1
0
Fork 0
vim/src/vim9type.c
Daniel Baumann 0985b09abd
Adding upstream version 2:9.1.1230.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-21 11:09:31 +02:00

2162 lines
51 KiB
C

/* vi:set ts=8 sts=4 sw=4 noet:
*
* VIM - Vi IMproved by Bram Moolenaar
*
* Do ":help uganda" in Vim to read copying and usage conditions.
* Do ":help credits" in Vim to see a list of people who contributed.
* See README.txt for an overview of the Vim source code.
*/
/*
* vim9type.c: handling of types
*/
#define USING_FLOAT_STUFF
#include "vim.h"
#if defined(FEAT_EVAL) || defined(PROTO)
#ifdef VMS
# include <float.h>
#endif
// When not generating protos this is included in proto.h
#ifdef PROTO
# include "vim9.h"
#endif
/*
* Allocate memory for a type_T and add the pointer to type_gap, so that it can
* be easily freed later.
*/
type_T *
get_type_ptr(garray_T *type_gap)
{
type_T *type;
if (ga_grow(type_gap, 1) == FAIL)
return NULL;
type = ALLOC_CLEAR_ONE(type_T);
if (type == NULL)
return NULL;
((type_T **)type_gap->ga_data)[type_gap->ga_len] = type;
++type_gap->ga_len;
return type;
}
/*
* Make a shallow copy of "type".
* When allocation fails returns "type".
*/
type_T *
copy_type(type_T *type, garray_T *type_gap)
{
type_T *copy = get_type_ptr(type_gap);
if (copy == NULL)
return type;
*copy = *type;
copy->tt_flags &= ~TTFLAG_STATIC;
if (type->tt_args != NULL
&& func_type_add_arg_types(copy, type->tt_argcount, type_gap) == OK)
for (int i = 0; i < type->tt_argcount; ++i)
copy->tt_args[i] = type->tt_args[i];
return copy;
}
/*
* Inner part of copy_type_deep().
* When allocation fails returns "type".
*/
static type_T *
copy_type_deep_rec(type_T *type, garray_T *type_gap, garray_T *seen_types)
{
for (int i = 0; i < seen_types->ga_len; ++i)
if (((type_T **)seen_types->ga_data)[i * 2] == type)
// seen this type before, return the copy we made
return ((type_T **)seen_types->ga_data)[i * 2 + 1];
type_T *copy = copy_type(type, type_gap);
if (ga_grow(seen_types, 1) == FAIL)
return copy;
((type_T **)seen_types->ga_data)[seen_types->ga_len * 2] = type;
((type_T **)seen_types->ga_data)[seen_types->ga_len * 2 + 1] = copy;
++seen_types->ga_len;
if (copy->tt_member != NULL)
copy->tt_member = copy_type_deep_rec(copy->tt_member,
type_gap, seen_types);
if (type->tt_args != NULL)
for (int i = 0; i < type->tt_argcount; ++i)
copy->tt_args[i] = copy_type_deep_rec(copy->tt_args[i],
type_gap, seen_types);
return copy;
}
/*
* Make a deep copy of "type".
* When allocation fails returns "type".
*/
static type_T *
copy_type_deep(type_T *type, garray_T *type_gap)
{
garray_T seen_types;
// stores type pairs : a type we have seen and the copy used
ga_init2(&seen_types, sizeof(type_T *) * 2, 20);
type_T *res = copy_type_deep_rec(type, type_gap, &seen_types);
ga_clear(&seen_types);
return res;
}
void
clear_type_list(garray_T *gap)
{
while (gap->ga_len > 0)
vim_free(((type_T **)gap->ga_data)[--gap->ga_len]);
ga_clear(gap);
}
void
clear_func_type_list(garray_T *gap, type_T **func_type)
{
while (gap->ga_len > 0)
{
// func_type pointing to the uf_type_list, so reset pointer
if (*func_type == ((type_T **)gap->ga_data)[--gap->ga_len])
*func_type = &t_func_any;
vim_free(((type_T **)gap->ga_data)[gap->ga_len]);
}
ga_clear(gap);
}
/*
* Take a type that is using entries in a growarray and turn it into a type
* with allocated entries.
*/
type_T *
alloc_type(type_T *type)
{
type_T *ret;
if (type == NULL)
return NULL;
// A fixed type never contains allocated types, return as-is.
if (type->tt_flags & TTFLAG_STATIC)
return type;
ret = ALLOC_ONE(type_T);
*ret = *type;
if (ret->tt_member != NULL)
ret->tt_member = alloc_type(ret->tt_member);
if (type->tt_argcount > 0 && type->tt_args != NULL)
{
int i;
ret->tt_args = ALLOC_MULT(type_T *, type->tt_argcount);
if (ret->tt_args != NULL)
for (i = 0; i < type->tt_argcount; ++i)
ret->tt_args[i] = alloc_type(type->tt_args[i]);
}
else
ret->tt_args = NULL;
return ret;
}
/*
* Free a type that was created with alloc_type().
*/
void
free_type(type_T *type)
{
int i;
if (type == NULL || (type->tt_flags & TTFLAG_STATIC))
return;
if (type->tt_args != NULL)
{
for (i = 0; i < type->tt_argcount; ++i)
free_type(type->tt_args[i]);
vim_free(type->tt_args);
}
free_type(type->tt_member);
vim_free(type);
}
/*
* Return TRUE if "type" is to be recursed into for setting the type.
*/
static int
set_tv_type_recurse(type_T *type)
{
return type->tt_member != NULL
&& (type->tt_member->tt_type == VAR_DICT
|| type->tt_member->tt_type == VAR_LIST)
&& type->tt_member->tt_member != NULL
&& type->tt_member->tt_member != &t_any
&& type->tt_member->tt_member != &t_unknown;
}
/*
* Set the type of Dict "d" to "type"
*/
static void
set_tv_type_dict(dict_T *d, type_T *type)
{
if (d->dv_type == type)
return;
free_type(d->dv_type);
d->dv_type = alloc_type(type);
// Need to recursively set the type of dict items?
if (!set_tv_type_recurse(type))
return;
int todo = (int)d->dv_hashtab.ht_used;
hashitem_T *hi;
dictitem_T *di;
FOR_ALL_HASHTAB_ITEMS(&d->dv_hashtab, hi, todo)
{
if (!HASHITEM_EMPTY(hi))
{
--todo;
di = HI2DI(hi);
set_tv_type(&di->di_tv, type->tt_member);
}
}
}
/*
* Set the type of List "l" to "type"
*/
static void
set_tv_type_list(list_T *l, type_T *type)
{
if (l->lv_type == type)
return;
free_type(l->lv_type);
l->lv_type = alloc_type(type);
// Need to recursively set the type of list items?
if (l->lv_first == &range_list_item || !set_tv_type_recurse(type))
return;
listitem_T *li;
FOR_ALL_LIST_ITEMS(l, li)
set_tv_type(&li->li_tv, type->tt_member);
}
/*
* Set the type of "tv" to "type" if it is a list or dict.
*/
void
set_tv_type(typval_T *tv, type_T *type)
{
if (type->tt_type == VAR_ANY)
// If the variable type is "any", then keep the value type.
// e.g. var x: any = [1, 2] or var y: any = {v: 1}
return;
if (tv->v_type == VAR_DICT && tv->vval.v_dict != NULL)
set_tv_type_dict(tv->vval.v_dict, type);
else if (tv->v_type == VAR_LIST && tv->vval.v_list != NULL)
set_tv_type_list(tv->vval.v_list, type);
}
type_T *
get_list_type(type_T *member_type, garray_T *type_gap)
{
type_T *type;
// recognize commonly used types
if (member_type == NULL || member_type->tt_type == VAR_ANY)
return &t_list_any;
if (member_type->tt_type == VAR_VOID
|| member_type->tt_type == VAR_UNKNOWN)
return &t_list_empty;
if (member_type->tt_type == VAR_BOOL)
return &t_list_bool;
if (member_type->tt_type == VAR_NUMBER)
return &t_list_number;
if (member_type->tt_type == VAR_STRING)
return &t_list_string;
// Not a common type, create a new entry.
type = get_type_ptr(type_gap);
if (type == NULL)
return &t_any;
type->tt_type = VAR_LIST;
type->tt_member = member_type;
type->tt_argcount = 0;
type->tt_args = NULL;
return type;
}
type_T *
get_dict_type(type_T *member_type, garray_T *type_gap)
{
type_T *type;
// recognize commonly used types
if (member_type == NULL || member_type->tt_type == VAR_ANY)
return &t_dict_any;
if (member_type->tt_type == VAR_VOID
|| member_type->tt_type == VAR_UNKNOWN)
return &t_dict_empty;
if (member_type->tt_type == VAR_BOOL)
return &t_dict_bool;
if (member_type->tt_type == VAR_NUMBER)
return &t_dict_number;
if (member_type->tt_type == VAR_STRING)
return &t_dict_string;
// Not a common type, create a new entry.
type = get_type_ptr(type_gap);
if (type == NULL)
return &t_any;
type->tt_type = VAR_DICT;
type->tt_member = member_type;
type->tt_argcount = 0;
type->tt_args = NULL;
return type;
}
/*
* Allocate a new type for a function.
*/
type_T *
alloc_func_type(type_T *ret_type, int argcount, garray_T *type_gap)
{
type_T *type = get_type_ptr(type_gap);
if (type == NULL)
return &t_any;
type->tt_type = VAR_FUNC;
type->tt_member = ret_type == NULL ? &t_unknown : ret_type;
type->tt_argcount = argcount;
type->tt_args = NULL;
return type;
}
/*
* Get a function type, based on the return type "ret_type".
* "argcount" must be -1 or 0, a predefined type can be used.
*/
type_T *
get_func_type(type_T *ret_type, int argcount, garray_T *type_gap)
{
// recognize commonly used types
if (ret_type == &t_unknown || ret_type == NULL)
{
// (argcount == 0) is not possible
return &t_func_unknown;
}
if (ret_type == &t_void)
{
if (argcount == 0)
return &t_func_0_void;
else
return &t_func_void;
}
if (ret_type == &t_any)
{
if (argcount == 0)
return &t_func_0_any;
else
return &t_func_any;
}
if (ret_type == &t_number)
{
if (argcount == 0)
return &t_func_0_number;
else
return &t_func_number;
}
if (ret_type == &t_string)
{
if (argcount == 0)
return &t_func_0_string;
else
return &t_func_string;
}
return alloc_func_type(ret_type, argcount, type_gap);
}
/*
* For a function type, reserve space for "argcount" argument types (including
* vararg).
*/
int
func_type_add_arg_types(
type_T *functype,
int argcount,
garray_T *type_gap)
{
// To make it easy to free the space needed for the argument types, add the
// pointer to type_gap.
if (ga_grow(type_gap, 1) == FAIL)
return FAIL;
functype->tt_args = ALLOC_CLEAR_MULT(type_T *, argcount);
if (functype->tt_args == NULL)
return FAIL;
((type_T **)type_gap->ga_data)[type_gap->ga_len] =
(void *)functype->tt_args;
++type_gap->ga_len;
return OK;
}
/*
* Return TRUE if "type" is NULL, any or unknown.
* This also works for const (comparing with &t_any and &t_unknown doesn't).
*/
int
type_any_or_unknown(type_T *type)
{
return type == NULL || type->tt_type == VAR_ANY
|| type->tt_type == VAR_UNKNOWN;
}
/*
* Get a type_T for a "special" typval in "tv".
*/
static type_T *
special_typval2type(typval_T *tv)
{
switch (tv->vval.v_number)
{
case VVAL_NULL:
return &t_null;
case VVAL_NONE:
return &t_none;
case VVAL_TRUE:
case VVAL_FALSE:
return &t_bool;
default:
return &t_unknown;
}
}
/*
* Get a type_T for a List typval in "tv".
* When "flags" has TVTT_DO_MEMBER also get the member type, otherwise use
* "any".
* When "flags" has TVTT_MORE_SPECIFIC get the more specific member type if it
* is "any".
*/
static type_T *
list_typval2type(typval_T *tv, int copyID, garray_T *type_gap, int flags)
{
list_T *l = tv->vval.v_list;
listitem_T *li;
type_T *member_type = NULL;
// An empty list has type list<unknown>, unless the type was specified
// and is not list<any>. This matters when assigning to a variable
// with a specific list type.
if (l == NULL || (l->lv_first == NULL
&& (l->lv_type == NULL || l->lv_type->tt_member == &t_any)))
return &t_list_empty;
if ((flags & TVTT_DO_MEMBER) == 0)
return &t_list_any;
// If the type is list<any> go through the members, it may end up a
// more specific type.
if (l->lv_type != NULL && (l->lv_first == NULL
|| (flags & TVTT_MORE_SPECIFIC) == 0
|| l->lv_type->tt_member != &t_any))
// make a copy, lv_type may be freed if the list is freed
return copy_type_deep(l->lv_type, type_gap);
if (l->lv_first == &range_list_item)
return &t_list_number;
if (l->lv_copyID == copyID)
// avoid recursion
return &t_list_any;
l->lv_copyID = copyID;
// Use the common type of all members.
member_type = typval2type(&l->lv_first->li_tv, copyID, type_gap,
TVTT_DO_MEMBER);
for (li = l->lv_first->li_next; li != NULL; li = li->li_next)
common_type(typval2type(&li->li_tv, copyID, type_gap, TVTT_DO_MEMBER),
member_type, &member_type, type_gap);
return get_list_type(member_type, type_gap);
}
/*
* Get a type_T for a Dict typval in "tv".
* When "flags" has TVTT_DO_MEMBER also get the member type, otherwise use
* "any".
* When "flags" has TVTT_MORE_SPECIFIC get the more specific member type if it
* is "any".
*/
static type_T *
dict_typval2type(typval_T *tv, int copyID, garray_T *type_gap, int flags)
{
dict_iterator_T iter;
typval_T *value;
dict_T *d = tv->vval.v_dict;
type_T *member_type = NULL;
if (d == NULL || (d->dv_hashtab.ht_used == 0 && d->dv_type == NULL))
return &t_dict_empty;
if ((flags & TVTT_DO_MEMBER) == 0)
return &t_dict_any;
// If the type is dict<any> go through the members, it may end up a
// more specific type.
if (d->dv_type != NULL && (d->dv_hashtab.ht_used == 0
|| (flags & TVTT_MORE_SPECIFIC) == 0
|| d->dv_type->tt_member != &t_any))
return d->dv_type;
if (d->dv_copyID == copyID)
// avoid recursion
return &t_dict_any;
d->dv_copyID = copyID;
// Use the common type of all values.
dict_iterate_start(tv, &iter);
dict_iterate_next(&iter, &value);
member_type = typval2type(value, copyID, type_gap, TVTT_DO_MEMBER);
while (dict_iterate_next(&iter, &value) != NULL)
common_type(typval2type(value, copyID, type_gap, TVTT_DO_MEMBER),
member_type, &member_type, type_gap);
return get_dict_type(member_type, type_gap);
}
/*
* Get a type_T for a "partial" typval in "tv".
*/
static type_T *
partial_typval2type(typval_T *tv, ufunc_T *ufunc, garray_T *type_gap)
{
partial_T *pt = tv->vval.v_partial;
type_T *type;
type = get_type_ptr(type_gap);
if (type == NULL)
return NULL;
*type = *ufunc->uf_func_type;
if (type->tt_argcount >= 0 && pt->pt_argc > 0)
{
type->tt_argcount -= pt->pt_argc;
type->tt_min_argcount -= pt->pt_argc;
if (type->tt_argcount > 0 && func_type_add_arg_types(type,
type->tt_argcount, type_gap) == OK)
for (int i = 0; i < type->tt_argcount; ++i)
type->tt_args[i] =
ufunc->uf_func_type->tt_args[i + pt->pt_argc];
}
if (pt->pt_func != NULL)
type->tt_member = pt->pt_func->uf_ret_type;
return type;
}
/*
* Get a type_T for a "class" or an "object" typval in "tv".
*/
static type_T *
oc_typval2type(typval_T *tv)
{
if (tv->v_type == VAR_CLASS)
{
if (tv->vval.v_class == NULL)
return &t_class;
return &tv->vval.v_class->class_type;
}
if (tv->vval.v_object != NULL)
return &tv->vval.v_object->obj_class->class_object_type;
return &t_object;
}
/*
* Get a type_T for a "function" or a "partial"
*/
static type_T *
fp_typval2type(typval_T *tv, garray_T *type_gap)
{
char_u *name = NULL;
ufunc_T *ufunc = NULL;
type_T *type;
type_T *member_type = NULL;
int argcount = 0;
int min_argcount = 0;
if (tv->v_type == VAR_PARTIAL && tv->vval.v_partial != NULL)
{
if (tv->vval.v_partial->pt_func != NULL)
ufunc = tv->vval.v_partial->pt_func;
else
name = tv->vval.v_partial->pt_name;
}
else
name = tv->vval.v_string;
if (name == NULL && ufunc == NULL)
return &t_func_unknown;
if (name != NULL)
{
int idx = find_internal_func(name);
if (idx >= 0)
{
type_T *decl_type; // unused
internal_func_get_argcount(idx, &argcount, &min_argcount);
member_type = internal_func_ret_type(idx, 0, NULL, &decl_type,
type_gap);
}
else
ufunc = find_func(name, FALSE);
}
if (ufunc != NULL)
{
// May need to get the argument types from default values by
// compiling the function.
if (ufunc->uf_def_status == UF_TO_BE_COMPILED
&& compile_def_function(ufunc, TRUE, CT_NONE, NULL)
== FAIL)
return NULL;
if (ufunc->uf_func_type == NULL)
set_function_type(ufunc);
if (ufunc->uf_func_type != NULL)
{
if (tv->v_type == VAR_PARTIAL && tv->vval.v_partial != NULL)
return partial_typval2type(tv, ufunc, type_gap);
return ufunc->uf_func_type;
}
}
type = get_type_ptr(type_gap);
if (type == NULL)
return NULL;
type->tt_type = tv->v_type;
type->tt_argcount = argcount;
type->tt_min_argcount = min_argcount;
if (tv->v_type == VAR_PARTIAL && tv->vval.v_partial != NULL
&& tv->vval.v_partial->pt_argc > 0)
{
type->tt_argcount -= tv->vval.v_partial->pt_argc;
type->tt_min_argcount -= tv->vval.v_partial->pt_argc;
}
type->tt_member = member_type;
return type;
}
/*
* Get a type_T for a typval_T.
* "type_gap" is used to temporarily create types in.
* When "flags" has TVTT_DO_MEMBER also get the member type, otherwise use
* "any".
* When "flags" has TVTT_MORE_SPECIFIC get the more specific member type if it
* is "any".
*/
static type_T *
typval2type_int(typval_T *tv, int copyID, garray_T *type_gap, int flags)
{
switch (tv->v_type)
{
case VAR_UNKNOWN:
return &t_unknown;
case VAR_ANY:
return &t_any;
case VAR_VOID:
return &t_void;
case VAR_BOOL:
return &t_bool;
case VAR_SPECIAL:
return special_typval2type(tv);
case VAR_NUMBER:
return &t_number;
case VAR_FLOAT:
return &t_float;
case VAR_STRING:
return &t_string;
case VAR_BLOB:
if (tv->vval.v_blob == NULL)
return &t_blob_null;
return &t_blob;
case VAR_LIST:
return list_typval2type(tv, copyID, type_gap, flags);
case VAR_DICT:
return dict_typval2type(tv, copyID, type_gap, flags);
case VAR_JOB:
return &t_job;
case VAR_CHANNEL:
return &t_channel;
case VAR_CLASS:
case VAR_OBJECT:
return oc_typval2type(tv);
case VAR_TYPEALIAS:
return &t_typealias;
case VAR_FUNC:
case VAR_PARTIAL:
return fp_typval2type(tv, type_gap);
case VAR_INSTR:
default:
break;
}
return NULL;
}
/*
* Return TRUE if "tv" is not a bool but should be converted to bool.
*/
int
need_convert_to_bool(type_T *type, typval_T *tv)
{
return type != NULL && type == &t_bool && tv->v_type != VAR_BOOL
&& (tv->v_type == VAR_NUMBER
&& (tv->vval.v_number == 0 || tv->vval.v_number == 1));
}
/*
* Get a type_T for a typval_T.
* "type_list" is used to temporarily create types in.
* When "flags" has TVTT_DO_MEMBER also get the member type, otherwise use
* "any".
* When "flags" has TVTT_MORE_SPECIFIC get the most specific member type.
*/
type_T *
typval2type(typval_T *tv, int copyID, garray_T *type_gap, int flags)
{
type_T *type = typval2type_int(tv, copyID, type_gap, flags);
if (type == NULL)
return NULL;
if (type != &t_bool && (tv->v_type == VAR_NUMBER
&& (tv->vval.v_number == 0 || tv->vval.v_number == 1)))
// Number 0 and 1 and expression with "&&" or "||" can also be used
// for bool.
type = &t_number_bool;
else if (type != &t_float && tv->v_type == VAR_NUMBER)
// A number can also be used for float.
type = &t_number_float;
return type;
}
/*
* Return TRUE if "type" can be used for a variable declaration.
* Give an error and return FALSE if not.
*/
int
valid_declaration_type(type_T *type)
{
if (type->tt_type == VAR_SPECIAL // null, none
|| type->tt_type == VAR_VOID)
{
char *tofree = NULL;
char *name = type_name(type, &tofree);
semsg(_(e_invalid_type_for_object_variable_str), name);
vim_free(tofree);
return FALSE;
}
return TRUE;
}
/*
* Get a type_T for a typval_T, used for v: variables.
* "type_list" is used to temporarily create types in.
*/
type_T *
typval2type_vimvar(typval_T *tv, garray_T *type_gap)
{
if (tv->v_type == VAR_LIST) // e.g. for v:oldfiles
return &t_list_string;
if (tv->v_type == VAR_DICT) // e.g. for v:event
return &t_dict_any;
return typval2type(tv, get_copyID(), type_gap, TVTT_DO_MEMBER);
}
int
check_typval_arg_type(
type_T *expected,
typval_T *actual_tv,
char *func_name,
int arg_idx)
{
where_T where = WHERE_INIT;
if (arg_idx > 0)
{
where.wt_index = arg_idx;
where.wt_kind = WT_ARGUMENT;
}
where.wt_func_name = func_name;
return check_typval_type(expected, actual_tv, where);
}
/*
* Return FAIL if "expected" and "actual" don't match.
* When "argidx" > 0 it is included in the error message.
*/
int
check_typval_type(type_T *expected, typval_T *actual_tv, where_T where)
{
garray_T type_list;
type_T *actual_type;
int res = FAIL;
if (expected == NULL)
return OK; // didn't expect anything.
ga_init2(&type_list, sizeof(type_T *), 10);
// A null_function and null_partial are special cases, they can be used to
// clear a variable.
if ((actual_tv->v_type == VAR_FUNC && actual_tv->vval.v_string == NULL)
|| (actual_tv->v_type == VAR_PARTIAL
&& actual_tv->vval.v_partial == NULL))
actual_type = &t_func_unknown;
else
// When the actual type is list<any> or dict<any> go through the values
// to possibly get a more specific type.
actual_type = typval2type(actual_tv, get_copyID(), &type_list,
TVTT_DO_MEMBER | TVTT_MORE_SPECIFIC);
if (actual_type != NULL)
{
res = check_type_maybe(expected, actual_type, TRUE, where);
if (res == MAYBE && !(actual_type->tt_type == VAR_FUNC
&& (actual_type->tt_member == &t_unknown
|| actual_type->tt_member == NULL)))
{
// If a type check is needed that means assigning "any" or
// "unknown" to a more specific type, which fails here.
// Except when it looks like a lambda, since they have an
// incomplete type. A legacy lambda function has a NULL return
// type.
type_mismatch_where(expected, actual_type, where);
res = FAIL;
}
}
clear_type_list(&type_list);
return res;
}
void
arg_type_mismatch(type_T *expected, type_T *actual, int arg_idx)
{
where_T where = WHERE_INIT;
if (arg_idx > 0)
{
where.wt_index = arg_idx;
where.wt_kind = WT_ARGUMENT;
}
type_mismatch_where(expected, actual, where);
}
void
type_mismatch_where(type_T *expected, type_T *actual, where_T where)
{
char *tofree1, *tofree2;
char *typename1 = type_name(expected, &tofree1);
char *typename2 = type_name(actual, &tofree2);
switch (where.wt_kind)
{
case WT_MEMBER:
semsg(_(e_variable_str_type_mismatch_expected_str_but_got_str),
where.wt_func_name, typename1, typename2);
break;
case WT_METHOD:
case WT_METHOD_ARG:
case WT_METHOD_RETURN:
semsg(_(e_method_str_type_mismatch_expected_str_but_got_str),
where.wt_func_name, typename1, typename2);
break;
case WT_VARIABLE:
if (where.wt_func_name == NULL)
semsg(_(e_variable_nr_type_mismatch_expected_str_but_got_str),
where.wt_index, typename1, typename2);
else
semsg(_(e_variable_nr_type_mismatch_expected_str_but_got_str_in_str),
where.wt_index, typename1, typename2, where.wt_func_name);
break;
case WT_ARGUMENT:
if (where.wt_func_name == NULL)
semsg(_(e_argument_nr_type_mismatch_expected_str_but_got_str),
where.wt_index, typename1, typename2);
else
semsg(_(e_argument_nr_type_mismatch_expected_str_but_got_str_in_str),
where.wt_index, typename1, typename2, where.wt_func_name);
break;
case WT_CAST:
case WT_UNKNOWN:
if (where.wt_func_name == NULL)
semsg(_(e_type_mismatch_expected_str_but_got_str),
typename1, typename2);
else
semsg(_(e_type_mismatch_expected_str_but_got_str_in_str),
typename1, typename2, where.wt_func_name);
break;
}
vim_free(tofree1);
vim_free(tofree2);
}
/*
* Check if the expected and actual types match.
* Does not allow for assigning "any" to a specific type.
* When "argidx" > 0 it is included in the error message.
* Return OK if types match.
* Return FAIL if types do not match.
*/
int
check_type(
type_T *expected,
type_T *actual,
int give_msg,
where_T where)
{
int ret = check_type_maybe(expected, actual, give_msg, where);
return ret == MAYBE ? OK : ret;
}
/*
* As check_type() but return MAYBE when a runtime type check should be used
* when compiling.
*/
int
check_type_maybe(
type_T *expected,
type_T *actual,
int give_msg,
where_T where)
{
int ret = OK;
// When expected is "unknown" we accept any actual type.
// When expected is "any" we accept any actual type except "void".
if (expected->tt_type != VAR_UNKNOWN
&& !(expected->tt_type == VAR_ANY && actual->tt_type != VAR_VOID))
{
// tt_type should match, except that a "partial" can be assigned to a
// variable with type "func".
// And "unknown" (using global variable) and "any" need a runtime type
// check.
if (!(expected->tt_type == actual->tt_type
|| actual->tt_type == VAR_UNKNOWN
|| actual->tt_type == VAR_ANY
|| (expected->tt_type == VAR_FUNC
&& actual->tt_type == VAR_PARTIAL)))
{
if (expected->tt_type == VAR_BOOL
&& (actual->tt_flags & TTFLAG_BOOL_OK))
// Using number 0 or 1 for bool is OK.
return OK;
if (expected->tt_type == VAR_FLOAT
&& actual->tt_type == VAR_NUMBER
&& ((expected->tt_flags & TTFLAG_NUMBER_OK)
|| (actual->tt_flags & TTFLAG_FLOAT_OK)))
// Using a number where a float is expected is OK here.
return OK;
if (give_msg)
type_mismatch_where(expected, actual, where);
return FAIL;
}
if (expected->tt_type == VAR_DICT || expected->tt_type == VAR_LIST)
{
// "unknown" is used for an empty list or dict
if (actual->tt_member != NULL && actual->tt_member != &t_unknown)
ret = check_type_maybe(expected->tt_member, actual->tt_member,
FALSE, where);
}
else if (expected->tt_type == VAR_FUNC && actual != &t_any)
{
// If the return type is unknown it can be anything, including
// nothing, thus there is no point in checking.
if (expected->tt_member != &t_unknown)
{
if (actual->tt_member != NULL
&& actual->tt_member != &t_unknown)
{
where_T func_where = where;
func_where.wt_kind = WT_METHOD_RETURN;
ret = check_type_maybe(expected->tt_member,
actual->tt_member, FALSE,
func_where);
}
else
ret = MAYBE;
}
if (ret != FAIL
&& ((expected->tt_flags & TTFLAG_VARARGS)
!= (actual->tt_flags & TTFLAG_VARARGS))
&& expected->tt_argcount != -1)
ret = FAIL;
if (ret != FAIL && expected->tt_argcount != -1
&& actual->tt_min_argcount != -1
&& (actual->tt_argcount == -1
|| (actual->tt_argcount < expected->tt_min_argcount
|| actual->tt_argcount > expected->tt_argcount)))
ret = FAIL;
if (ret != FAIL && expected->tt_args != NULL
&& actual->tt_args != NULL)
{
int i;
for (i = 0; i < expected->tt_argcount
&& i < actual->tt_argcount; ++i)
{
where_T func_where = where;
func_where.wt_kind = WT_METHOD_ARG;
// Allow for using "any" argument type, lambda's have them.
if (actual->tt_args[i] != &t_any && check_type(
expected->tt_args[i], actual->tt_args[i], FALSE,
func_where) == FAIL)
{
ret = FAIL;
break;
}
}
}
if (ret == OK && expected->tt_argcount >= 0
&& actual->tt_argcount == -1)
// check the argument count at runtime
ret = MAYBE;
}
else if (expected->tt_type == VAR_OBJECT)
{
if (actual->tt_type == VAR_ANY)
return MAYBE; // use runtime type check
if (actual->tt_type != VAR_OBJECT)
return FAIL; // don't use tt_class
if (actual->tt_class == NULL)
return OK; // A null object matches
// For object method arguments, do a invariant type check in
// an extended class. For all others, do a covariance type check.
if (where.wt_kind == WT_METHOD_ARG)
{
if (actual->tt_class != expected->tt_class)
ret = FAIL;
}
else if (!class_instance_of(actual->tt_class, expected->tt_class))
{
// Check if this is an up-cast, if so we'll have to check the type at
// runtime.
if (where.wt_kind == WT_CAST &&
class_instance_of(expected->tt_class, actual->tt_class))
ret = MAYBE;
else
ret = FAIL;
}
}
if (ret == FAIL && give_msg)
type_mismatch_where(expected, actual, where);
}
if (ret == OK && expected->tt_type != VAR_UNKNOWN
&& expected->tt_type != VAR_ANY
&& (actual->tt_type == VAR_UNKNOWN || actual->tt_type == VAR_ANY))
// check the type at runtime
ret = MAYBE;
return ret;
}
/*
* Check that the arguments of "type" match "argvars[argcount]".
* "base_tv" is from "expr->Func()".
* Return OK/FAIL.
*/
int
check_argument_types(
type_T *type,
typval_T *argvars,
int argcount,
typval_T *base_tv,
char_u *name)
{
int varargs = (type->tt_flags & TTFLAG_VARARGS) ? 1 : 0;
int i;
int totcount = argcount + (base_tv == NULL ? 0 : 1);
if (type->tt_type != VAR_FUNC && type->tt_type != VAR_PARTIAL)
return OK; // just in case
if (totcount < type->tt_min_argcount - varargs)
{
emsg_funcname(e_not_enough_arguments_for_function_str, name);
return FAIL;
}
if (!varargs && type->tt_argcount >= 0 && totcount > type->tt_argcount)
{
emsg_funcname(e_too_many_arguments_for_function_str, name);
return FAIL;
}
if (type->tt_args == NULL)
return OK; // cannot check
for (i = 0; i < totcount; ++i)
{
type_T *expected;
typval_T *tv;
if (base_tv != NULL)
{
if (i == 0)
tv = base_tv;
else
tv = &argvars[i - 1];
}
else
tv = &argvars[i];
if (varargs && i >= type->tt_argcount - 1)
{
expected = type->tt_args[type->tt_argcount - 1];
if (expected != NULL && expected->tt_type == VAR_LIST)
expected = expected->tt_member;
if (expected == NULL)
expected = &t_any;
}
else
expected = type->tt_args[i];
// check the type, unless the value is v:none
if ((tv->v_type != VAR_SPECIAL || tv->vval.v_number != VVAL_NONE)
&& check_typval_arg_type(expected, tv, NULL, i + 1) == FAIL)
return FAIL;
}
return OK;
}
/*
* Skip over a type definition and return a pointer to just after it.
* When "optional" is TRUE then a leading "?" is accepted.
*/
char_u *
skip_type(char_u *start, int optional)
{
char_u *p = start;
if (optional && *p == '?')
++p;
// Also skip over "." for imported classes: "import.ClassName".
while (ASCII_ISALNUM(*p) || *p == '_' || *p == '.')
++p;
// Skip over "<type>"; this is permissive about white space.
if (*skipwhite(p) == '<')
{
p = skipwhite(p);
p = skip_type(skipwhite(p + 1), FALSE);
p = skipwhite(p);
if (*p == '>')
++p;
}
else if ((*p == '(' || (*p == ':' && VIM_ISWHITE(p[1])))
&& STRNCMP("func", start, 4) == 0)
{
if (*p == '(')
{
// handle func(args): type
++p;
while (*p != ')' && *p != NUL)
{
char_u *sp = p;
if (STRNCMP(p, "...", 3) == 0)
p += 3;
p = skip_type(p, TRUE);
if (p == sp)
return p; // syntax error
if (*p == ',')
p = skipwhite(p + 1);
}
if (*p == ')')
{
if (p[1] == ':')
p = skip_type(skipwhite(p + 2), FALSE);
else
++p;
}
}
else
{
// handle func: return_type
p = skip_type(skipwhite(p + 1), FALSE);
}
}
return p;
}
/*
* Parse the member type: "<type>" and return "type" with the member set.
* Use "type_gap" if a new type needs to be added.
* "info" is extra information for an error message.
* Returns NULL in case of failure.
*/
static type_T *
parse_type_member(
char_u **arg,
type_T *type,
garray_T *type_gap,
int give_error,
char *info)
{
char_u *arg_start = *arg;
type_T *member_type;
int prev_called_emsg = called_emsg;
if (**arg != '<')
{
if (give_error)
{
if (*skipwhite(*arg) == '<')
semsg(_(e_no_white_space_allowed_before_str_str), "<", *arg);
else
semsg(_(e_missing_type_after_str), info);
}
return NULL;
}
*arg = skipwhite(*arg + 1);
member_type = parse_type(arg, type_gap, give_error);
if (member_type == NULL)
return NULL;
*arg = skipwhite(*arg);
if (**arg != '>' && called_emsg == prev_called_emsg)
{
if (give_error)
semsg(_(e_missing_gt_after_type_str), arg_start);
return NULL;
}
++*arg;
if (type->tt_type == VAR_LIST)
return get_list_type(member_type, type_gap);
return get_dict_type(member_type, type_gap);
}
/*
* Parse a "func" type at "*arg" and advance over it.
* When "give_error" is TRUE give error messages, otherwise be quiet.
* Return NULL for failure.
*/
static type_T *
parse_type_func(char_u **arg, size_t len, garray_T *type_gap, int give_error)
{
char_u *p;
type_T *type;
type_T *ret_type = &t_unknown;
int argcount = -1;
int flags = 0;
int first_optional = -1;
type_T *arg_type[MAX_FUNC_ARGS + 1];
// func({type}, ...{type}): {type}
*arg += len;
if (**arg == '(')
{
// "func" may or may not return a value, "func()" does
// not return a value.
ret_type = &t_void;
p = ++*arg;
argcount = 0;
while (*p != NUL && *p != ')')
{
if (*p == '?')
{
if (first_optional == -1)
first_optional = argcount;
++p;
}
else if (STRNCMP(p, "...", 3) == 0)
{
flags |= TTFLAG_VARARGS;
p += 3;
}
else if (first_optional != -1)
{
if (give_error)
emsg(_(e_mandatory_argument_after_optional_argument));
return NULL;
}
type = parse_type(&p, type_gap, give_error);
if (type == NULL)
return NULL;
if ((flags & TTFLAG_VARARGS) != 0 && type->tt_type != VAR_LIST)
{
char *tofree;
semsg(_(e_variable_arguments_type_must_be_list_str),
type_name(type, &tofree));
vim_free(tofree);
return NULL;
}
arg_type[argcount++] = type;
// Nothing comes after "...{type}".
if (flags & TTFLAG_VARARGS)
break;
if (*p != ',' && *skipwhite(p) == ',')
{
if (give_error)
semsg(_(e_no_white_space_allowed_before_str_str),
",", p);
return NULL;
}
if (*p == ',')
{
++p;
if (!VIM_ISWHITE(*p))
{
if (give_error)
semsg(_(e_white_space_required_after_str_str),
",", p - 1);
return NULL;
}
}
p = skipwhite(p);
if (argcount == MAX_FUNC_ARGS)
{
if (give_error)
emsg(_(e_too_many_argument_types));
return NULL;
}
}
p = skipwhite(p);
if (*p != ')')
{
if (give_error)
emsg(_(e_missing_closing_paren));
return NULL;
}
*arg = p + 1;
}
if (**arg == ':')
{
// parse return type
++*arg;
if (!VIM_ISWHITE(**arg) && give_error)
semsg(_(e_white_space_required_after_str_str), ":", *arg - 1);
*arg = skipwhite(*arg);
ret_type = parse_type(arg, type_gap, give_error);
if (ret_type == NULL)
return NULL;
}
if (flags == 0 && first_optional == -1 && argcount <= 0)
type = get_func_type(ret_type, argcount, type_gap);
else
{
type = alloc_func_type(ret_type, argcount, type_gap);
type->tt_flags = flags;
if (argcount > 0)
{
type->tt_argcount = argcount;
type->tt_min_argcount = first_optional == -1
? argcount : first_optional;
if (func_type_add_arg_types(type, argcount, type_gap) == FAIL)
return NULL;
mch_memmove(type->tt_args, arg_type, sizeof(type_T *) * argcount);
}
}
return type;
}
/*
* Parse a user defined type at "*arg" and advance over it.
* It can be a class or an interface or a typealias name, possibly imported.
* Return NULL if a type is not found.
*/
static type_T *
parse_type_user_defined(
char_u **arg,
size_t len,
garray_T *type_gap,
int give_error)
{
int did_emsg_before = did_emsg;
typval_T tv;
tv.v_type = VAR_UNKNOWN;
if (eval_variable_import(*arg, &tv) == OK)
{
if (tv.v_type == VAR_CLASS && tv.vval.v_class != NULL)
{
type_T *type = get_type_ptr(type_gap);
if (type != NULL)
{
// Although the name is that of a class or interface, the type
// uses will be an object.
type->tt_type = VAR_OBJECT;
type->tt_class = tv.vval.v_class;
clear_tv(&tv);
*arg += len;
// Skip over ".ClassName".
while (ASCII_ISALNUM(**arg) || **arg == '_' || **arg == '.')
++*arg;
return type;
}
}
else if (tv.v_type == VAR_TYPEALIAS)
{
// user defined type
type_T *type = copy_type(tv.vval.v_typealias->ta_type, type_gap);
*arg += len;
clear_tv(&tv);
// Skip over ".TypeName".
while (ASCII_ISALNUM(**arg) || **arg == '_' || **arg == '.')
++*arg;
return type;
}
clear_tv(&tv);
}
if (give_error && (did_emsg == did_emsg_before))
{
char_u *p = skip_type(*arg, FALSE);
char cc = *p;
*p = NUL;
semsg(_(e_type_not_recognized_str), *arg);
*p = cc;
}
return NULL;
}
/*
* Parse a type at "arg" and advance over it.
* When "give_error" is TRUE give error messages, otherwise be quiet.
* Return NULL for failure.
*/
type_T *
parse_type(char_u **arg, garray_T *type_gap, int give_error)
{
char_u *p = *arg;
size_t len;
// Skip over the first word.
while (ASCII_ISALNUM(*p) || *p == '_')
++p;
len = p - *arg;
switch (**arg)
{
case 'a':
if (len == 3 && STRNCMP(*arg, "any", len) == 0)
{
*arg += len;
return &t_any;
}
break;
case 'b':
if (len == 4 && STRNCMP(*arg, "bool", len) == 0)
{
*arg += len;
return &t_bool;
}
if (len == 4 && STRNCMP(*arg, "blob", len) == 0)
{
*arg += len;
return &t_blob;
}
break;
case 'c':
if (len == 7 && STRNCMP(*arg, "channel", len) == 0)
{
*arg += len;
return &t_channel;
}
break;
case 'd':
if (len == 4 && STRNCMP(*arg, "dict", len) == 0)
{
*arg += len;
return parse_type_member(arg, &t_dict_any,
type_gap, give_error, "dict");
}
break;
case 'f':
if (len == 5 && STRNCMP(*arg, "float", len) == 0)
{
*arg += len;
return &t_float;
}
if (len == 4 && STRNCMP(*arg, "func", len) == 0)
return parse_type_func(arg, len, type_gap, give_error);
break;
case 'j':
if (len == 3 && STRNCMP(*arg, "job", len) == 0)
{
*arg += len;
return &t_job;
}
break;
case 'l':
if (len == 4 && STRNCMP(*arg, "list", len) == 0)
{
*arg += len;
return parse_type_member(arg, &t_list_any,
type_gap, give_error, "list");
}
break;
case 'n':
if (len == 6 && STRNCMP(*arg, "number", len) == 0)
{
*arg += len;
return &t_number;
}
break;
case 's':
if (len == 6 && STRNCMP(*arg, "string", len) == 0)
{
*arg += len;
return &t_string;
}
break;
case 'v':
if (len == 4 && STRNCMP(*arg, "void", len) == 0)
{
*arg += len;
return &t_void;
}
break;
}
// User defined type
return parse_type_user_defined(arg, len, type_gap, give_error);
}
/*
* Check if "type1" and "type2" are exactly the same.
* "flags" can have ETYPE_ARG_UNKNOWN, which means that an unknown argument
* type in "type1" is accepted.
*/
int
equal_type(type_T *type1, type_T *type2, int flags)
{
int i;
if (type1 == NULL || type2 == NULL)
return FALSE;
if (type1->tt_type != type2->tt_type)
return FALSE;
switch (type1->tt_type)
{
case VAR_UNKNOWN:
case VAR_ANY:
case VAR_VOID:
case VAR_SPECIAL:
case VAR_BOOL:
case VAR_NUMBER:
case VAR_FLOAT:
case VAR_STRING:
case VAR_BLOB:
case VAR_JOB:
case VAR_CHANNEL:
case VAR_INSTR:
case VAR_CLASS:
case VAR_OBJECT:
case VAR_TYPEALIAS:
break; // not composite is always OK
case VAR_LIST:
case VAR_DICT:
return equal_type(type1->tt_member, type2->tt_member, flags);
case VAR_FUNC:
case VAR_PARTIAL:
if (!equal_type(type1->tt_member, type2->tt_member, flags)
|| type1->tt_argcount != type2->tt_argcount)
return FALSE;
if (type1->tt_argcount < 0
|| type1->tt_args == NULL || type2->tt_args == NULL)
return TRUE;
for (i = 0; i < type1->tt_argcount; ++i)
if ((flags & ETYPE_ARG_UNKNOWN) == 0
&& !equal_type(type1->tt_args[i], type2->tt_args[i],
flags))
return FALSE;
return TRUE;
}
return TRUE;
}
/*
* Find the common type of "type1" (VAR_FUNC) and "type2" (VAR_FUNC) and put it
* in "dest". "type2" and "dest" may be the same.
*/
static void
common_type_var_func(
type_T *type1,
type_T *type2,
type_T **dest,
garray_T *type_gap)
{
type_T *common;
// When one of the types is t_func_unknown return the other one.
// Useful if a list or dict item is null_func.
if (type1 == &t_func_unknown)
{
*dest = type2;
return;
}
if (type2 == &t_func_unknown)
{
*dest = type1;
return;
}
common_type(type1->tt_member, type2->tt_member, &common, type_gap);
if (type1->tt_argcount == type2->tt_argcount
&& type1->tt_argcount >= 0)
{
int argcount = type1->tt_argcount;
int i;
*dest = alloc_func_type(common, argcount, type_gap);
if (type1->tt_args != NULL && type2->tt_args != NULL)
{
if (func_type_add_arg_types(*dest, argcount,
type_gap) == OK)
for (i = 0; i < argcount; ++i)
common_type(type1->tt_args[i], type2->tt_args[i],
&(*dest)->tt_args[i], type_gap);
}
}
else
// Use -1 for "tt_argcount" to indicate an unknown number of
// arguments.
*dest = alloc_func_type(common, -1, type_gap);
// Use the minimum of min_argcount.
(*dest)->tt_min_argcount =
type1->tt_min_argcount < type2->tt_min_argcount
? type1->tt_min_argcount : type2->tt_min_argcount;
}
/*
* Find the common type of "type1" and "type2" and put it in "dest".
* "type2" and "dest" may be the same.
*/
void
common_type(type_T *type1, type_T *type2, type_T **dest, garray_T *type_gap)
{
if (equal_type(type1, type2, 0))
{
*dest = type1;
return;
}
// If either is VAR_UNKNOWN use the other type. An empty list/dict has no
// specific type.
if (type1 == NULL || type1->tt_type == VAR_UNKNOWN)
{
*dest = type2;
return;
}
if (type2 == NULL || type2->tt_type == VAR_UNKNOWN)
{
*dest = type1;
return;
}
if (type1->tt_type == type2->tt_type)
{
if (type1->tt_type == VAR_LIST || type2->tt_type == VAR_DICT)
{
type_T *common;
common_type(type1->tt_member, type2->tt_member, &common, type_gap);
if (type1->tt_type == VAR_LIST)
*dest = get_list_type(common, type_gap);
else
*dest = get_dict_type(common, type_gap);
return;
}
if (type1->tt_type == VAR_FUNC)
{
common_type_var_func(type1, type2, dest, type_gap);
return;
}
}
*dest = &t_any;
}
/*
* Push an entry onto the type stack. "type" used both for the current type
* and the declared type.
* Returns FAIL when out of memory.
*/
int
push_type_stack(cctx_T *cctx, type_T *type)
{
return push_type_stack2(cctx, type, type);
}
/*
* Push an entry onto the type stack. "type" is the current type, "decl_type"
* is the declared type.
* Returns FAIL when out of memory.
*/
int
push_type_stack2(cctx_T *cctx, type_T *type, type_T *decl_type)
{
garray_T *stack = &cctx->ctx_type_stack;
type2_T *typep;
if (GA_GROW_FAILS(stack, 1))
return FAIL;
typep = ((type2_T *)stack->ga_data) + stack->ga_len;
typep->type_curr = type;
typep->type_decl = decl_type;
++stack->ga_len;
return OK;
}
/*
* Set the type of the top of the stack to "type".
*/
void
set_type_on_stack(cctx_T *cctx, type_T *type, int offset)
{
garray_T *stack = &cctx->ctx_type_stack;
type2_T *typep = ((type2_T *)stack->ga_data)
+ stack->ga_len - 1 - offset;
typep->type_curr = type;
typep->type_decl = &t_any;
}
/*
* Get the current type from the type stack. If "offset" is zero the one at
* the top,
* if "offset" is one the type above that, etc.
* Returns &t_unknown if there is no such stack entry.
*/
type_T *
get_type_on_stack(cctx_T *cctx, int offset)
{
garray_T *stack = &cctx->ctx_type_stack;
if (offset + 1 > stack->ga_len)
return &t_unknown;
return (((type2_T *)stack->ga_data) + stack->ga_len - offset - 1)
->type_curr;
}
/*
* Get the declared type from the type stack. If "offset" is zero the one at
* the top,
* if "offset" is one the type above that, etc.
* Returns &t_unknown if there is no such stack entry.
*/
type_T *
get_decl_type_on_stack(cctx_T *cctx, int offset)
{
garray_T *stack = &cctx->ctx_type_stack;
if (offset + 1 > stack->ga_len)
return &t_unknown;
return (((type2_T *)stack->ga_data) + stack->ga_len - offset - 1)
->type_decl;
}
/*
* Get the member type of a dict or list from the items on the stack of "cctx".
* The declared type is stored in "decl_type".
* For a list "skip" is 1, for a dict "skip" is 2, keys are skipped.
* Returns &t_void for an empty list or dict.
* Otherwise finds the common type of all items.
*/
type_T *
get_member_type_from_stack(
int count,
int skip,
cctx_T *cctx)
{
garray_T *stack = &cctx->ctx_type_stack;
type2_T *typep;
garray_T *type_gap = cctx->ctx_type_list;
int i;
type_T *result;
type_T *type;
// Use "unknown" for an empty list or dict.
if (count == 0)
return &t_unknown;
// Find the common type from following items.
typep = ((type2_T *)stack->ga_data) + stack->ga_len;
result = &t_unknown;
for (i = 0; i < count; ++i)
{
type = (typep -((count - i) * skip) + skip - 1)->type_curr;
if (check_type_is_value(type) == FAIL)
return NULL;
if (result != &t_any)
common_type(type, result, &result, type_gap);
}
return result;
}
char *
vartype_name(vartype_T type)
{
switch (type)
{
case VAR_UNKNOWN: break;
case VAR_ANY: return "any";
case VAR_VOID: return "void";
case VAR_SPECIAL: return "special";
case VAR_BOOL: return "bool";
case VAR_NUMBER: return "number";
case VAR_FLOAT: return "float";
case VAR_STRING: return "string";
case VAR_BLOB: return "blob";
case VAR_JOB: return "job";
case VAR_CHANNEL: return "channel";
case VAR_LIST: return "list";
case VAR_DICT: return "dict";
case VAR_INSTR: return "instr";
case VAR_CLASS: return "class";
case VAR_OBJECT: return "object";
case VAR_TYPEALIAS: return "typealias";
case VAR_FUNC:
case VAR_PARTIAL: return "func";
}
return "unknown";
}
/*
* Return the type name of a List (list<type>) or Dict (dict<type>).
* The result may be in allocated memory, in which case "tofree" is set.
*/
static char *
type_name_list_or_dict(char *name, type_T *type, char **tofree)
{
char *member_free;
char *member_name;
if (type->tt_member->tt_type == VAR_UNKNOWN)
member_name = type_name(&t_any, &member_free);
else
member_name = type_name(type->tt_member, &member_free);
size_t len = STRLEN(name) + STRLEN(member_name) + 3;
*tofree = alloc(len);
if (*tofree == NULL)
return name;
vim_snprintf(*tofree, len, "%s<%s>", name, member_name);
vim_free(member_free);
return *tofree;
}
/*
* Return the type name of a Class (class<name>) or Object (object<name>).
* The result may be in allocated memory, in which case "tofree" is set.
*/
static char *
type_name_class_or_obj(char *name, type_T *type, char **tofree)
{
char_u *class_name;
if (type->tt_class != NULL)
{
class_name = type->tt_class->class_name;
if (IS_ENUM(type->tt_class))
name = "enum";
}
else
class_name = (char_u *)"Unknown";
size_t len = STRLEN(name) + STRLEN(class_name) + 3;
*tofree = alloc(len);
if (*tofree == NULL)
return name;
vim_snprintf(*tofree, len, "%s<%s>", name, class_name);
return *tofree;
}
/*
* Return the type name of a function.
* The result may be in allocated memory, in which case "tofree" is set.
*/
static char *
type_name_func(type_T *type, char **tofree)
{
garray_T ga;
int i;
int varargs = (type->tt_flags & TTFLAG_VARARGS) ? 1 : 0;
char *arg_free = NULL;
ga_init2(&ga, 1, 100);
if (ga_grow(&ga, 20) == FAIL)
goto failed;
STRCPY(ga.ga_data, "func(");
ga.ga_len += 5;
for (i = 0; i < type->tt_argcount; ++i)
{
char *arg_type;
int len;
if (type->tt_args == NULL)
arg_type = "[unknown]";
else
arg_type = type_name(type->tt_args[i], &arg_free);
if (i > 0)
{
STRCPY((char *)ga.ga_data + ga.ga_len, ", ");
ga.ga_len += 2;
}
len = (int)STRLEN(arg_type);
if (ga_grow(&ga, len + 8) == FAIL)
goto failed;
if (varargs && i == type->tt_argcount - 1)
ga_concat(&ga, (char_u *)"...");
else if (i >= type->tt_min_argcount)
*((char *)ga.ga_data + ga.ga_len++) = '?';
ga_concat(&ga, (char_u *)arg_type);
VIM_CLEAR(arg_free);
}
if (type->tt_argcount < 0)
// any number of arguments
ga_concat(&ga, (char_u *)"...");
if (type->tt_member == &t_void)
STRCPY((char *)ga.ga_data + ga.ga_len, ")");
else
{
char *ret_free;
char *ret_name = type_name(type->tt_member, &ret_free);
int len;
len = (int)STRLEN(ret_name) + 4;
if (ga_grow(&ga, len) == FAIL)
goto failed;
STRCPY((char *)ga.ga_data + ga.ga_len, "): ");
STRCPY((char *)ga.ga_data + ga.ga_len + 3, ret_name);
vim_free(ret_free);
}
*tofree = ga.ga_data;
return ga.ga_data;
failed:
vim_free(arg_free);
ga_clear(&ga);
return "[unknown]";
}
/*
* Return the name of a type.
* The result may be in allocated memory, in which case "tofree" is set.
*/
char *
type_name(type_T *type, char **tofree)
{
char *name;
*tofree = NULL;
if (type == NULL)
return "[unknown]";
name = vartype_name(type->tt_type);
switch (type->tt_type)
{
case VAR_LIST:
case VAR_DICT:
return type_name_list_or_dict(name, type, tofree);
case VAR_CLASS:
case VAR_OBJECT:
return type_name_class_or_obj(name, type, tofree);
case VAR_FUNC:
return type_name_func(type, tofree);
default:
break;
}
return name;
}
/*
* "typename(expr)" function
*/
void
f_typename(typval_T *argvars, typval_T *rettv)
{
garray_T type_list;
type_T *type;
char *tofree;
char *name;
rettv->v_type = VAR_STRING;
ga_init2(&type_list, sizeof(type_T *), 10);
if (argvars[0].v_type == VAR_TYPEALIAS)
{
type = copy_type(argvars[0].vval.v_typealias->ta_type, &type_list);
// A type alias for a class has the type set to VAR_OBJECT. Change it
// to VAR_CLASS, so that the name is "typealias<class<xxx>>"
if (type->tt_type == VAR_OBJECT)
type->tt_type = VAR_CLASS;
}
else
type = typval2type(argvars, get_copyID(), &type_list, TVTT_DO_MEMBER);
name = type_name(type, &tofree);
if (argvars[0].v_type == VAR_TYPEALIAS)
{
vim_snprintf((char *)IObuff, IOSIZE, "typealias<%s>", name);
rettv->vval.v_string = vim_strsave((char_u *)IObuff);
if (tofree != NULL)
vim_free(tofree);
}
else
{
if (tofree != NULL)
rettv->vval.v_string = (char_u *)tofree;
else
rettv->vval.v_string = vim_strsave((char_u *)name);
}
clear_type_list(&type_list);
}
/*
* Check if the typval_T is a value type; report an error if it is not.
* Note: a type, user defined or typealias, is not a value type.
*
* Return OK if it's a value type, else FAIL
*/
int
check_typval_is_value(typval_T *tv)
{
if (tv == NULL)
return OK;
switch (tv->v_type)
{
case VAR_CLASS:
{
class_T *cl = tv->vval.v_class;
char_u *class_name = (cl == NULL) ? (char_u *)""
: cl->class_name;
if (cl != NULL && IS_ENUM(cl))
semsg(_(e_using_enum_as_value_str), class_name);
else
semsg(_(e_using_class_as_value_str), class_name);
}
return FAIL;
case VAR_TYPEALIAS:
semsg(_(e_using_typealias_as_value_str),
tv->vval.v_typealias->ta_name);
return FAIL;
default:
break;
}
return OK;
}
/*
* Same as above, except check type_T.
*/
int
check_type_is_value(type_T *type)
{
if (type == NULL)
return OK;
switch (type->tt_type)
{
case VAR_CLASS:
if (type->tt_class != NULL && IS_ENUM(type->tt_class))
semsg(_(e_using_enum_as_value_str),
type->tt_class->class_name);
else
semsg(_(e_using_class_as_value_str),
type->tt_class == NULL ? (char_u *)""
: type->tt_class->class_name);
return FAIL;
case VAR_TYPEALIAS:
// TODO: Not sure what could be done here to get a name.
// Maybe an optional argument?
emsg(_(e_using_typealias_as_var_val));
return FAIL;
default:
break;
}
return OK;
}
#endif // FEAT_EVAL