summaryrefslogtreecommitdiffstats
path: root/Documentation/gpu/drm-internals.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
commit76cb841cb886eef6b3bee341a2266c76578724ad (patch)
treef5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /Documentation/gpu/drm-internals.rst
parentInitial commit. (diff)
downloadlinux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz
linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip
Adding upstream version 4.19.249.upstream/4.19.249
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/gpu/drm-internals.rst')
-rw-r--r--Documentation/gpu/drm-internals.rst265
1 files changed, 265 insertions, 0 deletions
diff --git a/Documentation/gpu/drm-internals.rst b/Documentation/gpu/drm-internals.rst
new file mode 100644
index 000000000..5ee9674fb
--- /dev/null
+++ b/Documentation/gpu/drm-internals.rst
@@ -0,0 +1,265 @@
+=============
+DRM Internals
+=============
+
+This chapter documents DRM internals relevant to driver authors and
+developers working to add support for the latest features to existing
+drivers.
+
+First, we go over some typical driver initialization requirements, like
+setting up command buffers, creating an initial output configuration,
+and initializing core services. Subsequent sections cover core internals
+in more detail, providing implementation notes and examples.
+
+The DRM layer provides several services to graphics drivers, many of
+them driven by the application interfaces it provides through libdrm,
+the library that wraps most of the DRM ioctls. These include vblank
+event handling, memory management, output management, framebuffer
+management, command submission & fencing, suspend/resume support, and
+DMA services.
+
+Driver Initialization
+=====================
+
+At the core of every DRM driver is a :c:type:`struct drm_driver
+<drm_driver>` structure. Drivers typically statically initialize
+a drm_driver structure, and then pass it to
+:c:func:`drm_dev_alloc()` to allocate a device instance. After the
+device instance is fully initialized it can be registered (which makes
+it accessible from userspace) using :c:func:`drm_dev_register()`.
+
+The :c:type:`struct drm_driver <drm_driver>` structure
+contains static information that describes the driver and features it
+supports, and pointers to methods that the DRM core will call to
+implement the DRM API. We will first go through the :c:type:`struct
+drm_driver <drm_driver>` static information fields, and will
+then describe individual operations in details as they get used in later
+sections.
+
+Driver Information
+------------------
+
+Driver Features
+~~~~~~~~~~~~~~~
+
+Drivers inform the DRM core about their requirements and supported
+features by setting appropriate flags in the driver_features field.
+Since those flags influence the DRM core behaviour since registration
+time, most of them must be set to registering the :c:type:`struct
+drm_driver <drm_driver>` instance.
+
+u32 driver_features;
+
+DRIVER_USE_AGP
+ Driver uses AGP interface, the DRM core will manage AGP resources.
+
+DRIVER_LEGACY
+ Denote a legacy driver using shadow attach. Don't use.
+
+DRIVER_KMS_LEGACY_CONTEXT
+ Used only by nouveau for backwards compatibility with existing userspace.
+ Don't use.
+
+DRIVER_PCI_DMA
+ Driver is capable of PCI DMA, mapping of PCI DMA buffers to
+ userspace will be enabled. Deprecated.
+
+DRIVER_SG
+ Driver can perform scatter/gather DMA, allocation and mapping of
+ scatter/gather buffers will be enabled. Deprecated.
+
+DRIVER_HAVE_DMA
+ Driver supports DMA, the userspace DMA API will be supported.
+ Deprecated.
+
+DRIVER_HAVE_IRQ; DRIVER_IRQ_SHARED
+ DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler
+ managed by the DRM Core. The core will support simple IRQ handler
+ installation when the flag is set. The installation process is
+ described in ?.
+
+ DRIVER_IRQ_SHARED indicates whether the device & handler support
+ shared IRQs (note that this is required of PCI drivers).
+
+DRIVER_GEM
+ Driver use the GEM memory manager.
+
+DRIVER_MODESET
+ Driver supports mode setting interfaces (KMS).
+
+DRIVER_PRIME
+ Driver implements DRM PRIME buffer sharing.
+
+DRIVER_RENDER
+ Driver supports dedicated render nodes.
+
+DRIVER_ATOMIC
+ Driver supports atomic properties. In this case the driver must
+ implement appropriate obj->atomic_get_property() vfuncs for any
+ modeset objects with driver specific properties.
+
+DRIVER_SYNCOBJ
+ Driver support drm sync objects.
+
+Major, Minor and Patchlevel
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+int major; int minor; int patchlevel;
+The DRM core identifies driver versions by a major, minor and patch
+level triplet. The information is printed to the kernel log at
+initialization time and passed to userspace through the
+DRM_IOCTL_VERSION ioctl.
+
+The major and minor numbers are also used to verify the requested driver
+API version passed to DRM_IOCTL_SET_VERSION. When the driver API
+changes between minor versions, applications can call
+DRM_IOCTL_SET_VERSION to select a specific version of the API. If the
+requested major isn't equal to the driver major, or the requested minor
+is larger than the driver minor, the DRM_IOCTL_SET_VERSION call will
+return an error. Otherwise the driver's set_version() method will be
+called with the requested version.
+
+Name, Description and Date
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+char \*name; char \*desc; char \*date;
+The driver name is printed to the kernel log at initialization time,
+used for IRQ registration and passed to userspace through
+DRM_IOCTL_VERSION.
+
+The driver description is a purely informative string passed to
+userspace through the DRM_IOCTL_VERSION ioctl and otherwise unused by
+the kernel.
+
+The driver date, formatted as YYYYMMDD, is meant to identify the date of
+the latest modification to the driver. However, as most drivers fail to
+update it, its value is mostly useless. The DRM core prints it to the
+kernel log at initialization time and passes it to userspace through the
+DRM_IOCTL_VERSION ioctl.
+
+Device Instance and Driver Handling
+-----------------------------------
+
+.. kernel-doc:: drivers/gpu/drm/drm_drv.c
+ :doc: driver instance overview
+
+.. kernel-doc:: include/drm/drm_drv.h
+ :internal:
+
+.. kernel-doc:: drivers/gpu/drm/drm_drv.c
+ :export:
+
+Driver Load
+-----------
+
+
+IRQ Helper Library
+~~~~~~~~~~~~~~~~~~
+
+.. kernel-doc:: drivers/gpu/drm/drm_irq.c
+ :doc: irq helpers
+
+.. kernel-doc:: drivers/gpu/drm/drm_irq.c
+ :export:
+
+Memory Manager Initialization
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Every DRM driver requires a memory manager which must be initialized at
+load time. DRM currently contains two memory managers, the Translation
+Table Manager (TTM) and the Graphics Execution Manager (GEM). This
+document describes the use of the GEM memory manager only. See ? for
+details.
+
+Miscellaneous Device Configuration
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Another task that may be necessary for PCI devices during configuration
+is mapping the video BIOS. On many devices, the VBIOS describes device
+configuration, LCD panel timings (if any), and contains flags indicating
+device state. Mapping the BIOS can be done using the pci_map_rom()
+call, a convenience function that takes care of mapping the actual ROM,
+whether it has been shadowed into memory (typically at address 0xc0000)
+or exists on the PCI device in the ROM BAR. Note that after the ROM has
+been mapped and any necessary information has been extracted, it should
+be unmapped; on many devices, the ROM address decoder is shared with
+other BARs, so leaving it mapped could cause undesired behaviour like
+hangs or memory corruption.
+
+Bus-specific Device Registration and PCI Support
+------------------------------------------------
+
+A number of functions are provided to help with device registration. The
+functions deal with PCI and platform devices respectively and are only
+provided for historical reasons. These are all deprecated and shouldn't
+be used in new drivers. Besides that there's a few helpers for pci
+drivers.
+
+.. kernel-doc:: drivers/gpu/drm/drm_pci.c
+ :export:
+
+Open/Close, File Operations and IOCTLs
+======================================
+
+.. _drm_driver_fops:
+
+File Operations
+---------------
+
+.. kernel-doc:: drivers/gpu/drm/drm_file.c
+ :doc: file operations
+
+.. kernel-doc:: include/drm/drm_file.h
+ :internal:
+
+.. kernel-doc:: drivers/gpu/drm/drm_file.c
+ :export:
+
+Misc Utilities
+==============
+
+Printer
+-------
+
+.. kernel-doc:: include/drm/drm_print.h
+ :doc: print
+
+.. kernel-doc:: include/drm/drm_print.h
+ :internal:
+
+.. kernel-doc:: drivers/gpu/drm/drm_print.c
+ :export:
+
+
+Legacy Support Code
+===================
+
+The section very briefly covers some of the old legacy support code
+which is only used by old DRM drivers which have done a so-called
+shadow-attach to the underlying device instead of registering as a real
+driver. This also includes some of the old generic buffer management and
+command submission code. Do not use any of this in new and modern
+drivers.
+
+Legacy Suspend/Resume
+---------------------
+
+The DRM core provides some suspend/resume code, but drivers wanting full
+suspend/resume support should provide save() and restore() functions.
+These are called at suspend, hibernate, or resume time, and should
+perform any state save or restore required by your device across suspend
+or hibernate states.
+
+int (\*suspend) (struct drm_device \*, pm_message_t state); int
+(\*resume) (struct drm_device \*);
+Those are legacy suspend and resume methods which *only* work with the
+legacy shadow-attach driver registration functions. New driver should
+use the power management interface provided by their bus type (usually
+through the :c:type:`struct device_driver <device_driver>`
+dev_pm_ops) and set these methods to NULL.
+
+Legacy DMA Services
+-------------------
+
+This should cover how DMA mapping etc. is supported by the core. These
+functions are deprecated and should not be used.