU_XTS_ATSD_MAX; i++)
mmio_atsd[i] = pau->regs[0] + PAU_XTS_ATSD_LAUNCH(i);
dt_add_property(dn, "ibm,mmio-atsd", mmio_atsd, sizeof(mmio_atsd));
}
static void pau_opencapi_dt_add_mmio_window(struct pau_dev *dev)
{
struct dt_node *dn = dev->phb.dt_node;
uint64_t mm_win[2];
mm_win[0] = dev->ntl_bar.addr;
mm_win[1] = dev->ntl_bar.size;
PAUDEVDBG(dev, "Setting AFU MMIO window to %016llx %016llx\n",
mm_win[0], mm_win[1]);
dt_add_property(dn, "reg", mm_win, sizeof(mm_win));
dt_add_property(dn, "ibm,mmio-window", mm_win, sizeof(mm_win));
dt_add_property_cells(dn, "ranges", 0x02000000,
hi32(mm_win[0]), lo32(mm_win[0]),
hi32(mm_win[0]), lo32(mm_win[0]),
hi32(mm_win[1]), lo32(mm_win[1]));
}
static void pau_opencapi_dt_add_hotpluggable(struct pau_dev *dev)
{
struct pci_slot *slot = dev->phb.slot;
struct dt_node *dn = dev->phb.dt_node;
char label[40];
/*
* Add a few definitions to the DT so that the linux PCI
* hotplug framework can find the slot and identify it as
* hot-pluggable.
*
* The "ibm,slot-label" property is used by linux as the slot name
*/
pci_slot_add_dt_properties(slot, dn);
snprintf(label, sizeof(label), "OPENCAPI-%04x",
(int)PCI_SLOT_PHB_INDEX(slot->id));
dt_add_property_string(dn, "ibm,slot-label", label);
}
static void pau_opencapi_dt_add_props(struct pau_dev *dev)
{
struct dt_node *dn = dev->phb.dt_node;
struct pau *pau = dev->pau;
dt_add_property_strings(dn,
"compatible",
"ibm,power10-pau-opencapi-pciex",
"ibm,ioda3-pau-opencapi-phb",
"ibm,ioda2-npu2-opencapi-phb");
dt_add_property_cells(dn, "#address-cells", 3);
dt_add_property_cells(dn, "#size-cells", 2);
dt_add_property_cells(dn, "#interrupt-cells", 1);
dt_add_property_cells(dn, "bus-range", 0, 0xff);
dt_add_property_cells(dn, "clock-frequency", 0x200, 0);
dt_add_property_cells(dn, "interrupt-parent", get_ics_phandle());
dt_add_property_strings(dn, "device_type", "pciex");
dt_add_property_cells(dn, "ibm,pau-index", pau->index);
dt_add_property_cells(dn, "ibm,chip-id", pau->chip_id);
dt_add_property_cells(dn, "ibm,xscom-base", pau->xscom_base);
dt_add_property_cells(dn, "ibm,npcq", pau->dt_node->phandle);
dt_add_property_cells(dn, "ibm,links", 1);
dt_add_property_cells(dn, "ibm,phb-diag-data-size", 0);
dt_add_property_cells(dn, "ibm,opal-num-pes", PAU_MAX_PE_NUM);
dt_add_property_cells(dn, "ibm,opal-reserved-pe", PAU_RESERVED_PE_NUM);
pau_dt_add_mmio_atsd(dev);
pau_opencapi_dt_add_mmio_window(dev);
pau_opencapi_dt_add_hotpluggable(dev);
}
static void pau_opencapi_set_transport_mux_controls(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
uint32_t typemap = 0;
uint64_t reg, val = 0;
PAUDEVDBG(dev, "Setting transport mux controls\n");
typemap = 0x2 >> dev->index;
reg = PAU_MISC_OPTICAL_IO_CONFIG;
val = pau_read(pau, reg);
typemap |= GETFIELD(PAU_MISC_OPTICAL_IO_CONFIG_OTL, val);
val = SETFIELD(PAU_MISC_OPTICAL_IO_CONFIG_OTL, val, typemap);
pau_write(pau, reg, val);
}
static void pau_opencapi_odl_config_phy(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
uint8_t typemap = 0;
uint64_t reg, val;
PAUDEVDBG(dev, "Configure ODL\n");
/* ODL must be in reset when enabling.
* It stays in reset until the link is trained
*/
pau_opencapi_assert_odl_reset(dev);
/* DLO (Open CAPI links) */
typemap = 0x2 >> dev->odl_index;
reg = P10_OB_ODL_PHY_CONFIG(dev->op_unit);
xscom_read(pau->chip_id, reg, &val);
typemap |= GETFIELD(P10_OB_ODL_PHY_CONFIG_LINK_SELECT, val);
val = SETFIELD(P10_OB_ODL_PHY_CONFIG_LINK_SELECT, val, typemap);
val = SETFIELD(P10_OB_ODL_PHY_CONFIG_DL_SELECT, val, 0b10);
xscom_write(pau->chip_id, reg, val);
}
static void pau_opencapi_enable_xsl_clocks(struct pau *pau)
{
uint64_t reg, val;
PAUDBG(pau, "Enable clocks in XSL\n");
reg = PAU_XSL_WRAP_CFG;
val = pau_read(pau, reg);
val |= PAU_XSL_WRAP_CFG_CLOCK_ENABLE;
pau_write(pau, reg, val);
}
static void pau_opencapi_enable_misc_clocks(struct pau *pau)
{
uint64_t reg, val;
PAUDBG(pau, "Enable clocks in MISC\n");
/* clear any spurious NDL stall or no_stall_c_err_rpts */
reg = PAU_MISC_HOLD;
val = pau_read(pau, reg);
val = SETFIELD(PAU_MISC_HOLD_NDL_STALL, val, 0b0000);
pau_write(pau, reg, val);
reg = PAU_MISC_CONFIG;
val = pau_read(pau, reg);
val |= PAU_MISC_CONFIG_OC_MODE;
pau_write(pau, reg, val);
}
static void pau_opencapi_set_npcq_config(struct pau *pau)
{
struct pau_dev *dev;
uint8_t oc_typemap = 0;
uint64_t reg, val;
/* MCP_MISC_CFG0
* SNP_MISC_CFG0 done in pau_opencapi_enable_pb
*/
pau_for_each_opencapi_dev(dev, pau)
oc_typemap |= 0x10 >> dev->index;
PAUDBG(pau, "Set NPCQ Config\n");
reg = PAU_CTL_MISC_CFG2;
val = pau_read(pau, reg);
val = SETFIELD(PAU_CTL_MISC_CFG2_OCAPI_MODE, val, oc_typemap);
val = SETFIELD(PAU_CTL_MISC_CFG2_OCAPI_4, val, oc_typemap);
val = SETFIELD(PAU_CTL_MISC_CFG2_OCAPI_C2, val, oc_typemap);
val = SETFIELD(PAU_CTL_MISC_CFG2_OCAPI_AMO, val, oc_typemap);
val = SETFIELD(PAU_CTL_MISC_CFG2_OCAPI_MEM_OS_BIT, val, oc_typemap);
pau_write(pau, reg, val);
reg = PAU_DAT_MISC_CFG1;
val = pau_read(pau, reg);
val = SETFIELD(PAU_DAT_MISC_CFG1_OCAPI_MODE, val, oc_typemap);
pau_write(pau, reg, val);
}
static void pau_opencapi_enable_xsl_xts_interfaces(struct pau *pau)
{
uint64_t reg, val;
PAUDBG(pau, "Enable XSL-XTS Interfaces\n");
reg = PAU_XTS_CFG;
val = pau_read(pau, reg);
val |= PAU_XTS_CFG_OPENCAPI;
pau_write(pau, reg, val);
reg = PAU_XTS_CFG2;
val = pau_read(pau, reg);
val |= PAU_XTS_CFG2_XSL2_ENA;
pau_write(pau, reg, val);
}
static void pau_opencapi_enable_sm_allocation(struct pau *pau)
{
uint64_t reg, val;
PAUDBG(pau, "Enable State Machine Allocation\n");
reg = PAU_MISC_MACHINE_ALLOC;
val = pau_read(pau, reg);
val |= PAU_MISC_MACHINE_ALLOC_ENABLE;
pau_write(pau, reg, val);
}
static void pau_opencapi_enable_powerbus(struct pau *pau)
{
struct pau_dev *dev;
uint8_t oc_typemap = 0;
uint64_t reg, val;
PAUDBG(pau, "Enable PowerBus\n");
pau_for_each_opencapi_dev(dev, pau)
oc_typemap |= 0x10 >> dev->index;
/* PowerBus interfaces must be enabled prior to MMIO */
reg = PAU_MCP_MISC_CFG0;
val = pau_read(pau, reg);
val |= PAU_MCP_MISC_CFG0_ENABLE_PBUS;
val |= PAU_MCP_MISC_CFG0_MA_MCRESP_OPT_WRP;
val = SETFIELD(PAU_MCP_MISC_CFG0_OCAPI_MODE, val, oc_typemap);
pau_write(pau, reg, val);
reg = PAU_SNP_MISC_CFG0;
val = pau_read(pau, reg);
val |= PAU_SNP_MISC_CFG0_ENABLE_PBUS;
val = SETFIELD(PAU_SNP_MISC_CFG0_OCAPI_MODE, val, oc_typemap);
val = SETFIELD(PAU_SNP_MISC_CFG0_OCAPI_C2, val, oc_typemap);
pau_write(pau, reg, val);
}
static void pau_opencapi_tl_config(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
uint64_t val;
PAUDEVDBG(dev, "TL Configuration\n");
/* OTL Config 0 */
val = 0;
val |= PAU_OTL_MISC_CFG0_EN;
val |= PAU_OTL_MISC_CFG0_BLOCK_PE_HANDLE;
val = SETFIELD(PAU_OTL_MISC_CFG0_BRICKID, val, dev->index);
val |= PAU_OTL_MISC_CFG0_ENABLE_4_0;
val |= PAU_OTL_MISC_CFG0_XLATE_RELEASE;
val |= PAU_OTL_MISC_CFG0_ENABLE_5_0;
pau_write(pau, PAU_OTL_MISC_CFG0(dev->index), val);
/* OTL Config 1 */
val = 0;
val = SETFIELD(PAU_OTL_MISC_CFG_TX_DRDY_WAIT, val, 0b010);
val = SETFIELD(PAU_OTL_MISC_CFG_TX_TEMP0_RATE, val, 0b0000);
val = SETFIELD(PAU_OTL_MISC_CFG_TX_TEMP1_RATE, val, 0b0011);
val = SETFIELD(PAU_OTL_MISC_CFG_TX_TEMP2_RATE, val, 0b0111);
val = SETFIELD(PAU_OTL_MISC_CFG_TX_TEMP3_RATE, val, 0b0010);
val = SETFIELD(PAU_OTL_MISC_CFG_TX_CRET_FREQ, val, 0b001);
pau_write(pau, PAU_OTL_MISC_CFG_TX(dev->index), val);
/* OTL Config 2 - Done after link training, in otl_tx_send_enable() */
/* TLX Credit Configuration */
val = 0;
val = SETFIELD(PAU_OTL_MISC_CFG_TLX_CREDITS_VC0, val, 0x40);
val = SETFIELD(PAU_OTL_MISC_CFG_TLX_CREDITS_VC1, val, 0x40);
val = SETFIELD(PAU_OTL_MISC_CFG_TLX_CREDITS_VC2, val, 0x40);
val = SETFIELD(PAU_OTL_MISC_CFG_TLX_CREDITS_VC3, val, 0x40);
val = SETFIELD(PAU_OTL_MISC_CFG_TLX_CREDITS_DCP0, val, 0x80);
val = SETFIELD(PAU_OTL_MISC_CFG_TLX_CREDITS_SPARE, val, 0x80);
val = SETFIELD(PAU_OTL_MISC_CFG_TLX_CREDITS_DCP2, val, 0x80);
val = SETFIELD(PAU_OTL_MISC_CFG_TLX_CREDITS_DCP3, val, 0x80);
pau_write(pau, PAU_OTL_MISC_CFG_TLX_CREDITS(dev->index), val);
}
static void pau_opencapi_enable_otlcq_interface(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
uint8_t typemap = 0;
uint64_t reg, val;
PAUDEVDBG(dev, "Enabling OTL-CQ Interface\n");
typemap |= 0x10 >> dev->index;
reg = PAU_CTL_MISC_CFG0;
val = pau_read(pau, reg);
typemap |= GETFIELD(PAU_CTL_MISC_CFG0_OTL_ENABLE, val);
val = SETFIELD(PAU_CTL_MISC_CFG0_OTL_ENABLE, val, typemap);
pau_write(pau, reg, val);
}
static void pau_opencapi_address_translation_config(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
uint64_t reg, val;
PAUDEVDBG(dev, "Address Translation Configuration\n");
/* OpenCAPI 4.0 Mode */
reg = PAU_XSL_OSL_XLATE_CFG(dev->index);
val = pau_read(pau, reg);
val |= PAU_XSL_OSL_XLATE_CFG_AFU_DIAL;
val &= ~PAU_XSL_OSL_XLATE_CFG_OPENCAPI3;
pau_write(pau, reg, val);
/* MMIO shootdowns (OpenCAPI 5.0) */
reg = PAU_XTS_CFG3;
val = pau_read(pau, reg);
val |= PAU_XTS_CFG3_MMIOSD_OCAPI;
pau_write(pau, reg, val);
/* XSL_GP - use defaults */
}
static void pau_opencapi_enable_interrupt_on_error(struct pau_dev *dev)
{
struct pau *pau = dev->pau;
uint64_t reg, val;
PAUDEVDBG(dev, "Enable Interrupt-on-error\n");
/* translation fault */
reg = PAU_MISC_INT_2_CONFIG;
val = pau_read(pau, reg);
val |= PAU_MISC_INT_2_CONFIG_XFAULT_2_5(dev->index);
pau_write(pau, reg, val);
/* freeze disable */
reg = PAU_MISC_FREEZE_1_CONFIG;
val = pau_read(pau, reg);
val &= ~PAU_FIR1_NDL_BRICKS_0_5;
val &= ~PAU_FIR1_NDL_BRICKS_6_11;
pau_write(pau, reg, val);
/* fence disable */
reg = PAU_MISC_FENCE_1_CONFIG;
val = pau_read(pau, reg);
val &= ~PAU_FIR1_NDL_BRICKS_0_5;
val &= ~PAU_FIR1_NDL_BRICKS_6_11;
pau_write(pau, reg, val);
/* irq disable */
reg = PAU_MISC_INT_1_CONFIG;
val = pau_read(pau, reg);
val &= ~PAU_FIR1_NDL_BRICKS_0_5;
val &= ~PAU_FIR1_NDL_BRICKS_6_11;
pau_write(pau, reg, val);
}
static void pau_opencapi_enable_ref_clock(struct pau_dev *dev)
{
uint64_t reg, val;
int bit;
switch (dev->pau_unit) {
case 0:
if (dev->index == 0)
bit = 16;
else
bit = 17;
break;
case 3:
if (dev->index == 0)
bit = 18;
else
bit = 19;
break;
case 4:
bit = 20;
break;
case 5:
bit = 21;
break;
case 6:
bit = 22;
break;
case 7:
bit = 23;
break;
default:
assert(false);
}
reg = P10_ROOT_CONTROL_7;
xscom_read(dev->pau->chip_id, reg, &val);
val |= PPC_BIT(bit);
PAUDEVDBG(dev, "Enabling ref clock for PAU%d => %llx\n",
dev->pau_unit, val);
xscom_write(dev->pau->chip_id, reg, val);
}
static void pau_opencapi_init_hw(struct pau *pau)
{
struct pau_dev *dev = NULL;
pau_opencapi_mask_firs(pau);
pau_opencapi_assign_bars(pau);
pau_opencapi_setup_irqs(pau);
/* Create phb */
pau_for_each_opencapi_dev(dev, pau) {
PAUDEVINF(dev, "Create phb\n");
pau_opencapi_create_phb(dev);
pau_opencapi_enable_bars(dev, true);
pau_opencapi_dt_add_props(dev);
}
/* Procedure 17.1.3.1 - Enabling OpenCAPI */
pau_for_each_opencapi_dev(dev, pau) {
PAUDEVINF(dev, "Configuring link ...\n");
pau_opencapi_set_transport_mux_controls(dev); /* step 1 */
pau_opencapi_odl_config_phy(dev);
}
pau_opencapi_enable_xsl_clocks(pau); /* step 2 */
pau_opencapi_enable_misc_clocks(pau); /* step 3 */
/* OTL disabled */
pau_for_each_opencapi_dev(dev, pau)
pau_opencapi_set_fence_control(dev, 0b01);
pau_opencapi_set_npcq_config(pau); /* step 4 */
pau_opencapi_enable_xsl_xts_interfaces(pau); /* step 5 */
pau_opencapi_enable_sm_allocation(pau); /* step 6 */
pau_opencapi_enable_powerbus(pau); /* step 7 */
/*
* access to the PAU registers through mmio requires setting
* up the PAU mmio BAR (in pau_opencapi_assign_bars() above)
* and machine state allocation
*/
pau->mmio_access = true;
pau_for_each_opencapi_dev(dev, pau) {
/* Procedure 17.1.3.4 - Transaction Layer Configuration
* OCAPI Link Transaction Layer functions
*/
pau_opencapi_tl_config(dev);
/* Procedure 17.1.3.4.1 - Enabling OTL-CQ Interface */
pau_opencapi_enable_otlcq_interface(dev);
/* Procedure 17.1.3.4.2 - Place OTL into Reset State
* Reset (Fence) both OTL and the PowerBus for this
* Brick
*/
pau_opencapi_set_fence_control(dev, 0b11);
/* Take PAU out of OTL Reset State
* Reset (Fence) only the PowerBus for this Brick, OTL
* will be operational
*/
pau_opencapi_set_fence_control(dev, 0b10);
/* Procedure 17.1.3.5 - Address Translation Configuration */
pau_opencapi_address_translation_config(dev);
/* Procedure 17.1.3.6 - AFU Memory Range BARs */
/* Will be done out of this process */
/* Procedure 17.1.3.8 - AFU MMIO Range BARs */
/* done in pau_opencapi_assign_bars() */
/* Procedure 17.1.3.9 - AFU Config BARs */
/* done in pau_opencapi_assign_bars() */
/* Precedure 17.1.3.10 - Relaxed Ordering Configuration */
/* Procedure 17.1.3.10.1 - Generation-Id Registers MMIO Bars */
/* done in pau_opencapi_assign_bars() */
/* Procedure 17.1.3.10.2 - Relaxed Ordering Source Configuration */
/* For an OpenCAPI AFU that uses M2 Memory Mode,
* Relaxed Ordering can be used for accesses to the
* AFU's memory
*/
/* Procedure 17.1.3.11 - Interrupt Configuration */
/* done in pau_opencapi_setup_irqs() */
pau_opencapi_enable_interrupt_on_error(dev);
/* enable performance monitor */
pau_opencapi_setup_perf_counters(dev);
/* Reset disabled. Place OTLs into Run State */
pau_opencapi_set_fence_control(dev, 0b00);
/* Enable reference clock */
pau_opencapi_enable_ref_clock(dev);
}
}
static void pau_opencapi_init(struct pau *pau)
{
if (!pau_next_dev(pau, NULL, PAU_DEV_TYPE_OPENCAPI))
return;
assert(platform.ocapi);
pau_opencapi_init_hw(pau);
disable_fast_reboot("OpenCAPI device enabled");
}
static void pau_init(struct pau *pau)
{
struct pau_dev *dev;
platform.pau_device_detect(pau);
pau_for_each_dev(dev, pau)
pau_device_detect_fixup(dev);
pau_opencapi_init(pau);
}
static void probe_pau(void)
{
struct dt_node *dn;
struct pau *pau;
/* This can be removed when/if we decide to use HDAT instead */
if (!pau_dt_create())
return;
if (!platform.pau_device_detect) {
prlog(PR_INFO, "PAU: Platform does not support PAU\n");
return;
}
dt_for_each_compatible(dt_root, dn, "ibm,power10-pau") {
pau = pau_create(dn);
pau_init(pau);
}
}
DEFINE_HWPROBE_DEPS(pau, probe_pau, "phb4");