1
0
Fork 0
virtualbox/include/iprt/asm.h
Daniel Baumann df1bda4fe9
Adding upstream version 7.0.20-dfsg.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 09:56:04 +02:00

8130 lines
260 KiB
C

/** @file
* IPRT - Assembly Functions.
*/
/*
* Copyright (C) 2006-2023 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
* in the VirtualBox distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
*/
#ifndef IPRT_INCLUDED_asm_h
#define IPRT_INCLUDED_asm_h
#ifndef RT_WITHOUT_PRAGMA_ONCE
# pragma once
#endif
#include <iprt/cdefs.h>
#include <iprt/types.h>
#include <iprt/assert.h>
/** @def RT_INLINE_ASM_USES_INTRIN
* Defined as 1 if we're using a _MSC_VER 1400.
* Otherwise defined as 0.
*/
/* Solaris 10 header ugliness */
#ifdef u
# undef u
#endif
#if defined(_MSC_VER) && RT_INLINE_ASM_USES_INTRIN
/* Emit the intrinsics at all optimization levels. */
# include <iprt/sanitized/intrin.h>
# pragma intrinsic(_ReadWriteBarrier)
# pragma intrinsic(__cpuid)
# pragma intrinsic(__stosd)
# pragma intrinsic(__stosw)
# pragma intrinsic(__stosb)
# pragma intrinsic(_BitScanForward)
# pragma intrinsic(_BitScanReverse)
# pragma intrinsic(_bittest)
# pragma intrinsic(_bittestandset)
# pragma intrinsic(_bittestandreset)
# pragma intrinsic(_bittestandcomplement)
# pragma intrinsic(_byteswap_ushort)
# pragma intrinsic(_byteswap_ulong)
# pragma intrinsic(_interlockedbittestandset)
# pragma intrinsic(_interlockedbittestandreset)
# pragma intrinsic(_InterlockedAnd)
# pragma intrinsic(_InterlockedOr)
# pragma intrinsic(_InterlockedXor)
# pragma intrinsic(_InterlockedIncrement)
# pragma intrinsic(_InterlockedDecrement)
# pragma intrinsic(_InterlockedExchange)
# pragma intrinsic(_InterlockedExchangeAdd)
# pragma intrinsic(_InterlockedCompareExchange)
# pragma intrinsic(_InterlockedCompareExchange8)
# pragma intrinsic(_InterlockedCompareExchange16)
# pragma intrinsic(_InterlockedCompareExchange64)
# pragma intrinsic(_rotl)
# pragma intrinsic(_rotr)
# pragma intrinsic(_rotl64)
# pragma intrinsic(_rotr64)
# ifdef RT_ARCH_AMD64
# pragma intrinsic(__stosq)
# pragma intrinsic(_byteswap_uint64)
# pragma intrinsic(_InterlockedCompareExchange128)
# pragma intrinsic(_InterlockedExchange64)
# pragma intrinsic(_InterlockedExchangeAdd64)
# pragma intrinsic(_InterlockedAnd64)
# pragma intrinsic(_InterlockedOr64)
# pragma intrinsic(_InterlockedIncrement64)
# pragma intrinsic(_InterlockedDecrement64)
# endif
#endif
/*
* Undefine all symbols we have Watcom C/C++ #pragma aux'es for.
*/
#if defined(__WATCOMC__) && ARCH_BITS == 16 && defined(RT_ARCH_X86)
# include "asm-watcom-x86-16.h"
#elif defined(__WATCOMC__) && ARCH_BITS == 32 && defined(RT_ARCH_X86)
# include "asm-watcom-x86-32.h"
#endif
/** @defgroup grp_rt_asm ASM - Assembly Routines
* @ingroup grp_rt
*
* @remarks The difference between ordered and unordered atomic operations are
* that the former will complete outstanding reads and writes before
* continuing while the latter doesn't make any promises about the
* order. Ordered operations doesn't, it seems, make any 100% promise
* wrt to whether the operation will complete before any subsequent
* memory access. (please, correct if wrong.)
*
* ASMAtomicSomething operations are all ordered, while
* ASMAtomicUoSomething are unordered (note the Uo).
*
* Please note that ordered operations does not necessarily imply a
* compiler (memory) barrier. The user has to use the
* ASMCompilerBarrier() macro when that is deemed necessary.
*
* @remarks Some remarks about __volatile__: Without this keyword gcc is allowed
* to reorder or even optimize assembler instructions away. For
* instance, in the following code the second rdmsr instruction is
* optimized away because gcc treats that instruction as deterministic:
*
* @code
* static inline uint64_t rdmsr_low(int idx)
* {
* uint32_t low;
* __asm__ ("rdmsr" : "=a"(low) : "c"(idx) : "edx");
* }
* ...
* uint32_t msr1 = rdmsr_low(1);
* foo(msr1);
* msr1 = rdmsr_low(1);
* bar(msr1);
* @endcode
*
* The input parameter of rdmsr_low is the same for both calls and
* therefore gcc will use the result of the first call as input
* parameter for bar() as well. For rdmsr this is not acceptable as
* this instruction is _not_ deterministic. This applies to reading
* machine status information in general.
*
* @{
*/
/** @def RT_INLINE_ASM_GCC_4_3_X_X86
* Used to work around some 4.3.x register allocation issues in this version of
* the compiler. So far this workaround is still required for 4.4 and 4.5 but
* definitely not for 5.x */
#if (RT_GNUC_PREREQ(4, 3) && !RT_GNUC_PREREQ(5, 0) && defined(__i386__))
# define RT_INLINE_ASM_GCC_4_3_X_X86 1
#else
# define RT_INLINE_ASM_GCC_4_3_X_X86 0
#endif
/** @def RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC
* i686-apple-darwin9-gcc-4.0.1 (GCC) 4.0.1 (Apple Inc. build 5493) screws up
* RTSemRWRequestWrite semsemrw-lockless-generic.cpp in release builds. PIC
* mode, x86.
*
* Some gcc 4.3.x versions may have register allocation issues with cmpxchg8b
* when in PIC mode on x86.
*/
#ifndef RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC
# if defined(DOXYGEN_RUNNING) || defined(__WATCOMC__) /* Watcom has trouble with the expression below */
# define RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC 1
# elif defined(_MSC_VER) /* Visual C++ has trouble too, but it'll only tell us when C4688 is enabled. */
# define RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC 0
# elif ( (defined(PIC) || defined(__PIC__)) \
&& defined(RT_ARCH_X86) \
&& ( RT_INLINE_ASM_GCC_4_3_X_X86 \
|| defined(RT_OS_DARWIN)) )
# define RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC 1
# else
# define RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC 0
# endif
#endif
/** @def RT_INLINE_ASM_EXTERNAL_TMP_ARM
* Temporary version of RT_INLINE_ASM_EXTERNAL that excludes ARM. */
#if RT_INLINE_ASM_EXTERNAL && !(defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32))
# define RT_INLINE_ASM_EXTERNAL_TMP_ARM 1
#else
# define RT_INLINE_ASM_EXTERNAL_TMP_ARM 0
#endif
/*
* ARM is great fun.
*/
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
# define RTASM_ARM_NO_BARRIER
# ifdef RT_ARCH_ARM64
# define RTASM_ARM_NO_BARRIER_IN_REG
# define RTASM_ARM_NO_BARRIER_COMMA_IN_REG
# define RTASM_ARM_DSB_SY "dsb sy\n\t"
# define RTASM_ARM_DSB_SY_IN_REG
# define RTASM_ARM_DSB_SY_COMMA_IN_REG
# define RTASM_ARM_DMB_SY "dmb sy\n\t"
# define RTASM_ARM_DMB_SY_IN_REG
# define RTASM_ARM_DMB_SY_COMMA_IN_REG
# define RTASM_ARM_DMB_ST "dmb st\n\t"
# define RTASM_ARM_DMB_ST_IN_REG
# define RTASM_ARM_DMB_ST_COMMA_IN_REG
# define RTASM_ARM_DMB_LD "dmb ld\n\t"
# define RTASM_ARM_DMB_LD_IN_REG
# define RTASM_ARM_DMB_LD_COMMA_IN_REG
# define RTASM_ARM_PICK_6432(expr64, expr32) expr64
# define RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_32(name, a_pu32Mem, barrier_type, modify64, modify32, in_reg) \
uint32_t rcSpill; \
uint32_t u32NewRet; \
__asm__ __volatile__(".Ltry_again_" #name "_%=:\n\t" \
RTASM_ARM_##barrier_type /* before lable? */ \
"ldaxr %w[uNew], %[pMem]\n\t" \
modify64 \
"stlxr %w[rc], %w[uNew], %[pMem]\n\t" \
"cbnz %w[rc], .Ltry_again_" #name "_%=\n\t" \
: [pMem] "+Q" (*a_pu32Mem) \
, [uNew] "=&r" (u32NewRet) \
, [rc] "=&r" (rcSpill) \
: in_reg \
: "cc")
# define RTASM_ARM_LOAD_MODIFY_STORE_RET_OLD_32(name, a_pu32Mem, barrier_type, modify64, modify32, in_reg) \
uint32_t rcSpill; \
uint32_t u32OldRet; \
uint32_t u32NewSpill; \
__asm__ __volatile__(".Ltry_again_" #name "_%=:\n\t" \
RTASM_ARM_##barrier_type /* before lable? */ \
"ldaxr %w[uOld], %[pMem]\n\t" \
modify64 \
"stlxr %w[rc], %w[uNew], %[pMem]\n\t" \
"cbnz %w[rc], .Ltry_again_" #name "_%=\n\t" \
: [pMem] "+Q" (*a_pu32Mem) \
, [uOld] "=&r" (u32OldRet) \
, [uNew] "=&r" (u32NewSpill) \
, [rc] "=&r" (rcSpill) \
: in_reg \
: "cc")
# define RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_64(name, a_pu64Mem, barrier_type, modify64, modify32, in_reg) \
uint32_t rcSpill; \
uint64_t u64NewRet; \
__asm__ __volatile__(".Ltry_again_" #name "_%=:\n\t" \
RTASM_ARM_##barrier_type /* before lable? */ \
"ldaxr %[uNew], %[pMem]\n\t" \
modify64 \
"stlxr %w[rc], %[uNew], %[pMem]\n\t" \
"cbnz %w[rc], .Ltry_again_" #name "_%=\n\t" \
: [pMem] "+Q" (*a_pu64Mem) \
, [uNew] "=&r" (u64NewRet) \
, [rc] "=&r" (rcSpill) \
: in_reg \
: "cc")
# define RTASM_ARM_LOAD_MODIFY_STORE_RET_OLD_64(name, a_pu64Mem, barrier_type, modify64, modify32, in_reg) \
uint32_t rcSpill; \
uint64_t u64OldRet; \
uint64_t u64NewSpill; \
__asm__ __volatile__(".Ltry_again_" #name "_%=:\n\t" \
RTASM_ARM_##barrier_type /* before lable? */ \
"ldaxr %[uOld], %[pMem]\n\t" \
modify64 \
"stlxr %w[rc], %[uNew], %[pMem]\n\t" \
"cbnz %w[rc], .Ltry_again_" #name "_%=\n\t" \
: [pMem] "+Q" (*a_pu64Mem) \
, [uOld] "=&r" (u64OldRet) \
, [uNew] "=&r" (u64NewSpill) \
, [rc] "=&r" (rcSpill) \
: in_reg \
: "cc")
# else /* RT_ARCH_ARM32 */
# define RTASM_ARM_PICK_6432(expr64, expr32) expr32
# if RT_ARCH_ARM32 >= 7
# warning armv7
# define RTASM_ARM_NO_BARRIER_IN_REG
# define RTASM_ARM_NO_BARRIER_COMMA_IN_REG
# define RTASM_ARM_DSB_SY "dsb sy\n\t"
# define RTASM_ARM_DSB_SY_IN_REG "X" (0xfade)
# define RTASM_ARM_DMB_SY "dmb sy\n\t"
# define RTASM_ARM_DMB_SY_IN_REG "X" (0xfade)
# define RTASM_ARM_DMB_ST "dmb st\n\t"
# define RTASM_ARM_DMB_ST_IN_REG "X" (0xfade)
# define RTASM_ARM_DMB_LD "dmb ld\n\t"
# define RTASM_ARM_DMB_LD_IN_REG "X" (0xfade)
# elif RT_ARCH_ARM32 >= 6
# warning armv6
# define RTASM_ARM_DSB_SY "mcr p15, 0, %[uZero], c7, c10, 4\n\t"
# define RTASM_ARM_DSB_SY_IN_REG [uZero] "r" (0)
# define RTASM_ARM_DMB_SY "mcr p15, 0, %[uZero], c7, c10, 5\n\t"
# define RTASM_ARM_DMB_SY_IN_REG [uZero] "r" (0)
# define RTASM_ARM_DMB_ST RTASM_ARM_DMB_SY
# define RTASM_ARM_DMB_ST_IN_REG RTASM_ARM_DMB_SY_IN_REG
# define RTASM_ARM_DMB_LD RTASM_ARM_DMB_SY
# define RTASM_ARM_DMB_LD_IN_REG RTASM_ARM_DMB_SY_IN_REG
# elif RT_ARCH_ARM32 >= 4
# warning armv5 or older
# define RTASM_ARM_DSB_SY "mcr p15, 0, %[uZero], c7, c10, 4\n\t"
# define RTASM_ARM_DSB_SY_IN_REG [uZero] "r" (0)
# define RTASM_ARM_DMB_SY RTASM_ARM_DSB_SY
# define RTASM_ARM_DMB_SY_IN_REG RTASM_ARM_DSB_SY_IN_REG
# define RTASM_ARM_DMB_ST RTASM_ARM_DSB_SY
# define RTASM_ARM_DMB_ST_IN_REG RTASM_ARM_DSB_SY_IN_REG
# define RTASM_ARM_DMB_LD RTASM_ARM_DSB_SY
# define RTASM_ARM_DMB_LD_IN_REG RTASM_ARM_DSB_SY_IN_REG
# else
# error "huh? Odd RT_ARCH_ARM32 value!"
# endif
# define RTASM_ARM_DSB_SY_COMMA_IN_REG , RTASM_ARM_DSB_SY_IN_REG
# define RTASM_ARM_DMB_SY_COMMA_IN_REG , RTASM_ARM_DMB_SY_IN_REG
# define RTASM_ARM_DMB_ST_COMMA_IN_REG , RTASM_ARM_DMB_ST_IN_REG
# define RTASM_ARM_DMB_LD_COMMA_IN_REG , RTASM_ARM_DMB_LD_IN_REG
# define RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_32(name, a_pu32Mem, barrier_type, modify64, modify32, in_reg) \
uint32_t rcSpill; \
uint32_t u32NewRet; \
__asm__ __volatile__(".Ltry_again_" #name "_%=:\n\t" \
RT_CONCAT(RTASM_ARM_,barrier_type) /* before lable? */ \
"ldrex %[uNew], %[pMem]\n\t" \
modify32 \
"strex %[rc], %[uNew], %[pMem]\n\t" \
"cmp %[rc], #0\n\t" \
"bne .Ltry_again_" #name "_%=\n\t" \
: [pMem] "+m" (*a_pu32Mem) \
, [uNew] "=&r" (u32NewRet) \
, [rc] "=&r" (rcSpill) \
: RT_CONCAT3(RTASM_ARM_,barrier_type,_IN_REG) \
, in_reg \
: "cc")
# define RTASM_ARM_LOAD_MODIFY_STORE_RET_OLD_32(name, a_pu32Mem, barrier_type, modify64, modify32, in_reg) \
uint32_t rcSpill; \
uint32_t u32OldRet; \
uint32_t u32NewSpill; \
__asm__ __volatile__(".Ltry_again_" #name "_%=:\n\t" \
RT_CONCAT(RTASM_ARM_,barrier_type) /* before lable? */ \
"ldrex %[uOld], %[pMem]\n\t" \
modify32 \
"strex %[rc], %[uNew], %[pMem]\n\t" \
"cmp %[rc], #0\n\t" \
"bne .Ltry_again_" #name "_%=\n\t" \
: [pMem] "+m" (*a_pu32Mem) \
, [uOld] "=&r" (u32OldRet) \
, [uNew] "=&r" (u32NewSpill) \
, [rc] "=&r" (rcSpill) \
: RT_CONCAT3(RTASM_ARM_,barrier_type,_IN_REG) \
, in_reg \
: "cc")
# define RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_64(name, a_pu64Mem, barrier_type, modify64, modify32, in_reg) \
uint32_t rcSpill; \
uint64_t u64NewRet; \
__asm__ __volatile__(".Ltry_again_" #name "_%=:\n\t" \
RT_CONCAT(RTASM_ARM_,barrier_type) /* before lable? */ \
"ldrexd %[uNew], %H[uNew], %[pMem]\n\t" \
modify32 \
"strexd %[rc], %[uNew], %H[uNew], %[pMem]\n\t" \
"cmp %[rc], #0\n\t" \
"bne .Ltry_again_" #name "_%=\n\t" \
: [pMem] "+m" (*a_pu64Mem), \
[uNew] "=&r" (u64NewRet), \
[rc] "=&r" (rcSpill) \
: RT_CONCAT3(RTASM_ARM_,barrier_type,_IN_REG) \
, in_reg \
: "cc")
# define RTASM_ARM_LOAD_MODIFY_STORE_RET_OLD_64(name, a_pu64Mem, barrier_type, modify64, modify32, in_reg) \
uint32_t rcSpill; \
uint64_t u64OldRet; \
uint64_t u64NewSpill; \
__asm__ __volatile__(".Ltry_again_" #name "_%=:\n\t" \
RT_CONCAT(RTASM_ARM_,barrier_type) /* before lable? */ \
"ldrexd %[uOld], %H[uOld], %[pMem]\n\t" \
modify32 \
"strexd %[rc], %[uNew], %H[uNew], %[pMem]\n\t" \
"cmp %[rc], #0\n\t" \
"bne .Ltry_again_" #name "_%=\n\t" \
: [pMem] "+m" (*a_pu64Mem), \
[uOld] "=&r" (u64OldRet), \
[uNew] "=&r" (u64NewSpill), \
[rc] "=&r" (rcSpill) \
: RT_CONCAT3(RTASM_ARM_,barrier_type,_IN_REG) \
, in_reg \
: "cc")
# endif /* RT_ARCH_ARM32 */
#endif
/** @def ASMReturnAddress
* Gets the return address of the current (or calling if you like) function or method.
*/
#ifdef _MSC_VER
# ifdef __cplusplus
extern "C"
# endif
void * _ReturnAddress(void);
# pragma intrinsic(_ReturnAddress)
# define ASMReturnAddress() _ReturnAddress()
#elif defined(__GNUC__) || defined(DOXYGEN_RUNNING)
# define ASMReturnAddress() __builtin_return_address(0)
#elif defined(__WATCOMC__)
# define ASMReturnAddress() Watcom_does_not_appear_to_have_intrinsic_return_address_function()
#else
# error "Unsupported compiler."
#endif
/**
* Compiler memory barrier.
*
* Ensure that the compiler does not use any cached (register/tmp stack) memory
* values or any outstanding writes when returning from this function.
*
* This function must be used if non-volatile data is modified by a
* device or the VMM. Typical cases are port access, MMIO access,
* trapping instruction, etc.
*/
#if RT_INLINE_ASM_GNU_STYLE
# define ASMCompilerBarrier() do { __asm__ __volatile__("" : : : "memory"); } while (0)
#elif RT_INLINE_ASM_USES_INTRIN
# define ASMCompilerBarrier() do { _ReadWriteBarrier(); } while (0)
#elif defined(__WATCOMC__)
void ASMCompilerBarrier(void);
#else /* 2003 should have _ReadWriteBarrier() but I guess we're at 2002 level then... */
DECLINLINE(void) ASMCompilerBarrier(void) RT_NOTHROW_DEF
{
__asm
{
}
}
#endif
/** @def ASMBreakpoint
* Debugger Breakpoint.
* @deprecated Use RT_BREAKPOINT instead.
* @internal
*/
#define ASMBreakpoint() RT_BREAKPOINT()
/**
* Spinloop hint for platforms that have these, empty function on the other
* platforms.
*
* x86 & AMD64: The PAUSE variant of NOP for helping hyperthreaded CPUs detecting
* spin locks.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86))
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMNopPause(void) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMNopPause(void) RT_NOTHROW_DEF
{
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__(".byte 0xf3,0x90\n\t");
# else
__asm {
_emit 0f3h
_emit 090h
}
# endif
# elif defined(RT_ARCH_ARM32) || defined(RT_ARCH_ARM64)
__asm__ __volatile__("yield\n\t"); /* ARMv6K+ */
# else
/* dummy */
# endif
}
#endif
/**
* Atomically Exchange an unsigned 8-bit value, ordered.
*
* @returns Current *pu8 value
* @param pu8 Pointer to the 8-bit variable to update.
* @param u8 The 8-bit value to assign to *pu8.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM
RT_ASM_DECL_PRAGMA_WATCOM(uint8_t) ASMAtomicXchgU8(volatile uint8_t RT_FAR *pu8, uint8_t u8) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint8_t) ASMAtomicXchgU8(volatile uint8_t RT_FAR *pu8, uint8_t u8) RT_NOTHROW_DEF
{
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("xchgb %0, %1\n\t"
: "=m" (*pu8)
, "=q" (u8) /* =r - busted on g++ (GCC) 3.4.4 20050721 (Red Hat 3.4.4-2) */
: "1" (u8)
, "m" (*pu8));
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rdx, [pu8]
mov al, [u8]
xchg [rdx], al
mov [u8], al
# else
mov edx, [pu8]
mov al, [u8]
xchg [edx], al
mov [u8], al
# endif
}
# endif
return u8;
# elif defined(RT_ARCH_ARM32) || defined(RT_ARCH_ARM64)
uint32_t uOld;
uint32_t rcSpill;
__asm__ __volatile__(".Ltry_again_ASMAtomicXchgU8_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldaxrb %w[uOld], %[pMem]\n\t"
"stlxrb %w[rc], %w[uNew], %[pMem]\n\t"
"cbnz %w[rc], .Ltry_again_ASMAtomicXchgU8_%=\n\t"
# else
"ldrexb %[uOld], %[pMem]\n\t" /* ARMv6+ */
"strexb %[rc], %[uNew], %[pMem]\n\t"
"cmp %[rc], #0\n\t"
"bne .Ltry_again_ASMAtomicXchgU8_%=\n\t"
# endif
: [pMem] "+Q" (*pu8)
, [uOld] "=&r" (uOld)
, [rc] "=&r" (rcSpill)
: [uNew] "r" ((uint32_t)u8)
RTASM_ARM_DMB_SY_COMMA_IN_REG
: "cc");
return (uint8_t)uOld;
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically Exchange a signed 8-bit value, ordered.
*
* @returns Current *pu8 value
* @param pi8 Pointer to the 8-bit variable to update.
* @param i8 The 8-bit value to assign to *pi8.
*/
DECLINLINE(int8_t) ASMAtomicXchgS8(volatile int8_t RT_FAR *pi8, int8_t i8) RT_NOTHROW_DEF
{
return (int8_t)ASMAtomicXchgU8((volatile uint8_t RT_FAR *)pi8, (uint8_t)i8);
}
/**
* Atomically Exchange a bool value, ordered.
*
* @returns Current *pf value
* @param pf Pointer to the 8-bit variable to update.
* @param f The 8-bit value to assign to *pi8.
*/
DECLINLINE(bool) ASMAtomicXchgBool(volatile bool RT_FAR *pf, bool f) RT_NOTHROW_DEF
{
#ifdef _MSC_VER
return !!ASMAtomicXchgU8((volatile uint8_t RT_FAR *)pf, (uint8_t)f);
#else
return (bool)ASMAtomicXchgU8((volatile uint8_t RT_FAR *)pf, (uint8_t)f);
#endif
}
/**
* Atomically Exchange an unsigned 16-bit value, ordered.
*
* @returns Current *pu16 value
* @param pu16 Pointer to the 16-bit variable to update.
* @param u16 The 16-bit value to assign to *pu16.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM
RT_ASM_DECL_PRAGMA_WATCOM(uint16_t) ASMAtomicXchgU16(volatile uint16_t RT_FAR *pu16, uint16_t u16) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint16_t) ASMAtomicXchgU16(volatile uint16_t RT_FAR *pu16, uint16_t u16) RT_NOTHROW_DEF
{
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("xchgw %0, %1\n\t"
: "=m" (*pu16)
, "=r" (u16)
: "1" (u16)
, "m" (*pu16));
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rdx, [pu16]
mov ax, [u16]
xchg [rdx], ax
mov [u16], ax
# else
mov edx, [pu16]
mov ax, [u16]
xchg [edx], ax
mov [u16], ax
# endif
}
# endif
return u16;
# elif defined(RT_ARCH_ARM32) || defined(RT_ARCH_ARM64)
uint32_t uOld;
uint32_t rcSpill;
__asm__ __volatile__(".Ltry_again_ASMAtomicXchgU16_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldaxrh %w[uOld], %[pMem]\n\t"
"stlxrh %w[rc], %w[uNew], %[pMem]\n\t"
"cbnz %w[rc], .Ltry_again_ASMAtomicXchgU16_%=\n\t"
# else
"ldrexh %[uOld], %[pMem]\n\t" /* ARMv6+ */
"strexh %[rc], %[uNew], %[pMem]\n\t"
"cmp %[rc], #0\n\t"
"bne .Ltry_again_ASMAtomicXchgU16_%=\n\t"
# endif
: [pMem] "+Q" (*pu16)
, [uOld] "=&r" (uOld)
, [rc] "=&r" (rcSpill)
: [uNew] "r" ((uint32_t)u16)
RTASM_ARM_DMB_SY_COMMA_IN_REG
: "cc");
return (uint16_t)uOld;
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically Exchange a signed 16-bit value, ordered.
*
* @returns Current *pu16 value
* @param pi16 Pointer to the 16-bit variable to update.
* @param i16 The 16-bit value to assign to *pi16.
*/
DECLINLINE(int16_t) ASMAtomicXchgS16(volatile int16_t RT_FAR *pi16, int16_t i16) RT_NOTHROW_DEF
{
return (int16_t)ASMAtomicXchgU16((volatile uint16_t RT_FAR *)pi16, (uint16_t)i16);
}
/**
* Atomically Exchange an unsigned 32-bit value, ordered.
*
* @returns Current *pu32 value
* @param pu32 Pointer to the 32-bit variable to update.
* @param u32 The 32-bit value to assign to *pu32.
*
* @remarks Does not work on 286 and earlier.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(uint32_t) ASMAtomicXchgU32(volatile uint32_t RT_FAR *pu32, uint32_t u32) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint32_t) ASMAtomicXchgU32(volatile uint32_t RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("xchgl %0, %1\n\t"
: "=m" (*pu32) /** @todo r=bird: +m rather than =m here? */
, "=r" (u32)
: "1" (u32)
, "m" (*pu32));
# elif RT_INLINE_ASM_USES_INTRIN
u32 = _InterlockedExchange((long RT_FAR *)pu32, u32);
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rdx, [pu32]
mov eax, u32
xchg [rdx], eax
mov [u32], eax
# else
mov edx, [pu32]
mov eax, u32
xchg [edx], eax
mov [u32], eax
# endif
}
# endif
return u32;
# elif defined(RT_ARCH_ARM32) || defined(RT_ARCH_ARM64)
uint32_t uOld;
uint32_t rcSpill;
__asm__ __volatile__(".Ltry_again_ASMAtomicXchgU32_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldaxr %w[uOld], %[pMem]\n\t"
"stlxr %w[rc], %w[uNew], %[pMem]\n\t"
"cbnz %w[rc], .Ltry_again_ASMAtomicXchgU32_%=\n\t"
# else
"ldrex %[uOld], %[pMem]\n\t" /* ARMv6+ */
"strex %[rc], %[uNew], %[pMem]\n\t"
"cmp %[rc], #0\n\t"
"bne .Ltry_again_ASMAtomicXchgU32_%=\n\t"
# endif
: [pMem] "+Q" (*pu32)
, [uOld] "=&r" (uOld)
, [rc] "=&r" (rcSpill)
: [uNew] "r" (u32)
RTASM_ARM_DMB_SY_COMMA_IN_REG
: "cc");
return uOld;
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically Exchange a signed 32-bit value, ordered.
*
* @returns Current *pu32 value
* @param pi32 Pointer to the 32-bit variable to update.
* @param i32 The 32-bit value to assign to *pi32.
*/
DECLINLINE(int32_t) ASMAtomicXchgS32(volatile int32_t RT_FAR *pi32, int32_t i32) RT_NOTHROW_DEF
{
return (int32_t)ASMAtomicXchgU32((volatile uint32_t RT_FAR *)pi32, (uint32_t)i32);
}
/**
* Atomically Exchange an unsigned 64-bit value, ordered.
*
* @returns Current *pu64 value
* @param pu64 Pointer to the 64-bit variable to update.
* @param u64 The 64-bit value to assign to *pu64.
*
* @remarks Works on 32-bit x86 CPUs starting with Pentium.
*/
#if (RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN) \
|| RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC
RT_ASM_DECL_PRAGMA_WATCOM(uint64_t) ASMAtomicXchgU64(volatile uint64_t RT_FAR *pu64, uint64_t u64) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint64_t) ASMAtomicXchgU64(volatile uint64_t RT_FAR *pu64, uint64_t u64) RT_NOTHROW_DEF
{
# if defined(RT_ARCH_AMD64)
# if RT_INLINE_ASM_USES_INTRIN
return _InterlockedExchange64((__int64 *)pu64, u64);
# elif RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("xchgq %0, %1\n\t"
: "=m" (*pu64)
, "=r" (u64)
: "1" (u64)
, "m" (*pu64));
return u64;
# else
__asm
{
mov rdx, [pu64]
mov rax, [u64]
xchg [rdx], rax
mov [u64], rax
}
return u64;
# endif
# elif defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
# if defined(PIC) || defined(__PIC__)
uint32_t u32EBX = (uint32_t)u64;
__asm__ __volatile__(/*"xchgl %%esi, %5\n\t"*/
"xchgl %%ebx, %3\n\t"
"1:\n\t"
"lock; cmpxchg8b (%5)\n\t"
"jnz 1b\n\t"
"movl %3, %%ebx\n\t"
/*"xchgl %%esi, %5\n\t"*/
: "=A" (u64)
, "=m" (*pu64)
: "0" (*pu64)
, "m" ( u32EBX )
, "c" ( (uint32_t)(u64 >> 32) )
, "S" (pu64)
: "cc");
# else /* !PIC */
__asm__ __volatile__("1:\n\t"
"lock; cmpxchg8b %1\n\t"
"jnz 1b\n\t"
: "=A" (u64)
, "=m" (*pu64)
: "0" (*pu64)
, "b" ( (uint32_t)u64 )
, "c" ( (uint32_t)(u64 >> 32) )
: "cc");
# endif
# else
__asm
{
mov ebx, dword ptr [u64]
mov ecx, dword ptr [u64 + 4]
mov edi, pu64
mov eax, dword ptr [edi]
mov edx, dword ptr [edi + 4]
retry:
lock cmpxchg8b [edi]
jnz retry
mov dword ptr [u64], eax
mov dword ptr [u64 + 4], edx
}
# endif
return u64;
# elif defined(RT_ARCH_ARM32) || defined(RT_ARCH_ARM64)
uint32_t rcSpill;
uint64_t uOld;
__asm__ __volatile__(".Ltry_again_ASMAtomicXchgU64_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldaxr %[uOld], %[pMem]\n\t"
"stlxr %w[rc], %[uNew], %[pMem]\n\t"
"cbnz %w[rc], .Ltry_again_ASMAtomicXchgU64_%=\n\t"
# else
"ldrexd %[uOld], %H[uOld], %[pMem]\n\t" /* ARMv6+ */
"strexd %[rc], %[uNew], %H[uNew], %[pMem]\n\t"
"cmp %[rc], #0\n\t"
"bne .Ltry_again_ASMAtomicXchgU64_%=\n\t"
# endif
: [pMem] "+Q" (*pu64)
, [uOld] "=&r" (uOld)
, [rc] "=&r" (rcSpill)
: [uNew] "r" (u64)
RTASM_ARM_DMB_SY_COMMA_IN_REG
: "cc");
return uOld;
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically Exchange an signed 64-bit value, ordered.
*
* @returns Current *pi64 value
* @param pi64 Pointer to the 64-bit variable to update.
* @param i64 The 64-bit value to assign to *pi64.
*/
DECLINLINE(int64_t) ASMAtomicXchgS64(volatile int64_t RT_FAR *pi64, int64_t i64) RT_NOTHROW_DEF
{
return (int64_t)ASMAtomicXchgU64((volatile uint64_t RT_FAR *)pi64, (uint64_t)i64);
}
/**
* Atomically Exchange a size_t value, ordered.
*
* @returns Current *ppv value
* @param puDst Pointer to the size_t variable to update.
* @param uNew The new value to assign to *puDst.
*/
DECLINLINE(size_t) ASMAtomicXchgZ(size_t volatile RT_FAR *puDst, const size_t uNew) RT_NOTHROW_DEF
{
#if ARCH_BITS == 16
AssertCompile(sizeof(size_t) == 2);
return ASMAtomicXchgU16((volatile uint16_t RT_FAR *)puDst, uNew);
#elif ARCH_BITS == 32
return ASMAtomicXchgU32((volatile uint32_t RT_FAR *)puDst, uNew);
#elif ARCH_BITS == 64
return ASMAtomicXchgU64((volatile uint64_t RT_FAR *)puDst, uNew);
#else
# error "ARCH_BITS is bogus"
#endif
}
/**
* Atomically Exchange a pointer value, ordered.
*
* @returns Current *ppv value
* @param ppv Pointer to the pointer variable to update.
* @param pv The pointer value to assign to *ppv.
*/
DECLINLINE(void RT_FAR *) ASMAtomicXchgPtr(void RT_FAR * volatile RT_FAR *ppv, const void RT_FAR *pv) RT_NOTHROW_DEF
{
#if ARCH_BITS == 32 || ARCH_BITS == 16
return (void RT_FAR *)ASMAtomicXchgU32((volatile uint32_t RT_FAR *)(void RT_FAR *)ppv, (uint32_t)pv);
#elif ARCH_BITS == 64
return (void RT_FAR *)ASMAtomicXchgU64((volatile uint64_t RT_FAR *)(void RT_FAR *)ppv, (uint64_t)pv);
#else
# error "ARCH_BITS is bogus"
#endif
}
/**
* Convenience macro for avoiding the annoying casting with ASMAtomicXchgPtr.
*
* @returns Current *pv value
* @param ppv Pointer to the pointer variable to update.
* @param pv The pointer value to assign to *ppv.
* @param Type The type of *ppv, sans volatile.
*/
#ifdef __GNUC__ /* 8.2.0 requires -Wno-ignored-qualifiers */
# define ASMAtomicXchgPtrT(ppv, pv, Type) \
__extension__ \
({\
__typeof__(*(ppv)) volatile * const ppvTypeChecked = (ppv); \
Type const pvTypeChecked = (pv); \
Type pvTypeCheckedRet = (__typeof__(*(ppv))) ASMAtomicXchgPtr((void * volatile *)ppvTypeChecked, (void *)pvTypeChecked); \
pvTypeCheckedRet; \
})
#else
# define ASMAtomicXchgPtrT(ppv, pv, Type) \
(Type)ASMAtomicXchgPtr((void RT_FAR * volatile RT_FAR *)(ppv), (void RT_FAR *)(pv))
#endif
/**
* Atomically Exchange a raw-mode context pointer value, ordered.
*
* @returns Current *ppv value
* @param ppvRC Pointer to the pointer variable to update.
* @param pvRC The pointer value to assign to *ppv.
*/
DECLINLINE(RTRCPTR) ASMAtomicXchgRCPtr(RTRCPTR volatile RT_FAR *ppvRC, RTRCPTR pvRC) RT_NOTHROW_DEF
{
return (RTRCPTR)ASMAtomicXchgU32((uint32_t volatile RT_FAR *)(void RT_FAR *)ppvRC, (uint32_t)pvRC);
}
/**
* Atomically Exchange a ring-0 pointer value, ordered.
*
* @returns Current *ppv value
* @param ppvR0 Pointer to the pointer variable to update.
* @param pvR0 The pointer value to assign to *ppv.
*/
DECLINLINE(RTR0PTR) ASMAtomicXchgR0Ptr(RTR0PTR volatile RT_FAR *ppvR0, RTR0PTR pvR0) RT_NOTHROW_DEF
{
#if R0_ARCH_BITS == 32 || ARCH_BITS == 16
return (RTR0PTR)ASMAtomicXchgU32((volatile uint32_t RT_FAR *)(void RT_FAR *)ppvR0, (uint32_t)pvR0);
#elif R0_ARCH_BITS == 64
return (RTR0PTR)ASMAtomicXchgU64((volatile uint64_t RT_FAR *)(void RT_FAR *)ppvR0, (uint64_t)pvR0);
#else
# error "R0_ARCH_BITS is bogus"
#endif
}
/**
* Atomically Exchange a ring-3 pointer value, ordered.
*
* @returns Current *ppv value
* @param ppvR3 Pointer to the pointer variable to update.
* @param pvR3 The pointer value to assign to *ppv.
*/
DECLINLINE(RTR3PTR) ASMAtomicXchgR3Ptr(RTR3PTR volatile RT_FAR *ppvR3, RTR3PTR pvR3) RT_NOTHROW_DEF
{
#if R3_ARCH_BITS == 32 || ARCH_BITS == 16
return (RTR3PTR)ASMAtomicXchgU32((volatile uint32_t RT_FAR *)(void RT_FAR *)ppvR3, (uint32_t)pvR3);
#elif R3_ARCH_BITS == 64
return (RTR3PTR)ASMAtomicXchgU64((volatile uint64_t RT_FAR *)(void RT_FAR *)ppvR3, (uint64_t)pvR3);
#else
# error "R3_ARCH_BITS is bogus"
#endif
}
/** @def ASMAtomicXchgHandle
* Atomically Exchange a typical IPRT handle value, ordered.
*
* @param ph Pointer to the value to update.
* @param hNew The new value to assigned to *pu.
* @param phRes Where to store the current *ph value.
*
* @remarks This doesn't currently work for all handles (like RTFILE).
*/
#if HC_ARCH_BITS == 32 || ARCH_BITS == 16
# define ASMAtomicXchgHandle(ph, hNew, phRes) \
do { \
AssertCompile(sizeof(*(ph)) == sizeof(uint32_t)); \
AssertCompile(sizeof(*(phRes)) == sizeof(uint32_t)); \
*(uint32_t RT_FAR *)(phRes) = ASMAtomicXchgU32((uint32_t volatile RT_FAR *)(ph), (const uint32_t)(hNew)); \
} while (0)
#elif HC_ARCH_BITS == 64
# define ASMAtomicXchgHandle(ph, hNew, phRes) \
do { \
AssertCompile(sizeof(*(ph)) == sizeof(uint64_t)); \
AssertCompile(sizeof(*(phRes)) == sizeof(uint64_t)); \
*(uint64_t RT_FAR *)(phRes) = ASMAtomicXchgU64((uint64_t volatile RT_FAR *)(ph), (const uint64_t)(hNew)); \
} while (0)
#else
# error HC_ARCH_BITS
#endif
/**
* Atomically Exchange a value which size might differ
* between platforms or compilers, ordered.
*
* @param pu Pointer to the variable to update.
* @param uNew The value to assign to *pu.
* @todo This is busted as its missing the result argument.
*/
#define ASMAtomicXchgSize(pu, uNew) \
do { \
switch (sizeof(*(pu))) { \
case 1: ASMAtomicXchgU8( (volatile uint8_t RT_FAR *)(void RT_FAR *)(pu), (uint8_t)(uNew)); break; \
case 2: ASMAtomicXchgU16((volatile uint16_t RT_FAR *)(void RT_FAR *)(pu), (uint16_t)(uNew)); break; \
case 4: ASMAtomicXchgU32((volatile uint32_t RT_FAR *)(void RT_FAR *)(pu), (uint32_t)(uNew)); break; \
case 8: ASMAtomicXchgU64((volatile uint64_t RT_FAR *)(void RT_FAR *)(pu), (uint64_t)(uNew)); break; \
default: AssertMsgFailed(("ASMAtomicXchgSize: size %d is not supported\n", sizeof(*(pu)))); \
} \
} while (0)
/**
* Atomically Exchange a value which size might differ
* between platforms or compilers, ordered.
*
* @param pu Pointer to the variable to update.
* @param uNew The value to assign to *pu.
* @param puRes Where to store the current *pu value.
*/
#define ASMAtomicXchgSizeCorrect(pu, uNew, puRes) \
do { \
switch (sizeof(*(pu))) { \
case 1: *(uint8_t RT_FAR *)(puRes) = ASMAtomicXchgU8( (volatile uint8_t RT_FAR *)(void RT_FAR *)(pu), (uint8_t)(uNew)); break; \
case 2: *(uint16_t RT_FAR *)(puRes) = ASMAtomicXchgU16((volatile uint16_t RT_FAR *)(void RT_FAR *)(pu), (uint16_t)(uNew)); break; \
case 4: *(uint32_t RT_FAR *)(puRes) = ASMAtomicXchgU32((volatile uint32_t RT_FAR *)(void RT_FAR *)(pu), (uint32_t)(uNew)); break; \
case 8: *(uint64_t RT_FAR *)(puRes) = ASMAtomicXchgU64((volatile uint64_t RT_FAR *)(void RT_FAR *)(pu), (uint64_t)(uNew)); break; \
default: AssertMsgFailed(("ASMAtomicXchgSize: size %d is not supported\n", sizeof(*(pu)))); \
} \
} while (0)
/**
* Atomically Compare and Exchange an unsigned 8-bit value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param pu8 Pointer to the value to update.
* @param u8New The new value to assigned to *pu8.
* @param u8Old The old value to *pu8 compare with.
*
* @remarks x86: Requires a 486 or later.
* @todo Rename ASMAtomicCmpWriteU8
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM || !RT_INLINE_ASM_GNU_STYLE
RT_ASM_DECL_PRAGMA_WATCOM(bool) ASMAtomicCmpXchgU8(volatile uint8_t RT_FAR *pu8, const uint8_t u8New, const uint8_t u8Old) RT_NOTHROW_PROTO;
#else
DECLINLINE(bool) ASMAtomicCmpXchgU8(volatile uint8_t RT_FAR *pu8, const uint8_t u8New, uint8_t u8Old) RT_NOTHROW_DEF
{
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
uint8_t u8Ret;
__asm__ __volatile__("lock; cmpxchgb %3, %0\n\t"
"setz %1\n\t"
: "=m" (*pu8)
, "=qm" (u8Ret)
, "=a" (u8Old)
: "q" (u8New)
, "2" (u8Old)
, "m" (*pu8)
: "cc");
return (bool)u8Ret;
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
union { uint32_t u; bool f; } fXchg;
uint32_t u32Spill;
uint32_t rcSpill;
__asm__ __volatile__(".Ltry_again_ASMAtomicCmpXchgU8_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldaxrb %w[uOld], %[pMem]\n\t"
"cmp %w[uOld], %w[uCmp]\n\t"
"bne 1f\n\t" /* stop here if not equal */
"stlxrb %w[rc], %w[uNew], %[pMem]\n\t"
"cbnz %w[rc], .Ltry_again_ASMAtomicCmpXchgU8_%=\n\t"
"mov %w[fXchg], #1\n\t"
# else
"ldrexb %[uOld], %[pMem]\n\t"
"teq %[uOld], %[uCmp]\n\t"
"strexbeq %[rc], %[uNew], %[pMem]\n\t"
"bne 1f\n\t" /* stop here if not equal */
"cmp %[rc], #0\n\t"
"bne .Ltry_again_ASMAtomicCmpXchgU8_%=\n\t"
"mov %[fXchg], #1\n\t"
# endif
"1:\n\t"
: [pMem] "+Q" (*pu8)
, [uOld] "=&r" (u32Spill)
, [rc] "=&r" (rcSpill)
, [fXchg] "=&r" (fXchg.u)
: [uCmp] "r" ((uint32_t)u8Old)
, [uNew] "r" ((uint32_t)u8New)
, "[fXchg]" (0)
RTASM_ARM_DMB_SY_COMMA_IN_REG
: "cc");
return fXchg.f;
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically Compare and Exchange a signed 8-bit value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param pi8 Pointer to the value to update.
* @param i8New The new value to assigned to *pi8.
* @param i8Old The old value to *pi8 compare with.
*
* @remarks x86: Requires a 486 or later.
* @todo Rename ASMAtomicCmpWriteS8
*/
DECLINLINE(bool) ASMAtomicCmpXchgS8(volatile int8_t RT_FAR *pi8, const int8_t i8New, const int8_t i8Old) RT_NOTHROW_DEF
{
return ASMAtomicCmpXchgU8((volatile uint8_t RT_FAR *)pi8, (uint8_t)i8New, (uint8_t)i8Old);
}
/**
* Atomically Compare and Exchange a bool value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param pf Pointer to the value to update.
* @param fNew The new value to assigned to *pf.
* @param fOld The old value to *pf compare with.
*
* @remarks x86: Requires a 486 or later.
* @todo Rename ASMAtomicCmpWriteBool
*/
DECLINLINE(bool) ASMAtomicCmpXchgBool(volatile bool RT_FAR *pf, const bool fNew, const bool fOld) RT_NOTHROW_DEF
{
return ASMAtomicCmpXchgU8((volatile uint8_t RT_FAR *)pf, (uint8_t)fNew, (uint8_t)fOld);
}
/**
* Atomically Compare and Exchange an unsigned 32-bit value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param pu32 Pointer to the value to update.
* @param u32New The new value to assigned to *pu32.
* @param u32Old The old value to *pu32 compare with.
*
* @remarks x86: Requires a 486 or later.
* @todo Rename ASMAtomicCmpWriteU32
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(bool) ASMAtomicCmpXchgU32(volatile uint32_t RT_FAR *pu32, const uint32_t u32New, const uint32_t u32Old) RT_NOTHROW_PROTO;
#else
DECLINLINE(bool) ASMAtomicCmpXchgU32(volatile uint32_t RT_FAR *pu32, const uint32_t u32New, uint32_t u32Old) RT_NOTHROW_DEF
{
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
uint8_t u8Ret;
__asm__ __volatile__("lock; cmpxchgl %3, %0\n\t"
"setz %1\n\t"
: "=m" (*pu32)
, "=qm" (u8Ret)
, "=a" (u32Old)
: "r" (u32New)
, "2" (u32Old)
, "m" (*pu32)
: "cc");
return (bool)u8Ret;
# elif RT_INLINE_ASM_USES_INTRIN
return (uint32_t)_InterlockedCompareExchange((long RT_FAR *)pu32, u32New, u32Old) == u32Old;
# else
uint32_t u32Ret;
__asm
{
# ifdef RT_ARCH_AMD64
mov rdx, [pu32]
# else
mov edx, [pu32]
# endif
mov eax, [u32Old]
mov ecx, [u32New]
# ifdef RT_ARCH_AMD64
lock cmpxchg [rdx], ecx
# else
lock cmpxchg [edx], ecx
# endif
setz al
movzx eax, al
mov [u32Ret], eax
}
return !!u32Ret;
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
union { uint32_t u; bool f; } fXchg;
uint32_t u32Spill;
uint32_t rcSpill;
__asm__ __volatile__(".Ltry_again_ASMAtomicCmpXchgU32_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldaxr %w[uOld], %[pMem]\n\t"
"cmp %w[uOld], %w[uCmp]\n\t"
"bne 1f\n\t" /* stop here if not equal */
"stlxr %w[rc], %w[uNew], %[pMem]\n\t"
"cbnz %w[rc], .Ltry_again_ASMAtomicCmpXchgU32_%=\n\t"
"mov %w[fXchg], #1\n\t"
# else
"ldrex %[uOld], %[pMem]\n\t"
"teq %[uOld], %[uCmp]\n\t"
"strexeq %[rc], %[uNew], %[pMem]\n\t"
"bne 1f\n\t" /* stop here if not equal */
"cmp %[rc], #0\n\t"
"bne .Ltry_again_ASMAtomicCmpXchgU32_%=\n\t"
"mov %[fXchg], #1\n\t"
# endif
"1:\n\t"
: [pMem] "+Q" (*pu32)
, [uOld] "=&r" (u32Spill)
, [rc] "=&r" (rcSpill)
, [fXchg] "=&r" (fXchg.u)
: [uCmp] "r" (u32Old)
, [uNew] "r" (u32New)
, "[fXchg]" (0)
RTASM_ARM_DMB_SY_COMMA_IN_REG
: "cc");
return fXchg.f;
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically Compare and Exchange a signed 32-bit value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param pi32 Pointer to the value to update.
* @param i32New The new value to assigned to *pi32.
* @param i32Old The old value to *pi32 compare with.
*
* @remarks x86: Requires a 486 or later.
* @todo Rename ASMAtomicCmpWriteS32
*/
DECLINLINE(bool) ASMAtomicCmpXchgS32(volatile int32_t RT_FAR *pi32, const int32_t i32New, const int32_t i32Old) RT_NOTHROW_DEF
{
return ASMAtomicCmpXchgU32((volatile uint32_t RT_FAR *)pi32, (uint32_t)i32New, (uint32_t)i32Old);
}
/**
* Atomically Compare and exchange an unsigned 64-bit value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param pu64 Pointer to the 64-bit variable to update.
* @param u64New The 64-bit value to assign to *pu64.
* @param u64Old The value to compare with.
*
* @remarks x86: Requires a Pentium or later.
* @todo Rename ASMAtomicCmpWriteU64
*/
#if (RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN) \
|| RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC
RT_ASM_DECL_PRAGMA_WATCOM(bool) ASMAtomicCmpXchgU64(volatile uint64_t RT_FAR *pu64, const uint64_t u64New, const uint64_t u64Old) RT_NOTHROW_PROTO;
#else
DECLINLINE(bool) ASMAtomicCmpXchgU64(volatile uint64_t RT_FAR *pu64, uint64_t u64New, uint64_t u64Old) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
return (uint64_t)_InterlockedCompareExchange64((__int64 RT_FAR *)pu64, u64New, u64Old) == u64Old;
# elif defined(RT_ARCH_AMD64)
# if RT_INLINE_ASM_GNU_STYLE
uint8_t u8Ret;
__asm__ __volatile__("lock; cmpxchgq %3, %0\n\t"
"setz %1\n\t"
: "=m" (*pu64)
, "=qm" (u8Ret)
, "=a" (u64Old)
: "r" (u64New)
, "2" (u64Old)
, "m" (*pu64)
: "cc");
return (bool)u8Ret;
# else
bool fRet;
__asm
{
mov rdx, [pu32]
mov rax, [u64Old]
mov rcx, [u64New]
lock cmpxchg [rdx], rcx
setz al
mov [fRet], al
}
return fRet;
# endif
# elif defined(RT_ARCH_X86)
uint32_t u32Ret;
# if RT_INLINE_ASM_GNU_STYLE
# if defined(PIC) || defined(__PIC__)
uint32_t u32EBX = (uint32_t)u64New;
uint32_t u32Spill;
__asm__ __volatile__("xchgl %%ebx, %4\n\t"
"lock; cmpxchg8b (%6)\n\t"
"setz %%al\n\t"
"movl %4, %%ebx\n\t"
"movzbl %%al, %%eax\n\t"
: "=a" (u32Ret)
, "=d" (u32Spill)
# if RT_GNUC_PREREQ(4, 3)
, "+m" (*pu64)
# else
, "=m" (*pu64)
# endif
: "A" (u64Old)
, "m" ( u32EBX )
, "c" ( (uint32_t)(u64New >> 32) )
, "S" (pu64)
: "cc");
# else /* !PIC */
uint32_t u32Spill;
__asm__ __volatile__("lock; cmpxchg8b %2\n\t"
"setz %%al\n\t"
"movzbl %%al, %%eax\n\t"
: "=a" (u32Ret)
, "=d" (u32Spill)
, "+m" (*pu64)
: "A" (u64Old)
, "b" ( (uint32_t)u64New )
, "c" ( (uint32_t)(u64New >> 32) )
: "cc");
# endif
return (bool)u32Ret;
# else
__asm
{
mov ebx, dword ptr [u64New]
mov ecx, dword ptr [u64New + 4]
mov edi, [pu64]
mov eax, dword ptr [u64Old]
mov edx, dword ptr [u64Old + 4]
lock cmpxchg8b [edi]
setz al
movzx eax, al
mov dword ptr [u32Ret], eax
}
return !!u32Ret;
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
union { uint32_t u; bool f; } fXchg;
uint64_t u64Spill;
uint32_t rcSpill;
__asm__ __volatile__(".Ltry_again_ASMAtomicCmpXchgU64_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldaxr %[uOld], %[pMem]\n\t"
"cmp %[uOld], %[uCmp]\n\t"
"bne 1f\n\t" /* stop here if not equal */
"stlxr %w[rc], %[uNew], %[pMem]\n\t"
"cbnz %w[rc], .Ltry_again_ASMAtomicCmpXchgU64_%=\n\t"
"mov %w[fXchg], #1\n\t"
# else
"ldrexd %[uOld], %H[uOld], %[pMem]\n\t"
"teq %[uOld], %[uCmp]\n\t"
"teqeq %H[uOld], %H[uCmp]\n\t"
"strexdeq %[rc], %[uNew], %H[uNew], %[pMem]\n\t"
"bne 1f\n\t" /* stop here if not equal */
"cmp %[rc], #0\n\t"
"bne .Ltry_again_ASMAtomicCmpXchgU64_%=\n\t"
"mov %[fXchg], #1\n\t"
# endif
"1:\n\t"
: [pMem] "+Q" (*pu64)
, [uOld] "=&r" (u64Spill)
, [rc] "=&r" (rcSpill)
, [fXchg] "=&r" (fXchg.u)
: [uCmp] "r" (u64Old)
, [uNew] "r" (u64New)
, "[fXchg]" (0)
RTASM_ARM_DMB_SY_COMMA_IN_REG
: "cc");
return fXchg.f;
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically Compare and exchange a signed 64-bit value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param pi64 Pointer to the 64-bit variable to update.
* @param i64 The 64-bit value to assign to *pu64.
* @param i64Old The value to compare with.
*
* @remarks x86: Requires a Pentium or later.
* @todo Rename ASMAtomicCmpWriteS64
*/
DECLINLINE(bool) ASMAtomicCmpXchgS64(volatile int64_t RT_FAR *pi64, const int64_t i64, const int64_t i64Old) RT_NOTHROW_DEF
{
return ASMAtomicCmpXchgU64((volatile uint64_t RT_FAR *)pi64, (uint64_t)i64, (uint64_t)i64Old);
}
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING)
/** @def RTASM_HAVE_CMP_WRITE_U128
* Indicates that we've got ASMAtomicCmpWriteU128(), ASMAtomicCmpWriteU128v2()
* and ASMAtomicCmpWriteExU128() available. */
# define RTASM_HAVE_CMP_WRITE_U128 1
/**
* Atomically compare and write an unsigned 128-bit value, ordered.
*
* @returns true if write was done.
* @returns false if write wasn't done.
*
* @param pu128 Pointer to the 128-bit variable to update.
* @param u64NewHi The high 64 bits of the value to assign to *pu128.
* @param u64NewLo The low 64 bits of the value to assign to *pu128.
* @param u64OldHi The high 64-bit of the value to compare with.
* @param u64OldLo The low 64-bit of the value to compare with.
*
* @remarks AMD64: Not present in the earliest CPUs, so check CPUID.
*/
# if (RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN)
DECLASM(bool) ASMAtomicCmpWriteU128v2(volatile uint128_t *pu128, const uint64_t u64NewHi, const uint64_t u64NewLo,
const uint64_t u64OldHi, const uint64_t u64OldLo) RT_NOTHROW_PROTO;
# else
DECLINLINE(bool) ASMAtomicCmpWriteU128v2(volatile uint128_t *pu128, const uint64_t u64NewHi, const uint64_t u64NewLo,
const uint64_t u64OldHi, const uint64_t u64OldLo) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
__int64 ai64Cmp[2];
ai64Cmp[0] = u64OldLo;
ai64Cmp[1] = u64OldHi;
return _InterlockedCompareExchange128((__int64 volatile *)pu128, u64NewHi, u64NewLo, ai64Cmp) != 0;
# elif (defined(__clang_major__) || defined(__GNUC__)) && defined(RT_ARCH_ARM64)
return __sync_bool_compare_and_swap(pu128, ((uint128_t)u64OldHi << 64) | u64OldLo, ((uint128_t)u64NewHi << 64) | u64NewLo);
# elif defined(RT_ARCH_AMD64)
# if RT_INLINE_ASM_GNU_STYLE
uint64_t u64Ret;
uint64_t u64Spill;
__asm__ __volatile__("lock; cmpxchg16b %2\n\t"
"setz %%al\n\t"
"movzbl %%al, %%eax\n\t"
: "=a" (u64Ret)
, "=d" (u64Spill)
, "+m" (*pu128)
: "a" (u64OldLo)
, "d" (u64OldHi)
, "b" (u64NewLo)
, "c" (u64NewHi)
: "cc");
return (bool)u64Ret;
# else
# error "Port me"
# endif
# else
# error "Port me"
# endif
}
# endif
/**
* Atomically compare and write an unsigned 128-bit value, ordered.
*
* @returns true if write was done.
* @returns false if write wasn't done.
*
* @param pu128 Pointer to the 128-bit variable to update.
* @param u128New The 128-bit value to assign to *pu128.
* @param u128Old The value to compare with.
*
* @remarks AMD64: Not present in the earliest CPUs, so check CPUID.
*/
DECLINLINE(bool) ASMAtomicCmpWriteU128(volatile uint128_t *pu128, const uint128_t u128New, const uint128_t u128Old) RT_NOTHROW_DEF
{
# ifdef RT_COMPILER_WITH_128BIT_INT_TYPES
# if (defined(__clang_major__) || defined(__GNUC__)) && defined(RT_ARCH_ARM64)
return __sync_bool_compare_and_swap(pu128, u128Old, u128New);
# else
return ASMAtomicCmpWriteU128v2(pu128, (uint64_t)(u128New >> 64), (uint64_t)u128New,
(uint64_t)(u128Old >> 64), (uint64_t)u128Old);
# endif
# else
return ASMAtomicCmpWriteU128v2(pu128, u128New.Hi, u128New.Lo, u128Old.Hi, u128Old.Lo);
# endif
}
/**
* RTUINT128U wrapper for ASMAtomicCmpWriteU128.
*/
DECLINLINE(bool) ASMAtomicCmpWriteU128U(volatile RTUINT128U *pu128, const RTUINT128U u128New,
const RTUINT128U u128Old) RT_NOTHROW_DEF
{
# if (defined(__clang_major__) || defined(__GNUC__)) && defined(RT_ARCH_ARM64)
return ASMAtomicCmpWriteU128(&pu128->u, u128New.u, u128Old.u);
# else
return ASMAtomicCmpWriteU128v2(&pu128->u, u128New.s.Hi, u128New.s.Lo, u128Old.s.Hi, u128Old.s.Lo);
# endif
}
#endif /* RT_ARCH_AMD64 || RT_ARCH_ARM64 */
/**
* Atomically Compare and Exchange a pointer value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param ppv Pointer to the value to update.
* @param pvNew The new value to assigned to *ppv.
* @param pvOld The old value to *ppv compare with.
*
* @remarks x86: Requires a 486 or later.
* @todo Rename ASMAtomicCmpWritePtrVoid
*/
DECLINLINE(bool) ASMAtomicCmpXchgPtrVoid(void RT_FAR * volatile RT_FAR *ppv, const void RT_FAR *pvNew, const void RT_FAR *pvOld) RT_NOTHROW_DEF
{
#if ARCH_BITS == 32 || ARCH_BITS == 16
return ASMAtomicCmpXchgU32((volatile uint32_t RT_FAR *)(void RT_FAR *)ppv, (uint32_t)pvNew, (uint32_t)pvOld);
#elif ARCH_BITS == 64
return ASMAtomicCmpXchgU64((volatile uint64_t RT_FAR *)(void RT_FAR *)ppv, (uint64_t)pvNew, (uint64_t)pvOld);
#else
# error "ARCH_BITS is bogus"
#endif
}
/**
* Atomically Compare and Exchange a pointer value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param ppv Pointer to the value to update.
* @param pvNew The new value to assigned to *ppv.
* @param pvOld The old value to *ppv compare with.
*
* @remarks This is relatively type safe on GCC platforms.
* @remarks x86: Requires a 486 or later.
* @todo Rename ASMAtomicCmpWritePtr
*/
#ifdef __GNUC__
# define ASMAtomicCmpXchgPtr(ppv, pvNew, pvOld) \
__extension__ \
({\
__typeof__(*(ppv)) volatile * const ppvTypeChecked = (ppv); \
__typeof__(*(ppv)) const pvNewTypeChecked = (pvNew); \
__typeof__(*(ppv)) const pvOldTypeChecked = (pvOld); \
bool fMacroRet = ASMAtomicCmpXchgPtrVoid((void * volatile *)ppvTypeChecked, \
(void *)pvNewTypeChecked, (void *)pvOldTypeChecked); \
fMacroRet; \
})
#else
# define ASMAtomicCmpXchgPtr(ppv, pvNew, pvOld) \
ASMAtomicCmpXchgPtrVoid((void RT_FAR * volatile RT_FAR *)(ppv), (void RT_FAR *)(pvNew), (void RT_FAR *)(pvOld))
#endif
/** @def ASMAtomicCmpXchgHandle
* Atomically Compare and Exchange a typical IPRT handle value, ordered.
*
* @param ph Pointer to the value to update.
* @param hNew The new value to assigned to *pu.
* @param hOld The old value to *pu compare with.
* @param fRc Where to store the result.
*
* @remarks This doesn't currently work for all handles (like RTFILE).
* @remarks x86: Requires a 486 or later.
* @todo Rename ASMAtomicCmpWriteHandle
*/
#if HC_ARCH_BITS == 32 || ARCH_BITS == 16
# define ASMAtomicCmpXchgHandle(ph, hNew, hOld, fRc) \
do { \
AssertCompile(sizeof(*(ph)) == sizeof(uint32_t)); \
(fRc) = ASMAtomicCmpXchgU32((uint32_t volatile RT_FAR *)(ph), (const uint32_t)(hNew), (const uint32_t)(hOld)); \
} while (0)
#elif HC_ARCH_BITS == 64
# define ASMAtomicCmpXchgHandle(ph, hNew, hOld, fRc) \
do { \
AssertCompile(sizeof(*(ph)) == sizeof(uint64_t)); \
(fRc) = ASMAtomicCmpXchgU64((uint64_t volatile RT_FAR *)(ph), (const uint64_t)(hNew), (const uint64_t)(hOld)); \
} while (0)
#else
# error HC_ARCH_BITS
#endif
/** @def ASMAtomicCmpXchgSize
* Atomically Compare and Exchange a value which size might differ
* between platforms or compilers, ordered.
*
* @param pu Pointer to the value to update.
* @param uNew The new value to assigned to *pu.
* @param uOld The old value to *pu compare with.
* @param fRc Where to store the result.
*
* @remarks x86: Requires a 486 or later.
* @todo Rename ASMAtomicCmpWriteSize
*/
#define ASMAtomicCmpXchgSize(pu, uNew, uOld, fRc) \
do { \
switch (sizeof(*(pu))) { \
case 4: (fRc) = ASMAtomicCmpXchgU32((volatile uint32_t RT_FAR *)(void RT_FAR *)(pu), (uint32_t)(uNew), (uint32_t)(uOld)); \
break; \
case 8: (fRc) = ASMAtomicCmpXchgU64((volatile uint64_t RT_FAR *)(void RT_FAR *)(pu), (uint64_t)(uNew), (uint64_t)(uOld)); \
break; \
default: AssertMsgFailed(("ASMAtomicCmpXchgSize: size %d is not supported\n", sizeof(*(pu)))); \
(fRc) = false; \
break; \
} \
} while (0)
/**
* Atomically Compare and Exchange an unsigned 8-bit value, additionally passes
* back old value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param pu8 Pointer to the value to update.
* @param u8New The new value to assigned to *pu32.
* @param u8Old The old value to *pu8 compare with.
* @param pu8Old Pointer store the old value at.
*
* @remarks x86: Requires a 486 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(bool) ASMAtomicCmpXchgExU8(volatile uint8_t RT_FAR *pu8, const uint8_t u8New, const uint8_t u8Old, uint8_t RT_FAR *pu8Old) RT_NOTHROW_PROTO;
#else
DECLINLINE(bool) ASMAtomicCmpXchgExU8(volatile uint8_t RT_FAR *pu8, const uint8_t u8New, const uint8_t u8Old, uint8_t RT_FAR *pu8Old) RT_NOTHROW_DEF
{
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
uint8_t u8Ret;
__asm__ __volatile__("lock; cmpxchgb %3, %0\n\t"
"setz %1\n\t"
: "=m" (*pu8)
, "=qm" (u8Ret)
, "=a" (*pu8Old)
# if defined(RT_ARCH_X86)
: "q" (u8New)
# else
: "r" (u8New)
# endif
, "a" (u8Old)
, "m" (*pu8)
: "cc");
return (bool)u8Ret;
# elif RT_INLINE_ASM_USES_INTRIN
return (*pu8Old = _InterlockedCompareExchange8((char RT_FAR *)pu8, u8New, u8Old)) == u8Old;
# else
uint8_t u8Ret;
__asm
{
# ifdef RT_ARCH_AMD64
mov rdx, [pu8]
# else
mov edx, [pu8]
# endif
mov eax, [u8Old]
mov ecx, [u8New]
# ifdef RT_ARCH_AMD64
lock cmpxchg [rdx], ecx
mov rdx, [pu8Old]
mov [rdx], eax
# else
lock cmpxchg [edx], ecx
mov edx, [pu8Old]
mov [edx], eax
# endif
setz al
movzx eax, al
mov [u8Ret], eax
}
return !!u8Ret;
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
union { uint8_t u; bool f; } fXchg;
uint8_t u8ActualOld;
uint8_t rcSpill;
__asm__ __volatile__(".Ltry_again_ASMAtomicCmpXchgExU8_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldaxrb %w[uOld], %[pMem]\n\t"
"cmp %w[uOld], %w[uCmp]\n\t"
"bne 1f\n\t" /* stop here if not equal */
"stlxrb %w[rc], %w[uNew], %[pMem]\n\t"
"cbnz %w[rc], .Ltry_again_ASMAtomicCmpXchgExU8_%=\n\t"
"mov %w[fXchg], #1\n\t"
# else
"ldrexb %[uOld], %[pMem]\n\t"
"teq %[uOld], %[uCmp]\n\t"
"strexbeq %[rc], %[uNew], %[pMem]\n\t"
"bne 1f\n\t" /* stop here if not equal */
"cmp %[rc], #0\n\t"
"bne .Ltry_again_ASMAtomicCmpXchgExU8_%=\n\t"
"mov %[fXchg], #1\n\t"
# endif
"1:\n\t"
: [pMem] "+Q" (*pu8)
, [uOld] "=&r" (u8ActualOld)
, [rc] "=&r" (rcSpill)
, [fXchg] "=&r" (fXchg.u)
: [uCmp] "r" (u8Old)
, [uNew] "r" (u8New)
, "[fXchg]" (0)
RTASM_ARM_DMB_SY_COMMA_IN_REG
: "cc");
*pu8Old = u8ActualOld;
return fXchg.f;
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically Compare and Exchange a signed 8-bit value, additionally
* passes back old value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param pi8 Pointer to the value to update.
* @param i8New The new value to assigned to *pi8.
* @param i8Old The old value to *pi8 compare with.
* @param pi8Old Pointer store the old value at.
*
* @remarks x86: Requires a 486 or later.
*/
DECLINLINE(bool) ASMAtomicCmpXchgExS8(volatile int8_t RT_FAR *pi8, const int8_t i8New, const int8_t i8Old, int8_t RT_FAR *pi8Old) RT_NOTHROW_DEF
{
return ASMAtomicCmpXchgExU8((volatile uint8_t RT_FAR *)pi8, (uint8_t)i8New, (uint8_t)i8Old, (uint8_t RT_FAR *)pi8Old);
}
/**
* Atomically Compare and Exchange an unsigned 16-bit value, additionally passes
* back old value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param pu16 Pointer to the value to update.
* @param u16New The new value to assigned to *pu16.
* @param u16Old The old value to *pu32 compare with.
* @param pu16Old Pointer store the old value at.
*
* @remarks x86: Requires a 486 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(bool) ASMAtomicCmpXchgExU16(volatile uint16_t RT_FAR *pu16, const uint16_t u16New, const uint16_t u16Old, uint16_t RT_FAR *pu16Old) RT_NOTHROW_PROTO;
#else
DECLINLINE(bool) ASMAtomicCmpXchgExU16(volatile uint16_t RT_FAR *pu16, const uint16_t u16New, const uint16_t u16Old, uint16_t RT_FAR *pu16Old) RT_NOTHROW_DEF
{
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
uint8_t u8Ret;
__asm__ __volatile__("lock; cmpxchgw %3, %0\n\t"
"setz %1\n\t"
: "=m" (*pu16)
, "=qm" (u8Ret)
, "=a" (*pu16Old)
: "r" (u16New)
, "a" (u16Old)
, "m" (*pu16)
: "cc");
return (bool)u8Ret;
# elif RT_INLINE_ASM_USES_INTRIN
return (*pu16Old = _InterlockedCompareExchange16((short RT_FAR *)pu16, u16New, u16Old)) == u16Old;
# else
uint16_t u16Ret;
__asm
{
# ifdef RT_ARCH_AMD64
mov rdx, [pu16]
# else
mov edx, [pu16]
# endif
mov eax, [u16Old]
mov ecx, [u16New]
# ifdef RT_ARCH_AMD64
lock cmpxchg [rdx], ecx
mov rdx, [pu16Old]
mov [rdx], eax
# else
lock cmpxchg [edx], ecx
mov edx, [pu16Old]
mov [edx], eax
# endif
setz al
movzx eax, al
mov [u16Ret], eax
}
return !!u16Ret;
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
union { uint16_t u; bool f; } fXchg;
uint16_t u16ActualOld;
uint16_t rcSpill;
__asm__ __volatile__(".Ltry_again_ASMAtomicCmpXchgExU16_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldaxrh %w[uOld], %[pMem]\n\t"
"cmp %w[uOld], %w[uCmp]\n\t"
"bne 1f\n\t" /* stop here if not equal */
"stlxrh %w[rc], %w[uNew], %[pMem]\n\t"
"cbnz %w[rc], .Ltry_again_ASMAtomicCmpXchgExU16_%=\n\t"
"mov %w[fXchg], #1\n\t"
# else
"ldrexh %[uOld], %[pMem]\n\t"
"teq %[uOld], %[uCmp]\n\t"
"strexheq %[rc], %[uNew], %[pMem]\n\t"
"bne 1f\n\t" /* stop here if not equal */
"cmp %[rc], #0\n\t"
"bne .Ltry_again_ASMAtomicCmpXchgExU16_%=\n\t"
"mov %[fXchg], #1\n\t"
# endif
"1:\n\t"
: [pMem] "+Q" (*pu16)
, [uOld] "=&r" (u16ActualOld)
, [rc] "=&r" (rcSpill)
, [fXchg] "=&r" (fXchg.u)
: [uCmp] "r" (u16Old)
, [uNew] "r" (u16New)
, "[fXchg]" (0)
RTASM_ARM_DMB_SY_COMMA_IN_REG
: "cc");
*pu16Old = u16ActualOld;
return fXchg.f;
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically Compare and Exchange a signed 16-bit value, additionally
* passes back old value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param pi16 Pointer to the value to update.
* @param i16New The new value to assigned to *pi16.
* @param i16Old The old value to *pi16 compare with.
* @param pi16Old Pointer store the old value at.
*
* @remarks x86: Requires a 486 or later.
*/
DECLINLINE(bool) ASMAtomicCmpXchgExS16(volatile int16_t RT_FAR *pi16, const int16_t i16New, const int16_t i16Old, int16_t RT_FAR *pi16Old) RT_NOTHROW_DEF
{
return ASMAtomicCmpXchgExU16((volatile uint16_t RT_FAR *)pi16, (uint16_t)i16New, (uint16_t)i16Old, (uint16_t RT_FAR *)pi16Old);
}
/**
* Atomically Compare and Exchange an unsigned 32-bit value, additionally
* passes back old value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param pu32 Pointer to the value to update.
* @param u32New The new value to assigned to *pu32.
* @param u32Old The old value to *pu32 compare with.
* @param pu32Old Pointer store the old value at.
*
* @remarks x86: Requires a 486 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(bool) ASMAtomicCmpXchgExU32(volatile uint32_t RT_FAR *pu32, const uint32_t u32New, const uint32_t u32Old, uint32_t RT_FAR *pu32Old) RT_NOTHROW_PROTO;
#else
DECLINLINE(bool) ASMAtomicCmpXchgExU32(volatile uint32_t RT_FAR *pu32, const uint32_t u32New, const uint32_t u32Old, uint32_t RT_FAR *pu32Old) RT_NOTHROW_DEF
{
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
uint8_t u8Ret;
__asm__ __volatile__("lock; cmpxchgl %3, %0\n\t"
"setz %1\n\t"
: "=m" (*pu32)
, "=qm" (u8Ret)
, "=a" (*pu32Old)
: "r" (u32New)
, "a" (u32Old)
, "m" (*pu32)
: "cc");
return (bool)u8Ret;
# elif RT_INLINE_ASM_USES_INTRIN
return (*pu32Old = _InterlockedCompareExchange((long RT_FAR *)pu32, u32New, u32Old)) == u32Old;
# else
uint32_t u32Ret;
__asm
{
# ifdef RT_ARCH_AMD64
mov rdx, [pu32]
# else
mov edx, [pu32]
# endif
mov eax, [u32Old]
mov ecx, [u32New]
# ifdef RT_ARCH_AMD64
lock cmpxchg [rdx], ecx
mov rdx, [pu32Old]
mov [rdx], eax
# else
lock cmpxchg [edx], ecx
mov edx, [pu32Old]
mov [edx], eax
# endif
setz al
movzx eax, al
mov [u32Ret], eax
}
return !!u32Ret;
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
union { uint32_t u; bool f; } fXchg;
uint32_t u32ActualOld;
uint32_t rcSpill;
__asm__ __volatile__(".Ltry_again_ASMAtomicCmpXchgExU32_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldaxr %w[uOld], %[pMem]\n\t"
"cmp %w[uOld], %w[uCmp]\n\t"
"bne 1f\n\t" /* stop here if not equal */
"stlxr %w[rc], %w[uNew], %[pMem]\n\t"
"cbnz %w[rc], .Ltry_again_ASMAtomicCmpXchgExU32_%=\n\t"
"mov %w[fXchg], #1\n\t"
# else
"ldrex %[uOld], %[pMem]\n\t"
"teq %[uOld], %[uCmp]\n\t"
"strexeq %[rc], %[uNew], %[pMem]\n\t"
"bne 1f\n\t" /* stop here if not equal */
"cmp %[rc], #0\n\t"
"bne .Ltry_again_ASMAtomicCmpXchgExU32_%=\n\t"
"mov %[fXchg], #1\n\t"
# endif
"1:\n\t"
: [pMem] "+Q" (*pu32)
, [uOld] "=&r" (u32ActualOld)
, [rc] "=&r" (rcSpill)
, [fXchg] "=&r" (fXchg.u)
: [uCmp] "r" (u32Old)
, [uNew] "r" (u32New)
, "[fXchg]" (0)
RTASM_ARM_DMB_SY_COMMA_IN_REG
: "cc");
*pu32Old = u32ActualOld;
return fXchg.f;
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically Compare and Exchange a signed 32-bit value, additionally
* passes back old value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param pi32 Pointer to the value to update.
* @param i32New The new value to assigned to *pi32.
* @param i32Old The old value to *pi32 compare with.
* @param pi32Old Pointer store the old value at.
*
* @remarks x86: Requires a 486 or later.
*/
DECLINLINE(bool) ASMAtomicCmpXchgExS32(volatile int32_t RT_FAR *pi32, const int32_t i32New, const int32_t i32Old, int32_t RT_FAR *pi32Old) RT_NOTHROW_DEF
{
return ASMAtomicCmpXchgExU32((volatile uint32_t RT_FAR *)pi32, (uint32_t)i32New, (uint32_t)i32Old, (uint32_t RT_FAR *)pi32Old);
}
/**
* Atomically Compare and exchange an unsigned 64-bit value, additionally
* passing back old value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param pu64 Pointer to the 64-bit variable to update.
* @param u64New The 64-bit value to assign to *pu64.
* @param u64Old The value to compare with.
* @param pu64Old Pointer store the old value at.
*
* @remarks x86: Requires a Pentium or later.
*/
#if (RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN) \
|| RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC
RT_ASM_DECL_PRAGMA_WATCOM(bool) ASMAtomicCmpXchgExU64(volatile uint64_t RT_FAR *pu64, const uint64_t u64New, const uint64_t u64Old, uint64_t RT_FAR *pu64Old) RT_NOTHROW_PROTO;
#else
DECLINLINE(bool) ASMAtomicCmpXchgExU64(volatile uint64_t RT_FAR *pu64, const uint64_t u64New, const uint64_t u64Old, uint64_t RT_FAR *pu64Old) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
return (*pu64Old =_InterlockedCompareExchange64((__int64 RT_FAR *)pu64, u64New, u64Old)) == u64Old;
# elif defined(RT_ARCH_AMD64)
# if RT_INLINE_ASM_GNU_STYLE
uint8_t u8Ret;
__asm__ __volatile__("lock; cmpxchgq %3, %0\n\t"
"setz %1\n\t"
: "=m" (*pu64)
, "=qm" (u8Ret)
, "=a" (*pu64Old)
: "r" (u64New)
, "a" (u64Old)
, "m" (*pu64)
: "cc");
return (bool)u8Ret;
# else
bool fRet;
__asm
{
mov rdx, [pu32]
mov rax, [u64Old]
mov rcx, [u64New]
lock cmpxchg [rdx], rcx
mov rdx, [pu64Old]
mov [rdx], rax
setz al
mov [fRet], al
}
return fRet;
# endif
# elif defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
uint64_t u64Ret;
# if defined(PIC) || defined(__PIC__)
/* Note #1: This code uses a memory clobber description, because the clean
solution with an output value for *pu64 makes gcc run out of
registers. This will cause suboptimal code, and anyone with a
better solution is welcome to improve this.
Note #2: We must prevent gcc from encoding the memory access, as it
may go via the GOT if we're working on a global variable (like
in the testcase). Thus we request a register (%3) and
dereference it ourselves. */
__asm__ __volatile__("xchgl %%ebx, %1\n\t"
"lock; cmpxchg8b (%3)\n\t"
"xchgl %%ebx, %1\n\t"
: "=A" (u64Ret)
: "DS" ((uint32_t)u64New)
, "c" ((uint32_t)(u64New >> 32))
, "r" (pu64) /* Do not use "m" here*/
, "0" (u64Old)
: "memory"
, "cc" );
# else /* !PIC */
__asm__ __volatile__("lock; cmpxchg8b %4\n\t"
: "=A" (u64Ret)
, "=m" (*pu64)
: "b" ((uint32_t)u64New)
, "c" ((uint32_t)(u64New >> 32))
, "m" (*pu64)
, "0" (u64Old)
: "cc");
# endif
*pu64Old = u64Ret;
return u64Ret == u64Old;
# else
uint32_t u32Ret;
__asm
{
mov ebx, dword ptr [u64New]
mov ecx, dword ptr [u64New + 4]
mov edi, [pu64]
mov eax, dword ptr [u64Old]
mov edx, dword ptr [u64Old + 4]
lock cmpxchg8b [edi]
mov ebx, [pu64Old]
mov [ebx], eax
setz al
movzx eax, al
add ebx, 4
mov [ebx], edx
mov dword ptr [u32Ret], eax
}
return !!u32Ret;
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
union { uint32_t u; bool f; } fXchg;
uint64_t u64ActualOld;
uint32_t rcSpill;
__asm__ __volatile__(".Ltry_again_ASMAtomicCmpXchgU64_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldaxr %[uOld], %[pMem]\n\t"
"cmp %[uOld], %[uCmp]\n\t"
"bne 1f\n\t" /* stop here if not equal */
"stlxr %w[rc], %[uNew], %[pMem]\n\t"
"cbnz %w[rc], .Ltry_again_ASMAtomicCmpXchgU64_%=\n\t"
"mov %w[fXchg], #1\n\t"
# else
"ldrexd %[uOld], %H[uOld], %[pMem]\n\t"
"teq %[uOld], %[uCmp]\n\t"
"teqeq %H[uOld], %H[uCmp]\n\t"
"strexdeq %[rc], %[uNew], %H[uNew], %[pMem]\n\t"
"bne 1f\n\t" /* stop here if not equal */
"cmp %[rc], #0\n\t"
"bne .Ltry_again_ASMAtomicCmpXchgU64_%=\n\t"
"mov %[fXchg], #1\n\t"
# endif
"1:\n\t"
: [pMem] "+Q" (*pu64)
, [uOld] "=&r" (u64ActualOld)
, [rc] "=&r" (rcSpill)
, [fXchg] "=&r" (fXchg.u)
: [uCmp] "r" (u64Old)
, [uNew] "r" (u64New)
, "[fXchg]" (0)
RTASM_ARM_DMB_SY_COMMA_IN_REG
: "cc");
*pu64Old = u64ActualOld;
return fXchg.f;
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically Compare and exchange a signed 64-bit value, additionally
* passing back old value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param pi64 Pointer to the 64-bit variable to update.
* @param i64 The 64-bit value to assign to *pu64.
* @param i64Old The value to compare with.
* @param pi64Old Pointer store the old value at.
*
* @remarks x86: Requires a Pentium or later.
*/
DECLINLINE(bool) ASMAtomicCmpXchgExS64(volatile int64_t RT_FAR *pi64, const int64_t i64, const int64_t i64Old, int64_t RT_FAR *pi64Old) RT_NOTHROW_DEF
{
return ASMAtomicCmpXchgExU64((volatile uint64_t RT_FAR *)pi64, (uint64_t)i64, (uint64_t)i64Old, (uint64_t RT_FAR *)pi64Old);
}
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_ARM64) || defined(DOXYGEN_RUNNING)
/** @def RTASM_HAVE_CMP_XCHG_U128
* Indicates that we've got ASMAtomicCmpSwapU128(), ASMAtomicCmpSwapU128v2()
* and ASMAtomicCmpSwapExU128() available. */
# define RTASM_HAVE_CMP_XCHG_U128 1
/**
* Atomically compare and exchange an unsigned 128-bit value, ordered.
*
* @returns true if exchange was done.
* @returns false if exchange wasn't done.
*
* @param pu128 Pointer to the 128-bit variable to update.
* @param u64NewHi The high 64 bits of the value to assign to *pu128.
* @param u64NewLo The low 64 bits of the value to assign to *pu128.
* @param u64OldHi The high 64-bit of the value to compare with.
* @param u64OldLo The low 64-bit of the value to compare with.
* @param pu128Old Where to return the old value.
*
* @remarks AMD64: Not present in the earliest CPUs, so check CPUID.
*/
# if (RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN)
DECLASM(bool) ASMAtomicCmpXchgU128v2(volatile uint128_t *pu128, const uint64_t u64NewHi, const uint64_t u64NewLo,
const uint64_t u64OldHi, const uint64_t u64OldLo, uint128_t *pu128Old) RT_NOTHROW_PROTO;
# else
DECLINLINE(bool) ASMAtomicCmpXchgU128v2(volatile uint128_t *pu128, const uint64_t u64NewHi, const uint64_t u64NewLo,
const uint64_t u64OldHi, const uint64_t u64OldLo, uint128_t *pu128Old) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
pu128Old->Hi = u64OldHi;
pu128Old->Lo = u64OldLo;
AssertCompileMemberOffset(uint128_t, Lo, 0);
return _InterlockedCompareExchange128((__int64 volatile *)pu128, u64NewHi, u64NewLo, (__int64 *)&pu128Old->Lo) != 0;
# elif (defined(__clang_major__) || defined(__GNUC__)) && defined(RT_ARCH_ARM64)
uint128_t const uCmp = ((uint128_t)u64OldHi << 64) | u64OldLo;
uint128_t const uOld = __sync_val_compare_and_swap(pu128, uCmp, ((uint128_t)u64NewHi << 64) | u64NewLo);
*pu128Old = uOld;
return uCmp == uOld;
# elif defined(RT_ARCH_AMD64)
# if RT_INLINE_ASM_GNU_STYLE
uint8_t bRet;
uint64_t u64RetHi, u64RetLo;
__asm__ __volatile__("lock; cmpxchg16b %3\n\t"
"setz %b0\n\t"
: "=r" (bRet)
, "=a" (u64RetLo)
, "=d" (u64RetHi)
, "+m" (*pu128)
: "a" (u64OldLo)
, "d" (u64OldHi)
, "b" (u64NewLo)
, "c" (u64NewHi)
: "cc");
*pu128Old = ((uint128_t)u64RetHi << 64) | u64RetLo;
return (bool)bRet;
# else
# error "Port me"
# endif
# else
# error "Port me"
# endif
}
# endif
/**
* Atomically compare and exchange an unsigned 128-bit value, ordered.
*
* @returns true if exchange was done.
* @returns false if exchange wasn't done.
*
* @param pu128 Pointer to the 128-bit variable to update.
* @param u128New The 128-bit value to assign to *pu128.
* @param u128Old The value to compare with.
* @param pu128Old Where to return the old value.
*
* @remarks AMD64: Not present in the earliest CPUs, so check CPUID.
*/
DECLINLINE(bool) ASMAtomicCmpXchgU128(volatile uint128_t *pu128, const uint128_t u128New,
const uint128_t u128Old, uint128_t *pu128Old) RT_NOTHROW_DEF
{
# ifdef RT_COMPILER_WITH_128BIT_INT_TYPES
# if (defined(__clang_major__) || defined(__GNUC__)) && defined(RT_ARCH_ARM64)
uint128_t const uSwapped = __sync_val_compare_and_swap(pu128, u128Old, u128New);
*pu128Old = uSwapped;
return uSwapped == u128Old;
# else
return ASMAtomicCmpXchgU128v2(pu128, (uint64_t)(u128New >> 64), (uint64_t)u128New,
(uint64_t)(u128Old >> 64), (uint64_t)u128Old, pu128Old);
# endif
# else
return ASMAtomicCmpXchgU128v2(pu128, u128New.Hi, u128New.Lo, u128Old.Hi, u128Old.Lo, pu128Old);
# endif
}
/**
* RTUINT128U wrapper for ASMAtomicCmpXchgU128.
*/
DECLINLINE(bool) ASMAtomicCmpXchgU128U(volatile RTUINT128U *pu128, const RTUINT128U u128New,
const RTUINT128U u128Old, PRTUINT128U pu128Old) RT_NOTHROW_DEF
{
# if (defined(__clang_major__) || defined(__GNUC__)) && defined(RT_ARCH_ARM64)
return ASMAtomicCmpXchgU128(&pu128->u, u128New.u, u128Old.u, &pu128Old->u);
# else
return ASMAtomicCmpXchgU128v2(&pu128->u, u128New.s.Hi, u128New.s.Lo, u128Old.s.Hi, u128Old.s.Lo, &pu128Old->u);
# endif
}
#endif /* RT_ARCH_AMD64 || RT_ARCH_ARM64 */
/** @def ASMAtomicCmpXchgExHandle
* Atomically Compare and Exchange a typical IPRT handle value, ordered.
*
* @param ph Pointer to the value to update.
* @param hNew The new value to assigned to *pu.
* @param hOld The old value to *pu compare with.
* @param fRc Where to store the result.
* @param phOldVal Pointer to where to store the old value.
*
* @remarks This doesn't currently work for all handles (like RTFILE).
*/
#if HC_ARCH_BITS == 32 || ARCH_BITS == 16
# define ASMAtomicCmpXchgExHandle(ph, hNew, hOld, fRc, phOldVal) \
do { \
AssertCompile(sizeof(*ph) == sizeof(uint32_t)); \
AssertCompile(sizeof(*phOldVal) == sizeof(uint32_t)); \
(fRc) = ASMAtomicCmpXchgExU32((volatile uint32_t RT_FAR *)(ph), (uint32_t)(hNew), (uint32_t)(hOld), (uint32_t RT_FAR *)(phOldVal)); \
} while (0)
#elif HC_ARCH_BITS == 64
# define ASMAtomicCmpXchgExHandle(ph, hNew, hOld, fRc, phOldVal) \
do { \
AssertCompile(sizeof(*(ph)) == sizeof(uint64_t)); \
AssertCompile(sizeof(*(phOldVal)) == sizeof(uint64_t)); \
(fRc) = ASMAtomicCmpXchgExU64((volatile uint64_t RT_FAR *)(ph), (uint64_t)(hNew), (uint64_t)(hOld), (uint64_t RT_FAR *)(phOldVal)); \
} while (0)
#else
# error HC_ARCH_BITS
#endif
/** @def ASMAtomicCmpXchgExSize
* Atomically Compare and Exchange a value which size might differ
* between platforms or compilers. Additionally passes back old value.
*
* @param pu Pointer to the value to update.
* @param uNew The new value to assigned to *pu.
* @param uOld The old value to *pu compare with.
* @param fRc Where to store the result.
* @param puOldVal Pointer to where to store the old value.
*
* @remarks x86: Requires a 486 or later.
*/
#define ASMAtomicCmpXchgExSize(pu, uNew, uOld, fRc, puOldVal) \
do { \
switch (sizeof(*(pu))) { \
case 4: (fRc) = ASMAtomicCmpXchgExU32((volatile uint32_t RT_FAR *)(void RT_FAR *)(pu), (uint32_t)(uNew), (uint32_t)(uOld), (uint32_t RT_FAR *)(uOldVal)); \
break; \
case 8: (fRc) = ASMAtomicCmpXchgExU64((volatile uint64_t RT_FAR *)(void RT_FAR *)(pu), (uint64_t)(uNew), (uint64_t)(uOld), (uint64_t RT_FAR *)(uOldVal)); \
break; \
default: AssertMsgFailed(("ASMAtomicCmpXchgSize: size %d is not supported\n", sizeof(*(pu)))); \
(fRc) = false; \
(uOldVal) = 0; \
break; \
} \
} while (0)
/**
* Atomically Compare and Exchange a pointer value, additionally
* passing back old value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param ppv Pointer to the value to update.
* @param pvNew The new value to assigned to *ppv.
* @param pvOld The old value to *ppv compare with.
* @param ppvOld Pointer store the old value at.
*
* @remarks x86: Requires a 486 or later.
*/
DECLINLINE(bool) ASMAtomicCmpXchgExPtrVoid(void RT_FAR * volatile RT_FAR *ppv, const void RT_FAR *pvNew, const void RT_FAR *pvOld,
void RT_FAR * RT_FAR *ppvOld) RT_NOTHROW_DEF
{
#if ARCH_BITS == 32 || ARCH_BITS == 16
return ASMAtomicCmpXchgExU32((volatile uint32_t RT_FAR *)(void RT_FAR *)ppv, (uint32_t)pvNew, (uint32_t)pvOld, (uint32_t RT_FAR *)ppvOld);
#elif ARCH_BITS == 64
return ASMAtomicCmpXchgExU64((volatile uint64_t RT_FAR *)(void RT_FAR *)ppv, (uint64_t)pvNew, (uint64_t)pvOld, (uint64_t RT_FAR *)ppvOld);
#else
# error "ARCH_BITS is bogus"
#endif
}
/**
* Atomically Compare and Exchange a pointer value, additionally
* passing back old value, ordered.
*
* @returns true if xchg was done.
* @returns false if xchg wasn't done.
*
* @param ppv Pointer to the value to update.
* @param pvNew The new value to assigned to *ppv.
* @param pvOld The old value to *ppv compare with.
* @param ppvOld Pointer store the old value at.
*
* @remarks This is relatively type safe on GCC platforms.
* @remarks x86: Requires a 486 or later.
*/
#ifdef __GNUC__
# define ASMAtomicCmpXchgExPtr(ppv, pvNew, pvOld, ppvOld) \
__extension__ \
({\
__typeof__(*(ppv)) volatile * const ppvTypeChecked = (ppv); \
__typeof__(*(ppv)) const pvNewTypeChecked = (pvNew); \
__typeof__(*(ppv)) const pvOldTypeChecked = (pvOld); \
__typeof__(*(ppv)) * const ppvOldTypeChecked = (ppvOld); \
bool fMacroRet = ASMAtomicCmpXchgExPtrVoid((void * volatile *)ppvTypeChecked, \
(void *)pvNewTypeChecked, (void *)pvOldTypeChecked, \
(void **)ppvOldTypeChecked); \
fMacroRet; \
})
#else
# define ASMAtomicCmpXchgExPtr(ppv, pvNew, pvOld, ppvOld) \
ASMAtomicCmpXchgExPtrVoid((void RT_FAR * volatile RT_FAR *)(ppv), (void RT_FAR *)(pvNew), (void RT_FAR *)(pvOld), (void RT_FAR * RT_FAR *)(ppvOld))
#endif
/**
* Virtualization unfriendly serializing instruction, always exits.
*/
#if (RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN) || (!defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86))
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMSerializeInstructionCpuId(void) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMSerializeInstructionCpuId(void) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG xAX = 0;
# ifdef RT_ARCH_AMD64
__asm__ __volatile__ ("cpuid"
: "=a" (xAX)
: "0" (xAX)
: "rbx", "rcx", "rdx", "memory");
# elif (defined(PIC) || defined(__PIC__)) && defined(__i386__)
__asm__ __volatile__ ("push %%ebx\n\t"
"cpuid\n\t"
"pop %%ebx\n\t"
: "=a" (xAX)
: "0" (xAX)
: "ecx", "edx", "memory");
# else
__asm__ __volatile__ ("cpuid"
: "=a" (xAX)
: "0" (xAX)
: "ebx", "ecx", "edx", "memory");
# endif
# elif RT_INLINE_ASM_USES_INTRIN
int aInfo[4];
_ReadWriteBarrier();
__cpuid(aInfo, 0);
# else
__asm
{
push ebx
xor eax, eax
cpuid
pop ebx
}
# endif
}
#endif
/**
* Virtualization friendly serializing instruction, though more expensive.
*/
#if RT_INLINE_ASM_EXTERNAL || (!defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86))
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMSerializeInstructionIRet(void) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMSerializeInstructionIRet(void) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
__asm__ __volatile__ ("movq %%rsp,%%r10\n\t"
"subq $128, %%rsp\n\t" /*redzone*/
"mov %%ss, %%eax\n\t"
"pushq %%rax\n\t"
"pushq %%r10\n\t"
"pushfq\n\t"
"movl %%cs, %%eax\n\t"
"pushq %%rax\n\t"
"leaq 1f(%%rip), %%rax\n\t"
"pushq %%rax\n\t"
"iretq\n\t"
"1:\n\t"
::: "rax", "r10", "memory", "cc");
# else
__asm__ __volatile__ ("pushfl\n\t"
"pushl %%cs\n\t"
"pushl $1f\n\t"
"iretl\n\t"
"1:\n\t"
::: "memory");
# endif
# else
__asm
{
pushfd
push cs
push la_ret
iretd
la_ret:
}
# endif
}
#endif
/**
* Virtualization friendlier serializing instruction, may still cause exits.
*/
#if (RT_INLINE_ASM_EXTERNAL && RT_INLINE_ASM_USES_INTRIN < RT_MSC_VER_VS2008) || (!defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86))
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMSerializeInstructionRdTscp(void) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMSerializeInstructionRdTscp(void) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_GNU_STYLE
/* rdtscp is not supported by ancient linux build VM of course :-( */
# ifdef RT_ARCH_AMD64
/*__asm__ __volatile__("rdtscp\n\t" ::: "rax", "rdx, "rcx"); */
__asm__ __volatile__(".byte 0x0f,0x01,0xf9\n\t" ::: "rax", "rdx", "rcx", "memory");
# else
/*__asm__ __volatile__("rdtscp\n\t" ::: "eax", "edx, "ecx"); */
__asm__ __volatile__(".byte 0x0f,0x01,0xf9\n\t" ::: "eax", "edx", "ecx", "memory");
# endif
# else
# if RT_INLINE_ASM_USES_INTRIN >= RT_MSC_VER_VS2008
uint32_t uIgnore;
_ReadWriteBarrier();
(void)__rdtscp(&uIgnore);
(void)uIgnore;
# else
__asm
{
rdtscp
}
# endif
# endif
}
#endif
/**
* Serialize Instruction (both data store and instruction flush).
*/
#if (defined(RT_ARCH_X86) && ARCH_BITS == 16) || defined(IN_GUEST)
# define ASMSerializeInstruction() ASMSerializeInstructionIRet()
#elif defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
# define ASMSerializeInstruction() ASMSerializeInstructionCpuId()
#elif defined(RT_ARCH_SPARC64)
RTDECL(void) ASMSerializeInstruction(void) RT_NOTHROW_PROTO;
#elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
DECLINLINE(void) ASMSerializeInstruction(void) RT_NOTHROW_DEF
{
__asm__ __volatile__ (RTASM_ARM_DSB_SY :: RTASM_ARM_DSB_SY_IN_REG :);
}
#else
# error "Port me"
#endif
/**
* Memory fence, waits for any pending writes and reads to complete.
* @note No implicit compiler barrier (which is probably stupid).
*/
DECLINLINE(void) ASMMemoryFence(void) RT_NOTHROW_DEF
{
#if defined(RT_ARCH_AMD64) || (defined(RT_ARCH_X86) && !defined(RT_WITH_OLD_CPU_SUPPORT))
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__ (".byte 0x0f,0xae,0xf0\n\t");
# elif RT_INLINE_ASM_USES_INTRIN
_mm_mfence();
# else
__asm
{
_emit 0x0f
_emit 0xae
_emit 0xf0
}
# endif
#elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
__asm__ __volatile__ (RTASM_ARM_DMB_SY :: RTASM_ARM_DMB_SY_IN_REG :);
#elif ARCH_BITS == 16
uint16_t volatile u16;
ASMAtomicXchgU16(&u16, 0);
#else
uint32_t volatile u32;
ASMAtomicXchgU32(&u32, 0);
#endif
}
/**
* Write fence, waits for any pending writes to complete.
* @note No implicit compiler barrier (which is probably stupid).
*/
DECLINLINE(void) ASMWriteFence(void) RT_NOTHROW_DEF
{
#if defined(RT_ARCH_AMD64) || (defined(RT_ARCH_X86) && !defined(RT_WITH_OLD_CPU_SUPPORT))
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__ (".byte 0x0f,0xae,0xf8\n\t");
# elif RT_INLINE_ASM_USES_INTRIN
_mm_sfence();
# else
__asm
{
_emit 0x0f
_emit 0xae
_emit 0xf8
}
# endif
#elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
__asm__ __volatile__ (RTASM_ARM_DMB_ST :: RTASM_ARM_DMB_ST_IN_REG :);
#else
ASMMemoryFence();
#endif
}
/**
* Read fence, waits for any pending reads to complete.
* @note No implicit compiler barrier (which is probably stupid).
*/
DECLINLINE(void) ASMReadFence(void) RT_NOTHROW_DEF
{
#if defined(RT_ARCH_AMD64) || (defined(RT_ARCH_X86) && !defined(RT_WITH_OLD_CPU_SUPPORT))
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__ (".byte 0x0f,0xae,0xe8\n\t");
# elif RT_INLINE_ASM_USES_INTRIN
_mm_lfence();
# else
__asm
{
_emit 0x0f
_emit 0xae
_emit 0xe8
}
# endif
#elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
__asm__ __volatile__ (RTASM_ARM_DMB_LD :: RTASM_ARM_DMB_LD_IN_REG :);
#else
ASMMemoryFence();
#endif
}
/**
* Atomically reads an unsigned 8-bit value, ordered.
*
* @returns Current *pu8 value
* @param pu8 Pointer to the 8-bit variable to read.
*/
DECLINLINE(uint8_t) ASMAtomicReadU8(volatile uint8_t RT_FAR *pu8) RT_NOTHROW_DEF
{
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
uint32_t u32;
__asm__ __volatile__(".Lstart_ASMAtomicReadU8_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldxrb %w[uDst], %[pMem]\n\t"
# else
"ldrexb %[uDst], %[pMem]\n\t"
# endif
: [uDst] "=&r" (u32)
: [pMem] "Q" (*pu8)
RTASM_ARM_DMB_SY_COMMA_IN_REG);
return (uint8_t)u32;
#else
ASMMemoryFence();
return *pu8; /* byte reads are atomic on x86 */
#endif
}
/**
* Atomically reads an unsigned 8-bit value, unordered.
*
* @returns Current *pu8 value
* @param pu8 Pointer to the 8-bit variable to read.
*/
DECLINLINE(uint8_t) ASMAtomicUoReadU8(volatile uint8_t RT_FAR *pu8) RT_NOTHROW_DEF
{
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
uint32_t u32;
__asm__ __volatile__(".Lstart_ASMAtomicUoReadU8_%=:\n\t"
# if defined(RT_ARCH_ARM64)
"ldxrb %w[uDst], %[pMem]\n\t"
# else
"ldrexb %[uDst], %[pMem]\n\t"
# endif
: [uDst] "=&r" (u32)
: [pMem] "Q" (*pu8));
return (uint8_t)u32;
#else
return *pu8; /* byte reads are atomic on x86 */
#endif
}
/**
* Atomically reads a signed 8-bit value, ordered.
*
* @returns Current *pi8 value
* @param pi8 Pointer to the 8-bit variable to read.
*/
DECLINLINE(int8_t) ASMAtomicReadS8(volatile int8_t RT_FAR *pi8) RT_NOTHROW_DEF
{
ASMMemoryFence();
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
int32_t i32;
__asm__ __volatile__(".Lstart_ASMAtomicReadS8_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldxrb %w[iDst], %[pMem]\n\t"
# else
"ldrexb %[iDst], %[pMem]\n\t"
# endif
: [iDst] "=&r" (i32)
: [pMem] "Q" (*pi8)
RTASM_ARM_DMB_SY_COMMA_IN_REG);
return (int8_t)i32;
#else
return *pi8; /* byte reads are atomic on x86 */
#endif
}
/**
* Atomically reads a signed 8-bit value, unordered.
*
* @returns Current *pi8 value
* @param pi8 Pointer to the 8-bit variable to read.
*/
DECLINLINE(int8_t) ASMAtomicUoReadS8(volatile int8_t RT_FAR *pi8) RT_NOTHROW_DEF
{
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
int32_t i32;
__asm__ __volatile__(".Lstart_ASMAtomicUoReadS8_%=:\n\t"
# if defined(RT_ARCH_ARM64)
"ldxrb %w[iDst], %[pMem]\n\t"
# else
"ldrexb %[iDst], %[pMem]\n\t"
# endif
: [iDst] "=&r" (i32)
: [pMem] "Q" (*pi8));
return (int8_t)i32;
#else
return *pi8; /* byte reads are atomic on x86 */
#endif
}
/**
* Atomically reads an unsigned 16-bit value, ordered.
*
* @returns Current *pu16 value
* @param pu16 Pointer to the 16-bit variable to read.
*/
DECLINLINE(uint16_t) ASMAtomicReadU16(volatile uint16_t RT_FAR *pu16) RT_NOTHROW_DEF
{
Assert(!((uintptr_t)pu16 & 1));
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
uint32_t u32;
__asm__ __volatile__(".Lstart_ASMAtomicReadU16_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldxrh %w[uDst], %[pMem]\n\t"
# else
"ldrexh %[uDst], %[pMem]\n\t"
# endif
: [uDst] "=&r" (u32)
: [pMem] "Q" (*pu16)
RTASM_ARM_DMB_SY_COMMA_IN_REG);
return (uint16_t)u32;
#else
ASMMemoryFence();
return *pu16;
#endif
}
/**
* Atomically reads an unsigned 16-bit value, unordered.
*
* @returns Current *pu16 value
* @param pu16 Pointer to the 16-bit variable to read.
*/
DECLINLINE(uint16_t) ASMAtomicUoReadU16(volatile uint16_t RT_FAR *pu16) RT_NOTHROW_DEF
{
Assert(!((uintptr_t)pu16 & 1));
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
uint32_t u32;
__asm__ __volatile__(".Lstart_ASMAtomicUoReadU16_%=:\n\t"
# if defined(RT_ARCH_ARM64)
"ldxrh %w[uDst], %[pMem]\n\t"
# else
"ldrexh %[uDst], %[pMem]\n\t"
# endif
: [uDst] "=&r" (u32)
: [pMem] "Q" (*pu16));
return (uint16_t)u32;
#else
return *pu16;
#endif
}
/**
* Atomically reads a signed 16-bit value, ordered.
*
* @returns Current *pi16 value
* @param pi16 Pointer to the 16-bit variable to read.
*/
DECLINLINE(int16_t) ASMAtomicReadS16(volatile int16_t RT_FAR *pi16) RT_NOTHROW_DEF
{
Assert(!((uintptr_t)pi16 & 1));
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
int32_t i32;
__asm__ __volatile__(".Lstart_ASMAtomicReadS16_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldxrh %w[iDst], %[pMem]\n\t"
# else
"ldrexh %[iDst], %[pMem]\n\t"
# endif
: [iDst] "=&r" (i32)
: [pMem] "Q" (*pi16)
RTASM_ARM_DMB_SY_COMMA_IN_REG);
return (int16_t)i32;
#else
ASMMemoryFence();
return *pi16;
#endif
}
/**
* Atomically reads a signed 16-bit value, unordered.
*
* @returns Current *pi16 value
* @param pi16 Pointer to the 16-bit variable to read.
*/
DECLINLINE(int16_t) ASMAtomicUoReadS16(volatile int16_t RT_FAR *pi16) RT_NOTHROW_DEF
{
Assert(!((uintptr_t)pi16 & 1));
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
int32_t i32;
__asm__ __volatile__(".Lstart_ASMAtomicUoReadS16_%=:\n\t"
# if defined(RT_ARCH_ARM64)
"ldxrh %w[iDst], %[pMem]\n\t"
# else
"ldrexh %[iDst], %[pMem]\n\t"
# endif
: [iDst] "=&r" (i32)
: [pMem] "Q" (*pi16));
return (int16_t)i32;
#else
return *pi16;
#endif
}
/**
* Atomically reads an unsigned 32-bit value, ordered.
*
* @returns Current *pu32 value
* @param pu32 Pointer to the 32-bit variable to read.
*/
DECLINLINE(uint32_t) ASMAtomicReadU32(volatile uint32_t RT_FAR *pu32) RT_NOTHROW_DEF
{
Assert(!((uintptr_t)pu32 & 3));
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
uint32_t u32;
__asm__ __volatile__(".Lstart_ASMAtomicReadU32_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldxr %w[uDst], %[pMem]\n\t"
# else
"ldrex %[uDst], %[pMem]\n\t"
# endif
: [uDst] "=&r" (u32)
: [pMem] "Q" (*pu32)
RTASM_ARM_DMB_SY_COMMA_IN_REG);
return u32;
#else
ASMMemoryFence();
# if ARCH_BITS == 16
AssertFailed(); /** @todo 16-bit */
# endif
return *pu32;
#endif
}
/**
* Atomically reads an unsigned 32-bit value, unordered.
*
* @returns Current *pu32 value
* @param pu32 Pointer to the 32-bit variable to read.
*/
DECLINLINE(uint32_t) ASMAtomicUoReadU32(volatile uint32_t RT_FAR *pu32) RT_NOTHROW_DEF
{
Assert(!((uintptr_t)pu32 & 3));
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
uint32_t u32;
__asm__ __volatile__(".Lstart_ASMAtomicUoReadU32_%=:\n\t"
# if defined(RT_ARCH_ARM64)
"ldxr %w[uDst], %[pMem]\n\t"
# else
"ldrex %[uDst], %[pMem]\n\t"
# endif
: [uDst] "=&r" (u32)
: [pMem] "Q" (*pu32));
return u32;
#else
# if ARCH_BITS == 16
AssertFailed(); /** @todo 16-bit */
# endif
return *pu32;
#endif
}
/**
* Atomically reads a signed 32-bit value, ordered.
*
* @returns Current *pi32 value
* @param pi32 Pointer to the 32-bit variable to read.
*/
DECLINLINE(int32_t) ASMAtomicReadS32(volatile int32_t RT_FAR *pi32) RT_NOTHROW_DEF
{
Assert(!((uintptr_t)pi32 & 3));
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
int32_t i32;
__asm__ __volatile__(".Lstart_ASMAtomicReadS32_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldxr %w[iDst], %[pMem]\n\t"
# else
"ldrex %[iDst], %[pMem]\n\t"
# endif
: [iDst] "=&r" (i32)
: [pMem] "Q" (*pi32)
RTASM_ARM_DMB_SY_COMMA_IN_REG);
return i32;
#else
ASMMemoryFence();
# if ARCH_BITS == 16
AssertFailed(); /** @todo 16-bit */
# endif
return *pi32;
#endif
}
/**
* Atomically reads a signed 32-bit value, unordered.
*
* @returns Current *pi32 value
* @param pi32 Pointer to the 32-bit variable to read.
*/
DECLINLINE(int32_t) ASMAtomicUoReadS32(volatile int32_t RT_FAR *pi32) RT_NOTHROW_DEF
{
Assert(!((uintptr_t)pi32 & 3));
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
int32_t i32;
__asm__ __volatile__(".Lstart_ASMAtomicUoReadS32_%=:\n\t"
# if defined(RT_ARCH_ARM64)
"ldxr %w[iDst], %[pMem]\n\t"
# else
"ldrex %[iDst], %[pMem]\n\t"
# endif
: [iDst] "=&r" (i32)
: [pMem] "Q" (*pi32));
return i32;
#else
# if ARCH_BITS == 16
AssertFailed(); /** @todo 16-bit */
# endif
return *pi32;
#endif
}
/**
* Atomically reads an unsigned 64-bit value, ordered.
*
* @returns Current *pu64 value
* @param pu64 Pointer to the 64-bit variable to read.
* The memory pointed to must be writable.
*
* @remarks This may fault if the memory is read-only!
* @remarks x86: Requires a Pentium or later.
*/
#if (RT_INLINE_ASM_EXTERNAL_TMP_ARM && !defined(RT_ARCH_AMD64)) \
|| RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC
RT_ASM_DECL_PRAGMA_WATCOM(uint64_t) ASMAtomicReadU64(volatile uint64_t RT_FAR *pu64) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint64_t) ASMAtomicReadU64(volatile uint64_t RT_FAR *pu64) RT_NOTHROW_DEF
{
uint64_t u64;
# ifdef RT_ARCH_AMD64
Assert(!((uintptr_t)pu64 & 7));
/*# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__( "mfence\n\t"
"movq %1, %0\n\t"
: "=r" (u64)
: "m" (*pu64));
# else
__asm
{
mfence
mov rdx, [pu64]
mov rax, [rdx]
mov [u64], rax
}
# endif*/
ASMMemoryFence();
u64 = *pu64;
# elif defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
# if defined(PIC) || defined(__PIC__)
uint32_t u32EBX = 0;
Assert(!((uintptr_t)pu64 & 7));
__asm__ __volatile__("xchgl %%ebx, %3\n\t"
"lock; cmpxchg8b (%5)\n\t"
"movl %3, %%ebx\n\t"
: "=A" (u64)
# if RT_GNUC_PREREQ(4, 3)
, "+m" (*pu64)
# else
, "=m" (*pu64)
# endif
: "0" (0ULL)
, "m" (u32EBX)
, "c" (0)
, "S" (pu64)
: "cc");
# else /* !PIC */
__asm__ __volatile__("lock; cmpxchg8b %1\n\t"
: "=A" (u64)
, "+m" (*pu64)
: "0" (0ULL)
, "b" (0)
, "c" (0)
: "cc");
# endif
# else
Assert(!((uintptr_t)pu64 & 7));
__asm
{
xor eax, eax
xor edx, edx
mov edi, pu64
xor ecx, ecx
xor ebx, ebx
lock cmpxchg8b [edi]
mov dword ptr [u64], eax
mov dword ptr [u64 + 4], edx
}
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
Assert(!((uintptr_t)pu64 & 7));
__asm__ __volatile__(".Lstart_ASMAtomicReadU64_%=:\n\t"
RTASM_ARM_DMB_SY
# if defined(RT_ARCH_ARM64)
"ldxr %[uDst], %[pMem]\n\t"
# else
"ldrexd %[uDst], %H[uDst], %[pMem]\n\t"
# endif
: [uDst] "=&r" (u64)
: [pMem] "Q" (*pu64)
RTASM_ARM_DMB_SY_COMMA_IN_REG);
# else
# error "Port me"
# endif
return u64;
}
#endif
/**
* Atomically reads an unsigned 64-bit value, unordered.
*
* @returns Current *pu64 value
* @param pu64 Pointer to the 64-bit variable to read.
* The memory pointed to must be writable.
*
* @remarks This may fault if the memory is read-only!
* @remarks x86: Requires a Pentium or later.
*/
#if !defined(RT_ARCH_AMD64) \
&& ( (RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN) \
|| RT_INLINE_DONT_MIX_CMPXCHG8B_AND_PIC)
RT_ASM_DECL_PRAGMA_WATCOM(uint64_t) ASMAtomicUoReadU64(volatile uint64_t RT_FAR *pu64) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint64_t) ASMAtomicUoReadU64(volatile uint64_t RT_FAR *pu64) RT_NOTHROW_DEF
{
uint64_t u64;
# ifdef RT_ARCH_AMD64
Assert(!((uintptr_t)pu64 & 7));
/*# if RT_INLINE_ASM_GNU_STYLE
Assert(!((uintptr_t)pu64 & 7));
__asm__ __volatile__("movq %1, %0\n\t"
: "=r" (u64)
: "m" (*pu64));
# else
__asm
{
mov rdx, [pu64]
mov rax, [rdx]
mov [u64], rax
}
# endif */
u64 = *pu64;
# elif defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
# if defined(PIC) || defined(__PIC__)
uint32_t u32EBX = 0;
uint32_t u32Spill;
Assert(!((uintptr_t)pu64 & 7));
__asm__ __volatile__("xor %%eax,%%eax\n\t"
"xor %%ecx,%%ecx\n\t"
"xor %%edx,%%edx\n\t"
"xchgl %%ebx, %3\n\t"
"lock; cmpxchg8b (%4)\n\t"
"movl %3, %%ebx\n\t"
: "=A" (u64)
# if RT_GNUC_PREREQ(4, 3)
, "+m" (*pu64)
# else
, "=m" (*pu64)
# endif
, "=c" (u32Spill)
: "m" (u32EBX)
, "S" (pu64)
: "cc");
# else /* !PIC */
__asm__ __volatile__("lock; cmpxchg8b %1\n\t"
: "=A" (u64)
, "+m" (*pu64)
: "0" (0ULL)
, "b" (0)
, "c" (0)
: "cc");
# endif
# else
Assert(!((uintptr_t)pu64 & 7));
__asm
{
xor eax, eax
xor edx, edx
mov edi, pu64
xor ecx, ecx
xor ebx, ebx
lock cmpxchg8b [edi]
mov dword ptr [u64], eax
mov dword ptr [u64 + 4], edx
}
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
Assert(!((uintptr_t)pu64 & 7));
__asm__ __volatile__(".Lstart_ASMAtomicUoReadU64_%=:\n\t"
# if defined(RT_ARCH_ARM64)
"ldxr %[uDst], %[pMem]\n\t"
# else
"ldrexd %[uDst], %H[uDst], %[pMem]\n\t"
# endif
: [uDst] "=&r" (u64)
: [pMem] "Q" (*pu64));
# else
# error "Port me"
# endif
return u64;
}
#endif
/**
* Atomically reads a signed 64-bit value, ordered.
*
* @returns Current *pi64 value
* @param pi64 Pointer to the 64-bit variable to read.
* The memory pointed to must be writable.
*
* @remarks This may fault if the memory is read-only!
* @remarks x86: Requires a Pentium or later.
*/
DECLINLINE(int64_t) ASMAtomicReadS64(volatile int64_t RT_FAR *pi64) RT_NOTHROW_DEF
{
return (int64_t)ASMAtomicReadU64((volatile uint64_t RT_FAR *)pi64);
}
/**
* Atomically reads a signed 64-bit value, unordered.
*
* @returns Current *pi64 value
* @param pi64 Pointer to the 64-bit variable to read.
* The memory pointed to must be writable.
*
* @remarks This will fault if the memory is read-only!
* @remarks x86: Requires a Pentium or later.
*/
DECLINLINE(int64_t) ASMAtomicUoReadS64(volatile int64_t RT_FAR *pi64) RT_NOTHROW_DEF
{
return (int64_t)ASMAtomicUoReadU64((volatile uint64_t RT_FAR *)pi64);
}
/**
* Atomically reads a size_t value, ordered.
*
* @returns Current *pcb value
* @param pcb Pointer to the size_t variable to read.
*/
DECLINLINE(size_t) ASMAtomicReadZ(size_t volatile RT_FAR *pcb) RT_NOTHROW_DEF
{
#if ARCH_BITS == 64
return ASMAtomicReadU64((uint64_t volatile RT_FAR *)pcb);
#elif ARCH_BITS == 32
return ASMAtomicReadU32((uint32_t volatile RT_FAR *)pcb);
#elif ARCH_BITS == 16
AssertCompileSize(size_t, 2);
return ASMAtomicReadU16((uint16_t volatile RT_FAR *)pcb);
#else
# error "Unsupported ARCH_BITS value"
#endif
}
/**
* Atomically reads a size_t value, unordered.
*
* @returns Current *pcb value
* @param pcb Pointer to the size_t variable to read.
*/
DECLINLINE(size_t) ASMAtomicUoReadZ(size_t volatile RT_FAR *pcb) RT_NOTHROW_DEF
{
#if ARCH_BITS == 64 || ARCH_BITS == 16
return ASMAtomicUoReadU64((uint64_t volatile RT_FAR *)pcb);
#elif ARCH_BITS == 32
return ASMAtomicUoReadU32((uint32_t volatile RT_FAR *)pcb);
#elif ARCH_BITS == 16
AssertCompileSize(size_t, 2);
return ASMAtomicUoReadU16((uint16_t volatile RT_FAR *)pcb);
#else
# error "Unsupported ARCH_BITS value"
#endif
}
/**
* Atomically reads a pointer value, ordered.
*
* @returns Current *pv value
* @param ppv Pointer to the pointer variable to read.
*
* @remarks Please use ASMAtomicReadPtrT, it provides better type safety and
* requires less typing (no casts).
*/
DECLINLINE(void RT_FAR *) ASMAtomicReadPtr(void RT_FAR * volatile RT_FAR *ppv) RT_NOTHROW_DEF
{
#if ARCH_BITS == 32 || ARCH_BITS == 16
return (void RT_FAR *)ASMAtomicReadU32((volatile uint32_t RT_FAR *)(void RT_FAR *)ppv);
#elif ARCH_BITS == 64
return (void RT_FAR *)ASMAtomicReadU64((volatile uint64_t RT_FAR *)(void RT_FAR *)ppv);
#else
# error "ARCH_BITS is bogus"
#endif
}
/**
* Convenience macro for avoiding the annoying casting with ASMAtomicReadPtr.
*
* @returns Current *pv value
* @param ppv Pointer to the pointer variable to read.
* @param Type The type of *ppv, sans volatile.
*/
#ifdef __GNUC__ /* 8.2.0 requires -Wno-ignored-qualifiers */
# define ASMAtomicReadPtrT(ppv, Type) \
__extension__ \
({\
__typeof__(*(ppv)) volatile *ppvTypeChecked = (ppv); \
Type pvTypeChecked = (__typeof__(*(ppv))) ASMAtomicReadPtr((void * volatile *)ppvTypeChecked); \
pvTypeChecked; \
})
#else
# define ASMAtomicReadPtrT(ppv, Type) \
(Type)ASMAtomicReadPtr((void RT_FAR * volatile RT_FAR *)(ppv))
#endif
/**
* Atomically reads a pointer value, unordered.
*
* @returns Current *pv value
* @param ppv Pointer to the pointer variable to read.
*
* @remarks Please use ASMAtomicUoReadPtrT, it provides better type safety and
* requires less typing (no casts).
*/
DECLINLINE(void RT_FAR *) ASMAtomicUoReadPtr(void RT_FAR * volatile RT_FAR *ppv) RT_NOTHROW_DEF
{
#if ARCH_BITS == 32 || ARCH_BITS == 16
return (void RT_FAR *)ASMAtomicUoReadU32((volatile uint32_t RT_FAR *)(void RT_FAR *)ppv);
#elif ARCH_BITS == 64
return (void RT_FAR *)ASMAtomicUoReadU64((volatile uint64_t RT_FAR *)(void RT_FAR *)ppv);
#else
# error "ARCH_BITS is bogus"
#endif
}
/**
* Convenience macro for avoiding the annoying casting with ASMAtomicUoReadPtr.
*
* @returns Current *pv value
* @param ppv Pointer to the pointer variable to read.
* @param Type The type of *ppv, sans volatile.
*/
#ifdef __GNUC__ /* 8.2.0 requires -Wno-ignored-qualifiers */
# define ASMAtomicUoReadPtrT(ppv, Type) \
__extension__ \
({\
__typeof__(*(ppv)) volatile * const ppvTypeChecked = (ppv); \
Type pvTypeChecked = (__typeof__(*(ppv))) ASMAtomicUoReadPtr((void * volatile *)ppvTypeChecked); \
pvTypeChecked; \
})
#else
# define ASMAtomicUoReadPtrT(ppv, Type) \
(Type)ASMAtomicUoReadPtr((void RT_FAR * volatile RT_FAR *)(ppv))
#endif
/**
* Atomically reads a boolean value, ordered.
*
* @returns Current *pf value
* @param pf Pointer to the boolean variable to read.
*/
DECLINLINE(bool) ASMAtomicReadBool(volatile bool RT_FAR *pf) RT_NOTHROW_DEF
{
ASMMemoryFence();
return *pf; /* byte reads are atomic on x86 */
}
/**
* Atomically reads a boolean value, unordered.
*
* @returns Current *pf value
* @param pf Pointer to the boolean variable to read.
*/
DECLINLINE(bool) ASMAtomicUoReadBool(volatile bool RT_FAR *pf) RT_NOTHROW_DEF
{
return *pf; /* byte reads are atomic on x86 */
}
/**
* Atomically read a typical IPRT handle value, ordered.
*
* @param ph Pointer to the handle variable to read.
* @param phRes Where to store the result.
*
* @remarks This doesn't currently work for all handles (like RTFILE).
*/
#if HC_ARCH_BITS == 32 || ARCH_BITS == 16
# define ASMAtomicReadHandle(ph, phRes) \
do { \
AssertCompile(sizeof(*(ph)) == sizeof(uint32_t)); \
AssertCompile(sizeof(*(phRes)) == sizeof(uint32_t)); \
*(uint32_t RT_FAR *)(phRes) = ASMAtomicReadU32((uint32_t volatile RT_FAR *)(ph)); \
} while (0)
#elif HC_ARCH_BITS == 64
# define ASMAtomicReadHandle(ph, phRes) \
do { \
AssertCompile(sizeof(*(ph)) == sizeof(uint64_t)); \
AssertCompile(sizeof(*(phRes)) == sizeof(uint64_t)); \
*(uint64_t RT_FAR *)(phRes) = ASMAtomicReadU64((uint64_t volatile RT_FAR *)(ph)); \
} while (0)
#else
# error HC_ARCH_BITS
#endif
/**
* Atomically read a typical IPRT handle value, unordered.
*
* @param ph Pointer to the handle variable to read.
* @param phRes Where to store the result.
*
* @remarks This doesn't currently work for all handles (like RTFILE).
*/
#if HC_ARCH_BITS == 32 || ARCH_BITS == 16
# define ASMAtomicUoReadHandle(ph, phRes) \
do { \
AssertCompile(sizeof(*(ph)) == sizeof(uint32_t)); \
AssertCompile(sizeof(*(phRes)) == sizeof(uint32_t)); \
*(uint32_t RT_FAR *)(phRes) = ASMAtomicUoReadU32((uint32_t volatile RT_FAR *)(ph)); \
} while (0)
#elif HC_ARCH_BITS == 64
# define ASMAtomicUoReadHandle(ph, phRes) \
do { \
AssertCompile(sizeof(*(ph)) == sizeof(uint64_t)); \
AssertCompile(sizeof(*(phRes)) == sizeof(uint64_t)); \
*(uint64_t RT_FAR *)(phRes) = ASMAtomicUoReadU64((uint64_t volatile RT_FAR *)(ph)); \
} while (0)
#else
# error HC_ARCH_BITS
#endif
/**
* Atomically read a value which size might differ
* between platforms or compilers, ordered.
*
* @param pu Pointer to the variable to read.
* @param puRes Where to store the result.
*/
#define ASMAtomicReadSize(pu, puRes) \
do { \
switch (sizeof(*(pu))) { \
case 1: *(uint8_t RT_FAR *)(puRes) = ASMAtomicReadU8( (volatile uint8_t RT_FAR *)(void RT_FAR *)(pu)); break; \
case 2: *(uint16_t RT_FAR *)(puRes) = ASMAtomicReadU16((volatile uint16_t RT_FAR *)(void RT_FAR *)(pu)); break; \
case 4: *(uint32_t RT_FAR *)(puRes) = ASMAtomicReadU32((volatile uint32_t RT_FAR *)(void RT_FAR *)(pu)); break; \
case 8: *(uint64_t RT_FAR *)(puRes) = ASMAtomicReadU64((volatile uint64_t RT_FAR *)(void RT_FAR *)(pu)); break; \
default: AssertMsgFailed(("ASMAtomicReadSize: size %d is not supported\n", sizeof(*(pu)))); \
} \
} while (0)
/**
* Atomically read a value which size might differ
* between platforms or compilers, unordered.
*
* @param pu Pointer to the variable to read.
* @param puRes Where to store the result.
*/
#define ASMAtomicUoReadSize(pu, puRes) \
do { \
switch (sizeof(*(pu))) { \
case 1: *(uint8_t RT_FAR *)(puRes) = ASMAtomicUoReadU8( (volatile uint8_t RT_FAR *)(void RT_FAR *)(pu)); break; \
case 2: *(uint16_t RT_FAR *)(puRes) = ASMAtomicUoReadU16((volatile uint16_t RT_FAR *)(void RT_FAR *)(pu)); break; \
case 4: *(uint32_t RT_FAR *)(puRes) = ASMAtomicUoReadU32((volatile uint32_t RT_FAR *)(void RT_FAR *)(pu)); break; \
case 8: *(uint64_t RT_FAR *)(puRes) = ASMAtomicUoReadU64((volatile uint64_t RT_FAR *)(void RT_FAR *)(pu)); break; \
default: AssertMsgFailed(("ASMAtomicReadSize: size %d is not supported\n", sizeof(*(pu)))); \
} \
} while (0)
/**
* Atomically writes an unsigned 8-bit value, ordered.
*
* @param pu8 Pointer to the 8-bit variable.
* @param u8 The 8-bit value to assign to *pu8.
*/
DECLINLINE(void) ASMAtomicWriteU8(volatile uint8_t RT_FAR *pu8, uint8_t u8) RT_NOTHROW_DEF
{
/** @todo Any possible ARM32/ARM64 optimizations here? */
ASMAtomicXchgU8(pu8, u8);
}
/**
* Atomically writes an unsigned 8-bit value, unordered.
*
* @param pu8 Pointer to the 8-bit variable.
* @param u8 The 8-bit value to assign to *pu8.
*/
DECLINLINE(void) ASMAtomicUoWriteU8(volatile uint8_t RT_FAR *pu8, uint8_t u8) RT_NOTHROW_DEF
{
/** @todo Any possible ARM32/ARM64 improvements here? */
*pu8 = u8; /* byte writes are atomic on x86 */
}
/**
* Atomically writes a signed 8-bit value, ordered.
*
* @param pi8 Pointer to the 8-bit variable to read.
* @param i8 The 8-bit value to assign to *pi8.
*/
DECLINLINE(void) ASMAtomicWriteS8(volatile int8_t RT_FAR *pi8, int8_t i8) RT_NOTHROW_DEF
{
/** @todo Any possible ARM32/ARM64 optimizations here? */
ASMAtomicXchgS8(pi8, i8);
}
/**
* Atomically writes a signed 8-bit value, unordered.
*
* @param pi8 Pointer to the 8-bit variable to write.
* @param i8 The 8-bit value to assign to *pi8.
*/
DECLINLINE(void) ASMAtomicUoWriteS8(volatile int8_t RT_FAR *pi8, int8_t i8) RT_NOTHROW_DEF
{
*pi8 = i8; /* byte writes are atomic on x86 */
}
/**
* Atomically writes an unsigned 16-bit value, ordered.
*
* @param pu16 Pointer to the 16-bit variable to write.
* @param u16 The 16-bit value to assign to *pu16.
*/
DECLINLINE(void) ASMAtomicWriteU16(volatile uint16_t RT_FAR *pu16, uint16_t u16) RT_NOTHROW_DEF
{
/** @todo Any possible ARM32/ARM64 optimizations here? */
ASMAtomicXchgU16(pu16, u16);
}
/**
* Atomically writes an unsigned 16-bit value, unordered.
*
* @param pu16 Pointer to the 16-bit variable to write.
* @param u16 The 16-bit value to assign to *pu16.
*/
DECLINLINE(void) ASMAtomicUoWriteU16(volatile uint16_t RT_FAR *pu16, uint16_t u16) RT_NOTHROW_DEF
{
Assert(!((uintptr_t)pu16 & 1));
*pu16 = u16;
}
/**
* Atomically writes a signed 16-bit value, ordered.
*
* @param pi16 Pointer to the 16-bit variable to write.
* @param i16 The 16-bit value to assign to *pi16.
*/
DECLINLINE(void) ASMAtomicWriteS16(volatile int16_t RT_FAR *pi16, int16_t i16) RT_NOTHROW_DEF
{
/** @todo Any possible ARM32/ARM64 optimizations here? */
ASMAtomicXchgS16(pi16, i16);
}
/**
* Atomically writes a signed 16-bit value, unordered.
*
* @param pi16 Pointer to the 16-bit variable to write.
* @param i16 The 16-bit value to assign to *pi16.
*/
DECLINLINE(void) ASMAtomicUoWriteS16(volatile int16_t RT_FAR *pi16, int16_t i16) RT_NOTHROW_DEF
{
Assert(!((uintptr_t)pi16 & 1));
*pi16 = i16;
}
/**
* Atomically writes an unsigned 32-bit value, ordered.
*
* @param pu32 Pointer to the 32-bit variable to write.
* @param u32 The 32-bit value to assign to *pu32.
*/
DECLINLINE(void) ASMAtomicWriteU32(volatile uint32_t RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
/** @todo Any possible ARM32/ARM64 optimizations here? */
ASMAtomicXchgU32(pu32, u32);
}
/**
* Atomically writes an unsigned 32-bit value, unordered.
*
* @param pu32 Pointer to the 32-bit variable to write.
* @param u32 The 32-bit value to assign to *pu32.
*/
DECLINLINE(void) ASMAtomicUoWriteU32(volatile uint32_t RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
Assert(!((uintptr_t)pu32 & 3));
#if ARCH_BITS >= 32
*pu32 = u32;
#else
ASMAtomicXchgU32(pu32, u32);
#endif
}
/**
* Atomically writes a signed 32-bit value, ordered.
*
* @param pi32 Pointer to the 32-bit variable to write.
* @param i32 The 32-bit value to assign to *pi32.
*/
DECLINLINE(void) ASMAtomicWriteS32(volatile int32_t RT_FAR *pi32, int32_t i32) RT_NOTHROW_DEF
{
ASMAtomicXchgS32(pi32, i32);
}
/**
* Atomically writes a signed 32-bit value, unordered.
*
* @param pi32 Pointer to the 32-bit variable to write.
* @param i32 The 32-bit value to assign to *pi32.
*/
DECLINLINE(void) ASMAtomicUoWriteS32(volatile int32_t RT_FAR *pi32, int32_t i32) RT_NOTHROW_DEF
{
Assert(!((uintptr_t)pi32 & 3));
#if ARCH_BITS >= 32
*pi32 = i32;
#else
ASMAtomicXchgS32(pi32, i32);
#endif
}
/**
* Atomically writes an unsigned 64-bit value, ordered.
*
* @param pu64 Pointer to the 64-bit variable to write.
* @param u64 The 64-bit value to assign to *pu64.
*/
DECLINLINE(void) ASMAtomicWriteU64(volatile uint64_t RT_FAR *pu64, uint64_t u64) RT_NOTHROW_DEF
{
/** @todo Any possible ARM32/ARM64 optimizations here? */
ASMAtomicXchgU64(pu64, u64);
}
/**
* Atomically writes an unsigned 64-bit value, unordered.
*
* @param pu64 Pointer to the 64-bit variable to write.
* @param u64 The 64-bit value to assign to *pu64.
*/
DECLINLINE(void) ASMAtomicUoWriteU64(volatile uint64_t RT_FAR *pu64, uint64_t u64) RT_NOTHROW_DEF
{
Assert(!((uintptr_t)pu64 & 7));
#if ARCH_BITS == 64
*pu64 = u64;
#else
ASMAtomicXchgU64(pu64, u64);
#endif
}
/**
* Atomically writes a signed 64-bit value, ordered.
*
* @param pi64 Pointer to the 64-bit variable to write.
* @param i64 The 64-bit value to assign to *pi64.
*/
DECLINLINE(void) ASMAtomicWriteS64(volatile int64_t RT_FAR *pi64, int64_t i64) RT_NOTHROW_DEF
{
/** @todo Any possible ARM32/ARM64 optimizations here? */
ASMAtomicXchgS64(pi64, i64);
}
/**
* Atomically writes a signed 64-bit value, unordered.
*
* @param pi64 Pointer to the 64-bit variable to write.
* @param i64 The 64-bit value to assign to *pi64.
*/
DECLINLINE(void) ASMAtomicUoWriteS64(volatile int64_t RT_FAR *pi64, int64_t i64) RT_NOTHROW_DEF
{
Assert(!((uintptr_t)pi64 & 7));
#if ARCH_BITS == 64
*pi64 = i64;
#else
ASMAtomicXchgS64(pi64, i64);
#endif
}
/**
* Atomically writes a size_t value, ordered.
*
* @param pcb Pointer to the size_t variable to write.
* @param cb The value to assign to *pcb.
*/
DECLINLINE(void) ASMAtomicWriteZ(volatile size_t RT_FAR *pcb, size_t cb) RT_NOTHROW_DEF
{
#if ARCH_BITS == 64
ASMAtomicWriteU64((uint64_t volatile *)pcb, cb);
#elif ARCH_BITS == 32
ASMAtomicWriteU32((uint32_t volatile *)pcb, cb);
#elif ARCH_BITS == 16
AssertCompileSize(size_t, 2);
ASMAtomicWriteU16((uint16_t volatile *)pcb, cb);
#else
# error "Unsupported ARCH_BITS value"
#endif
}
/**
* Atomically writes a size_t value, unordered.
*
* @param pcb Pointer to the size_t variable to write.
* @param cb The value to assign to *pcb.
*/
DECLINLINE(void) ASMAtomicUoWriteZ(volatile size_t RT_FAR *pcb, size_t cb) RT_NOTHROW_DEF
{
#if ARCH_BITS == 64
ASMAtomicUoWriteU64((uint64_t volatile *)pcb, cb);
#elif ARCH_BITS == 32
ASMAtomicUoWriteU32((uint32_t volatile *)pcb, cb);
#elif ARCH_BITS == 16
AssertCompileSize(size_t, 2);
ASMAtomicUoWriteU16((uint16_t volatile *)pcb, cb);
#else
# error "Unsupported ARCH_BITS value"
#endif
}
/**
* Atomically writes a boolean value, unordered.
*
* @param pf Pointer to the boolean variable to write.
* @param f The boolean value to assign to *pf.
*/
DECLINLINE(void) ASMAtomicWriteBool(volatile bool RT_FAR *pf, bool f) RT_NOTHROW_DEF
{
ASMAtomicWriteU8((uint8_t volatile RT_FAR *)pf, f);
}
/**
* Atomically writes a boolean value, unordered.
*
* @param pf Pointer to the boolean variable to write.
* @param f The boolean value to assign to *pf.
*/
DECLINLINE(void) ASMAtomicUoWriteBool(volatile bool RT_FAR *pf, bool f) RT_NOTHROW_DEF
{
*pf = f; /* byte writes are atomic on x86 */
}
/**
* Atomically writes a pointer value, ordered.
*
* @param ppv Pointer to the pointer variable to write.
* @param pv The pointer value to assign to *ppv.
*/
DECLINLINE(void) ASMAtomicWritePtrVoid(void RT_FAR * volatile RT_FAR *ppv, const void *pv) RT_NOTHROW_DEF
{
#if ARCH_BITS == 32 || ARCH_BITS == 16
ASMAtomicWriteU32((volatile uint32_t RT_FAR *)(void RT_FAR *)ppv, (uint32_t)pv);
#elif ARCH_BITS == 64
ASMAtomicWriteU64((volatile uint64_t RT_FAR *)(void RT_FAR *)ppv, (uint64_t)pv);
#else
# error "ARCH_BITS is bogus"
#endif
}
/**
* Atomically writes a pointer value, unordered.
*
* @param ppv Pointer to the pointer variable to write.
* @param pv The pointer value to assign to *ppv.
*/
DECLINLINE(void) ASMAtomicUoWritePtrVoid(void RT_FAR * volatile RT_FAR *ppv, const void *pv) RT_NOTHROW_DEF
{
#if ARCH_BITS == 32 || ARCH_BITS == 16
ASMAtomicUoWriteU32((volatile uint32_t RT_FAR *)(void RT_FAR *)ppv, (uint32_t)pv);
#elif ARCH_BITS == 64
ASMAtomicUoWriteU64((volatile uint64_t RT_FAR *)(void RT_FAR *)ppv, (uint64_t)pv);
#else
# error "ARCH_BITS is bogus"
#endif
}
/**
* Atomically writes a pointer value, ordered.
*
* @param ppv Pointer to the pointer variable to write.
* @param pv The pointer value to assign to *ppv. If NULL use
* ASMAtomicWriteNullPtr or you'll land in trouble.
*
* @remarks This is relatively type safe on GCC platforms when @a pv isn't
* NULL.
*/
#ifdef __GNUC__
# define ASMAtomicWritePtr(ppv, pv) \
do \
{ \
__typeof__(*(ppv)) volatile RT_FAR * const ppvTypeChecked = (ppv); \
__typeof__(*(ppv)) const pvTypeChecked = (pv); \
\
AssertCompile(sizeof(*ppv) == sizeof(void RT_FAR *)); \
AssertCompile(sizeof(pv) == sizeof(void RT_FAR *)); \
Assert(!( (uintptr_t)ppv & ((ARCH_BITS / 8) - 1) )); \
\
ASMAtomicWritePtrVoid((void RT_FAR * volatile RT_FAR *)(ppvTypeChecked), (void RT_FAR *)(pvTypeChecked)); \
} while (0)
#else
# define ASMAtomicWritePtr(ppv, pv) \
do \
{ \
AssertCompile(sizeof(*ppv) == sizeof(void RT_FAR *)); \
AssertCompile(sizeof(pv) == sizeof(void RT_FAR *)); \
Assert(!( (uintptr_t)ppv & ((ARCH_BITS / 8) - 1) )); \
\
ASMAtomicWritePtrVoid((void RT_FAR * volatile RT_FAR *)(ppv), (void RT_FAR *)(pv)); \
} while (0)
#endif
/**
* Atomically sets a pointer to NULL, ordered.
*
* @param ppv Pointer to the pointer variable that should be set to NULL.
*
* @remarks This is relatively type safe on GCC platforms.
*/
#if RT_GNUC_PREREQ(4, 2)
# define ASMAtomicWriteNullPtr(ppv) \
do \
{ \
__typeof__(*(ppv)) * const ppvTypeChecked = (ppv); \
AssertCompile(sizeof(*ppv) == sizeof(void RT_FAR *)); \
Assert(!( (uintptr_t)ppv & ((ARCH_BITS / 8) - 1) )); \
ASMAtomicWritePtrVoid((void RT_FAR * volatile RT_FAR *)(ppvTypeChecked), NULL); \
} while (0)
#else
# define ASMAtomicWriteNullPtr(ppv) \
do \
{ \
AssertCompile(sizeof(*ppv) == sizeof(void RT_FAR *)); \
Assert(!( (uintptr_t)ppv & ((ARCH_BITS / 8) - 1) )); \
ASMAtomicWritePtrVoid((void RT_FAR * volatile RT_FAR *)(ppv), NULL); \
} while (0)
#endif
/**
* Atomically writes a pointer value, unordered.
*
* @returns Current *pv value
* @param ppv Pointer to the pointer variable.
* @param pv The pointer value to assign to *ppv. If NULL use
* ASMAtomicUoWriteNullPtr or you'll land in trouble.
*
* @remarks This is relatively type safe on GCC platforms when @a pv isn't
* NULL.
*/
#if RT_GNUC_PREREQ(4, 2)
# define ASMAtomicUoWritePtr(ppv, pv) \
do \
{ \
__typeof__(*(ppv)) volatile * const ppvTypeChecked = (ppv); \
__typeof__(*(ppv)) const pvTypeChecked = (pv); \
\
AssertCompile(sizeof(*ppv) == sizeof(void *)); \
AssertCompile(sizeof(pv) == sizeof(void *)); \
Assert(!( (uintptr_t)ppv & ((ARCH_BITS / 8) - 1) )); \
\
*(ppvTypeChecked) = pvTypeChecked; \
} while (0)
#else
# define ASMAtomicUoWritePtr(ppv, pv) \
do \
{ \
AssertCompile(sizeof(*ppv) == sizeof(void RT_FAR *)); \
AssertCompile(sizeof(pv) == sizeof(void RT_FAR *)); \
Assert(!( (uintptr_t)ppv & ((ARCH_BITS / 8) - 1) )); \
*(ppv) = pv; \
} while (0)
#endif
/**
* Atomically sets a pointer to NULL, unordered.
*
* @param ppv Pointer to the pointer variable that should be set to NULL.
*
* @remarks This is relatively type safe on GCC platforms.
*/
#ifdef __GNUC__
# define ASMAtomicUoWriteNullPtr(ppv) \
do \
{ \
__typeof__(*(ppv)) volatile * const ppvTypeChecked = (ppv); \
AssertCompile(sizeof(*ppv) == sizeof(void *)); \
Assert(!( (uintptr_t)ppv & ((ARCH_BITS / 8) - 1) )); \
*(ppvTypeChecked) = NULL; \
} while (0)
#else
# define ASMAtomicUoWriteNullPtr(ppv) \
do \
{ \
AssertCompile(sizeof(*ppv) == sizeof(void RT_FAR *)); \
Assert(!( (uintptr_t)ppv & ((ARCH_BITS / 8) - 1) )); \
*(ppv) = NULL; \
} while (0)
#endif
/**
* Atomically write a typical IPRT handle value, ordered.
*
* @param ph Pointer to the variable to update.
* @param hNew The value to assign to *ph.
*
* @remarks This doesn't currently work for all handles (like RTFILE).
*/
#if HC_ARCH_BITS == 32 || ARCH_BITS == 16
# define ASMAtomicWriteHandle(ph, hNew) \
do { \
AssertCompile(sizeof(*(ph)) == sizeof(uint32_t)); \
ASMAtomicWriteU32((uint32_t volatile RT_FAR *)(ph), (const uint32_t)(hNew)); \
} while (0)
#elif HC_ARCH_BITS == 64
# define ASMAtomicWriteHandle(ph, hNew) \
do { \
AssertCompile(sizeof(*(ph)) == sizeof(uint64_t)); \
ASMAtomicWriteU64((uint64_t volatile RT_FAR *)(ph), (const uint64_t)(hNew)); \
} while (0)
#else
# error HC_ARCH_BITS
#endif
/**
* Atomically write a typical IPRT handle value, unordered.
*
* @param ph Pointer to the variable to update.
* @param hNew The value to assign to *ph.
*
* @remarks This doesn't currently work for all handles (like RTFILE).
*/
#if HC_ARCH_BITS == 32 || ARCH_BITS == 16
# define ASMAtomicUoWriteHandle(ph, hNew) \
do { \
AssertCompile(sizeof(*(ph)) == sizeof(uint32_t)); \
ASMAtomicUoWriteU32((uint32_t volatile RT_FAR *)(ph), (const uint32_t)hNew); \
} while (0)
#elif HC_ARCH_BITS == 64
# define ASMAtomicUoWriteHandle(ph, hNew) \
do { \
AssertCompile(sizeof(*(ph)) == sizeof(uint64_t)); \
ASMAtomicUoWriteU64((uint64_t volatile RT_FAR *)(ph), (const uint64_t)hNew); \
} while (0)
#else
# error HC_ARCH_BITS
#endif
/**
* Atomically write a value which size might differ
* between platforms or compilers, ordered.
*
* @param pu Pointer to the variable to update.
* @param uNew The value to assign to *pu.
*/
#define ASMAtomicWriteSize(pu, uNew) \
do { \
switch (sizeof(*(pu))) { \
case 1: ASMAtomicWriteU8( (volatile uint8_t RT_FAR *)(void RT_FAR *)(pu), (uint8_t )(uNew)); break; \
case 2: ASMAtomicWriteU16((volatile uint16_t RT_FAR *)(void RT_FAR *)(pu), (uint16_t)(uNew)); break; \
case 4: ASMAtomicWriteU32((volatile uint32_t RT_FAR *)(void RT_FAR *)(pu), (uint32_t)(uNew)); break; \
case 8: ASMAtomicWriteU64((volatile uint64_t RT_FAR *)(void RT_FAR *)(pu), (uint64_t)(uNew)); break; \
default: AssertMsgFailed(("ASMAtomicWriteSize: size %d is not supported\n", sizeof(*(pu)))); \
} \
} while (0)
/**
* Atomically write a value which size might differ
* between platforms or compilers, unordered.
*
* @param pu Pointer to the variable to update.
* @param uNew The value to assign to *pu.
*/
#define ASMAtomicUoWriteSize(pu, uNew) \
do { \
switch (sizeof(*(pu))) { \
case 1: ASMAtomicUoWriteU8( (volatile uint8_t RT_FAR *)(void RT_FAR *)(pu), (uint8_t )(uNew)); break; \
case 2: ASMAtomicUoWriteU16((volatile uint16_t RT_FAR *)(void RT_FAR *)(pu), (uint16_t)(uNew)); break; \
case 4: ASMAtomicUoWriteU32((volatile uint32_t RT_FAR *)(void RT_FAR *)(pu), (uint32_t)(uNew)); break; \
case 8: ASMAtomicUoWriteU64((volatile uint64_t RT_FAR *)(void RT_FAR *)(pu), (uint64_t)(uNew)); break; \
default: AssertMsgFailed(("ASMAtomicWriteSize: size %d is not supported\n", sizeof(*(pu)))); \
} \
} while (0)
/**
* Atomically exchanges and adds to a 16-bit value, ordered.
*
* @returns The old value.
* @param pu16 Pointer to the value.
* @param u16 Number to add.
*
* @remarks Currently not implemented, just to make 16-bit code happy.
* @remarks x86: Requires a 486 or later.
*/
RT_ASM_DECL_PRAGMA_WATCOM(uint16_t) ASMAtomicAddU16(uint16_t volatile RT_FAR *pu16, uint32_t u16) RT_NOTHROW_PROTO;
/**
* Atomically exchanges and adds to a 32-bit value, ordered.
*
* @returns The old value.
* @param pu32 Pointer to the value.
* @param u32 Number to add.
*
* @remarks x86: Requires a 486 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(uint32_t) ASMAtomicAddU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint32_t) ASMAtomicAddU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
u32 = _InterlockedExchangeAdd((long RT_FAR *)pu32, u32);
return u32;
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("lock; xaddl %0, %1\n\t"
: "=r" (u32)
, "=m" (*pu32)
: "0" (u32)
, "m" (*pu32)
: "memory"
, "cc");
return u32;
# else
__asm
{
mov eax, [u32]
# ifdef RT_ARCH_AMD64
mov rdx, [pu32]
lock xadd [rdx], eax
# else
mov edx, [pu32]
lock xadd [edx], eax
# endif
mov [u32], eax
}
return u32;
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_OLD_32(ASMAtomicAddU32, pu32, DMB_SY,
"add %w[uNew], %w[uOld], %w[uVal]\n\t",
"add %[uNew], %[uOld], %[uVal]\n\t",
[uVal] "r" (u32));
return u32OldRet;
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically exchanges and adds to a signed 32-bit value, ordered.
*
* @returns The old value.
* @param pi32 Pointer to the value.
* @param i32 Number to add.
*
* @remarks x86: Requires a 486 or later.
*/
DECLINLINE(int32_t) ASMAtomicAddS32(int32_t volatile RT_FAR *pi32, int32_t i32) RT_NOTHROW_DEF
{
return (int32_t)ASMAtomicAddU32((uint32_t volatile RT_FAR *)pi32, (uint32_t)i32);
}
/**
* Atomically exchanges and adds to a 64-bit value, ordered.
*
* @returns The old value.
* @param pu64 Pointer to the value.
* @param u64 Number to add.
*
* @remarks x86: Requires a Pentium or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint64_t) ASMAtomicAddU64(uint64_t volatile RT_FAR *pu64, uint64_t u64) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint64_t) ASMAtomicAddU64(uint64_t volatile RT_FAR *pu64, uint64_t u64) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN && defined(RT_ARCH_AMD64)
u64 = _InterlockedExchangeAdd64((__int64 RT_FAR *)pu64, u64);
return u64;
# elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64)
__asm__ __volatile__("lock; xaddq %0, %1\n\t"
: "=r" (u64)
, "=m" (*pu64)
: "0" (u64)
, "m" (*pu64)
: "memory"
, "cc");
return u64;
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_OLD_64(ASMAtomicAddU64, pu64, DMB_SY,
"add %[uNew], %[uOld], %[uVal]\n\t"
,
"add %[uNew], %[uOld], %[uVal]\n\t"
"adc %H[uNew], %H[uOld], %H[uVal]\n\t",
[uVal] "r" (u64));
return u64OldRet;
# else
uint64_t u64Old;
for (;;)
{
uint64_t u64New;
u64Old = ASMAtomicUoReadU64(pu64);
u64New = u64Old + u64;
if (ASMAtomicCmpXchgU64(pu64, u64New, u64Old))
break;
ASMNopPause();
}
return u64Old;
# endif
}
#endif
/**
* Atomically exchanges and adds to a signed 64-bit value, ordered.
*
* @returns The old value.
* @param pi64 Pointer to the value.
* @param i64 Number to add.
*
* @remarks x86: Requires a Pentium or later.
*/
DECLINLINE(int64_t) ASMAtomicAddS64(int64_t volatile RT_FAR *pi64, int64_t i64) RT_NOTHROW_DEF
{
return (int64_t)ASMAtomicAddU64((uint64_t volatile RT_FAR *)pi64, (uint64_t)i64);
}
/**
* Atomically exchanges and adds to a size_t value, ordered.
*
* @returns The old value.
* @param pcb Pointer to the size_t value.
* @param cb Number to add.
*/
DECLINLINE(size_t) ASMAtomicAddZ(size_t volatile RT_FAR *pcb, size_t cb) RT_NOTHROW_DEF
{
#if ARCH_BITS == 64
AssertCompileSize(size_t, 8);
return ASMAtomicAddU64((uint64_t volatile RT_FAR *)pcb, cb);
#elif ARCH_BITS == 32
AssertCompileSize(size_t, 4);
return ASMAtomicAddU32((uint32_t volatile RT_FAR *)pcb, cb);
#elif ARCH_BITS == 16
AssertCompileSize(size_t, 2);
return ASMAtomicAddU16((uint16_t volatile RT_FAR *)pcb, cb);
#else
# error "Unsupported ARCH_BITS value"
#endif
}
/**
* Atomically exchanges and adds a value which size might differ between
* platforms or compilers, ordered.
*
* @param pu Pointer to the variable to update.
* @param uNew The value to add to *pu.
* @param puOld Where to store the old value.
*/
#define ASMAtomicAddSize(pu, uNew, puOld) \
do { \
switch (sizeof(*(pu))) { \
case 4: *(uint32_t *)(puOld) = ASMAtomicAddU32((volatile uint32_t RT_FAR *)(void RT_FAR *)(pu), (uint32_t)(uNew)); break; \
case 8: *(uint64_t *)(puOld) = ASMAtomicAddU64((volatile uint64_t RT_FAR *)(void RT_FAR *)(pu), (uint64_t)(uNew)); break; \
default: AssertMsgFailed(("ASMAtomicAddSize: size %d is not supported\n", sizeof(*(pu)))); \
} \
} while (0)
/**
* Atomically exchanges and subtracts to an unsigned 16-bit value, ordered.
*
* @returns The old value.
* @param pu16 Pointer to the value.
* @param u16 Number to subtract.
*
* @remarks x86: Requires a 486 or later.
*/
DECLINLINE(uint16_t) ASMAtomicSubU16(uint16_t volatile RT_FAR *pu16, uint32_t u16) RT_NOTHROW_DEF
{
return ASMAtomicAddU16(pu16, (uint16_t)-(int16_t)u16);
}
/**
* Atomically exchanges and subtracts to a signed 16-bit value, ordered.
*
* @returns The old value.
* @param pi16 Pointer to the value.
* @param i16 Number to subtract.
*
* @remarks x86: Requires a 486 or later.
*/
DECLINLINE(int16_t) ASMAtomicSubS16(int16_t volatile RT_FAR *pi16, int16_t i16) RT_NOTHROW_DEF
{
return (int16_t)ASMAtomicAddU16((uint16_t volatile RT_FAR *)pi16, (uint16_t)-i16);
}
/**
* Atomically exchanges and subtracts to an unsigned 32-bit value, ordered.
*
* @returns The old value.
* @param pu32 Pointer to the value.
* @param u32 Number to subtract.
*
* @remarks x86: Requires a 486 or later.
*/
DECLINLINE(uint32_t) ASMAtomicSubU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
return ASMAtomicAddU32(pu32, (uint32_t)-(int32_t)u32);
}
/**
* Atomically exchanges and subtracts to a signed 32-bit value, ordered.
*
* @returns The old value.
* @param pi32 Pointer to the value.
* @param i32 Number to subtract.
*
* @remarks x86: Requires a 486 or later.
*/
DECLINLINE(int32_t) ASMAtomicSubS32(int32_t volatile RT_FAR *pi32, int32_t i32) RT_NOTHROW_DEF
{
return (int32_t)ASMAtomicAddU32((uint32_t volatile RT_FAR *)pi32, (uint32_t)-i32);
}
/**
* Atomically exchanges and subtracts to an unsigned 64-bit value, ordered.
*
* @returns The old value.
* @param pu64 Pointer to the value.
* @param u64 Number to subtract.
*
* @remarks x86: Requires a Pentium or later.
*/
DECLINLINE(uint64_t) ASMAtomicSubU64(uint64_t volatile RT_FAR *pu64, uint64_t u64) RT_NOTHROW_DEF
{
return ASMAtomicAddU64(pu64, (uint64_t)-(int64_t)u64);
}
/**
* Atomically exchanges and subtracts to a signed 64-bit value, ordered.
*
* @returns The old value.
* @param pi64 Pointer to the value.
* @param i64 Number to subtract.
*
* @remarks x86: Requires a Pentium or later.
*/
DECLINLINE(int64_t) ASMAtomicSubS64(int64_t volatile RT_FAR *pi64, int64_t i64) RT_NOTHROW_DEF
{
return (int64_t)ASMAtomicAddU64((uint64_t volatile RT_FAR *)pi64, (uint64_t)-i64);
}
/**
* Atomically exchanges and subtracts to a size_t value, ordered.
*
* @returns The old value.
* @param pcb Pointer to the size_t value.
* @param cb Number to subtract.
*
* @remarks x86: Requires a 486 or later.
*/
DECLINLINE(size_t) ASMAtomicSubZ(size_t volatile RT_FAR *pcb, size_t cb) RT_NOTHROW_DEF
{
#if ARCH_BITS == 64
return ASMAtomicSubU64((uint64_t volatile RT_FAR *)pcb, cb);
#elif ARCH_BITS == 32
return ASMAtomicSubU32((uint32_t volatile RT_FAR *)pcb, cb);
#elif ARCH_BITS == 16
AssertCompileSize(size_t, 2);
return ASMAtomicSubU16((uint16_t volatile RT_FAR *)pcb, cb);
#else
# error "Unsupported ARCH_BITS value"
#endif
}
/**
* Atomically exchanges and subtracts a value which size might differ between
* platforms or compilers, ordered.
*
* @param pu Pointer to the variable to update.
* @param uNew The value to subtract to *pu.
* @param puOld Where to store the old value.
*
* @remarks x86: Requires a 486 or later.
*/
#define ASMAtomicSubSize(pu, uNew, puOld) \
do { \
switch (sizeof(*(pu))) { \
case 4: *(uint32_t RT_FAR *)(puOld) = ASMAtomicSubU32((volatile uint32_t RT_FAR *)(void RT_FAR *)(pu), (uint32_t)(uNew)); break; \
case 8: *(uint64_t RT_FAR *)(puOld) = ASMAtomicSubU64((volatile uint64_t RT_FAR *)(void RT_FAR *)(pu), (uint64_t)(uNew)); break; \
default: AssertMsgFailed(("ASMAtomicSubSize: size %d is not supported\n", sizeof(*(pu)))); \
} \
} while (0)
/**
* Atomically increment a 16-bit value, ordered.
*
* @returns The new value.
* @param pu16 Pointer to the value to increment.
* @remarks Not implemented. Just to make 16-bit code happy.
*
* @remarks x86: Requires a 486 or later.
*/
RT_ASM_DECL_PRAGMA_WATCOM(uint16_t) ASMAtomicIncU16(uint16_t volatile RT_FAR *pu16) RT_NOTHROW_PROTO;
/**
* Atomically increment a 32-bit value, ordered.
*
* @returns The new value.
* @param pu32 Pointer to the value to increment.
*
* @remarks x86: Requires a 486 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(uint32_t) ASMAtomicIncU32(uint32_t volatile RT_FAR *pu32) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint32_t) ASMAtomicIncU32(uint32_t volatile RT_FAR *pu32) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
return (uint32_t)_InterlockedIncrement((long RT_FAR *)pu32);
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
uint32_t u32;
__asm__ __volatile__("lock; xaddl %0, %1\n\t"
: "=r" (u32)
, "=m" (*pu32)
: "0" (1)
, "m" (*pu32)
: "memory"
, "cc");
return u32+1;
# else
__asm
{
mov eax, 1
# ifdef RT_ARCH_AMD64
mov rdx, [pu32]
lock xadd [rdx], eax
# else
mov edx, [pu32]
lock xadd [edx], eax
# endif
mov u32, eax
}
return u32+1;
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_32(ASMAtomicIncU32, pu32, DMB_SY,
"add %w[uNew], %w[uNew], #1\n\t",
"add %[uNew], %[uNew], #1\n\t" /* arm6 / thumb2+ */,
"X" (0) /* dummy */);
return u32NewRet;
# else
return ASMAtomicAddU32(pu32, 1) + 1;
# endif
}
#endif
/**
* Atomically increment a signed 32-bit value, ordered.
*
* @returns The new value.
* @param pi32 Pointer to the value to increment.
*
* @remarks x86: Requires a 486 or later.
*/
DECLINLINE(int32_t) ASMAtomicIncS32(int32_t volatile RT_FAR *pi32) RT_NOTHROW_DEF
{
return (int32_t)ASMAtomicIncU32((uint32_t volatile RT_FAR *)pi32);
}
/**
* Atomically increment a 64-bit value, ordered.
*
* @returns The new value.
* @param pu64 Pointer to the value to increment.
*
* @remarks x86: Requires a Pentium or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint64_t) ASMAtomicIncU64(uint64_t volatile RT_FAR *pu64) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint64_t) ASMAtomicIncU64(uint64_t volatile RT_FAR *pu64) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN && defined(RT_ARCH_AMD64)
return (uint64_t)_InterlockedIncrement64((__int64 RT_FAR *)pu64);
# elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64)
uint64_t u64;
__asm__ __volatile__("lock; xaddq %0, %1\n\t"
: "=r" (u64)
, "=m" (*pu64)
: "0" (1)
, "m" (*pu64)
: "memory"
, "cc");
return u64 + 1;
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_64(ASMAtomicIncU64, pu64, DMB_SY,
"add %[uNew], %[uNew], #1\n\t"
,
"add %[uNew], %[uNew], #1\n\t" /* arm6 / thumb2+ */
"adc %H[uNew], %H[uNew], %[uZeroVal]\n\t",
RTASM_ARM_PICK_6432("X" (0) /* dummy */, [uZeroVal] "r" (0)) );
return u64NewRet;
# else
return ASMAtomicAddU64(pu64, 1) + 1;
# endif
}
#endif
/**
* Atomically increment a signed 64-bit value, ordered.
*
* @returns The new value.
* @param pi64 Pointer to the value to increment.
*
* @remarks x86: Requires a Pentium or later.
*/
DECLINLINE(int64_t) ASMAtomicIncS64(int64_t volatile RT_FAR *pi64) RT_NOTHROW_DEF
{
return (int64_t)ASMAtomicIncU64((uint64_t volatile RT_FAR *)pi64);
}
/**
* Atomically increment a size_t value, ordered.
*
* @returns The new value.
* @param pcb Pointer to the value to increment.
*
* @remarks x86: Requires a 486 or later.
*/
DECLINLINE(size_t) ASMAtomicIncZ(size_t volatile RT_FAR *pcb) RT_NOTHROW_DEF
{
#if ARCH_BITS == 64
return ASMAtomicIncU64((uint64_t volatile RT_FAR *)pcb);
#elif ARCH_BITS == 32
return ASMAtomicIncU32((uint32_t volatile RT_FAR *)pcb);
#elif ARCH_BITS == 16
return ASMAtomicIncU16((uint16_t volatile RT_FAR *)pcb);
#else
# error "Unsupported ARCH_BITS value"
#endif
}
/**
* Atomically decrement an unsigned 32-bit value, ordered.
*
* @returns The new value.
* @param pu16 Pointer to the value to decrement.
* @remarks Not implemented. Just to make 16-bit code happy.
*
* @remarks x86: Requires a 486 or later.
*/
RT_ASM_DECL_PRAGMA_WATCOM(uint32_t) ASMAtomicDecU16(uint16_t volatile RT_FAR *pu16) RT_NOTHROW_PROTO;
/**
* Atomically decrement an unsigned 32-bit value, ordered.
*
* @returns The new value.
* @param pu32 Pointer to the value to decrement.
*
* @remarks x86: Requires a 486 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(uint32_t) ASMAtomicDecU32(uint32_t volatile RT_FAR *pu32) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint32_t) ASMAtomicDecU32(uint32_t volatile RT_FAR *pu32) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
return (uint32_t)_InterlockedDecrement((long RT_FAR *)pu32);
# elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64)
# if RT_INLINE_ASM_GNU_STYLE
uint32_t u32;
__asm__ __volatile__("lock; xaddl %0, %1\n\t"
: "=r" (u32)
, "=m" (*pu32)
: "0" (-1)
, "m" (*pu32)
: "memory"
, "cc");
return u32-1;
# else
uint32_t u32;
__asm
{
mov eax, -1
# ifdef RT_ARCH_AMD64
mov rdx, [pu32]
lock xadd [rdx], eax
# else
mov edx, [pu32]
lock xadd [edx], eax
# endif
mov u32, eax
}
return u32-1;
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_32(ASMAtomicDecU32, pu32, DMB_SY,
"sub %w[uNew], %w[uNew], #1\n\t",
"sub %[uNew], %[uNew], #1\n\t" /* arm6 / thumb2+ */,
"X" (0) /* dummy */);
return u32NewRet;
# else
return ASMAtomicSubU32(pu32, 1) - (uint32_t)1;
# endif
}
#endif
/**
* Atomically decrement a signed 32-bit value, ordered.
*
* @returns The new value.
* @param pi32 Pointer to the value to decrement.
*
* @remarks x86: Requires a 486 or later.
*/
DECLINLINE(int32_t) ASMAtomicDecS32(int32_t volatile RT_FAR *pi32) RT_NOTHROW_DEF
{
return (int32_t)ASMAtomicDecU32((uint32_t volatile RT_FAR *)pi32);
}
/**
* Atomically decrement an unsigned 64-bit value, ordered.
*
* @returns The new value.
* @param pu64 Pointer to the value to decrement.
*
* @remarks x86: Requires a Pentium or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(uint64_t) ASMAtomicDecU64(uint64_t volatile RT_FAR *pu64) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint64_t) ASMAtomicDecU64(uint64_t volatile RT_FAR *pu64) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN && defined(RT_ARCH_AMD64)
return (uint64_t)_InterlockedDecrement64((__int64 volatile RT_FAR *)pu64);
# elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64)
uint64_t u64;
__asm__ __volatile__("lock; xaddq %q0, %1\n\t"
: "=r" (u64)
, "=m" (*pu64)
: "0" (~(uint64_t)0)
, "m" (*pu64)
: "memory"
, "cc");
return u64-1;
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_64(ASMAtomicDecU64, pu64, DMB_SY,
"sub %[uNew], %[uNew], #1\n\t"
,
"sub %[uNew], %[uNew], #1\n\t" /* arm6 / thumb2+ */
"sbc %H[uNew], %H[uNew], %[uZeroVal]\n\t",
RTASM_ARM_PICK_6432("X" (0) /* dummy */, [uZeroVal] "r" (0)) );
return u64NewRet;
# else
return ASMAtomicAddU64(pu64, UINT64_MAX) - 1;
# endif
}
#endif
/**
* Atomically decrement a signed 64-bit value, ordered.
*
* @returns The new value.
* @param pi64 Pointer to the value to decrement.
*
* @remarks x86: Requires a Pentium or later.
*/
DECLINLINE(int64_t) ASMAtomicDecS64(int64_t volatile RT_FAR *pi64) RT_NOTHROW_DEF
{
return (int64_t)ASMAtomicDecU64((uint64_t volatile RT_FAR *)pi64);
}
/**
* Atomically decrement a size_t value, ordered.
*
* @returns The new value.
* @param pcb Pointer to the value to decrement.
*
* @remarks x86: Requires a 486 or later.
*/
DECLINLINE(size_t) ASMAtomicDecZ(size_t volatile RT_FAR *pcb) RT_NOTHROW_DEF
{
#if ARCH_BITS == 64
return ASMAtomicDecU64((uint64_t volatile RT_FAR *)pcb);
#elif ARCH_BITS == 32
return ASMAtomicDecU32((uint32_t volatile RT_FAR *)pcb);
#elif ARCH_BITS == 16
return ASMAtomicDecU16((uint16_t volatile RT_FAR *)pcb);
#else
# error "Unsupported ARCH_BITS value"
#endif
}
/**
* Atomically Or an unsigned 32-bit value, ordered.
*
* @param pu32 Pointer to the pointer variable to OR u32 with.
* @param u32 The value to OR *pu32 with.
*
* @remarks x86: Requires a 386 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMAtomicOrU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMAtomicOrU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
_InterlockedOr((long volatile RT_FAR *)pu32, (long)u32);
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("lock; orl %1, %0\n\t"
: "=m" (*pu32)
: "ir" (u32)
, "m" (*pu32)
: "cc");
# else
__asm
{
mov eax, [u32]
# ifdef RT_ARCH_AMD64
mov rdx, [pu32]
lock or [rdx], eax
# else
mov edx, [pu32]
lock or [edx], eax
# endif
}
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
/* For more on Orr see https://en.wikipedia.org/wiki/Orr_(Catch-22) ;-) */
RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_32(ASMAtomicOr32, pu32, DMB_SY,
"orr %w[uNew], %w[uNew], %w[uVal]\n\t",
"orr %[uNew], %[uNew], %[uVal]\n\t",
[uVal] "r" (u32));
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically OR an unsigned 32-bit value, ordered, extended version (for bitmap
* fallback).
*
* @returns Old value.
* @param pu32 Pointer to the variable to OR @a u32 with.
* @param u32 The value to OR @a *pu32 with.
*/
DECLINLINE(uint32_t) ASMAtomicOrExU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_OLD_32(ASMAtomicOrEx32, pu32, DMB_SY,
"orr %w[uNew], %w[uOld], %w[uVal]\n\t",
"orr %[uNew], %[uOld], %[uVal]\n\t",
[uVal] "r" (u32));
return u32OldRet;
#else
uint32_t u32RetOld = ASMAtomicUoReadU32(pu32);
uint32_t u32New;
do
u32New = u32RetOld | u32;
while (!ASMAtomicCmpXchgExU32(pu32, u32New, u32RetOld, &u32RetOld));
return u32RetOld;
#endif
}
/**
* Atomically Or a signed 32-bit value, ordered.
*
* @param pi32 Pointer to the pointer variable to OR u32 with.
* @param i32 The value to OR *pu32 with.
*
* @remarks x86: Requires a 386 or later.
*/
DECLINLINE(void) ASMAtomicOrS32(int32_t volatile RT_FAR *pi32, int32_t i32) RT_NOTHROW_DEF
{
ASMAtomicOrU32((uint32_t volatile RT_FAR *)pi32, (uint32_t)i32);
}
/**
* Atomically Or an unsigned 64-bit value, ordered.
*
* @param pu64 Pointer to the pointer variable to OR u64 with.
* @param u64 The value to OR *pu64 with.
*
* @remarks x86: Requires a Pentium or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMAtomicOrU64(uint64_t volatile RT_FAR *pu64, uint64_t u64) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMAtomicOrU64(uint64_t volatile RT_FAR *pu64, uint64_t u64) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN && defined(RT_ARCH_AMD64)
_InterlockedOr64((__int64 volatile RT_FAR *)pu64, (__int64)u64);
# elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64)
__asm__ __volatile__("lock; orq %1, %q0\n\t"
: "=m" (*pu64)
: "r" (u64)
, "m" (*pu64)
: "cc");
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_64(ASMAtomicOrU64, pu64, DMB_SY,
"orr %[uNew], %[uNew], %[uVal]\n\t"
,
"orr %[uNew], %[uNew], %[uVal]\n\t"
"orr %H[uNew], %H[uNew], %H[uVal]\n\t",
[uVal] "r" (u64));
# else
for (;;)
{
uint64_t u64Old = ASMAtomicUoReadU64(pu64);
uint64_t u64New = u64Old | u64;
if (ASMAtomicCmpXchgU64(pu64, u64New, u64Old))
break;
ASMNopPause();
}
# endif
}
#endif
/**
* Atomically Or a signed 64-bit value, ordered.
*
* @param pi64 Pointer to the pointer variable to OR u64 with.
* @param i64 The value to OR *pu64 with.
*
* @remarks x86: Requires a Pentium or later.
*/
DECLINLINE(void) ASMAtomicOrS64(int64_t volatile RT_FAR *pi64, int64_t i64) RT_NOTHROW_DEF
{
ASMAtomicOrU64((uint64_t volatile RT_FAR *)pi64, (uint64_t)i64);
}
/**
* Atomically And an unsigned 32-bit value, ordered.
*
* @param pu32 Pointer to the pointer variable to AND u32 with.
* @param u32 The value to AND *pu32 with.
*
* @remarks x86: Requires a 386 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMAtomicAndU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMAtomicAndU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
_InterlockedAnd((long volatile RT_FAR *)pu32, u32);
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("lock; andl %1, %0\n\t"
: "=m" (*pu32)
: "ir" (u32)
, "m" (*pu32)
: "cc");
# else
__asm
{
mov eax, [u32]
# ifdef RT_ARCH_AMD64
mov rdx, [pu32]
lock and [rdx], eax
# else
mov edx, [pu32]
lock and [edx], eax
# endif
}
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_32(ASMAtomicAnd32, pu32, DMB_SY,
"and %w[uNew], %w[uNew], %w[uVal]\n\t",
"and %[uNew], %[uNew], %[uVal]\n\t",
[uVal] "r" (u32));
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically AND an unsigned 32-bit value, ordered, extended version.
*
* @returns Old value.
* @param pu32 Pointer to the variable to AND @a u32 with.
* @param u32 The value to AND @a *pu32 with.
*/
DECLINLINE(uint32_t) ASMAtomicAndExU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_OLD_32(ASMAtomicAndEx32, pu32, DMB_SY,
"and %w[uNew], %w[uOld], %w[uVal]\n\t",
"and %[uNew], %[uOld], %[uVal]\n\t",
[uVal] "r" (u32));
return u32OldRet;
#else
uint32_t u32RetOld = ASMAtomicUoReadU32(pu32);
uint32_t u32New;
do
u32New = u32RetOld & u32;
while (!ASMAtomicCmpXchgExU32(pu32, u32New, u32RetOld, &u32RetOld));
return u32RetOld;
#endif
}
/**
* Atomically And a signed 32-bit value, ordered.
*
* @param pi32 Pointer to the pointer variable to AND i32 with.
* @param i32 The value to AND *pi32 with.
*
* @remarks x86: Requires a 386 or later.
*/
DECLINLINE(void) ASMAtomicAndS32(int32_t volatile RT_FAR *pi32, int32_t i32) RT_NOTHROW_DEF
{
ASMAtomicAndU32((uint32_t volatile RT_FAR *)pi32, (uint32_t)i32);
}
/**
* Atomically And an unsigned 64-bit value, ordered.
*
* @param pu64 Pointer to the pointer variable to AND u64 with.
* @param u64 The value to AND *pu64 with.
*
* @remarks x86: Requires a Pentium or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMAtomicAndU64(uint64_t volatile RT_FAR *pu64, uint64_t u64) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMAtomicAndU64(uint64_t volatile RT_FAR *pu64, uint64_t u64) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN && defined(RT_ARCH_AMD64)
_InterlockedAnd64((__int64 volatile RT_FAR *)pu64, u64);
# elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64)
__asm__ __volatile__("lock; andq %1, %0\n\t"
: "=m" (*pu64)
: "r" (u64)
, "m" (*pu64)
: "cc");
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_64(ASMAtomicAndU64, pu64, DMB_SY,
"and %[uNew], %[uNew], %[uVal]\n\t"
,
"and %[uNew], %[uNew], %[uVal]\n\t"
"and %H[uNew], %H[uNew], %H[uVal]\n\t",
[uVal] "r" (u64));
# else
for (;;)
{
uint64_t u64Old = ASMAtomicUoReadU64(pu64);
uint64_t u64New = u64Old & u64;
if (ASMAtomicCmpXchgU64(pu64, u64New, u64Old))
break;
ASMNopPause();
}
# endif
}
#endif
/**
* Atomically And a signed 64-bit value, ordered.
*
* @param pi64 Pointer to the pointer variable to AND i64 with.
* @param i64 The value to AND *pi64 with.
*
* @remarks x86: Requires a Pentium or later.
*/
DECLINLINE(void) ASMAtomicAndS64(int64_t volatile RT_FAR *pi64, int64_t i64) RT_NOTHROW_DEF
{
ASMAtomicAndU64((uint64_t volatile RT_FAR *)pi64, (uint64_t)i64);
}
/**
* Atomically XOR an unsigned 32-bit value and a memory location, ordered.
*
* @param pu32 Pointer to the variable to XOR @a u32 with.
* @param u32 The value to XOR @a *pu32 with.
*
* @remarks x86: Requires a 386 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMAtomicXorU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMAtomicXorU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
_InterlockedXor((long volatile RT_FAR *)pu32, u32);
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("lock; xorl %1, %0\n\t"
: "=m" (*pu32)
: "ir" (u32)
, "m" (*pu32)
: "cc");
# else
__asm
{
mov eax, [u32]
# ifdef RT_ARCH_AMD64
mov rdx, [pu32]
lock xor [rdx], eax
# else
mov edx, [pu32]
lock xor [edx], eax
# endif
}
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_32(ASMAtomicXor32, pu32, DMB_SY,
"eor %w[uNew], %w[uNew], %w[uVal]\n\t",
"eor %[uNew], %[uNew], %[uVal]\n\t",
[uVal] "r" (u32));
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically XOR an unsigned 32-bit value and a memory location, ordered,
* extended version (for bitmaps).
*
* @returns Old value.
* @param pu32 Pointer to the variable to XOR @a u32 with.
* @param u32 The value to XOR @a *pu32 with.
*/
DECLINLINE(uint32_t) ASMAtomicXorExU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_OLD_32(ASMAtomicXorEx32, pu32, DMB_SY,
"eor %w[uNew], %w[uOld], %w[uVal]\n\t",
"eor %[uNew], %[uOld], %[uVal]\n\t",
[uVal] "r" (u32));
return u32OldRet;
#else
uint32_t u32RetOld = ASMAtomicUoReadU32(pu32);
uint32_t u32New;
do
u32New = u32RetOld ^ u32;
while (!ASMAtomicCmpXchgExU32(pu32, u32New, u32RetOld, &u32RetOld));
return u32RetOld;
#endif
}
/**
* Atomically XOR a signed 32-bit value, ordered.
*
* @param pi32 Pointer to the variable to XOR i32 with.
* @param i32 The value to XOR *pi32 with.
*
* @remarks x86: Requires a 386 or later.
*/
DECLINLINE(void) ASMAtomicXorS32(int32_t volatile RT_FAR *pi32, int32_t i32) RT_NOTHROW_DEF
{
ASMAtomicXorU32((uint32_t volatile RT_FAR *)pi32, (uint32_t)i32);
}
/**
* Atomically OR an unsigned 32-bit value, unordered but interrupt safe.
*
* @param pu32 Pointer to the pointer variable to OR u32 with.
* @param u32 The value to OR *pu32 with.
*
* @remarks x86: Requires a 386 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMAtomicUoOrU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMAtomicUoOrU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("orl %1, %0\n\t"
: "=m" (*pu32)
: "ir" (u32)
, "m" (*pu32)
: "cc");
# else
__asm
{
mov eax, [u32]
# ifdef RT_ARCH_AMD64
mov rdx, [pu32]
or [rdx], eax
# else
mov edx, [pu32]
or [edx], eax
# endif
}
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_32(ASMAtomicUoOrU32, pu32, NO_BARRIER,
"orr %w[uNew], %w[uNew], %w[uVal]\n\t",
"orr %[uNew], %[uNew], %[uVal]\n\t",
[uVal] "r" (u32));
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically OR an unsigned 32-bit value, unordered but interrupt safe,
* extended version (for bitmap fallback).
*
* @returns Old value.
* @param pu32 Pointer to the variable to OR @a u32 with.
* @param u32 The value to OR @a *pu32 with.
*/
DECLINLINE(uint32_t) ASMAtomicUoOrExU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_OLD_32(ASMAtomicUoOrExU32, pu32, NO_BARRIER,
"orr %w[uNew], %w[uOld], %w[uVal]\n\t",
"orr %[uNew], %[uOld], %[uVal]\n\t",
[uVal] "r" (u32));
return u32OldRet;
#else
return ASMAtomicOrExU32(pu32, u32); /* (we have no unordered cmpxchg primitive atm.) */
#endif
}
/**
* Atomically OR a signed 32-bit value, unordered.
*
* @param pi32 Pointer to the pointer variable to OR u32 with.
* @param i32 The value to OR *pu32 with.
*
* @remarks x86: Requires a 386 or later.
*/
DECLINLINE(void) ASMAtomicUoOrS32(int32_t volatile RT_FAR *pi32, int32_t i32) RT_NOTHROW_DEF
{
ASMAtomicUoOrU32((uint32_t volatile RT_FAR *)pi32, (uint32_t)i32);
}
/**
* Atomically OR an unsigned 64-bit value, unordered.
*
* @param pu64 Pointer to the pointer variable to OR u64 with.
* @param u64 The value to OR *pu64 with.
*
* @remarks x86: Requires a Pentium or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM
DECLASM(void) ASMAtomicUoOrU64(uint64_t volatile RT_FAR *pu64, uint64_t u64) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMAtomicUoOrU64(uint64_t volatile RT_FAR *pu64, uint64_t u64) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64)
__asm__ __volatile__("orq %1, %q0\n\t"
: "=m" (*pu64)
: "r" (u64)
, "m" (*pu64)
: "cc");
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_64(ASMAtomicUoOrU64, pu64, NO_BARRIER,
"orr %[uNew], %[uNew], %[uVal]\n\t"
,
"orr %[uNew], %[uNew], %[uVal]\n\t"
"orr %H[uNew], %H[uNew], %H[uVal]\n\t",
[uVal] "r" (u64));
# else
for (;;)
{
uint64_t u64Old = ASMAtomicUoReadU64(pu64);
uint64_t u64New = u64Old | u64;
if (ASMAtomicCmpXchgU64(pu64, u64New, u64Old))
break;
ASMNopPause();
}
# endif
}
#endif
/**
* Atomically Or a signed 64-bit value, unordered.
*
* @param pi64 Pointer to the pointer variable to OR u64 with.
* @param i64 The value to OR *pu64 with.
*
* @remarks x86: Requires a Pentium or later.
*/
DECLINLINE(void) ASMAtomicUoOrS64(int64_t volatile RT_FAR *pi64, int64_t i64) RT_NOTHROW_DEF
{
ASMAtomicUoOrU64((uint64_t volatile RT_FAR *)pi64, (uint64_t)i64);
}
/**
* Atomically And an unsigned 32-bit value, unordered.
*
* @param pu32 Pointer to the pointer variable to AND u32 with.
* @param u32 The value to AND *pu32 with.
*
* @remarks x86: Requires a 386 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMAtomicUoAndU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMAtomicUoAndU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("andl %1, %0\n\t"
: "=m" (*pu32)
: "ir" (u32)
, "m" (*pu32)
: "cc");
# else
__asm
{
mov eax, [u32]
# ifdef RT_ARCH_AMD64
mov rdx, [pu32]
and [rdx], eax
# else
mov edx, [pu32]
and [edx], eax
# endif
}
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_32(ASMAtomicUoAnd32, pu32, NO_BARRIER,
"and %w[uNew], %w[uNew], %w[uVal]\n\t",
"and %[uNew], %[uNew], %[uVal]\n\t",
[uVal] "r" (u32));
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically AND an unsigned 32-bit value, unordered, extended version (for
* bitmap fallback).
*
* @returns Old value.
* @param pu32 Pointer to the pointer to AND @a u32 with.
* @param u32 The value to AND @a *pu32 with.
*/
DECLINLINE(uint32_t) ASMAtomicUoAndExU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_OLD_32(ASMAtomicUoAndEx32, pu32, NO_BARRIER,
"and %w[uNew], %w[uOld], %w[uVal]\n\t",
"and %[uNew], %[uOld], %[uVal]\n\t",
[uVal] "r" (u32));
return u32OldRet;
#else
return ASMAtomicAndExU32(pu32, u32); /* (we have no unordered cmpxchg primitive atm.) */
#endif
}
/**
* Atomically And a signed 32-bit value, unordered.
*
* @param pi32 Pointer to the pointer variable to AND i32 with.
* @param i32 The value to AND *pi32 with.
*
* @remarks x86: Requires a 386 or later.
*/
DECLINLINE(void) ASMAtomicUoAndS32(int32_t volatile RT_FAR *pi32, int32_t i32) RT_NOTHROW_DEF
{
ASMAtomicUoAndU32((uint32_t volatile RT_FAR *)pi32, (uint32_t)i32);
}
/**
* Atomically And an unsigned 64-bit value, unordered.
*
* @param pu64 Pointer to the pointer variable to AND u64 with.
* @param u64 The value to AND *pu64 with.
*
* @remarks x86: Requires a Pentium or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM
DECLASM(void) ASMAtomicUoAndU64(uint64_t volatile RT_FAR *pu64, uint64_t u64) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMAtomicUoAndU64(uint64_t volatile RT_FAR *pu64, uint64_t u64) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64)
__asm__ __volatile__("andq %1, %0\n\t"
: "=m" (*pu64)
: "r" (u64)
, "m" (*pu64)
: "cc");
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_64(ASMAtomicUoAndU64, pu64, NO_BARRIER,
"and %[uNew], %[uNew], %[uVal]\n\t"
,
"and %[uNew], %[uNew], %[uVal]\n\t"
"and %H[uNew], %H[uNew], %H[uVal]\n\t",
[uVal] "r" (u64));
# else
for (;;)
{
uint64_t u64Old = ASMAtomicUoReadU64(pu64);
uint64_t u64New = u64Old & u64;
if (ASMAtomicCmpXchgU64(pu64, u64New, u64Old))
break;
ASMNopPause();
}
# endif
}
#endif
/**
* Atomically And a signed 64-bit value, unordered.
*
* @param pi64 Pointer to the pointer variable to AND i64 with.
* @param i64 The value to AND *pi64 with.
*
* @remarks x86: Requires a Pentium or later.
*/
DECLINLINE(void) ASMAtomicUoAndS64(int64_t volatile RT_FAR *pi64, int64_t i64) RT_NOTHROW_DEF
{
ASMAtomicUoAndU64((uint64_t volatile RT_FAR *)pi64, (uint64_t)i64);
}
/**
* Atomically XOR an unsigned 32-bit value, unordered but interrupt safe.
*
* @param pu32 Pointer to the variable to XOR @a u32 with.
* @param u32 The value to OR @a *pu32 with.
*
* @remarks x86: Requires a 386 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMAtomicUoXorU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMAtomicUoXorU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("xorl %1, %0\n\t"
: "=m" (*pu32)
: "ir" (u32)
, "m" (*pu32)
: "cc");
# else
__asm
{
mov eax, [u32]
# ifdef RT_ARCH_AMD64
mov rdx, [pu32]
xor [rdx], eax
# else
mov edx, [pu32]
xor [edx], eax
# endif
}
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_32(ASMAtomicUoXorU32, pu32, NO_BARRIER,
"eor %w[uNew], %w[uNew], %w[uVal]\n\t",
"eor %[uNew], %[uNew], %[uVal]\n\t",
[uVal] "r" (u32));
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically XOR an unsigned 32-bit value, unordered but interrupt safe,
* extended version (for bitmap fallback).
*
* @returns Old value.
* @param pu32 Pointer to the variable to XOR @a u32 with.
* @param u32 The value to OR @a *pu32 with.
*/
DECLINLINE(uint32_t) ASMAtomicUoXorExU32(uint32_t volatile RT_FAR *pu32, uint32_t u32) RT_NOTHROW_DEF
{
#if defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_OLD_32(ASMAtomicUoXorExU32, pu32, NO_BARRIER,
"eor %w[uNew], %w[uOld], %w[uVal]\n\t",
"eor %[uNew], %[uOld], %[uVal]\n\t",
[uVal] "r" (u32));
return u32OldRet;
#else
return ASMAtomicXorExU32(pu32, u32); /* (we have no unordered cmpxchg primitive atm.) */
#endif
}
/**
* Atomically XOR a signed 32-bit value, unordered.
*
* @param pi32 Pointer to the variable to XOR @a u32 with.
* @param i32 The value to XOR @a *pu32 with.
*
* @remarks x86: Requires a 386 or later.
*/
DECLINLINE(void) ASMAtomicUoXorS32(int32_t volatile RT_FAR *pi32, int32_t i32) RT_NOTHROW_DEF
{
ASMAtomicUoXorU32((uint32_t volatile RT_FAR *)pi32, (uint32_t)i32);
}
/**
* Atomically increment an unsigned 32-bit value, unordered.
*
* @returns the new value.
* @param pu32 Pointer to the variable to increment.
*
* @remarks x86: Requires a 486 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM
RT_ASM_DECL_PRAGMA_WATCOM(uint32_t) ASMAtomicUoIncU32(uint32_t volatile RT_FAR *pu32) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint32_t) ASMAtomicUoIncU32(uint32_t volatile RT_FAR *pu32) RT_NOTHROW_DEF
{
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
uint32_t u32;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("xaddl %0, %1\n\t"
: "=r" (u32)
, "=m" (*pu32)
: "0" (1)
, "m" (*pu32)
: "memory" /** @todo why 'memory'? */
, "cc");
return u32 + 1;
# else
__asm
{
mov eax, 1
# ifdef RT_ARCH_AMD64
mov rdx, [pu32]
xadd [rdx], eax
# else
mov edx, [pu32]
xadd [edx], eax
# endif
mov u32, eax
}
return u32 + 1;
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_32(ASMAtomicUoIncU32, pu32, NO_BARRIER,
"add %w[uNew], %w[uNew], #1\n\t",
"add %[uNew], %[uNew], #1\n\t" /* arm6 / thumb2+ */,
"X" (0) /* dummy */);
return u32NewRet;
# else
# error "Port me"
# endif
}
#endif
/**
* Atomically decrement an unsigned 32-bit value, unordered.
*
* @returns the new value.
* @param pu32 Pointer to the variable to decrement.
*
* @remarks x86: Requires a 486 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM
RT_ASM_DECL_PRAGMA_WATCOM(uint32_t) ASMAtomicUoDecU32(uint32_t volatile RT_FAR *pu32) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint32_t) ASMAtomicUoDecU32(uint32_t volatile RT_FAR *pu32) RT_NOTHROW_DEF
{
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
uint32_t u32;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("lock; xaddl %0, %1\n\t"
: "=r" (u32)
, "=m" (*pu32)
: "0" (-1)
, "m" (*pu32)
: "memory"
, "cc");
return u32 - 1;
# else
__asm
{
mov eax, -1
# ifdef RT_ARCH_AMD64
mov rdx, [pu32]
xadd [rdx], eax
# else
mov edx, [pu32]
xadd [edx], eax
# endif
mov u32, eax
}
return u32 - 1;
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
RTASM_ARM_LOAD_MODIFY_STORE_RET_NEW_32(ASMAtomicUoDecU32, pu32, NO_BARRIER,
"sub %w[uNew], %w[uNew], #1\n\t",
"sub %[uNew], %[uNew], #1\n\t" /* arm6 / thumb2+ */,
"X" (0) /* dummy */);
return u32NewRet;
# else
# error "Port me"
# endif
}
#endif
/** @def RT_ASM_PAGE_SIZE
* We try avoid dragging in iprt/param.h here.
* @internal
*/
#if defined(RT_ARCH_SPARC64)
# define RT_ASM_PAGE_SIZE 0x2000
# if defined(PAGE_SIZE) && !defined(NT_INCLUDED)
# if PAGE_SIZE != 0x2000
# error "PAGE_SIZE is not 0x2000!"
# endif
# endif
#elif defined(RT_ARCH_ARM64)
# define RT_ASM_PAGE_SIZE 0x4000
# if defined(PAGE_SIZE) && !defined(NT_INCLUDED) && !defined(_MACH_ARM_VM_PARAM_H_)
# if PAGE_SIZE != 0x4000
# error "PAGE_SIZE is not 0x4000!"
# endif
# endif
#else
# define RT_ASM_PAGE_SIZE 0x1000
# if defined(PAGE_SIZE) && !defined(NT_INCLUDED)
# if PAGE_SIZE != 0x1000
# error "PAGE_SIZE is not 0x1000!"
# endif
# endif
#endif
/**
* Zeros a 4K memory page.
*
* @param pv Pointer to the memory block. This must be page aligned.
*/
#if (RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN) || (!defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86))
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMMemZeroPage(volatile void RT_FAR *pv) RT_NOTHROW_PROTO;
# else
DECLINLINE(void) ASMMemZeroPage(volatile void RT_FAR *pv) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
# ifdef RT_ARCH_AMD64
__stosq((unsigned __int64 *)pv, 0, RT_ASM_PAGE_SIZE / 8);
# else
__stosd((unsigned long *)pv, 0, RT_ASM_PAGE_SIZE / 4);
# endif
# elif RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG uDummy;
# ifdef RT_ARCH_AMD64
__asm__ __volatile__("rep stosq"
: "=D" (pv),
"=c" (uDummy)
: "0" (pv),
"c" (RT_ASM_PAGE_SIZE >> 3),
"a" (0)
: "memory");
# else
__asm__ __volatile__("rep stosl"
: "=D" (pv),
"=c" (uDummy)
: "0" (pv),
"c" (RT_ASM_PAGE_SIZE >> 2),
"a" (0)
: "memory");
# endif
# else
__asm
{
# ifdef RT_ARCH_AMD64
xor rax, rax
mov ecx, 0200h
mov rdi, [pv]
rep stosq
# else
xor eax, eax
mov ecx, 0400h
mov edi, [pv]
rep stosd
# endif
}
# endif
}
# endif
/**
* Zeros a memory block with a 32-bit aligned size.
*
* @param pv Pointer to the memory block.
* @param cb Number of bytes in the block. This MUST be aligned on 32-bit!
*/
#if (RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN) || (!defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86))
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMMemZero32(volatile void RT_FAR *pv, size_t cb) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMMemZero32(volatile void RT_FAR *pv, size_t cb) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
# ifdef RT_ARCH_AMD64
if (!(cb & 7))
__stosq((unsigned __int64 RT_FAR *)pv, 0, cb / 8);
else
# endif
__stosd((unsigned long RT_FAR *)pv, 0, cb / 4);
# elif RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("rep stosl"
: "=D" (pv),
"=c" (cb)
: "0" (pv),
"1" (cb >> 2),
"a" (0)
: "memory");
# else
__asm
{
xor eax, eax
# ifdef RT_ARCH_AMD64
mov rcx, [cb]
shr rcx, 2
mov rdi, [pv]
# else
mov ecx, [cb]
shr ecx, 2
mov edi, [pv]
# endif
rep stosd
}
# endif
}
#endif
/**
* Fills a memory block with a 32-bit aligned size.
*
* @param pv Pointer to the memory block.
* @param cb Number of bytes in the block. This MUST be aligned on 32-bit!
* @param u32 The value to fill with.
*/
#if (RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN) || (!defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86))
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMMemFill32(volatile void RT_FAR *pv, size_t cb, uint32_t u32) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMMemFill32(volatile void RT_FAR *pv, size_t cb, uint32_t u32) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
# ifdef RT_ARCH_AMD64
if (!(cb & 7))
__stosq((unsigned __int64 RT_FAR *)pv, RT_MAKE_U64(u32, u32), cb / 8);
else
# endif
__stosd((unsigned long RT_FAR *)pv, u32, cb / 4);
# elif RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("rep stosl"
: "=D" (pv),
"=c" (cb)
: "0" (pv),
"1" (cb >> 2),
"a" (u32)
: "memory");
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rcx, [cb]
shr rcx, 2
mov rdi, [pv]
# else
mov ecx, [cb]
shr ecx, 2
mov edi, [pv]
# endif
mov eax, [u32]
rep stosd
}
# endif
}
#endif
/**
* Checks if a memory block is all zeros.
*
* @returns Pointer to the first non-zero byte.
* @returns NULL if all zero.
*
* @param pv Pointer to the memory block.
* @param cb Number of bytes in the block.
*/
#if !defined(RDESKTOP) && (!defined(RT_OS_LINUX) || !defined(__KERNEL__))
DECLASM(void RT_FAR *) ASMMemFirstNonZero(void const RT_FAR *pv, size_t cb) RT_NOTHROW_PROTO;
#else
DECLINLINE(void RT_FAR *) ASMMemFirstNonZero(void const RT_FAR *pv, size_t cb) RT_NOTHROW_DEF
{
/** @todo replace with ASMMemFirstNonZero-generic.cpp in kernel modules. */
uint8_t const *pb = (uint8_t const RT_FAR *)pv;
for (; cb; cb--, pb++)
if (RT_LIKELY(*pb == 0))
{ /* likely */ }
else
return (void RT_FAR *)pb;
return NULL;
}
#endif
/**
* Checks if a memory block is all zeros.
*
* @returns true if zero, false if not.
*
* @param pv Pointer to the memory block.
* @param cb Number of bytes in the block.
*
* @sa ASMMemFirstNonZero
*/
DECLINLINE(bool) ASMMemIsZero(void const RT_FAR *pv, size_t cb) RT_NOTHROW_DEF
{
return ASMMemFirstNonZero(pv, cb) == NULL;
}
/**
* Checks if a memory page is all zeros.
*
* @returns true / false.
*
* @param pvPage Pointer to the page. Must be aligned on 16 byte
* boundary
*/
DECLINLINE(bool) ASMMemIsZeroPage(void const RT_FAR *pvPage) RT_NOTHROW_DEF
{
# if 0 /*RT_INLINE_ASM_GNU_STYLE - this is actually slower... */
union { RTCCUINTREG r; bool f; } uAX;
RTCCUINTREG xCX, xDI;
Assert(!((uintptr_t)pvPage & 15));
__asm__ __volatile__("repe; "
# ifdef RT_ARCH_AMD64
"scasq\n\t"
# else
"scasl\n\t"
# endif
"setnc %%al\n\t"
: "=&c" (xCX)
, "=&D" (xDI)
, "=&a" (uAX.r)
: "mr" (pvPage)
# ifdef RT_ARCH_AMD64
, "0" (RT_ASM_PAGE_SIZE/8)
# else
, "0" (RT_ASM_PAGE_SIZE/4)
# endif
, "1" (pvPage)
, "2" (0)
: "cc");
return uAX.f;
# else
uintptr_t const RT_FAR *puPtr = (uintptr_t const RT_FAR *)pvPage;
size_t cLeft = RT_ASM_PAGE_SIZE / sizeof(uintptr_t) / 8;
Assert(!((uintptr_t)pvPage & 15));
for (;;)
{
if (puPtr[0]) return false;
if (puPtr[4]) return false;
if (puPtr[2]) return false;
if (puPtr[6]) return false;
if (puPtr[1]) return false;
if (puPtr[5]) return false;
if (puPtr[3]) return false;
if (puPtr[7]) return false;
if (!--cLeft)
return true;
puPtr += 8;
}
# endif
}
/**
* Checks if a memory block is filled with the specified byte, returning the
* first mismatch.
*
* This is sort of an inverted memchr.
*
* @returns Pointer to the byte which doesn't equal u8.
* @returns NULL if all equal to u8.
*
* @param pv Pointer to the memory block.
* @param cb Number of bytes in the block.
* @param u8 The value it's supposed to be filled with.
*
* @remarks No alignment requirements.
*/
#if (!defined(RT_OS_LINUX) || !defined(__KERNEL__)) \
&& (!defined(RT_OS_FREEBSD) || !defined(_KERNEL))
DECLASM(void *) ASMMemFirstMismatchingU8(void const RT_FAR *pv, size_t cb, uint8_t u8) RT_NOTHROW_PROTO;
#else
DECLINLINE(void *) ASMMemFirstMismatchingU8(void const RT_FAR *pv, size_t cb, uint8_t u8) RT_NOTHROW_DEF
{
/** @todo replace with ASMMemFirstMismatchingU8-generic.cpp in kernel modules. */
uint8_t const *pb = (uint8_t const RT_FAR *)pv;
for (; cb; cb--, pb++)
if (RT_LIKELY(*pb == u8))
{ /* likely */ }
else
return (void *)pb;
return NULL;
}
#endif
/**
* Checks if a memory block is filled with the specified byte.
*
* @returns true if all matching, false if not.
*
* @param pv Pointer to the memory block.
* @param cb Number of bytes in the block.
* @param u8 The value it's supposed to be filled with.
*
* @remarks No alignment requirements.
*/
DECLINLINE(bool) ASMMemIsAllU8(void const RT_FAR *pv, size_t cb, uint8_t u8) RT_NOTHROW_DEF
{
return ASMMemFirstMismatchingU8(pv, cb, u8) == NULL;
}
/**
* Checks if a memory block is filled with the specified 32-bit value.
*
* This is a sort of inverted memchr.
*
* @returns Pointer to the first value which doesn't equal u32.
* @returns NULL if all equal to u32.
*
* @param pv Pointer to the memory block.
* @param cb Number of bytes in the block. This MUST be aligned on 32-bit!
* @param u32 The value it's supposed to be filled with.
*/
DECLINLINE(uint32_t RT_FAR *) ASMMemFirstMismatchingU32(void const RT_FAR *pv, size_t cb, uint32_t u32) RT_NOTHROW_DEF
{
/** @todo rewrite this in inline assembly? */
uint32_t const RT_FAR *pu32 = (uint32_t const RT_FAR *)pv;
for (; cb; cb -= 4, pu32++)
if (RT_LIKELY(*pu32 == u32))
{ /* likely */ }
else
return (uint32_t RT_FAR *)pu32;
return NULL;
}
/**
* Probes a byte pointer for read access.
*
* While the function will not fault if the byte is not read accessible,
* the idea is to do this in a safe place like before acquiring locks
* and such like.
*
* Also, this functions guarantees that an eager compiler is not going
* to optimize the probing away.
*
* @param pvByte Pointer to the byte.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM
RT_ASM_DECL_PRAGMA_WATCOM(uint8_t) ASMProbeReadByte(const void RT_FAR *pvByte) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint8_t) ASMProbeReadByte(const void RT_FAR *pvByte) RT_NOTHROW_DEF
{
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
uint8_t u8;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("movb %1, %0\n\t"
: "=q" (u8)
: "m" (*(const uint8_t *)pvByte));
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [pvByte]
mov al, [rax]
# else
mov eax, [pvByte]
mov al, [eax]
# endif
mov [u8], al
}
# endif
return u8;
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
uint32_t u32;
__asm__ __volatile__(".Lstart_ASMProbeReadByte_%=:\n\t"
# if defined(RT_ARCH_ARM64)
"ldxrb %w[uDst], %[pMem]\n\t"
# else
"ldrexb %[uDst], %[pMem]\n\t"
# endif
: [uDst] "=&r" (u32)
: [pMem] "Q" (*(uint8_t const *)pvByte));
return (uint8_t)u32;
# else
# error "Port me"
# endif
}
#endif
/**
* Probes a buffer for read access page by page.
*
* While the function will fault if the buffer is not fully read
* accessible, the idea is to do this in a safe place like before
* acquiring locks and such like.
*
* Also, this functions guarantees that an eager compiler is not going
* to optimize the probing away.
*
* @param pvBuf Pointer to the buffer.
* @param cbBuf The size of the buffer in bytes. Must be >= 1.
*/
DECLINLINE(void) ASMProbeReadBuffer(const void RT_FAR *pvBuf, size_t cbBuf) RT_NOTHROW_DEF
{
/** @todo verify that the compiler actually doesn't optimize this away. (intel & gcc) */
/* the first byte */
const uint8_t RT_FAR *pu8 = (const uint8_t RT_FAR *)pvBuf;
ASMProbeReadByte(pu8);
/* the pages in between pages. */
while (cbBuf > RT_ASM_PAGE_SIZE)
{
ASMProbeReadByte(pu8);
cbBuf -= RT_ASM_PAGE_SIZE;
pu8 += RT_ASM_PAGE_SIZE;
}
/* the last byte */
ASMProbeReadByte(pu8 + cbBuf - 1);
}
/**
* Reverse the byte order of the given 16-bit integer.
*
* @returns Revert
* @param u16 16-bit integer value.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(uint16_t) ASMByteSwapU16(uint16_t u16) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint16_t) ASMByteSwapU16(uint16_t u16) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
return _byteswap_ushort(u16);
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ ("rorw $8, %0" : "=r" (u16) : "0" (u16) : "cc");
# else
_asm
{
mov ax, [u16]
ror ax, 8
mov [u16], ax
}
# endif
return u16;
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
uint32_t u32Ret;
__asm__ __volatile__(
# if defined(RT_ARCH_ARM64)
"rev16 %w[uRet], %w[uVal]\n\t"
# else
"rev16 %[uRet], %[uVal]\n\t"
# endif
: [uRet] "=r" (u32Ret)
: [uVal] "r" (u16));
return (uint16_t)u32Ret;
# else
# error "Port me"
# endif
}
#endif
/**
* Reverse the byte order of the given 32-bit integer.
*
* @returns Revert
* @param u32 32-bit integer value.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(uint32_t) ASMByteSwapU32(uint32_t u32) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint32_t) ASMByteSwapU32(uint32_t u32) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
return _byteswap_ulong(u32);
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ ("bswapl %0" : "=r" (u32) : "0" (u32));
# else
_asm
{
mov eax, [u32]
bswap eax
mov [u32], eax
}
# endif
return u32;
# elif defined(RT_ARCH_ARM64)
uint64_t u64Ret;
__asm__ __volatile__("rev32 %[uRet], %[uVal]\n\t"
: [uRet] "=r" (u64Ret)
: [uVal] "r" ((uint64_t)u32));
return (uint32_t)u64Ret;
# elif defined(RT_ARCH_ARM32)
__asm__ __volatile__("rev %[uRet], %[uVal]\n\t"
: [uRet] "=r" (u32)
: [uVal] "[uRet]" (u32));
return u32;
# else
# error "Port me"
# endif
}
#endif
/**
* Reverse the byte order of the given 64-bit integer.
*
* @returns Revert
* @param u64 64-bit integer value.
*/
DECLINLINE(uint64_t) ASMByteSwapU64(uint64_t u64) RT_NOTHROW_DEF
{
#if defined(RT_ARCH_AMD64) && RT_INLINE_ASM_USES_INTRIN
return _byteswap_uint64(u64);
# elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64)
__asm__ ("bswapq %0" : "=r" (u64) : "0" (u64));
return u64;
# elif defined(RT_ARCH_ARM64)
__asm__ __volatile__("rev %[uRet], %[uVal]\n\t"
: [uRet] "=r" (u64)
: [uVal] "[uRet]" (u64));
return u64;
#else
return (uint64_t)ASMByteSwapU32((uint32_t)u64) << 32
| (uint64_t)ASMByteSwapU32((uint32_t)(u64 >> 32));
#endif
}
/** @defgroup grp_inline_bits Bit Operations
* @{
*/
/**
* Sets a bit in a bitmap.
*
* @param pvBitmap Pointer to the bitmap (little endian). This should be
* 32-bit aligned.
* @param iBit The bit to set.
*
* @remarks The 32-bit aligning of pvBitmap is not a strict requirement.
* However, doing so will yield better performance as well as avoiding
* traps accessing the last bits in the bitmap.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMBitSet(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMBitSet(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
_bittestandset((long RT_FAR *)pvBitmap, iBit);
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("btsl %1, %0"
: "=m" (*(volatile long RT_FAR *)pvBitmap)
: "Ir" (iBit)
, "m" (*(volatile long RT_FAR *)pvBitmap)
: "memory"
, "cc");
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [pvBitmap]
mov edx, [iBit]
bts [rax], edx
# else
mov eax, [pvBitmap]
mov edx, [iBit]
bts [eax], edx
# endif
}
# endif
# else
int32_t offBitmap = iBit / 32;
AssertStmt(!((uintptr_t)pvBitmap & 3), offBitmap += (uintptr_t)pvBitmap & 3; iBit += ((uintptr_t)pvBitmap & 3) * 8);
ASMAtomicUoOrU32(&((uint32_t volatile *)pvBitmap)[offBitmap], RT_H2LE_U32(RT_BIT_32(iBit & 31)));
# endif
}
#endif
/**
* Atomically sets a bit in a bitmap, ordered.
*
* @param pvBitmap Pointer to the bitmap (little endian). Must be 32-bit
* aligned, otherwise the memory access isn't atomic!
* @param iBit The bit to set.
*
* @remarks x86: Requires a 386 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMAtomicBitSet(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMAtomicBitSet(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_DEF
{
AssertMsg(!((uintptr_t)pvBitmap & 3), ("address %p not 32-bit aligned", pvBitmap));
# if RT_INLINE_ASM_USES_INTRIN
_interlockedbittestandset((long RT_FAR *)pvBitmap, iBit);
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("lock; btsl %1, %0"
: "=m" (*(volatile long *)pvBitmap)
: "Ir" (iBit)
, "m" (*(volatile long *)pvBitmap)
: "memory"
, "cc");
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [pvBitmap]
mov edx, [iBit]
lock bts [rax], edx
# else
mov eax, [pvBitmap]
mov edx, [iBit]
lock bts [eax], edx
# endif
}
# endif
# else
ASMAtomicOrU32(&((uint32_t volatile *)pvBitmap)[iBit / 32], RT_H2LE_U32(RT_BIT_32(iBit & 31)));
# endif
}
#endif
/**
* Clears a bit in a bitmap.
*
* @param pvBitmap Pointer to the bitmap (little endian).
* @param iBit The bit to clear.
*
* @remarks The 32-bit aligning of pvBitmap is not a strict requirement.
* However, doing so will yield better performance as well as avoiding
* traps accessing the last bits in the bitmap.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMBitClear(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMBitClear(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
_bittestandreset((long RT_FAR *)pvBitmap, iBit);
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("btrl %1, %0"
: "=m" (*(volatile long RT_FAR *)pvBitmap)
: "Ir" (iBit)
, "m" (*(volatile long RT_FAR *)pvBitmap)
: "memory"
, "cc");
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [pvBitmap]
mov edx, [iBit]
btr [rax], edx
# else
mov eax, [pvBitmap]
mov edx, [iBit]
btr [eax], edx
# endif
}
# endif
# else
int32_t offBitmap = iBit / 32;
AssertStmt(!((uintptr_t)pvBitmap & 3), offBitmap += (uintptr_t)pvBitmap & 3; iBit += ((uintptr_t)pvBitmap & 3) * 8);
ASMAtomicUoAndU32(&((uint32_t volatile *)pvBitmap)[offBitmap], RT_H2LE_U32(~RT_BIT_32(iBit & 31)));
# endif
}
#endif
/**
* Atomically clears a bit in a bitmap, ordered.
*
* @param pvBitmap Pointer to the bitmap (little endian). Must be 32-bit
* aligned, otherwise the memory access isn't atomic!
* @param iBit The bit to toggle set.
*
* @remarks No memory barrier, take care on smp.
* @remarks x86: Requires a 386 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMAtomicBitClear(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMAtomicBitClear(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_DEF
{
AssertMsg(!((uintptr_t)pvBitmap & 3), ("address %p not 32-bit aligned", pvBitmap));
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("lock; btrl %1, %0"
: "=m" (*(volatile long RT_FAR *)pvBitmap)
: "Ir" (iBit)
, "m" (*(volatile long RT_FAR *)pvBitmap)
: "memory"
, "cc");
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [pvBitmap]
mov edx, [iBit]
lock btr [rax], edx
# else
mov eax, [pvBitmap]
mov edx, [iBit]
lock btr [eax], edx
# endif
}
# endif
# else
ASMAtomicAndU32(&((uint32_t volatile *)pvBitmap)[iBit / 32], RT_H2LE_U32(~RT_BIT_32(iBit & 31)));
# endif
}
#endif
/**
* Toggles a bit in a bitmap.
*
* @param pvBitmap Pointer to the bitmap (little endian).
* @param iBit The bit to toggle.
*
* @remarks The 32-bit aligning of pvBitmap is not a strict requirement.
* However, doing so will yield better performance as well as avoiding
* traps accessing the last bits in the bitmap.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMBitToggle(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMBitToggle(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
_bittestandcomplement((long RT_FAR *)pvBitmap, iBit);
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("btcl %1, %0"
: "=m" (*(volatile long *)pvBitmap)
: "Ir" (iBit)
, "m" (*(volatile long *)pvBitmap)
: "memory"
, "cc");
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [pvBitmap]
mov edx, [iBit]
btc [rax], edx
# else
mov eax, [pvBitmap]
mov edx, [iBit]
btc [eax], edx
# endif
}
# endif
# else
int32_t offBitmap = iBit / 32;
AssertStmt(!((uintptr_t)pvBitmap & 3), offBitmap += (uintptr_t)pvBitmap & 3; iBit += ((uintptr_t)pvBitmap & 3) * 8);
ASMAtomicUoXorU32(&((uint32_t volatile *)pvBitmap)[offBitmap], RT_H2LE_U32(RT_BIT_32(iBit & 31)));
# endif
}
#endif
/**
* Atomically toggles a bit in a bitmap, ordered.
*
* @param pvBitmap Pointer to the bitmap (little endian). Must be 32-bit
* aligned, otherwise the memory access isn't atomic!
* @param iBit The bit to test and set.
*
* @remarks x86: Requires a 386 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM
RT_ASM_DECL_PRAGMA_WATCOM(void) ASMAtomicBitToggle(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_PROTO;
#else
DECLINLINE(void) ASMAtomicBitToggle(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_DEF
{
AssertMsg(!((uintptr_t)pvBitmap & 3), ("address %p not 32-bit aligned", pvBitmap));
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("lock; btcl %1, %0"
: "=m" (*(volatile long RT_FAR *)pvBitmap)
: "Ir" (iBit)
, "m" (*(volatile long RT_FAR *)pvBitmap)
: "memory"
, "cc");
# else
__asm
{
# ifdef RT_ARCH_AMD64
mov rax, [pvBitmap]
mov edx, [iBit]
lock btc [rax], edx
# else
mov eax, [pvBitmap]
mov edx, [iBit]
lock btc [eax], edx
# endif
}
# endif
# else
ASMAtomicXorU32(&((uint32_t volatile *)pvBitmap)[iBit / 32], RT_H2LE_U32(RT_BIT_32(iBit & 31)));
# endif
}
#endif
/**
* Tests and sets a bit in a bitmap.
*
* @returns true if the bit was set.
* @returns false if the bit was clear.
*
* @param pvBitmap Pointer to the bitmap (little endian).
* @param iBit The bit to test and set.
*
* @remarks The 32-bit aligning of pvBitmap is not a strict requirement.
* However, doing so will yield better performance as well as avoiding
* traps accessing the last bits in the bitmap.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(bool) ASMBitTestAndSet(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_PROTO;
#else
DECLINLINE(bool) ASMBitTestAndSet(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_DEF
{
union { bool f; uint32_t u32; uint8_t u8; } rc;
# if RT_INLINE_ASM_USES_INTRIN
rc.u8 = _bittestandset((long RT_FAR *)pvBitmap, iBit);
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("btsl %2, %1\n\t"
"setc %b0\n\t"
"andl $1, %0\n\t"
: "=q" (rc.u32)
, "=m" (*(volatile long RT_FAR *)pvBitmap)
: "Ir" (iBit)
, "m" (*(volatile long RT_FAR *)pvBitmap)
: "memory"
, "cc");
# else
__asm
{
mov edx, [iBit]
# ifdef RT_ARCH_AMD64
mov rax, [pvBitmap]
bts [rax], edx
# else
mov eax, [pvBitmap]
bts [eax], edx
# endif
setc al
and eax, 1
mov [rc.u32], eax
}
# endif
# else
int32_t offBitmap = iBit / 32;
AssertStmt(!((uintptr_t)pvBitmap & 3), offBitmap += (uintptr_t)pvBitmap & 3; iBit += ((uintptr_t)pvBitmap & 3) * 8);
rc.u32 = RT_LE2H_U32(ASMAtomicUoOrExU32(&((uint32_t volatile *)pvBitmap)[offBitmap], RT_H2LE_U32(RT_BIT_32(iBit & 31))))
>> (iBit & 31);
rc.u32 &= 1;
# endif
return rc.f;
}
#endif
/**
* Atomically tests and sets a bit in a bitmap, ordered.
*
* @returns true if the bit was set.
* @returns false if the bit was clear.
*
* @param pvBitmap Pointer to the bitmap (little endian). Must be 32-bit
* aligned, otherwise the memory access isn't atomic!
* @param iBit The bit to set.
*
* @remarks x86: Requires a 386 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(bool) ASMAtomicBitTestAndSet(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_PROTO;
#else
DECLINLINE(bool) ASMAtomicBitTestAndSet(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_DEF
{
union { bool f; uint32_t u32; uint8_t u8; } rc;
AssertMsg(!((uintptr_t)pvBitmap & 3), ("address %p not 32-bit aligned", pvBitmap));
# if RT_INLINE_ASM_USES_INTRIN
rc.u8 = _interlockedbittestandset((long RT_FAR *)pvBitmap, iBit);
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("lock; btsl %2, %1\n\t"
"setc %b0\n\t"
"andl $1, %0\n\t"
: "=q" (rc.u32)
, "=m" (*(volatile long RT_FAR *)pvBitmap)
: "Ir" (iBit)
, "m" (*(volatile long RT_FAR *)pvBitmap)
: "memory"
, "cc");
# else
__asm
{
mov edx, [iBit]
# ifdef RT_ARCH_AMD64
mov rax, [pvBitmap]
lock bts [rax], edx
# else
mov eax, [pvBitmap]
lock bts [eax], edx
# endif
setc al
and eax, 1
mov [rc.u32], eax
}
# endif
# else
rc.u32 = RT_LE2H_U32(ASMAtomicOrExU32(&((uint32_t volatile *)pvBitmap)[iBit / 32], RT_H2LE_U32(RT_BIT_32(iBit & 31))))
>> (iBit & 31);
rc.u32 &= 1;
# endif
return rc.f;
}
#endif
/**
* Tests and clears a bit in a bitmap.
*
* @returns true if the bit was set.
* @returns false if the bit was clear.
*
* @param pvBitmap Pointer to the bitmap (little endian).
* @param iBit The bit to test and clear.
*
* @remarks The 32-bit aligning of pvBitmap is not a strict requirement.
* However, doing so will yield better performance as well as avoiding
* traps accessing the last bits in the bitmap.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(bool) ASMBitTestAndClear(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_PROTO;
#else
DECLINLINE(bool) ASMBitTestAndClear(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_DEF
{
union { bool f; uint32_t u32; uint8_t u8; } rc;
# if RT_INLINE_ASM_USES_INTRIN
rc.u8 = _bittestandreset((long RT_FAR *)pvBitmap, iBit);
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("btrl %2, %1\n\t"
"setc %b0\n\t"
"andl $1, %0\n\t"
: "=q" (rc.u32)
, "=m" (*(volatile long RT_FAR *)pvBitmap)
: "Ir" (iBit)
, "m" (*(volatile long RT_FAR *)pvBitmap)
: "memory"
, "cc");
# else
__asm
{
mov edx, [iBit]
# ifdef RT_ARCH_AMD64
mov rax, [pvBitmap]
btr [rax], edx
# else
mov eax, [pvBitmap]
btr [eax], edx
# endif
setc al
and eax, 1
mov [rc.u32], eax
}
# endif
# else
int32_t offBitmap = iBit / 32;
AssertStmt(!((uintptr_t)pvBitmap & 3), offBitmap += (uintptr_t)pvBitmap & 3; iBit += ((uintptr_t)pvBitmap & 3) * 8);
rc.u32 = RT_LE2H_U32(ASMAtomicUoAndExU32(&((uint32_t volatile *)pvBitmap)[offBitmap], RT_H2LE_U32(~RT_BIT_32(iBit & 31))))
>> (iBit & 31);
rc.u32 &= 1;
# endif
return rc.f;
}
#endif
/**
* Atomically tests and clears a bit in a bitmap, ordered.
*
* @returns true if the bit was set.
* @returns false if the bit was clear.
*
* @param pvBitmap Pointer to the bitmap (little endian). Must be 32-bit
* aligned, otherwise the memory access isn't atomic!
* @param iBit The bit to test and clear.
*
* @remarks No memory barrier, take care on smp.
* @remarks x86: Requires a 386 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(bool) ASMAtomicBitTestAndClear(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_PROTO;
#else
DECLINLINE(bool) ASMAtomicBitTestAndClear(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_DEF
{
union { bool f; uint32_t u32; uint8_t u8; } rc;
AssertMsg(!((uintptr_t)pvBitmap & 3), ("address %p not 32-bit aligned", pvBitmap));
# if RT_INLINE_ASM_USES_INTRIN
rc.u8 = _interlockedbittestandreset((long RT_FAR *)pvBitmap, iBit);
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("lock; btrl %2, %1\n\t"
"setc %b0\n\t"
"andl $1, %0\n\t"
: "=q" (rc.u32)
, "=m" (*(volatile long RT_FAR *)pvBitmap)
: "Ir" (iBit)
, "m" (*(volatile long RT_FAR *)pvBitmap)
: "memory"
, "cc");
# else
__asm
{
mov edx, [iBit]
# ifdef RT_ARCH_AMD64
mov rax, [pvBitmap]
lock btr [rax], edx
# else
mov eax, [pvBitmap]
lock btr [eax], edx
# endif
setc al
and eax, 1
mov [rc.u32], eax
}
# endif
# else
rc.u32 = RT_LE2H_U32(ASMAtomicAndExU32(&((uint32_t volatile *)pvBitmap)[iBit / 32], RT_H2LE_U32(~RT_BIT_32(iBit & 31))))
>> (iBit & 31);
rc.u32 &= 1;
# endif
return rc.f;
}
#endif
/**
* Tests and toggles a bit in a bitmap.
*
* @returns true if the bit was set.
* @returns false if the bit was clear.
*
* @param pvBitmap Pointer to the bitmap (little endian).
* @param iBit The bit to test and toggle.
*
* @remarks The 32-bit aligning of pvBitmap is not a strict requirement.
* However, doing so will yield better performance as well as avoiding
* traps accessing the last bits in the bitmap.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(bool) ASMBitTestAndToggle(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_PROTO;
#else
DECLINLINE(bool) ASMBitTestAndToggle(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_DEF
{
union { bool f; uint32_t u32; uint8_t u8; } rc;
# if RT_INLINE_ASM_USES_INTRIN
rc.u8 = _bittestandcomplement((long RT_FAR *)pvBitmap, iBit);
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("btcl %2, %1\n\t"
"setc %b0\n\t"
"andl $1, %0\n\t"
: "=q" (rc.u32)
, "=m" (*(volatile long RT_FAR *)pvBitmap)
: "Ir" (iBit)
, "m" (*(volatile long RT_FAR *)pvBitmap)
: "memory"
, "cc");
# else
__asm
{
mov edx, [iBit]
# ifdef RT_ARCH_AMD64
mov rax, [pvBitmap]
btc [rax], edx
# else
mov eax, [pvBitmap]
btc [eax], edx
# endif
setc al
and eax, 1
mov [rc.u32], eax
}
# endif
# else
int32_t offBitmap = iBit / 32;
AssertStmt(!((uintptr_t)pvBitmap & 3), offBitmap += (uintptr_t)pvBitmap & 3; iBit += ((uintptr_t)pvBitmap & 3) * 8);
rc.u32 = RT_LE2H_U32(ASMAtomicUoXorExU32(&((uint32_t volatile *)pvBitmap)[offBitmap], RT_H2LE_U32(RT_BIT_32(iBit & 31))))
>> (iBit & 31);
rc.u32 &= 1;
# endif
return rc.f;
}
#endif
/**
* Atomically tests and toggles a bit in a bitmap, ordered.
*
* @returns true if the bit was set.
* @returns false if the bit was clear.
*
* @param pvBitmap Pointer to the bitmap (little endian). Must be 32-bit
* aligned, otherwise the memory access isn't atomic!
* @param iBit The bit to test and toggle.
*
* @remarks x86: Requires a 386 or later.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM
RT_ASM_DECL_PRAGMA_WATCOM(bool) ASMAtomicBitTestAndToggle(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_PROTO;
#else
DECLINLINE(bool) ASMAtomicBitTestAndToggle(volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_DEF
{
union { bool f; uint32_t u32; uint8_t u8; } rc;
AssertMsg(!((uintptr_t)pvBitmap & 3), ("address %p not 32-bit aligned", pvBitmap));
# if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("lock; btcl %2, %1\n\t"
"setc %b0\n\t"
"andl $1, %0\n\t"
: "=q" (rc.u32)
, "=m" (*(volatile long RT_FAR *)pvBitmap)
: "Ir" (iBit)
, "m" (*(volatile long RT_FAR *)pvBitmap)
: "memory"
, "cc");
# else
__asm
{
mov edx, [iBit]
# ifdef RT_ARCH_AMD64
mov rax, [pvBitmap]
lock btc [rax], edx
# else
mov eax, [pvBitmap]
lock btc [eax], edx
# endif
setc al
and eax, 1
mov [rc.u32], eax
}
# endif
# else
rc.u32 = RT_H2LE_U32(ASMAtomicXorExU32(&((uint32_t volatile *)pvBitmap)[iBit / 32], RT_LE2H_U32(RT_BIT_32(iBit & 31))))
>> (iBit & 31);
rc.u32 &= 1;
# endif
return rc.f;
}
#endif
/**
* Tests if a bit in a bitmap is set.
*
* @returns true if the bit is set.
* @returns false if the bit is clear.
*
* @param pvBitmap Pointer to the bitmap (little endian).
* @param iBit The bit to test.
*
* @remarks The 32-bit aligning of pvBitmap is not a strict requirement.
* However, doing so will yield better performance as well as avoiding
* traps accessing the last bits in the bitmap.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM(bool) ASMBitTest(const volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_PROTO;
#else
DECLINLINE(bool) ASMBitTest(const volatile void RT_FAR *pvBitmap, int32_t iBit) RT_NOTHROW_DEF
{
union { bool f; uint32_t u32; uint8_t u8; } rc;
# if RT_INLINE_ASM_USES_INTRIN
rc.u32 = _bittest((long *)pvBitmap, iBit);
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("btl %2, %1\n\t"
"setc %b0\n\t"
"andl $1, %0\n\t"
: "=q" (rc.u32)
: "m" (*(const volatile long RT_FAR *)pvBitmap)
, "Ir" (iBit)
: "memory"
, "cc");
# else
__asm
{
mov edx, [iBit]
# ifdef RT_ARCH_AMD64
mov rax, [pvBitmap]
bt [rax], edx
# else
mov eax, [pvBitmap]
bt [eax], edx
# endif
setc al
and eax, 1
mov [rc.u32], eax
}
# endif
# else
int32_t offBitmap = iBit / 32;
AssertStmt(!((uintptr_t)pvBitmap & 3), offBitmap += (uintptr_t)pvBitmap & 3; iBit += ((uintptr_t)pvBitmap & 3) * 8);
rc.u32 = RT_LE2H_U32(ASMAtomicUoReadU32(&((uint32_t volatile *)pvBitmap)[offBitmap])) >> (iBit & 31);
rc.u32 &= 1;
# endif
return rc.f;
}
#endif
/**
* Clears a bit range within a bitmap.
*
* @param pvBitmap Pointer to the bitmap (little endian).
* @param iBitStart The First bit to clear.
* @param iBitEnd The first bit not to clear.
*/
DECLINLINE(void) ASMBitClearRange(volatile void RT_FAR *pvBitmap, size_t iBitStart, size_t iBitEnd) RT_NOTHROW_DEF
{
if (iBitStart < iBitEnd)
{
uint32_t volatile RT_FAR *pu32 = (volatile uint32_t RT_FAR *)pvBitmap + (iBitStart >> 5);
size_t iStart = iBitStart & ~(size_t)31;
size_t iEnd = iBitEnd & ~(size_t)31;
if (iStart == iEnd)
*pu32 &= RT_H2LE_U32(((UINT32_C(1) << (iBitStart & 31)) - 1) | ~((UINT32_C(1) << (iBitEnd & 31)) - 1));
else
{
/* bits in first dword. */
if (iBitStart & 31)
{
*pu32 &= RT_H2LE_U32((UINT32_C(1) << (iBitStart & 31)) - 1);
pu32++;
iBitStart = iStart + 32;
}
/* whole dwords. */
if (iBitStart != iEnd)
ASMMemZero32(pu32, (iEnd - iBitStart) >> 3);
/* bits in last dword. */
if (iBitEnd & 31)
{
pu32 = (volatile uint32_t RT_FAR *)pvBitmap + (iBitEnd >> 5);
*pu32 &= RT_H2LE_U32(~((UINT32_C(1) << (iBitEnd & 31)) - 1));
}
}
}
}
/**
* Sets a bit range within a bitmap.
*
* @param pvBitmap Pointer to the bitmap (little endian).
* @param iBitStart The First bit to set.
* @param iBitEnd The first bit not to set.
*/
DECLINLINE(void) ASMBitSetRange(volatile void RT_FAR *pvBitmap, size_t iBitStart, size_t iBitEnd) RT_NOTHROW_DEF
{
if (iBitStart < iBitEnd)
{
uint32_t volatile RT_FAR *pu32 = (volatile uint32_t RT_FAR *)pvBitmap + (iBitStart >> 5);
size_t iStart = iBitStart & ~(size_t)31;
size_t iEnd = iBitEnd & ~(size_t)31;
if (iStart == iEnd)
*pu32 |= RT_H2LE_U32(((UINT32_C(1) << (iBitEnd - iBitStart)) - 1) << (iBitStart & 31));
else
{
/* bits in first dword. */
if (iBitStart & 31)
{
*pu32 |= RT_H2LE_U32(~((UINT32_C(1) << (iBitStart & 31)) - 1));
pu32++;
iBitStart = iStart + 32;
}
/* whole dword. */
if (iBitStart != iEnd)
ASMMemFill32(pu32, (iEnd - iBitStart) >> 3, ~UINT32_C(0));
/* bits in last dword. */
if (iBitEnd & 31)
{
pu32 = (volatile uint32_t RT_FAR *)pvBitmap + (iBitEnd >> 5);
*pu32 |= RT_H2LE_U32((UINT32_C(1) << (iBitEnd & 31)) - 1);
}
}
}
}
/**
* Finds the first clear bit in a bitmap.
*
* @returns Index of the first zero bit.
* @returns -1 if no clear bit was found.
* @param pvBitmap Pointer to the bitmap (little endian).
* @param cBits The number of bits in the bitmap. Multiple of 32.
*/
#if RT_INLINE_ASM_EXTERNAL || (!defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86))
DECLASM(int32_t) ASMBitFirstClear(const volatile void RT_FAR *pvBitmap, uint32_t cBits) RT_NOTHROW_PROTO;
#else
DECLINLINE(int32_t) ASMBitFirstClear(const volatile void RT_FAR *pvBitmap, uint32_t cBits) RT_NOTHROW_DEF
{
if (cBits)
{
int32_t iBit;
# if RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG uEAX, uECX, uEDI;
cBits = RT_ALIGN_32(cBits, 32);
__asm__ __volatile__("repe; scasl\n\t"
"je 1f\n\t"
# ifdef RT_ARCH_AMD64
"lea -4(%%rdi), %%rdi\n\t"
"xorl (%%rdi), %%eax\n\t"
"subq %5, %%rdi\n\t"
# else
"lea -4(%%edi), %%edi\n\t"
"xorl (%%edi), %%eax\n\t"
"subl %5, %%edi\n\t"
# endif
"shll $3, %%edi\n\t"
"bsfl %%eax, %%edx\n\t"
"addl %%edi, %%edx\n\t"
"1:\t\n"
: "=d" (iBit)
, "=&c" (uECX)
, "=&D" (uEDI)
, "=&a" (uEAX)
: "0" (0xffffffff)
, "mr" (pvBitmap)
, "1" (cBits >> 5)
, "2" (pvBitmap)
, "3" (0xffffffff)
: "cc");
# else
cBits = RT_ALIGN_32(cBits, 32);
__asm
{
# ifdef RT_ARCH_AMD64
mov rdi, [pvBitmap]
mov rbx, rdi
# else
mov edi, [pvBitmap]
mov ebx, edi
# endif
mov edx, 0ffffffffh
mov eax, edx
mov ecx, [cBits]
shr ecx, 5
repe scasd
je done
# ifdef RT_ARCH_AMD64
lea rdi, [rdi - 4]
xor eax, [rdi]
sub rdi, rbx
# else
lea edi, [edi - 4]
xor eax, [edi]
sub edi, ebx
# endif
shl edi, 3
bsf edx, eax
add edx, edi
done:
mov [iBit], edx
}
# endif
return iBit;
}
return -1;
}
#endif
/**
* Finds the next clear bit in a bitmap.
*
* @returns Index of the first zero bit.
* @returns -1 if no clear bit was found.
* @param pvBitmap Pointer to the bitmap (little endian).
* @param cBits The number of bits in the bitmap. Multiple of 32.
* @param iBitPrev The bit returned from the last search.
* The search will start at iBitPrev + 1.
*/
#if RT_INLINE_ASM_EXTERNAL || (!defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86))
DECLASM(int) ASMBitNextClear(const volatile void RT_FAR *pvBitmap, uint32_t cBits, uint32_t iBitPrev) RT_NOTHROW_PROTO;
#else
DECLINLINE(int) ASMBitNextClear(const volatile void RT_FAR *pvBitmap, uint32_t cBits, uint32_t iBitPrev) RT_NOTHROW_DEF
{
const volatile uint32_t RT_FAR *pau32Bitmap = (const volatile uint32_t RT_FAR *)pvBitmap;
int iBit = ++iBitPrev & 31;
if (iBit)
{
/*
* Inspect the 32-bit word containing the unaligned bit.
*/
uint32_t u32 = ~pau32Bitmap[iBitPrev / 32] >> iBit;
# if RT_INLINE_ASM_USES_INTRIN
unsigned long ulBit = 0;
if (_BitScanForward(&ulBit, u32))
return ulBit + iBitPrev;
# else
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("bsf %1, %0\n\t"
"jnz 1f\n\t"
"movl $-1, %0\n\t" /** @todo use conditional move for 64-bit? */
"1:\n\t"
: "=r" (iBit)
: "r" (u32)
: "cc");
# else
__asm
{
mov edx, [u32]
bsf eax, edx
jnz done
mov eax, 0ffffffffh
done:
mov [iBit], eax
}
# endif
if (iBit >= 0)
return iBit + (int)iBitPrev;
# endif
/*
* Skip ahead and see if there is anything left to search.
*/
iBitPrev |= 31;
iBitPrev++;
if (cBits <= (uint32_t)iBitPrev)
return -1;
}
/*
* 32-bit aligned search, let ASMBitFirstClear do the dirty work.
*/
iBit = ASMBitFirstClear(&pau32Bitmap[iBitPrev / 32], cBits - iBitPrev);
if (iBit >= 0)
iBit += iBitPrev;
return iBit;
}
#endif
/**
* Finds the first set bit in a bitmap.
*
* @returns Index of the first set bit.
* @returns -1 if no clear bit was found.
* @param pvBitmap Pointer to the bitmap (little endian).
* @param cBits The number of bits in the bitmap. Multiple of 32.
*/
#if RT_INLINE_ASM_EXTERNAL || (!defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86))
DECLASM(int32_t) ASMBitFirstSet(const volatile void RT_FAR *pvBitmap, uint32_t cBits) RT_NOTHROW_PROTO;
#else
DECLINLINE(int32_t) ASMBitFirstSet(const volatile void RT_FAR *pvBitmap, uint32_t cBits) RT_NOTHROW_DEF
{
if (cBits)
{
int32_t iBit;
# if RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG uEAX, uECX, uEDI;
cBits = RT_ALIGN_32(cBits, 32);
__asm__ __volatile__("repe; scasl\n\t"
"je 1f\n\t"
# ifdef RT_ARCH_AMD64
"lea -4(%%rdi), %%rdi\n\t"
"movl (%%rdi), %%eax\n\t"
"subq %5, %%rdi\n\t"
# else
"lea -4(%%edi), %%edi\n\t"
"movl (%%edi), %%eax\n\t"
"subl %5, %%edi\n\t"
# endif
"shll $3, %%edi\n\t"
"bsfl %%eax, %%edx\n\t"
"addl %%edi, %%edx\n\t"
"1:\t\n"
: "=d" (iBit)
, "=&c" (uECX)
, "=&D" (uEDI)
, "=&a" (uEAX)
: "0" (0xffffffff)
, "mr" (pvBitmap)
, "1" (cBits >> 5)
, "2" (pvBitmap)
, "3" (0)
: "cc");
# else
cBits = RT_ALIGN_32(cBits, 32);
__asm
{
# ifdef RT_ARCH_AMD64
mov rdi, [pvBitmap]
mov rbx, rdi
# else
mov edi, [pvBitmap]
mov ebx, edi
# endif
mov edx, 0ffffffffh
xor eax, eax
mov ecx, [cBits]
shr ecx, 5
repe scasd
je done
# ifdef RT_ARCH_AMD64
lea rdi, [rdi - 4]
mov eax, [rdi]
sub rdi, rbx
# else
lea edi, [edi - 4]
mov eax, [edi]
sub edi, ebx
# endif
shl edi, 3
bsf edx, eax
add edx, edi
done:
mov [iBit], edx
}
# endif
return iBit;
}
return -1;
}
#endif
/**
* Finds the next set bit in a bitmap.
*
* @returns Index of the next set bit.
* @returns -1 if no set bit was found.
* @param pvBitmap Pointer to the bitmap (little endian).
* @param cBits The number of bits in the bitmap. Multiple of 32.
* @param iBitPrev The bit returned from the last search.
* The search will start at iBitPrev + 1.
*/
#if RT_INLINE_ASM_EXTERNAL || (!defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86))
DECLASM(int) ASMBitNextSet(const volatile void RT_FAR *pvBitmap, uint32_t cBits, uint32_t iBitPrev) RT_NOTHROW_PROTO;
#else
DECLINLINE(int) ASMBitNextSet(const volatile void RT_FAR *pvBitmap, uint32_t cBits, uint32_t iBitPrev) RT_NOTHROW_DEF
{
const volatile uint32_t RT_FAR *pau32Bitmap = (const volatile uint32_t RT_FAR *)pvBitmap;
int iBit = ++iBitPrev & 31;
if (iBit)
{
/*
* Inspect the 32-bit word containing the unaligned bit.
*/
uint32_t u32 = pau32Bitmap[iBitPrev / 32] >> iBit;
# if RT_INLINE_ASM_USES_INTRIN
unsigned long ulBit = 0;
if (_BitScanForward(&ulBit, u32))
return ulBit + iBitPrev;
# else
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("bsf %1, %0\n\t"
"jnz 1f\n\t" /** @todo use conditional move for 64-bit? */
"movl $-1, %0\n\t"
"1:\n\t"
: "=r" (iBit)
: "r" (u32)
: "cc");
# else
__asm
{
mov edx, [u32]
bsf eax, edx
jnz done
mov eax, 0ffffffffh
done:
mov [iBit], eax
}
# endif
if (iBit >= 0)
return iBit + (int)iBitPrev;
# endif
/*
* Skip ahead and see if there is anything left to search.
*/
iBitPrev |= 31;
iBitPrev++;
if (cBits <= (uint32_t)iBitPrev)
return -1;
}
/*
* 32-bit aligned search, let ASMBitFirstClear do the dirty work.
*/
iBit = ASMBitFirstSet(&pau32Bitmap[iBitPrev / 32], cBits - iBitPrev);
if (iBit >= 0)
iBit += iBitPrev;
return iBit;
}
#endif
/**
* Finds the first bit which is set in the given 32-bit integer.
* Bits are numbered from 1 (least significant) to 32.
*
* @returns index [1..32] of the first set bit.
* @returns 0 if all bits are cleared.
* @param u32 Integer to search for set bits.
* @remarks Similar to ffs() in BSD.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM_386(unsigned) ASMBitFirstSetU32(uint32_t u32) RT_NOTHROW_PROTO;
#else
DECLINLINE(unsigned) ASMBitFirstSetU32(uint32_t u32) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
unsigned long iBit;
if (_BitScanForward(&iBit, u32))
iBit++;
else
iBit = 0;
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
uint32_t iBit;
__asm__ __volatile__("bsf %1, %0\n\t"
"jnz 1f\n\t"
"xorl %0, %0\n\t"
"jmp 2f\n"
"1:\n\t"
"incl %0\n"
"2:\n\t"
: "=r" (iBit)
: "rm" (u32)
: "cc");
# else
uint32_t iBit;
_asm
{
bsf eax, [u32]
jnz found
xor eax, eax
jmp done
found:
inc eax
done:
mov [iBit], eax
}
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
/*
* Using the "count leading zeros (clz)" instruction here because there
* is no dedicated instruction to get the first set bit.
* Need to reverse the bits in the value with "rbit" first because
* "clz" starts counting from the most significant bit.
*/
uint32_t iBit;
__asm__ __volatile__(
# if defined(RT_ARCH_ARM64)
"rbit %w[uVal], %w[uVal]\n\t"
"clz %w[iBit], %w[uVal]\n\t"
# else
"rbit %[uVal], %[uVal]\n\t"
"clz %[iBit], %[uVal]\n\t"
# endif
: [uVal] "=r" (u32)
, [iBit] "=r" (iBit)
: "[uVal]" (u32));
if (iBit != 32)
iBit++;
else
iBit = 0; /* No bit set. */
# else
# error "Port me"
# endif
return iBit;
}
#endif
/**
* Finds the first bit which is set in the given 32-bit integer.
* Bits are numbered from 1 (least significant) to 32.
*
* @returns index [1..32] of the first set bit.
* @returns 0 if all bits are cleared.
* @param i32 Integer to search for set bits.
* @remark Similar to ffs() in BSD.
*/
DECLINLINE(unsigned) ASMBitFirstSetS32(int32_t i32) RT_NOTHROW_DEF
{
return ASMBitFirstSetU32((uint32_t)i32);
}
/**
* Finds the first bit which is set in the given 64-bit integer.
*
* Bits are numbered from 1 (least significant) to 64.
*
* @returns index [1..64] of the first set bit.
* @returns 0 if all bits are cleared.
* @param u64 Integer to search for set bits.
* @remarks Similar to ffs() in BSD.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM_386(unsigned) ASMBitFirstSetU64(uint64_t u64) RT_NOTHROW_PROTO;
#else
DECLINLINE(unsigned) ASMBitFirstSetU64(uint64_t u64) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
unsigned long iBit;
# if ARCH_BITS == 64
if (_BitScanForward64(&iBit, u64))
iBit++;
else
iBit = 0;
# else
if (_BitScanForward(&iBit, (uint32_t)u64))
iBit++;
else if (_BitScanForward(&iBit, (uint32_t)(u64 >> 32)))
iBit += 33;
else
iBit = 0;
# endif
# elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64)
uint64_t iBit;
__asm__ __volatile__("bsfq %1, %0\n\t"
"jnz 1f\n\t"
"xorl %k0, %k0\n\t"
"jmp 2f\n"
"1:\n\t"
"incl %k0\n"
"2:\n\t"
: "=r" (iBit)
: "rm" (u64)
: "cc");
# elif defined(RT_ARCH_ARM64)
uint64_t iBit;
__asm__ __volatile__("rbit %[uVal], %[uVal]\n\t"
"clz %[iBit], %[uVal]\n\t"
: [uVal] "=r" (u64)
, [iBit] "=r" (iBit)
: "[uVal]" (u64));
if (iBit != 64)
iBit++;
else
iBit = 0; /* No bit set. */
# else
unsigned iBit = ASMBitFirstSetU32((uint32_t)u64);
if (!iBit)
{
iBit = ASMBitFirstSetU32((uint32_t)(u64 >> 32));
if (iBit)
iBit += 32;
}
# endif
return (unsigned)iBit;
}
#endif
/**
* Finds the first bit which is set in the given 16-bit integer.
*
* Bits are numbered from 1 (least significant) to 16.
*
* @returns index [1..16] of the first set bit.
* @returns 0 if all bits are cleared.
* @param u16 Integer to search for set bits.
* @remarks For 16-bit bs3kit code.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM_386(unsigned) ASMBitFirstSetU16(uint16_t u16) RT_NOTHROW_PROTO;
#else
DECLINLINE(unsigned) ASMBitFirstSetU16(uint16_t u16) RT_NOTHROW_DEF
{
return ASMBitFirstSetU32((uint32_t)u16);
}
#endif
/**
* Finds the last bit which is set in the given 32-bit integer.
* Bits are numbered from 1 (least significant) to 32.
*
* @returns index [1..32] of the last set bit.
* @returns 0 if all bits are cleared.
* @param u32 Integer to search for set bits.
* @remark Similar to fls() in BSD.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM_386(unsigned) ASMBitLastSetU32(uint32_t u32) RT_NOTHROW_PROTO;
#else
DECLINLINE(unsigned) ASMBitLastSetU32(uint32_t u32) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
unsigned long iBit;
if (_BitScanReverse(&iBit, u32))
iBit++;
else
iBit = 0;
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# if RT_INLINE_ASM_GNU_STYLE
uint32_t iBit;
__asm__ __volatile__("bsrl %1, %0\n\t"
"jnz 1f\n\t"
"xorl %0, %0\n\t"
"jmp 2f\n"
"1:\n\t"
"incl %0\n"
"2:\n\t"
: "=r" (iBit)
: "rm" (u32)
: "cc");
# else
uint32_t iBit;
_asm
{
bsr eax, [u32]
jnz found
xor eax, eax
jmp done
found:
inc eax
done:
mov [iBit], eax
}
# endif
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
uint32_t iBit;
__asm__ __volatile__(
# if defined(RT_ARCH_ARM64)
"clz %w[iBit], %w[uVal]\n\t"
# else
"clz %[iBit], %[uVal]\n\t"
# endif
: [iBit] "=r" (iBit)
: [uVal] "r" (u32));
iBit = 32 - iBit;
# else
# error "Port me"
# endif
return iBit;
}
#endif
/**
* Finds the last bit which is set in the given 32-bit integer.
* Bits are numbered from 1 (least significant) to 32.
*
* @returns index [1..32] of the last set bit.
* @returns 0 if all bits are cleared.
* @param i32 Integer to search for set bits.
* @remark Similar to fls() in BSD.
*/
DECLINLINE(unsigned) ASMBitLastSetS32(int32_t i32) RT_NOTHROW_DEF
{
return ASMBitLastSetU32((uint32_t)i32);
}
/**
* Finds the last bit which is set in the given 64-bit integer.
*
* Bits are numbered from 1 (least significant) to 64.
*
* @returns index [1..64] of the last set bit.
* @returns 0 if all bits are cleared.
* @param u64 Integer to search for set bits.
* @remark Similar to fls() in BSD.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM_386(unsigned) ASMBitLastSetU64(uint64_t u64) RT_NOTHROW_PROTO;
#else
DECLINLINE(unsigned) ASMBitLastSetU64(uint64_t u64) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
unsigned long iBit;
# if ARCH_BITS == 64
if (_BitScanReverse64(&iBit, u64))
iBit++;
else
iBit = 0;
# else
if (_BitScanReverse(&iBit, (uint32_t)(u64 >> 32)))
iBit += 33;
else if (_BitScanReverse(&iBit, (uint32_t)u64))
iBit++;
else
iBit = 0;
# endif
# elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64)
uint64_t iBit;
__asm__ __volatile__("bsrq %1, %0\n\t"
"jnz 1f\n\t"
"xorl %k0, %k0\n\t"
"jmp 2f\n"
"1:\n\t"
"incl %k0\n"
"2:\n\t"
: "=r" (iBit)
: "rm" (u64)
: "cc");
# elif defined(RT_ARCH_ARM64)
uint64_t iBit;
__asm__ __volatile__("clz %[iBit], %[uVal]\n\t"
: [iBit] "=r" (iBit)
: [uVal] "r" (u64));
iBit = 64 - iBit;
# else
unsigned iBit = ASMBitLastSetU32((uint32_t)(u64 >> 32));
if (iBit)
iBit += 32;
else
iBit = ASMBitLastSetU32((uint32_t)u64);
# endif
return (unsigned)iBit;
}
#endif
/**
* Finds the last bit which is set in the given 16-bit integer.
*
* Bits are numbered from 1 (least significant) to 16.
*
* @returns index [1..16] of the last set bit.
* @returns 0 if all bits are cleared.
* @param u16 Integer to search for set bits.
* @remarks For 16-bit bs3kit code.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM_386(unsigned) ASMBitLastSetU16(uint16_t u16) RT_NOTHROW_PROTO;
#else
DECLINLINE(unsigned) ASMBitLastSetU16(uint16_t u16) RT_NOTHROW_DEF
{
return ASMBitLastSetU32((uint32_t)u16);
}
#endif
/**
* Count the number of leading zero bits in the given 32-bit integer.
*
* The counting starts with the most significate bit.
*
* @returns Number of most significant zero bits.
* @returns 32 if all bits are cleared.
* @param u32 Integer to consider.
* @remarks Similar to __builtin_clz() in gcc, except defined zero input result.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM_386(unsigned) ASMCountLeadingZerosU32(uint32_t u32) RT_NOTHROW_PROTO;
#else
DECLINLINE(unsigned) ASMCountLeadingZerosU32(uint32_t u32) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
unsigned long iBit;
if (!_BitScanReverse(&iBit, u32))
return 32;
return 31 - (unsigned)iBit;
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
uint32_t iBit;
# if RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64) && 0 /* significantly slower on 10980xe; 929 vs 237 ps/call */
__asm__ __volatile__("bsrl %1, %0\n\t"
"cmovzl %2, %0\n\t"
: "=&r" (iBit)
: "rm" (u32)
, "rm" ((int32_t)-1)
: "cc");
# elif RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("bsr %1, %0\n\t"
"jnz 1f\n\t"
"mov $-1, %0\n\t"
"1:\n\t"
: "=r" (iBit)
: "rm" (u32)
: "cc");
# else
_asm
{
bsr eax, [u32]
jnz found
mov eax, -1
found:
mov [iBit], eax
}
# endif
return 31 - iBit;
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
uint32_t iBit;
__asm__ __volatile__(
# if defined(RT_ARCH_ARM64)
"clz %w[iBit], %w[uVal]\n\t"
# else
"clz %[iBit], %[uVal]\n\t"
# endif
: [uVal] "=r" (u32)
, [iBit] "=r" (iBit)
: "[uVal]" (u32));
return iBit;
# elif defined(__GNUC__)
AssertCompile(sizeof(u32) == sizeof(unsigned int));
return u32 ? __builtin_clz(u32) : 32;
# else
# error "Port me"
# endif
}
#endif
/**
* Count the number of leading zero bits in the given 64-bit integer.
*
* The counting starts with the most significate bit.
*
* @returns Number of most significant zero bits.
* @returns 64 if all bits are cleared.
* @param u64 Integer to consider.
* @remarks Similar to __builtin_clzl() in gcc, except defined zero input
* result.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM_386(unsigned) ASMCountLeadingZerosU64(uint64_t u64) RT_NOTHROW_PROTO;
#else
DECLINLINE(unsigned) ASMCountLeadingZerosU64(uint64_t u64) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
unsigned long iBit;
# if ARCH_BITS == 64
if (_BitScanReverse64(&iBit, u64))
return 63 - (unsigned)iBit;
# else
if (_BitScanReverse(&iBit, (uint32_t)(u64 >> 32)))
return 31 - (unsigned)iBit;
if (_BitScanReverse(&iBit, (uint32_t)u64))
return 63 - (unsigned)iBit;
# endif
return 64;
# elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64)
uint64_t iBit;
# if 0 /* 10980xe benchmark: 932 ps/call - the slower variant */
__asm__ __volatile__("bsrq %1, %0\n\t"
"cmovzq %2, %0\n\t"
: "=&r" (iBit)
: "rm" (u64)
, "rm" ((int64_t)-1)
: "cc");
# else /* 10980xe benchmark: 262 ps/call */
__asm__ __volatile__("bsrq %1, %0\n\t"
"jnz 1f\n\t"
"mov $-1, %0\n\t"
"1:\n\t"
: "=&r" (iBit)
: "rm" (u64)
: "cc");
# endif
return 63 - (unsigned)iBit;
# elif defined(RT_ARCH_ARM64)
uint64_t iBit;
__asm__ __volatile__("clz %[iBit], %[uVal]\n\t"
: [uVal] "=r" (u64)
, [iBit] "=r" (iBit)
: "[uVal]" (u64));
return (unsigned)iBit;
# elif defined(__GNUC__) && ARCH_BITS == 64
AssertCompile(sizeof(u64) == sizeof(unsigned long));
return u64 ? __builtin_clzl(u64) : 64;
# else
unsigned iBit = ASMCountLeadingZerosU32((uint32_t)(u64 >> 32));
if (iBit == 32)
iBit = ASMCountLeadingZerosU32((uint32_t)u64) + 32;
return iBit;
# endif
}
#endif
/**
* Count the number of leading zero bits in the given 16-bit integer.
*
* The counting starts with the most significate bit.
*
* @returns Number of most significant zero bits.
* @returns 16 if all bits are cleared.
* @param u16 Integer to consider.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM_386(unsigned) ASMCountLeadingZerosU16(uint16_t u16) RT_NOTHROW_PROTO;
#else
DECLINLINE(unsigned) ASMCountLeadingZerosU16(uint16_t u16) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_GNU_STYLE && (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && 0 /* slower (10980xe: 987 vs 292 ps/call) */
uint16_t iBit;
__asm__ __volatile__("bsrw %1, %0\n\t"
"jnz 1f\n\t"
"mov $-1, %0\n\t"
"1:\n\t"
: "=r" (iBit)
: "rm" (u16)
: "cc");
return 15 - (int16_t)iBit;
# else
return ASMCountLeadingZerosU32((uint32_t)u16) - 16;
# endif
}
#endif
/**
* Count the number of trailing zero bits in the given 32-bit integer.
*
* The counting starts with the least significate bit, i.e. the zero bit.
*
* @returns Number of lest significant zero bits.
* @returns 32 if all bits are cleared.
* @param u32 Integer to consider.
* @remarks Similar to __builtin_ctz() in gcc, except defined zero input result.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM_386(unsigned) ASMCountTrailingZerosU32(uint32_t u32) RT_NOTHROW_PROTO;
#else
DECLINLINE(unsigned) ASMCountTrailingZerosU32(uint32_t u32) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
unsigned long iBit;
if (!_BitScanForward(&iBit, u32))
return 32;
return (unsigned)iBit;
# elif defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
uint32_t iBit;
# if RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64) && 0 /* significantly slower on 10980xe; 932 vs 240 ps/call */
__asm__ __volatile__("bsfl %1, %0\n\t"
"cmovzl %2, %0\n\t"
: "=&r" (iBit)
: "rm" (u32)
, "rm" ((int32_t)32)
: "cc");
# elif RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("bsfl %1, %0\n\t"
"jnz 1f\n\t"
"mov $32, %0\n\t"
"1:\n\t"
: "=r" (iBit)
: "rm" (u32)
: "cc");
# else
_asm
{
bsf eax, [u32]
jnz found
mov eax, 32
found:
mov [iBit], eax
}
# endif
return iBit;
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
/* Invert the bits and use clz. */
uint32_t iBit;
__asm__ __volatile__(
# if defined(RT_ARCH_ARM64)
"rbit %w[uVal], %w[uVal]\n\t"
"clz %w[iBit], %w[uVal]\n\t"
# else
"rbit %[uVal], %[uVal]\n\t"
"clz %[iBit], %[uVal]\n\t"
# endif
: [uVal] "=r" (u32)
, [iBit] "=r" (iBit)
: "[uVal]" (u32));
return iBit;
# elif defined(__GNUC__)
AssertCompile(sizeof(u32) == sizeof(unsigned int));
return u32 ? __builtin_ctz(u32) : 32;
# else
# error "Port me"
# endif
}
#endif
/**
* Count the number of trailing zero bits in the given 64-bit integer.
*
* The counting starts with the least significate bit.
*
* @returns Number of least significant zero bits.
* @returns 64 if all bits are cleared.
* @param u64 Integer to consider.
* @remarks Similar to __builtin_ctzl() in gcc, except defined zero input
* result.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM_386(unsigned) ASMCountTrailingZerosU64(uint64_t u64) RT_NOTHROW_PROTO;
#else
DECLINLINE(unsigned) ASMCountTrailingZerosU64(uint64_t u64) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
unsigned long iBit;
# if ARCH_BITS == 64
if (_BitScanForward64(&iBit, u64))
return (unsigned)iBit;
# else
if (_BitScanForward(&iBit, (uint32_t)u64))
return (unsigned)iBit;
if (_BitScanForward(&iBit, (uint32_t)(u64 >> 32)))
return (unsigned)iBit + 32;
# endif
return 64;
# elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64)
uint64_t iBit;
# if 0 /* 10980xe benchmark: 932 ps/call - the slower variant */
__asm__ __volatile__("bsfq %1, %0\n\t"
"cmovzq %2, %0\n\t"
: "=&r" (iBit)
: "rm" (u64)
, "rm" ((int64_t)64)
: "cc");
# else /* 10980xe benchmark: 262 ps/call */
__asm__ __volatile__("bsfq %1, %0\n\t"
"jnz 1f\n\t"
"mov $64, %0\n\t"
"1:\n\t"
: "=&r" (iBit)
: "rm" (u64)
: "cc");
# endif
return (unsigned)iBit;
# elif defined(RT_ARCH_ARM64)
/* Invert the bits and use clz. */
uint64_t iBit;
__asm__ __volatile__("rbit %[uVal], %[uVal]\n\t"
"clz %[iBit], %[uVal]\n\t"
: [uVal] "=r" (u64)
, [iBit] "=r" (iBit)
: "[uVal]" (u64));
return (unsigned)iBit;
# elif defined(__GNUC__) && ARCH_BITS == 64
AssertCompile(sizeof(u64) == sizeof(unsigned long));
return u64 ? __builtin_ctzl(u64) : 64;
# else
unsigned iBit = ASMCountTrailingZerosU32((uint32_t)u64);
if (iBit == 32)
iBit = ASMCountTrailingZerosU32((uint32_t)(u64 >> 32)) + 32;
return iBit;
# endif
}
#endif
/**
* Count the number of trailing zero bits in the given 16-bit integer.
*
* The counting starts with the most significate bit.
*
* @returns Number of most significant zero bits.
* @returns 16 if all bits are cleared.
* @param u16 Integer to consider.
*/
#if RT_INLINE_ASM_EXTERNAL_TMP_ARM && !RT_INLINE_ASM_USES_INTRIN
RT_ASM_DECL_PRAGMA_WATCOM_386(unsigned) ASMCountTrailingZerosU16(uint16_t u16) RT_NOTHROW_PROTO;
#else
DECLINLINE(unsigned) ASMCountTrailingZerosU16(uint16_t u16) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_GNU_STYLE && (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && 0 /* slower (10980xe: 992 vs 349 ps/call) */
uint16_t iBit;
__asm__ __volatile__("bsfw %1, %0\n\t"
"jnz 1f\n\t"
"mov $16, %0\n\t"
"1:\n\t"
: "=r" (iBit)
: "rm" (u16)
: "cc");
return iBit;
# else
return ASMCountTrailingZerosU32((uint32_t)u16 | UINT32_C(0x10000));
#endif
}
#endif
/**
* Rotate 32-bit unsigned value to the left by @a cShift.
*
* @returns Rotated value.
* @param u32 The value to rotate.
* @param cShift How many bits to rotate by.
*/
#ifdef __WATCOMC__
RT_ASM_DECL_PRAGMA_WATCOM(uint32_t) ASMRotateLeftU32(uint32_t u32, unsigned cShift) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint32_t) ASMRotateLeftU32(uint32_t u32, uint32_t cShift) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
return _rotl(u32, cShift);
# elif RT_INLINE_ASM_GNU_STYLE && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86))
__asm__ __volatile__("roll %b1, %0" : "=g" (u32) : "Ic" (cShift), "0" (u32) : "cc");
return u32;
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
__asm__ __volatile__(
# if defined(RT_ARCH_ARM64)
"ror %w[uRet], %w[uVal], %w[cShift]\n\t"
# else
"ror %[uRet], %[uVal], %[cShift]\n\t"
# endif
: [uRet] "=r" (u32)
: [uVal] "[uRet]" (u32)
, [cShift] "r" (32 - (cShift & 31))); /** @todo there is an immediate form here */
return u32;
# else
cShift &= 31;
return (u32 << cShift) | (u32 >> (32 - cShift));
# endif
}
#endif
/**
* Rotate 32-bit unsigned value to the right by @a cShift.
*
* @returns Rotated value.
* @param u32 The value to rotate.
* @param cShift How many bits to rotate by.
*/
#ifdef __WATCOMC__
RT_ASM_DECL_PRAGMA_WATCOM(uint32_t) ASMRotateRightU32(uint32_t u32, unsigned cShift) RT_NOTHROW_PROTO;
#else
DECLINLINE(uint32_t) ASMRotateRightU32(uint32_t u32, uint32_t cShift) RT_NOTHROW_DEF
{
# if RT_INLINE_ASM_USES_INTRIN
return _rotr(u32, cShift);
# elif RT_INLINE_ASM_GNU_STYLE && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86))
__asm__ __volatile__("rorl %b1, %0" : "=g" (u32) : "Ic" (cShift), "0" (u32) : "cc");
return u32;
# elif defined(RT_ARCH_ARM64) || defined(RT_ARCH_ARM32)
__asm__ __volatile__(
# if defined(RT_ARCH_ARM64)
"ror %w[uRet], %w[uVal], %w[cShift]\n\t"
# else
"ror %[uRet], %[uVal], %[cShift]\n\t"
# endif
: [uRet] "=r" (u32)
: [uVal] "[uRet]" (u32)
, [cShift] "r" (cShift & 31)); /** @todo there is an immediate form here */
return u32;
# else
cShift &= 31;
return (u32 >> cShift) | (u32 << (32 - cShift));
# endif
}
#endif
/**
* Rotate 64-bit unsigned value to the left by @a cShift.
*
* @returns Rotated value.
* @param u64 The value to rotate.
* @param cShift How many bits to rotate by.
*/
DECLINLINE(uint64_t) ASMRotateLeftU64(uint64_t u64, uint32_t cShift) RT_NOTHROW_DEF
{
#if RT_INLINE_ASM_USES_INTRIN
return _rotl64(u64, cShift);
#elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64)
__asm__ __volatile__("rolq %b1, %0" : "=g" (u64) : "Jc" (cShift), "0" (u64) : "cc");
return u64;
#elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_X86)
uint32_t uSpill;
__asm__ __volatile__("testb $0x20, %%cl\n\t" /* if (cShift >= 0x20) { swap(u64.hi, u64lo); cShift -= 0x20; } */
"jz 1f\n\t"
"xchgl %%eax, %%edx\n\t"
"1:\n\t"
"andb $0x1f, %%cl\n\t" /* if (cShift & 0x1f) { */
"jz 2f\n\t"
"movl %%edx, %2\n\t" /* save the hi value in %3. */
"shldl %%cl,%%eax,%%edx\n\t" /* shift the hi value left, feeding MSBits from the low value. */
"shldl %%cl,%2,%%eax\n\t" /* shift the lo value left, feeding MSBits from the saved hi value. */
"2:\n\t" /* } */
: "=A" (u64)
, "=c" (cShift)
, "=r" (uSpill)
: "0" (u64)
, "1" (cShift)
: "cc");
return u64;
# elif defined(RT_ARCH_ARM64)
__asm__ __volatile__("ror %[uRet], %[uVal], %[cShift]\n\t"
: [uRet] "=r" (u64)
: [uVal] "[uRet]" (u64)
, [cShift] "r" ((uint64_t)(64 - (cShift & 63)))); /** @todo there is an immediate form here */
return u64;
#else
cShift &= 63;
return (u64 << cShift) | (u64 >> (64 - cShift));
#endif
}
/**
* Rotate 64-bit unsigned value to the right by @a cShift.
*
* @returns Rotated value.
* @param u64 The value to rotate.
* @param cShift How many bits to rotate by.
*/
DECLINLINE(uint64_t) ASMRotateRightU64(uint64_t u64, uint32_t cShift) RT_NOTHROW_DEF
{
#if RT_INLINE_ASM_USES_INTRIN
return _rotr64(u64, cShift);
#elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_AMD64)
__asm__ __volatile__("rorq %b1, %0" : "=g" (u64) : "Jc" (cShift), "0" (u64) : "cc");
return u64;
#elif RT_INLINE_ASM_GNU_STYLE && defined(RT_ARCH_X86)
uint32_t uSpill;
__asm__ __volatile__("testb $0x20, %%cl\n\t" /* if (cShift >= 0x20) { swap(u64.hi, u64lo); cShift -= 0x20; } */
"jz 1f\n\t"
"xchgl %%eax, %%edx\n\t"
"1:\n\t"
"andb $0x1f, %%cl\n\t" /* if (cShift & 0x1f) { */
"jz 2f\n\t"
"movl %%edx, %2\n\t" /* save the hi value in %3. */
"shrdl %%cl,%%eax,%%edx\n\t" /* shift the hi value right, feeding LSBits from the low value. */
"shrdl %%cl,%2,%%eax\n\t" /* shift the lo value right, feeding LSBits from the saved hi value. */
"2:\n\t" /* } */
: "=A" (u64)
, "=c" (cShift)
, "=r" (uSpill)
: "0" (u64)
, "1" (cShift)
: "cc");
return u64;
# elif defined(RT_ARCH_ARM64)
__asm__ __volatile__("ror %[uRet], %[uVal], %[cShift]\n\t"
: [uRet] "=r" (u64)
: [uVal] "[uRet]" (u64)
, [cShift] "r" ((uint64_t)(cShift & 63))); /** @todo there is an immediate form here */
return u64;
#else
cShift &= 63;
return (u64 >> cShift) | (u64 << (64 - cShift));
#endif
}
/** @} */
/** @} */
/*
* Include #pragma aux definitions for Watcom C/C++.
*/
#if defined(__WATCOMC__) && ARCH_BITS == 16 && defined(RT_ARCH_X86)
# define IPRT_ASM_WATCOM_X86_16_WITH_PRAGMAS
# undef IPRT_INCLUDED_asm_watcom_x86_16_h
# include "asm-watcom-x86-16.h"
#elif defined(__WATCOMC__) && ARCH_BITS == 32 && defined(RT_ARCH_X86)
# define IPRT_ASM_WATCOM_X86_32_WITH_PRAGMAS
# undef IPRT_INCLUDED_asm_watcom_x86_32_h
# include "asm-watcom-x86-32.h"
#endif
#endif /* !IPRT_INCLUDED_asm_h */