summaryrefslogtreecommitdiffstats
path: root/arch/arm64/kvm/sys_regs.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
commit76cb841cb886eef6b3bee341a2266c76578724ad (patch)
treef5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /arch/arm64/kvm/sys_regs.c
parentInitial commit. (diff)
downloadlinux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz
linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip
Adding upstream version 4.19.249.upstream/4.19.249
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/arm64/kvm/sys_regs.c')
-rw-r--r--arch/arm64/kvm/sys_regs.c2606
1 files changed, 2606 insertions, 0 deletions
diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c
new file mode 100644
index 000000000..f06629bf2
--- /dev/null
+++ b/arch/arm64/kvm/sys_regs.c
@@ -0,0 +1,2606 @@
+/*
+ * Copyright (C) 2012,2013 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * Derived from arch/arm/kvm/coproc.c:
+ * Copyright (C) 2012 - Virtual Open Systems and Columbia University
+ * Authors: Rusty Russell <rusty@rustcorp.com.au>
+ * Christoffer Dall <c.dall@virtualopensystems.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <linux/bsearch.h>
+#include <linux/kvm_host.h>
+#include <linux/mm.h>
+#include <linux/printk.h>
+#include <linux/uaccess.h>
+
+#include <asm/cacheflush.h>
+#include <asm/cputype.h>
+#include <asm/debug-monitors.h>
+#include <asm/esr.h>
+#include <asm/kvm_arm.h>
+#include <asm/kvm_coproc.h>
+#include <asm/kvm_emulate.h>
+#include <asm/kvm_host.h>
+#include <asm/kvm_hyp.h>
+#include <asm/kvm_mmu.h>
+#include <asm/perf_event.h>
+#include <asm/sysreg.h>
+
+#include <trace/events/kvm.h>
+
+#include "sys_regs.h"
+
+#include "trace.h"
+
+/*
+ * All of this file is extremly similar to the ARM coproc.c, but the
+ * types are different. My gut feeling is that it should be pretty
+ * easy to merge, but that would be an ABI breakage -- again. VFP
+ * would also need to be abstracted.
+ *
+ * For AArch32, we only take care of what is being trapped. Anything
+ * that has to do with init and userspace access has to go via the
+ * 64bit interface.
+ */
+
+static bool read_from_write_only(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *params,
+ const struct sys_reg_desc *r)
+{
+ WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
+ print_sys_reg_instr(params);
+ kvm_inject_undefined(vcpu);
+ return false;
+}
+
+static bool write_to_read_only(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *params,
+ const struct sys_reg_desc *r)
+{
+ WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
+ print_sys_reg_instr(params);
+ kvm_inject_undefined(vcpu);
+ return false;
+}
+
+u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg)
+{
+ if (!vcpu->arch.sysregs_loaded_on_cpu)
+ goto immediate_read;
+
+ /*
+ * System registers listed in the switch are not saved on every
+ * exit from the guest but are only saved on vcpu_put.
+ *
+ * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
+ * should never be listed below, because the guest cannot modify its
+ * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
+ * thread when emulating cross-VCPU communication.
+ */
+ switch (reg) {
+ case CSSELR_EL1: return read_sysreg_s(SYS_CSSELR_EL1);
+ case SCTLR_EL1: return read_sysreg_s(sctlr_EL12);
+ case ACTLR_EL1: return read_sysreg_s(SYS_ACTLR_EL1);
+ case CPACR_EL1: return read_sysreg_s(cpacr_EL12);
+ case TTBR0_EL1: return read_sysreg_s(ttbr0_EL12);
+ case TTBR1_EL1: return read_sysreg_s(ttbr1_EL12);
+ case TCR_EL1: return read_sysreg_s(tcr_EL12);
+ case ESR_EL1: return read_sysreg_s(esr_EL12);
+ case AFSR0_EL1: return read_sysreg_s(afsr0_EL12);
+ case AFSR1_EL1: return read_sysreg_s(afsr1_EL12);
+ case FAR_EL1: return read_sysreg_s(far_EL12);
+ case MAIR_EL1: return read_sysreg_s(mair_EL12);
+ case VBAR_EL1: return read_sysreg_s(vbar_EL12);
+ case CONTEXTIDR_EL1: return read_sysreg_s(contextidr_EL12);
+ case TPIDR_EL0: return read_sysreg_s(SYS_TPIDR_EL0);
+ case TPIDRRO_EL0: return read_sysreg_s(SYS_TPIDRRO_EL0);
+ case TPIDR_EL1: return read_sysreg_s(SYS_TPIDR_EL1);
+ case AMAIR_EL1: return read_sysreg_s(amair_EL12);
+ case CNTKCTL_EL1: return read_sysreg_s(cntkctl_EL12);
+ case PAR_EL1: return read_sysreg_s(SYS_PAR_EL1);
+ case DACR32_EL2: return read_sysreg_s(SYS_DACR32_EL2);
+ case IFSR32_EL2: return read_sysreg_s(SYS_IFSR32_EL2);
+ case DBGVCR32_EL2: return read_sysreg_s(SYS_DBGVCR32_EL2);
+ }
+
+immediate_read:
+ return __vcpu_sys_reg(vcpu, reg);
+}
+
+void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
+{
+ if (!vcpu->arch.sysregs_loaded_on_cpu)
+ goto immediate_write;
+
+ /*
+ * System registers listed in the switch are not restored on every
+ * entry to the guest but are only restored on vcpu_load.
+ *
+ * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
+ * should never be listed below, because the the MPIDR should only be
+ * set once, before running the VCPU, and never changed later.
+ */
+ switch (reg) {
+ case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); return;
+ case SCTLR_EL1: write_sysreg_s(val, sctlr_EL12); return;
+ case ACTLR_EL1: write_sysreg_s(val, SYS_ACTLR_EL1); return;
+ case CPACR_EL1: write_sysreg_s(val, cpacr_EL12); return;
+ case TTBR0_EL1: write_sysreg_s(val, ttbr0_EL12); return;
+ case TTBR1_EL1: write_sysreg_s(val, ttbr1_EL12); return;
+ case TCR_EL1: write_sysreg_s(val, tcr_EL12); return;
+ case ESR_EL1: write_sysreg_s(val, esr_EL12); return;
+ case AFSR0_EL1: write_sysreg_s(val, afsr0_EL12); return;
+ case AFSR1_EL1: write_sysreg_s(val, afsr1_EL12); return;
+ case FAR_EL1: write_sysreg_s(val, far_EL12); return;
+ case MAIR_EL1: write_sysreg_s(val, mair_EL12); return;
+ case VBAR_EL1: write_sysreg_s(val, vbar_EL12); return;
+ case CONTEXTIDR_EL1: write_sysreg_s(val, contextidr_EL12); return;
+ case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); return;
+ case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); return;
+ case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); return;
+ case AMAIR_EL1: write_sysreg_s(val, amair_EL12); return;
+ case CNTKCTL_EL1: write_sysreg_s(val, cntkctl_EL12); return;
+ case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); return;
+ case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); return;
+ case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); return;
+ case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); return;
+ }
+
+immediate_write:
+ __vcpu_sys_reg(vcpu, reg) = val;
+}
+
+/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
+static u32 cache_levels;
+
+/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
+#define CSSELR_MAX 12
+
+/* Which cache CCSIDR represents depends on CSSELR value. */
+static u32 get_ccsidr(u32 csselr)
+{
+ u32 ccsidr;
+
+ /* Make sure noone else changes CSSELR during this! */
+ local_irq_disable();
+ write_sysreg(csselr, csselr_el1);
+ isb();
+ ccsidr = read_sysreg(ccsidr_el1);
+ local_irq_enable();
+
+ return ccsidr;
+}
+
+/*
+ * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
+ */
+static bool access_dcsw(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (!p->is_write)
+ return read_from_write_only(vcpu, p, r);
+
+ /*
+ * Only track S/W ops if we don't have FWB. It still indicates
+ * that the guest is a bit broken (S/W operations should only
+ * be done by firmware, knowing that there is only a single
+ * CPU left in the system, and certainly not from non-secure
+ * software).
+ */
+ if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
+ kvm_set_way_flush(vcpu);
+
+ return true;
+}
+
+/*
+ * Generic accessor for VM registers. Only called as long as HCR_TVM
+ * is set. If the guest enables the MMU, we stop trapping the VM
+ * sys_regs and leave it in complete control of the caches.
+ */
+static bool access_vm_reg(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ bool was_enabled = vcpu_has_cache_enabled(vcpu);
+ u64 val;
+ int reg = r->reg;
+
+ BUG_ON(!p->is_write);
+
+ /* See the 32bit mapping in kvm_host.h */
+ if (p->is_aarch32)
+ reg = r->reg / 2;
+
+ if (!p->is_aarch32 || !p->is_32bit) {
+ val = p->regval;
+ } else {
+ val = vcpu_read_sys_reg(vcpu, reg);
+ if (r->reg % 2)
+ val = (p->regval << 32) | (u64)lower_32_bits(val);
+ else
+ val = ((u64)upper_32_bits(val) << 32) |
+ lower_32_bits(p->regval);
+ }
+ vcpu_write_sys_reg(vcpu, val, reg);
+
+ kvm_toggle_cache(vcpu, was_enabled);
+ return true;
+}
+
+/*
+ * Trap handler for the GICv3 SGI generation system register.
+ * Forward the request to the VGIC emulation.
+ * The cp15_64 code makes sure this automatically works
+ * for both AArch64 and AArch32 accesses.
+ */
+static bool access_gic_sgi(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ bool g1;
+
+ if (!p->is_write)
+ return read_from_write_only(vcpu, p, r);
+
+ /*
+ * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
+ * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
+ * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
+ * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
+ * group.
+ */
+ if (p->is_aarch32) {
+ switch (p->Op1) {
+ default: /* Keep GCC quiet */
+ case 0: /* ICC_SGI1R */
+ g1 = true;
+ break;
+ case 1: /* ICC_ASGI1R */
+ case 2: /* ICC_SGI0R */
+ g1 = false;
+ break;
+ }
+ } else {
+ switch (p->Op2) {
+ default: /* Keep GCC quiet */
+ case 5: /* ICC_SGI1R_EL1 */
+ g1 = true;
+ break;
+ case 6: /* ICC_ASGI1R_EL1 */
+ case 7: /* ICC_SGI0R_EL1 */
+ g1 = false;
+ break;
+ }
+ }
+
+ vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
+
+ return true;
+}
+
+static bool access_gic_sre(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write)
+ return ignore_write(vcpu, p);
+
+ p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
+ return true;
+}
+
+static bool trap_raz_wi(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write)
+ return ignore_write(vcpu, p);
+ else
+ return read_zero(vcpu, p);
+}
+
+static bool trap_undef(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ kvm_inject_undefined(vcpu);
+ return false;
+}
+
+static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write) {
+ return ignore_write(vcpu, p);
+ } else {
+ p->regval = (1 << 3);
+ return true;
+ }
+}
+
+static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write) {
+ return ignore_write(vcpu, p);
+ } else {
+ p->regval = read_sysreg(dbgauthstatus_el1);
+ return true;
+ }
+}
+
+/*
+ * We want to avoid world-switching all the DBG registers all the
+ * time:
+ *
+ * - If we've touched any debug register, it is likely that we're
+ * going to touch more of them. It then makes sense to disable the
+ * traps and start doing the save/restore dance
+ * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
+ * then mandatory to save/restore the registers, as the guest
+ * depends on them.
+ *
+ * For this, we use a DIRTY bit, indicating the guest has modified the
+ * debug registers, used as follow:
+ *
+ * On guest entry:
+ * - If the dirty bit is set (because we're coming back from trapping),
+ * disable the traps, save host registers, restore guest registers.
+ * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
+ * set the dirty bit, disable the traps, save host registers,
+ * restore guest registers.
+ * - Otherwise, enable the traps
+ *
+ * On guest exit:
+ * - If the dirty bit is set, save guest registers, restore host
+ * registers and clear the dirty bit. This ensure that the host can
+ * now use the debug registers.
+ */
+static bool trap_debug_regs(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write) {
+ vcpu_write_sys_reg(vcpu, p->regval, r->reg);
+ vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
+ } else {
+ p->regval = vcpu_read_sys_reg(vcpu, r->reg);
+ }
+
+ trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
+
+ return true;
+}
+
+/*
+ * reg_to_dbg/dbg_to_reg
+ *
+ * A 32 bit write to a debug register leave top bits alone
+ * A 32 bit read from a debug register only returns the bottom bits
+ *
+ * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
+ * hyp.S code switches between host and guest values in future.
+ */
+static void reg_to_dbg(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ u64 *dbg_reg)
+{
+ u64 val = p->regval;
+
+ if (p->is_32bit) {
+ val &= 0xffffffffUL;
+ val |= ((*dbg_reg >> 32) << 32);
+ }
+
+ *dbg_reg = val;
+ vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
+}
+
+static void dbg_to_reg(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ u64 *dbg_reg)
+{
+ p->regval = *dbg_reg;
+ if (p->is_32bit)
+ p->regval &= 0xffffffffUL;
+}
+
+static bool trap_bvr(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *rd)
+{
+ u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
+
+ if (p->is_write)
+ reg_to_dbg(vcpu, p, dbg_reg);
+ else
+ dbg_to_reg(vcpu, p, dbg_reg);
+
+ trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
+
+ return true;
+}
+
+static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ const struct kvm_one_reg *reg, void __user *uaddr)
+{
+ __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
+
+ if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
+ return -EFAULT;
+ return 0;
+}
+
+static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ const struct kvm_one_reg *reg, void __user *uaddr)
+{
+ __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
+
+ if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
+ return -EFAULT;
+ return 0;
+}
+
+static void reset_bvr(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd)
+{
+ vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
+}
+
+static bool trap_bcr(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *rd)
+{
+ u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
+
+ if (p->is_write)
+ reg_to_dbg(vcpu, p, dbg_reg);
+ else
+ dbg_to_reg(vcpu, p, dbg_reg);
+
+ trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
+
+ return true;
+}
+
+static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ const struct kvm_one_reg *reg, void __user *uaddr)
+{
+ __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
+
+ if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
+ return -EFAULT;
+
+ return 0;
+}
+
+static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ const struct kvm_one_reg *reg, void __user *uaddr)
+{
+ __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
+
+ if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
+ return -EFAULT;
+ return 0;
+}
+
+static void reset_bcr(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd)
+{
+ vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
+}
+
+static bool trap_wvr(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *rd)
+{
+ u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
+
+ if (p->is_write)
+ reg_to_dbg(vcpu, p, dbg_reg);
+ else
+ dbg_to_reg(vcpu, p, dbg_reg);
+
+ trace_trap_reg(__func__, rd->CRm, p->is_write,
+ vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
+
+ return true;
+}
+
+static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ const struct kvm_one_reg *reg, void __user *uaddr)
+{
+ __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
+
+ if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
+ return -EFAULT;
+ return 0;
+}
+
+static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ const struct kvm_one_reg *reg, void __user *uaddr)
+{
+ __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
+
+ if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
+ return -EFAULT;
+ return 0;
+}
+
+static void reset_wvr(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd)
+{
+ vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
+}
+
+static bool trap_wcr(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *rd)
+{
+ u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
+
+ if (p->is_write)
+ reg_to_dbg(vcpu, p, dbg_reg);
+ else
+ dbg_to_reg(vcpu, p, dbg_reg);
+
+ trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
+
+ return true;
+}
+
+static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ const struct kvm_one_reg *reg, void __user *uaddr)
+{
+ __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
+
+ if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
+ return -EFAULT;
+ return 0;
+}
+
+static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ const struct kvm_one_reg *reg, void __user *uaddr)
+{
+ __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
+
+ if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
+ return -EFAULT;
+ return 0;
+}
+
+static void reset_wcr(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *rd)
+{
+ vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
+}
+
+static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
+{
+ u64 amair = read_sysreg(amair_el1);
+ vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
+}
+
+static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
+{
+ u64 mpidr;
+
+ /*
+ * Map the vcpu_id into the first three affinity level fields of
+ * the MPIDR. We limit the number of VCPUs in level 0 due to a
+ * limitation to 16 CPUs in that level in the ICC_SGIxR registers
+ * of the GICv3 to be able to address each CPU directly when
+ * sending IPIs.
+ */
+ mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
+ mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
+ mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
+ vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
+}
+
+static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
+{
+ u64 pmcr, val;
+
+ /* No PMU available, PMCR_EL0 may UNDEF... */
+ if (!kvm_arm_support_pmu_v3())
+ return;
+
+ pmcr = read_sysreg(pmcr_el0);
+ /*
+ * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
+ * except PMCR.E resetting to zero.
+ */
+ val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
+ | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
+ __vcpu_sys_reg(vcpu, r->reg) = val;
+}
+
+static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
+{
+ u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
+ bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
+
+ if (!enabled)
+ kvm_inject_undefined(vcpu);
+
+ return !enabled;
+}
+
+static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
+{
+ return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
+}
+
+static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
+{
+ return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
+}
+
+static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
+{
+ return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
+}
+
+static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
+{
+ return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
+}
+
+static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 val;
+
+ if (!kvm_arm_pmu_v3_ready(vcpu))
+ return trap_raz_wi(vcpu, p, r);
+
+ if (pmu_access_el0_disabled(vcpu))
+ return false;
+
+ if (p->is_write) {
+ /* Only update writeable bits of PMCR */
+ val = __vcpu_sys_reg(vcpu, PMCR_EL0);
+ val &= ~ARMV8_PMU_PMCR_MASK;
+ val |= p->regval & ARMV8_PMU_PMCR_MASK;
+ __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
+ kvm_pmu_handle_pmcr(vcpu, val);
+ } else {
+ /* PMCR.P & PMCR.C are RAZ */
+ val = __vcpu_sys_reg(vcpu, PMCR_EL0)
+ & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
+ p->regval = val;
+ }
+
+ return true;
+}
+
+static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (!kvm_arm_pmu_v3_ready(vcpu))
+ return trap_raz_wi(vcpu, p, r);
+
+ if (pmu_access_event_counter_el0_disabled(vcpu))
+ return false;
+
+ if (p->is_write)
+ __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
+ else
+ /* return PMSELR.SEL field */
+ p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
+ & ARMV8_PMU_COUNTER_MASK;
+
+ return true;
+}
+
+static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 pmceid;
+
+ if (!kvm_arm_pmu_v3_ready(vcpu))
+ return trap_raz_wi(vcpu, p, r);
+
+ BUG_ON(p->is_write);
+
+ if (pmu_access_el0_disabled(vcpu))
+ return false;
+
+ if (!(p->Op2 & 1))
+ pmceid = read_sysreg(pmceid0_el0);
+ else
+ pmceid = read_sysreg(pmceid1_el0);
+
+ p->regval = pmceid;
+
+ return true;
+}
+
+static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
+{
+ u64 pmcr, val;
+
+ pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
+ val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
+ if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
+ kvm_inject_undefined(vcpu);
+ return false;
+ }
+
+ return true;
+}
+
+static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 idx;
+
+ if (!kvm_arm_pmu_v3_ready(vcpu))
+ return trap_raz_wi(vcpu, p, r);
+
+ if (r->CRn == 9 && r->CRm == 13) {
+ if (r->Op2 == 2) {
+ /* PMXEVCNTR_EL0 */
+ if (pmu_access_event_counter_el0_disabled(vcpu))
+ return false;
+
+ idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
+ & ARMV8_PMU_COUNTER_MASK;
+ } else if (r->Op2 == 0) {
+ /* PMCCNTR_EL0 */
+ if (pmu_access_cycle_counter_el0_disabled(vcpu))
+ return false;
+
+ idx = ARMV8_PMU_CYCLE_IDX;
+ } else {
+ return false;
+ }
+ } else if (r->CRn == 0 && r->CRm == 9) {
+ /* PMCCNTR */
+ if (pmu_access_event_counter_el0_disabled(vcpu))
+ return false;
+
+ idx = ARMV8_PMU_CYCLE_IDX;
+ } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
+ /* PMEVCNTRn_EL0 */
+ if (pmu_access_event_counter_el0_disabled(vcpu))
+ return false;
+
+ idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
+ } else {
+ return false;
+ }
+
+ if (!pmu_counter_idx_valid(vcpu, idx))
+ return false;
+
+ if (p->is_write) {
+ if (pmu_access_el0_disabled(vcpu))
+ return false;
+
+ kvm_pmu_set_counter_value(vcpu, idx, p->regval);
+ } else {
+ p->regval = kvm_pmu_get_counter_value(vcpu, idx);
+ }
+
+ return true;
+}
+
+static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 idx, reg;
+
+ if (!kvm_arm_pmu_v3_ready(vcpu))
+ return trap_raz_wi(vcpu, p, r);
+
+ if (pmu_access_el0_disabled(vcpu))
+ return false;
+
+ if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
+ /* PMXEVTYPER_EL0 */
+ idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
+ reg = PMEVTYPER0_EL0 + idx;
+ } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
+ idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
+ if (idx == ARMV8_PMU_CYCLE_IDX)
+ reg = PMCCFILTR_EL0;
+ else
+ /* PMEVTYPERn_EL0 */
+ reg = PMEVTYPER0_EL0 + idx;
+ } else {
+ BUG();
+ }
+
+ if (!pmu_counter_idx_valid(vcpu, idx))
+ return false;
+
+ if (p->is_write) {
+ kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
+ __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
+ } else {
+ p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
+ }
+
+ return true;
+}
+
+static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 val, mask;
+
+ if (!kvm_arm_pmu_v3_ready(vcpu))
+ return trap_raz_wi(vcpu, p, r);
+
+ if (pmu_access_el0_disabled(vcpu))
+ return false;
+
+ mask = kvm_pmu_valid_counter_mask(vcpu);
+ if (p->is_write) {
+ val = p->regval & mask;
+ if (r->Op2 & 0x1) {
+ /* accessing PMCNTENSET_EL0 */
+ __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
+ kvm_pmu_enable_counter(vcpu, val);
+ } else {
+ /* accessing PMCNTENCLR_EL0 */
+ __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
+ kvm_pmu_disable_counter(vcpu, val);
+ }
+ } else {
+ p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
+ }
+
+ return true;
+}
+
+static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 mask = kvm_pmu_valid_counter_mask(vcpu);
+
+ if (!kvm_arm_pmu_v3_ready(vcpu))
+ return trap_raz_wi(vcpu, p, r);
+
+ if (!vcpu_mode_priv(vcpu)) {
+ kvm_inject_undefined(vcpu);
+ return false;
+ }
+
+ if (p->is_write) {
+ u64 val = p->regval & mask;
+
+ if (r->Op2 & 0x1)
+ /* accessing PMINTENSET_EL1 */
+ __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
+ else
+ /* accessing PMINTENCLR_EL1 */
+ __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
+ } else {
+ p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
+ }
+
+ return true;
+}
+
+static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 mask = kvm_pmu_valid_counter_mask(vcpu);
+
+ if (!kvm_arm_pmu_v3_ready(vcpu))
+ return trap_raz_wi(vcpu, p, r);
+
+ if (pmu_access_el0_disabled(vcpu))
+ return false;
+
+ if (p->is_write) {
+ if (r->CRm & 0x2)
+ /* accessing PMOVSSET_EL0 */
+ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
+ else
+ /* accessing PMOVSCLR_EL0 */
+ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
+ } else {
+ p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
+ }
+
+ return true;
+}
+
+static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 mask;
+
+ if (!kvm_arm_pmu_v3_ready(vcpu))
+ return trap_raz_wi(vcpu, p, r);
+
+ if (!p->is_write)
+ return read_from_write_only(vcpu, p, r);
+
+ if (pmu_write_swinc_el0_disabled(vcpu))
+ return false;
+
+ mask = kvm_pmu_valid_counter_mask(vcpu);
+ kvm_pmu_software_increment(vcpu, p->regval & mask);
+ return true;
+}
+
+static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (!kvm_arm_pmu_v3_ready(vcpu))
+ return trap_raz_wi(vcpu, p, r);
+
+ if (p->is_write) {
+ if (!vcpu_mode_priv(vcpu)) {
+ kvm_inject_undefined(vcpu);
+ return false;
+ }
+
+ __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
+ p->regval & ARMV8_PMU_USERENR_MASK;
+ } else {
+ p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
+ & ARMV8_PMU_USERENR_MASK;
+ }
+
+ return true;
+}
+
+/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
+#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
+ { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
+ trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
+ { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
+ trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
+ { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
+ trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
+ { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
+ trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
+
+/* Macro to expand the PMEVCNTRn_EL0 register */
+#define PMU_PMEVCNTR_EL0(n) \
+ { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
+ access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
+
+/* Macro to expand the PMEVTYPERn_EL0 register */
+#define PMU_PMEVTYPER_EL0(n) \
+ { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
+ access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
+
+static bool access_cntp_tval(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ u64 now = kvm_phys_timer_read();
+ u64 cval;
+
+ if (p->is_write) {
+ kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
+ p->regval + now);
+ } else {
+ cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
+ p->regval = cval - now;
+ }
+
+ return true;
+}
+
+static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write)
+ kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
+ else
+ p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
+
+ return true;
+}
+
+static bool access_cntp_cval(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write)
+ kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
+ else
+ p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
+
+ return true;
+}
+
+/* Read a sanitised cpufeature ID register by sys_reg_desc */
+static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
+{
+ u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
+ (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
+ u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
+
+ if (id == SYS_ID_AA64PFR0_EL1) {
+ if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
+ kvm_debug("SVE unsupported for guests, suppressing\n");
+
+ val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
+ } else if (id == SYS_ID_AA64MMFR1_EL1) {
+ if (val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))
+ kvm_debug("LORegions unsupported for guests, suppressing\n");
+
+ val &= ~(0xfUL << ID_AA64MMFR1_LOR_SHIFT);
+ }
+
+ return val;
+}
+
+/* cpufeature ID register access trap handlers */
+
+static bool __access_id_reg(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r,
+ bool raz)
+{
+ if (p->is_write)
+ return write_to_read_only(vcpu, p, r);
+
+ p->regval = read_id_reg(r, raz);
+ return true;
+}
+
+static bool access_id_reg(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ return __access_id_reg(vcpu, p, r, false);
+}
+
+static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ return __access_id_reg(vcpu, p, r, true);
+}
+
+static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
+static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
+static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
+
+/*
+ * cpufeature ID register user accessors
+ *
+ * For now, these registers are immutable for userspace, so no values
+ * are stored, and for set_id_reg() we don't allow the effective value
+ * to be changed.
+ */
+static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
+ bool raz)
+{
+ const u64 id = sys_reg_to_index(rd);
+ const u64 val = read_id_reg(rd, raz);
+
+ return reg_to_user(uaddr, &val, id);
+}
+
+static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
+ bool raz)
+{
+ const u64 id = sys_reg_to_index(rd);
+ int err;
+ u64 val;
+
+ err = reg_from_user(&val, uaddr, id);
+ if (err)
+ return err;
+
+ /* This is what we mean by invariant: you can't change it. */
+ if (val != read_id_reg(rd, raz))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ const struct kvm_one_reg *reg, void __user *uaddr)
+{
+ return __get_id_reg(rd, uaddr, false);
+}
+
+static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ const struct kvm_one_reg *reg, void __user *uaddr)
+{
+ return __set_id_reg(rd, uaddr, false);
+}
+
+static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ const struct kvm_one_reg *reg, void __user *uaddr)
+{
+ return __get_id_reg(rd, uaddr, true);
+}
+
+static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
+ const struct kvm_one_reg *reg, void __user *uaddr)
+{
+ return __set_id_reg(rd, uaddr, true);
+}
+
+/* sys_reg_desc initialiser for known cpufeature ID registers */
+#define ID_SANITISED(name) { \
+ SYS_DESC(SYS_##name), \
+ .access = access_id_reg, \
+ .get_user = get_id_reg, \
+ .set_user = set_id_reg, \
+}
+
+/*
+ * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
+ * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
+ * (1 <= crm < 8, 0 <= Op2 < 8).
+ */
+#define ID_UNALLOCATED(crm, op2) { \
+ Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
+ .access = access_raz_id_reg, \
+ .get_user = get_raz_id_reg, \
+ .set_user = set_raz_id_reg, \
+}
+
+/*
+ * sys_reg_desc initialiser for known ID registers that we hide from guests.
+ * For now, these are exposed just like unallocated ID regs: they appear
+ * RAZ for the guest.
+ */
+#define ID_HIDDEN(name) { \
+ SYS_DESC(SYS_##name), \
+ .access = access_raz_id_reg, \
+ .get_user = get_raz_id_reg, \
+ .set_user = set_raz_id_reg, \
+}
+
+/*
+ * Architected system registers.
+ * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
+ *
+ * Debug handling: We do trap most, if not all debug related system
+ * registers. The implementation is good enough to ensure that a guest
+ * can use these with minimal performance degradation. The drawback is
+ * that we don't implement any of the external debug, none of the
+ * OSlock protocol. This should be revisited if we ever encounter a
+ * more demanding guest...
+ */
+static const struct sys_reg_desc sys_reg_descs[] = {
+ { SYS_DESC(SYS_DC_ISW), access_dcsw },
+ { SYS_DESC(SYS_DC_CSW), access_dcsw },
+ { SYS_DESC(SYS_DC_CISW), access_dcsw },
+
+ DBG_BCR_BVR_WCR_WVR_EL1(0),
+ DBG_BCR_BVR_WCR_WVR_EL1(1),
+ { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
+ { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
+ DBG_BCR_BVR_WCR_WVR_EL1(2),
+ DBG_BCR_BVR_WCR_WVR_EL1(3),
+ DBG_BCR_BVR_WCR_WVR_EL1(4),
+ DBG_BCR_BVR_WCR_WVR_EL1(5),
+ DBG_BCR_BVR_WCR_WVR_EL1(6),
+ DBG_BCR_BVR_WCR_WVR_EL1(7),
+ DBG_BCR_BVR_WCR_WVR_EL1(8),
+ DBG_BCR_BVR_WCR_WVR_EL1(9),
+ DBG_BCR_BVR_WCR_WVR_EL1(10),
+ DBG_BCR_BVR_WCR_WVR_EL1(11),
+ DBG_BCR_BVR_WCR_WVR_EL1(12),
+ DBG_BCR_BVR_WCR_WVR_EL1(13),
+ DBG_BCR_BVR_WCR_WVR_EL1(14),
+ DBG_BCR_BVR_WCR_WVR_EL1(15),
+
+ { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
+ { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
+
+ { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
+ { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
+ // DBGDTR[TR]X_EL0 share the same encoding
+ { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
+
+ { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
+
+ { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
+
+ /*
+ * ID regs: all ID_SANITISED() entries here must have corresponding
+ * entries in arm64_ftr_regs[].
+ */
+
+ /* AArch64 mappings of the AArch32 ID registers */
+ /* CRm=1 */
+ ID_SANITISED(ID_PFR0_EL1),
+ ID_SANITISED(ID_PFR1_EL1),
+ ID_SANITISED(ID_DFR0_EL1),
+ ID_HIDDEN(ID_AFR0_EL1),
+ ID_SANITISED(ID_MMFR0_EL1),
+ ID_SANITISED(ID_MMFR1_EL1),
+ ID_SANITISED(ID_MMFR2_EL1),
+ ID_SANITISED(ID_MMFR3_EL1),
+
+ /* CRm=2 */
+ ID_SANITISED(ID_ISAR0_EL1),
+ ID_SANITISED(ID_ISAR1_EL1),
+ ID_SANITISED(ID_ISAR2_EL1),
+ ID_SANITISED(ID_ISAR3_EL1),
+ ID_SANITISED(ID_ISAR4_EL1),
+ ID_SANITISED(ID_ISAR5_EL1),
+ ID_SANITISED(ID_MMFR4_EL1),
+ ID_UNALLOCATED(2,7),
+
+ /* CRm=3 */
+ ID_SANITISED(MVFR0_EL1),
+ ID_SANITISED(MVFR1_EL1),
+ ID_SANITISED(MVFR2_EL1),
+ ID_UNALLOCATED(3,3),
+ ID_UNALLOCATED(3,4),
+ ID_UNALLOCATED(3,5),
+ ID_UNALLOCATED(3,6),
+ ID_UNALLOCATED(3,7),
+
+ /* AArch64 ID registers */
+ /* CRm=4 */
+ ID_SANITISED(ID_AA64PFR0_EL1),
+ ID_SANITISED(ID_AA64PFR1_EL1),
+ ID_UNALLOCATED(4,2),
+ ID_UNALLOCATED(4,3),
+ ID_UNALLOCATED(4,4),
+ ID_UNALLOCATED(4,5),
+ ID_UNALLOCATED(4,6),
+ ID_UNALLOCATED(4,7),
+
+ /* CRm=5 */
+ ID_SANITISED(ID_AA64DFR0_EL1),
+ ID_SANITISED(ID_AA64DFR1_EL1),
+ ID_UNALLOCATED(5,2),
+ ID_UNALLOCATED(5,3),
+ ID_HIDDEN(ID_AA64AFR0_EL1),
+ ID_HIDDEN(ID_AA64AFR1_EL1),
+ ID_UNALLOCATED(5,6),
+ ID_UNALLOCATED(5,7),
+
+ /* CRm=6 */
+ ID_SANITISED(ID_AA64ISAR0_EL1),
+ ID_SANITISED(ID_AA64ISAR1_EL1),
+ ID_SANITISED(ID_AA64ISAR2_EL1),
+ ID_UNALLOCATED(6,3),
+ ID_UNALLOCATED(6,4),
+ ID_UNALLOCATED(6,5),
+ ID_UNALLOCATED(6,6),
+ ID_UNALLOCATED(6,7),
+
+ /* CRm=7 */
+ ID_SANITISED(ID_AA64MMFR0_EL1),
+ ID_SANITISED(ID_AA64MMFR1_EL1),
+ ID_SANITISED(ID_AA64MMFR2_EL1),
+ ID_UNALLOCATED(7,3),
+ ID_UNALLOCATED(7,4),
+ ID_UNALLOCATED(7,5),
+ ID_UNALLOCATED(7,6),
+ ID_UNALLOCATED(7,7),
+
+ { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
+ { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
+ { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
+ { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
+ { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
+
+ { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
+ { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
+ { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
+
+ { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
+ { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
+
+ { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
+ { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
+
+ { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
+ { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
+
+ { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
+ { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
+
+ { SYS_DESC(SYS_LORSA_EL1), trap_undef },
+ { SYS_DESC(SYS_LOREA_EL1), trap_undef },
+ { SYS_DESC(SYS_LORN_EL1), trap_undef },
+ { SYS_DESC(SYS_LORC_EL1), trap_undef },
+ { SYS_DESC(SYS_LORID_EL1), trap_undef },
+
+ { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
+ { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
+
+ { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
+ { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
+ { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
+ { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
+ { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
+ { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
+ { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
+ { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
+ { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
+ { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
+ { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
+ { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
+
+ { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
+ { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
+
+ { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
+
+ { SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
+
+ { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
+ { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
+ { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
+ { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
+ { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
+ { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
+ { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
+ { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
+ { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
+ { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
+ { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
+ /*
+ * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
+ * in 32bit mode. Here we choose to reset it as zero for consistency.
+ */
+ { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
+ { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
+
+ { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
+ { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
+
+ { SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
+ { SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
+ { SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
+
+ /* PMEVCNTRn_EL0 */
+ PMU_PMEVCNTR_EL0(0),
+ PMU_PMEVCNTR_EL0(1),
+ PMU_PMEVCNTR_EL0(2),
+ PMU_PMEVCNTR_EL0(3),
+ PMU_PMEVCNTR_EL0(4),
+ PMU_PMEVCNTR_EL0(5),
+ PMU_PMEVCNTR_EL0(6),
+ PMU_PMEVCNTR_EL0(7),
+ PMU_PMEVCNTR_EL0(8),
+ PMU_PMEVCNTR_EL0(9),
+ PMU_PMEVCNTR_EL0(10),
+ PMU_PMEVCNTR_EL0(11),
+ PMU_PMEVCNTR_EL0(12),
+ PMU_PMEVCNTR_EL0(13),
+ PMU_PMEVCNTR_EL0(14),
+ PMU_PMEVCNTR_EL0(15),
+ PMU_PMEVCNTR_EL0(16),
+ PMU_PMEVCNTR_EL0(17),
+ PMU_PMEVCNTR_EL0(18),
+ PMU_PMEVCNTR_EL0(19),
+ PMU_PMEVCNTR_EL0(20),
+ PMU_PMEVCNTR_EL0(21),
+ PMU_PMEVCNTR_EL0(22),
+ PMU_PMEVCNTR_EL0(23),
+ PMU_PMEVCNTR_EL0(24),
+ PMU_PMEVCNTR_EL0(25),
+ PMU_PMEVCNTR_EL0(26),
+ PMU_PMEVCNTR_EL0(27),
+ PMU_PMEVCNTR_EL0(28),
+ PMU_PMEVCNTR_EL0(29),
+ PMU_PMEVCNTR_EL0(30),
+ /* PMEVTYPERn_EL0 */
+ PMU_PMEVTYPER_EL0(0),
+ PMU_PMEVTYPER_EL0(1),
+ PMU_PMEVTYPER_EL0(2),
+ PMU_PMEVTYPER_EL0(3),
+ PMU_PMEVTYPER_EL0(4),
+ PMU_PMEVTYPER_EL0(5),
+ PMU_PMEVTYPER_EL0(6),
+ PMU_PMEVTYPER_EL0(7),
+ PMU_PMEVTYPER_EL0(8),
+ PMU_PMEVTYPER_EL0(9),
+ PMU_PMEVTYPER_EL0(10),
+ PMU_PMEVTYPER_EL0(11),
+ PMU_PMEVTYPER_EL0(12),
+ PMU_PMEVTYPER_EL0(13),
+ PMU_PMEVTYPER_EL0(14),
+ PMU_PMEVTYPER_EL0(15),
+ PMU_PMEVTYPER_EL0(16),
+ PMU_PMEVTYPER_EL0(17),
+ PMU_PMEVTYPER_EL0(18),
+ PMU_PMEVTYPER_EL0(19),
+ PMU_PMEVTYPER_EL0(20),
+ PMU_PMEVTYPER_EL0(21),
+ PMU_PMEVTYPER_EL0(22),
+ PMU_PMEVTYPER_EL0(23),
+ PMU_PMEVTYPER_EL0(24),
+ PMU_PMEVTYPER_EL0(25),
+ PMU_PMEVTYPER_EL0(26),
+ PMU_PMEVTYPER_EL0(27),
+ PMU_PMEVTYPER_EL0(28),
+ PMU_PMEVTYPER_EL0(29),
+ PMU_PMEVTYPER_EL0(30),
+ /*
+ * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
+ * in 32bit mode. Here we choose to reset it as zero for consistency.
+ */
+ { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
+
+ { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
+ { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
+ { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
+};
+
+static bool trap_dbgidr(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write) {
+ return ignore_write(vcpu, p);
+ } else {
+ u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
+ u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
+ u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
+
+ p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
+ (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
+ (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
+ | (6 << 16) | (el3 << 14) | (el3 << 12));
+ return true;
+ }
+}
+
+static bool trap_debug32(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *r)
+{
+ if (p->is_write) {
+ vcpu_cp14(vcpu, r->reg) = p->regval;
+ vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
+ } else {
+ p->regval = vcpu_cp14(vcpu, r->reg);
+ }
+
+ return true;
+}
+
+/* AArch32 debug register mappings
+ *
+ * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
+ * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
+ *
+ * All control registers and watchpoint value registers are mapped to
+ * the lower 32 bits of their AArch64 equivalents. We share the trap
+ * handlers with the above AArch64 code which checks what mode the
+ * system is in.
+ */
+
+static bool trap_xvr(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *p,
+ const struct sys_reg_desc *rd)
+{
+ u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
+
+ if (p->is_write) {
+ u64 val = *dbg_reg;
+
+ val &= 0xffffffffUL;
+ val |= p->regval << 32;
+ *dbg_reg = val;
+
+ vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
+ } else {
+ p->regval = *dbg_reg >> 32;
+ }
+
+ trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
+
+ return true;
+}
+
+#define DBG_BCR_BVR_WCR_WVR(n) \
+ /* DBGBVRn */ \
+ { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
+ /* DBGBCRn */ \
+ { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
+ /* DBGWVRn */ \
+ { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
+ /* DBGWCRn */ \
+ { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
+
+#define DBGBXVR(n) \
+ { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
+
+/*
+ * Trapped cp14 registers. We generally ignore most of the external
+ * debug, on the principle that they don't really make sense to a
+ * guest. Revisit this one day, would this principle change.
+ */
+static const struct sys_reg_desc cp14_regs[] = {
+ /* DBGIDR */
+ { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
+ /* DBGDTRRXext */
+ { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
+
+ DBG_BCR_BVR_WCR_WVR(0),
+ /* DBGDSCRint */
+ { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
+ DBG_BCR_BVR_WCR_WVR(1),
+ /* DBGDCCINT */
+ { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32, NULL, cp14_DBGDCCINT },
+ /* DBGDSCRext */
+ { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32, NULL, cp14_DBGDSCRext },
+ DBG_BCR_BVR_WCR_WVR(2),
+ /* DBGDTR[RT]Xint */
+ { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
+ /* DBGDTR[RT]Xext */
+ { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
+ DBG_BCR_BVR_WCR_WVR(3),
+ DBG_BCR_BVR_WCR_WVR(4),
+ DBG_BCR_BVR_WCR_WVR(5),
+ /* DBGWFAR */
+ { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
+ /* DBGOSECCR */
+ { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
+ DBG_BCR_BVR_WCR_WVR(6),
+ /* DBGVCR */
+ { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32, NULL, cp14_DBGVCR },
+ DBG_BCR_BVR_WCR_WVR(7),
+ DBG_BCR_BVR_WCR_WVR(8),
+ DBG_BCR_BVR_WCR_WVR(9),
+ DBG_BCR_BVR_WCR_WVR(10),
+ DBG_BCR_BVR_WCR_WVR(11),
+ DBG_BCR_BVR_WCR_WVR(12),
+ DBG_BCR_BVR_WCR_WVR(13),
+ DBG_BCR_BVR_WCR_WVR(14),
+ DBG_BCR_BVR_WCR_WVR(15),
+
+ /* DBGDRAR (32bit) */
+ { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
+
+ DBGBXVR(0),
+ /* DBGOSLAR */
+ { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
+ DBGBXVR(1),
+ /* DBGOSLSR */
+ { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
+ DBGBXVR(2),
+ DBGBXVR(3),
+ /* DBGOSDLR */
+ { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
+ DBGBXVR(4),
+ /* DBGPRCR */
+ { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
+ DBGBXVR(5),
+ DBGBXVR(6),
+ DBGBXVR(7),
+ DBGBXVR(8),
+ DBGBXVR(9),
+ DBGBXVR(10),
+ DBGBXVR(11),
+ DBGBXVR(12),
+ DBGBXVR(13),
+ DBGBXVR(14),
+ DBGBXVR(15),
+
+ /* DBGDSAR (32bit) */
+ { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
+
+ /* DBGDEVID2 */
+ { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
+ /* DBGDEVID1 */
+ { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
+ /* DBGDEVID */
+ { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
+ /* DBGCLAIMSET */
+ { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
+ /* DBGCLAIMCLR */
+ { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
+ /* DBGAUTHSTATUS */
+ { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
+};
+
+/* Trapped cp14 64bit registers */
+static const struct sys_reg_desc cp14_64_regs[] = {
+ /* DBGDRAR (64bit) */
+ { Op1( 0), CRm( 1), .access = trap_raz_wi },
+
+ /* DBGDSAR (64bit) */
+ { Op1( 0), CRm( 2), .access = trap_raz_wi },
+};
+
+/* Macro to expand the PMEVCNTRn register */
+#define PMU_PMEVCNTR(n) \
+ /* PMEVCNTRn */ \
+ { Op1(0), CRn(0b1110), \
+ CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
+ access_pmu_evcntr }
+
+/* Macro to expand the PMEVTYPERn register */
+#define PMU_PMEVTYPER(n) \
+ /* PMEVTYPERn */ \
+ { Op1(0), CRn(0b1110), \
+ CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
+ access_pmu_evtyper }
+
+/*
+ * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
+ * depending on the way they are accessed (as a 32bit or a 64bit
+ * register).
+ */
+static const struct sys_reg_desc cp15_regs[] = {
+ { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
+ { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
+ { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
+ { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
+ { Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, c2_TTBCR2 },
+ { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
+ { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
+ { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
+ { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
+ { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
+ { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
+ { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
+
+ /*
+ * DC{C,I,CI}SW operations:
+ */
+ { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
+ { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
+ { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
+
+ /* PMU */
+ { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
+ { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
+ { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
+ { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
+ { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
+ { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
+ { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
+ { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
+ { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
+ { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
+ { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
+ { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
+ { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
+ { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
+ { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
+
+ { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
+ { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
+ { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
+ { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
+
+ /* ICC_SRE */
+ { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
+
+ { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
+
+ /* CNTP_TVAL */
+ { Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval },
+ /* CNTP_CTL */
+ { Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl },
+
+ /* PMEVCNTRn */
+ PMU_PMEVCNTR(0),
+ PMU_PMEVCNTR(1),
+ PMU_PMEVCNTR(2),
+ PMU_PMEVCNTR(3),
+ PMU_PMEVCNTR(4),
+ PMU_PMEVCNTR(5),
+ PMU_PMEVCNTR(6),
+ PMU_PMEVCNTR(7),
+ PMU_PMEVCNTR(8),
+ PMU_PMEVCNTR(9),
+ PMU_PMEVCNTR(10),
+ PMU_PMEVCNTR(11),
+ PMU_PMEVCNTR(12),
+ PMU_PMEVCNTR(13),
+ PMU_PMEVCNTR(14),
+ PMU_PMEVCNTR(15),
+ PMU_PMEVCNTR(16),
+ PMU_PMEVCNTR(17),
+ PMU_PMEVCNTR(18),
+ PMU_PMEVCNTR(19),
+ PMU_PMEVCNTR(20),
+ PMU_PMEVCNTR(21),
+ PMU_PMEVCNTR(22),
+ PMU_PMEVCNTR(23),
+ PMU_PMEVCNTR(24),
+ PMU_PMEVCNTR(25),
+ PMU_PMEVCNTR(26),
+ PMU_PMEVCNTR(27),
+ PMU_PMEVCNTR(28),
+ PMU_PMEVCNTR(29),
+ PMU_PMEVCNTR(30),
+ /* PMEVTYPERn */
+ PMU_PMEVTYPER(0),
+ PMU_PMEVTYPER(1),
+ PMU_PMEVTYPER(2),
+ PMU_PMEVTYPER(3),
+ PMU_PMEVTYPER(4),
+ PMU_PMEVTYPER(5),
+ PMU_PMEVTYPER(6),
+ PMU_PMEVTYPER(7),
+ PMU_PMEVTYPER(8),
+ PMU_PMEVTYPER(9),
+ PMU_PMEVTYPER(10),
+ PMU_PMEVTYPER(11),
+ PMU_PMEVTYPER(12),
+ PMU_PMEVTYPER(13),
+ PMU_PMEVTYPER(14),
+ PMU_PMEVTYPER(15),
+ PMU_PMEVTYPER(16),
+ PMU_PMEVTYPER(17),
+ PMU_PMEVTYPER(18),
+ PMU_PMEVTYPER(19),
+ PMU_PMEVTYPER(20),
+ PMU_PMEVTYPER(21),
+ PMU_PMEVTYPER(22),
+ PMU_PMEVTYPER(23),
+ PMU_PMEVTYPER(24),
+ PMU_PMEVTYPER(25),
+ PMU_PMEVTYPER(26),
+ PMU_PMEVTYPER(27),
+ PMU_PMEVTYPER(28),
+ PMU_PMEVTYPER(29),
+ PMU_PMEVTYPER(30),
+ /* PMCCFILTR */
+ { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
+};
+
+static const struct sys_reg_desc cp15_64_regs[] = {
+ { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
+ { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
+ { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
+ { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
+ { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
+ { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
+ { Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval },
+};
+
+/* Target specific emulation tables */
+static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
+
+void kvm_register_target_sys_reg_table(unsigned int target,
+ struct kvm_sys_reg_target_table *table)
+{
+ target_tables[target] = table;
+}
+
+/* Get specific register table for this target. */
+static const struct sys_reg_desc *get_target_table(unsigned target,
+ bool mode_is_64,
+ size_t *num)
+{
+ struct kvm_sys_reg_target_table *table;
+
+ table = target_tables[target];
+ if (mode_is_64) {
+ *num = table->table64.num;
+ return table->table64.table;
+ } else {
+ *num = table->table32.num;
+ return table->table32.table;
+ }
+}
+
+#define reg_to_match_value(x) \
+ ({ \
+ unsigned long val; \
+ val = (x)->Op0 << 14; \
+ val |= (x)->Op1 << 11; \
+ val |= (x)->CRn << 7; \
+ val |= (x)->CRm << 3; \
+ val |= (x)->Op2; \
+ val; \
+ })
+
+static int match_sys_reg(const void *key, const void *elt)
+{
+ const unsigned long pval = (unsigned long)key;
+ const struct sys_reg_desc *r = elt;
+
+ return pval - reg_to_match_value(r);
+}
+
+static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
+ const struct sys_reg_desc table[],
+ unsigned int num)
+{
+ unsigned long pval = reg_to_match_value(params);
+
+ return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
+}
+
+int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ kvm_inject_undefined(vcpu);
+ return 1;
+}
+
+static void perform_access(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *params,
+ const struct sys_reg_desc *r)
+{
+ /*
+ * Not having an accessor means that we have configured a trap
+ * that we don't know how to handle. This certainly qualifies
+ * as a gross bug that should be fixed right away.
+ */
+ BUG_ON(!r->access);
+
+ /* Skip instruction if instructed so */
+ if (likely(r->access(vcpu, params, r)))
+ kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
+}
+
+/*
+ * emulate_cp -- tries to match a sys_reg access in a handling table, and
+ * call the corresponding trap handler.
+ *
+ * @params: pointer to the descriptor of the access
+ * @table: array of trap descriptors
+ * @num: size of the trap descriptor array
+ *
+ * Return 0 if the access has been handled, and -1 if not.
+ */
+static int emulate_cp(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *params,
+ const struct sys_reg_desc *table,
+ size_t num)
+{
+ const struct sys_reg_desc *r;
+
+ if (!table)
+ return -1; /* Not handled */
+
+ r = find_reg(params, table, num);
+
+ if (r) {
+ perform_access(vcpu, params, r);
+ return 0;
+ }
+
+ /* Not handled */
+ return -1;
+}
+
+static void unhandled_cp_access(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *params)
+{
+ u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
+ int cp = -1;
+
+ switch(hsr_ec) {
+ case ESR_ELx_EC_CP15_32:
+ case ESR_ELx_EC_CP15_64:
+ cp = 15;
+ break;
+ case ESR_ELx_EC_CP14_MR:
+ case ESR_ELx_EC_CP14_64:
+ cp = 14;
+ break;
+ default:
+ WARN_ON(1);
+ }
+
+ kvm_err("Unsupported guest CP%d access at: %08lx\n",
+ cp, *vcpu_pc(vcpu));
+ print_sys_reg_instr(params);
+ kvm_inject_undefined(vcpu);
+}
+
+/**
+ * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
+ * @vcpu: The VCPU pointer
+ * @run: The kvm_run struct
+ */
+static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *global,
+ size_t nr_global,
+ const struct sys_reg_desc *target_specific,
+ size_t nr_specific)
+{
+ struct sys_reg_params params;
+ u32 hsr = kvm_vcpu_get_hsr(vcpu);
+ int Rt = kvm_vcpu_sys_get_rt(vcpu);
+ int Rt2 = (hsr >> 10) & 0x1f;
+
+ params.is_aarch32 = true;
+ params.is_32bit = false;
+ params.CRm = (hsr >> 1) & 0xf;
+ params.is_write = ((hsr & 1) == 0);
+
+ params.Op0 = 0;
+ params.Op1 = (hsr >> 16) & 0xf;
+ params.Op2 = 0;
+ params.CRn = 0;
+
+ /*
+ * Make a 64-bit value out of Rt and Rt2. As we use the same trap
+ * backends between AArch32 and AArch64, we get away with it.
+ */
+ if (params.is_write) {
+ params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
+ params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
+ }
+
+ /*
+ * Try to emulate the coprocessor access using the target
+ * specific table first, and using the global table afterwards.
+ * If either of the tables contains a handler, handle the
+ * potential register operation in the case of a read and return
+ * with success.
+ */
+ if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
+ !emulate_cp(vcpu, &params, global, nr_global)) {
+ /* Split up the value between registers for the read side */
+ if (!params.is_write) {
+ vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
+ vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
+ }
+
+ return 1;
+ }
+
+ unhandled_cp_access(vcpu, &params);
+ return 1;
+}
+
+/**
+ * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
+ * @vcpu: The VCPU pointer
+ * @run: The kvm_run struct
+ */
+static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *global,
+ size_t nr_global,
+ const struct sys_reg_desc *target_specific,
+ size_t nr_specific)
+{
+ struct sys_reg_params params;
+ u32 hsr = kvm_vcpu_get_hsr(vcpu);
+ int Rt = kvm_vcpu_sys_get_rt(vcpu);
+
+ params.is_aarch32 = true;
+ params.is_32bit = true;
+ params.CRm = (hsr >> 1) & 0xf;
+ params.regval = vcpu_get_reg(vcpu, Rt);
+ params.is_write = ((hsr & 1) == 0);
+ params.CRn = (hsr >> 10) & 0xf;
+ params.Op0 = 0;
+ params.Op1 = (hsr >> 14) & 0x7;
+ params.Op2 = (hsr >> 17) & 0x7;
+
+ if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
+ !emulate_cp(vcpu, &params, global, nr_global)) {
+ if (!params.is_write)
+ vcpu_set_reg(vcpu, Rt, params.regval);
+ return 1;
+ }
+
+ unhandled_cp_access(vcpu, &params);
+ return 1;
+}
+
+int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ const struct sys_reg_desc *target_specific;
+ size_t num;
+
+ target_specific = get_target_table(vcpu->arch.target, false, &num);
+ return kvm_handle_cp_64(vcpu,
+ cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
+ target_specific, num);
+}
+
+int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ const struct sys_reg_desc *target_specific;
+ size_t num;
+
+ target_specific = get_target_table(vcpu->arch.target, false, &num);
+ return kvm_handle_cp_32(vcpu,
+ cp15_regs, ARRAY_SIZE(cp15_regs),
+ target_specific, num);
+}
+
+int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ return kvm_handle_cp_64(vcpu,
+ cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
+ NULL, 0);
+}
+
+int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ return kvm_handle_cp_32(vcpu,
+ cp14_regs, ARRAY_SIZE(cp14_regs),
+ NULL, 0);
+}
+
+static int emulate_sys_reg(struct kvm_vcpu *vcpu,
+ struct sys_reg_params *params)
+{
+ size_t num;
+ const struct sys_reg_desc *table, *r;
+
+ table = get_target_table(vcpu->arch.target, true, &num);
+
+ /* Search target-specific then generic table. */
+ r = find_reg(params, table, num);
+ if (!r)
+ r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
+
+ if (likely(r)) {
+ perform_access(vcpu, params, r);
+ } else {
+ kvm_err("Unsupported guest sys_reg access at: %lx\n",
+ *vcpu_pc(vcpu));
+ print_sys_reg_instr(params);
+ kvm_inject_undefined(vcpu);
+ }
+ return 1;
+}
+
+static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
+ const struct sys_reg_desc *table, size_t num,
+ unsigned long *bmap)
+{
+ unsigned long i;
+
+ for (i = 0; i < num; i++)
+ if (table[i].reset) {
+ int reg = table[i].reg;
+
+ table[i].reset(vcpu, &table[i]);
+ if (reg > 0 && reg < NR_SYS_REGS)
+ set_bit(reg, bmap);
+ }
+}
+
+/**
+ * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
+ * @vcpu: The VCPU pointer
+ * @run: The kvm_run struct
+ */
+int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
+{
+ struct sys_reg_params params;
+ unsigned long esr = kvm_vcpu_get_hsr(vcpu);
+ int Rt = kvm_vcpu_sys_get_rt(vcpu);
+ int ret;
+
+ trace_kvm_handle_sys_reg(esr);
+
+ params.is_aarch32 = false;
+ params.is_32bit = false;
+ params.Op0 = (esr >> 20) & 3;
+ params.Op1 = (esr >> 14) & 0x7;
+ params.CRn = (esr >> 10) & 0xf;
+ params.CRm = (esr >> 1) & 0xf;
+ params.Op2 = (esr >> 17) & 0x7;
+ params.regval = vcpu_get_reg(vcpu, Rt);
+ params.is_write = !(esr & 1);
+
+ ret = emulate_sys_reg(vcpu, &params);
+
+ if (!params.is_write)
+ vcpu_set_reg(vcpu, Rt, params.regval);
+ return ret;
+}
+
+/******************************************************************************
+ * Userspace API
+ *****************************************************************************/
+
+static bool index_to_params(u64 id, struct sys_reg_params *params)
+{
+ switch (id & KVM_REG_SIZE_MASK) {
+ case KVM_REG_SIZE_U64:
+ /* Any unused index bits means it's not valid. */
+ if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
+ | KVM_REG_ARM_COPROC_MASK
+ | KVM_REG_ARM64_SYSREG_OP0_MASK
+ | KVM_REG_ARM64_SYSREG_OP1_MASK
+ | KVM_REG_ARM64_SYSREG_CRN_MASK
+ | KVM_REG_ARM64_SYSREG_CRM_MASK
+ | KVM_REG_ARM64_SYSREG_OP2_MASK))
+ return false;
+ params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
+ >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
+ params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
+ >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
+ params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
+ >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
+ params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
+ >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
+ params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
+ >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
+ return true;
+ default:
+ return false;
+ }
+}
+
+const struct sys_reg_desc *find_reg_by_id(u64 id,
+ struct sys_reg_params *params,
+ const struct sys_reg_desc table[],
+ unsigned int num)
+{
+ if (!index_to_params(id, params))
+ return NULL;
+
+ return find_reg(params, table, num);
+}
+
+/* Decode an index value, and find the sys_reg_desc entry. */
+static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
+ u64 id)
+{
+ size_t num;
+ const struct sys_reg_desc *table, *r;
+ struct sys_reg_params params;
+
+ /* We only do sys_reg for now. */
+ if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
+ return NULL;
+
+ if (!index_to_params(id, &params))
+ return NULL;
+
+ table = get_target_table(vcpu->arch.target, true, &num);
+ r = find_reg(&params, table, num);
+ if (!r)
+ r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
+
+ /* Not saved in the sys_reg array and not otherwise accessible? */
+ if (r && !(r->reg || r->get_user))
+ r = NULL;
+
+ return r;
+}
+
+/*
+ * These are the invariant sys_reg registers: we let the guest see the
+ * host versions of these, so they're part of the guest state.
+ *
+ * A future CPU may provide a mechanism to present different values to
+ * the guest, or a future kvm may trap them.
+ */
+
+#define FUNCTION_INVARIANT(reg) \
+ static void get_##reg(struct kvm_vcpu *v, \
+ const struct sys_reg_desc *r) \
+ { \
+ ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
+ }
+
+FUNCTION_INVARIANT(midr_el1)
+FUNCTION_INVARIANT(ctr_el0)
+FUNCTION_INVARIANT(revidr_el1)
+FUNCTION_INVARIANT(clidr_el1)
+FUNCTION_INVARIANT(aidr_el1)
+
+/* ->val is filled in by kvm_sys_reg_table_init() */
+static struct sys_reg_desc invariant_sys_regs[] = {
+ { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
+ { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
+ { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
+ { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
+ { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
+};
+
+static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
+{
+ if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
+ return -EFAULT;
+ return 0;
+}
+
+static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
+{
+ if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
+ return -EFAULT;
+ return 0;
+}
+
+static int get_invariant_sys_reg(u64 id, void __user *uaddr)
+{
+ struct sys_reg_params params;
+ const struct sys_reg_desc *r;
+
+ r = find_reg_by_id(id, &params, invariant_sys_regs,
+ ARRAY_SIZE(invariant_sys_regs));
+ if (!r)
+ return -ENOENT;
+
+ return reg_to_user(uaddr, &r->val, id);
+}
+
+static int set_invariant_sys_reg(u64 id, void __user *uaddr)
+{
+ struct sys_reg_params params;
+ const struct sys_reg_desc *r;
+ int err;
+ u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
+
+ r = find_reg_by_id(id, &params, invariant_sys_regs,
+ ARRAY_SIZE(invariant_sys_regs));
+ if (!r)
+ return -ENOENT;
+
+ err = reg_from_user(&val, uaddr, id);
+ if (err)
+ return err;
+
+ /* This is what we mean by invariant: you can't change it. */
+ if (r->val != val)
+ return -EINVAL;
+
+ return 0;
+}
+
+static bool is_valid_cache(u32 val)
+{
+ u32 level, ctype;
+
+ if (val >= CSSELR_MAX)
+ return false;
+
+ /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
+ level = (val >> 1);
+ ctype = (cache_levels >> (level * 3)) & 7;
+
+ switch (ctype) {
+ case 0: /* No cache */
+ return false;
+ case 1: /* Instruction cache only */
+ return (val & 1);
+ case 2: /* Data cache only */
+ case 4: /* Unified cache */
+ return !(val & 1);
+ case 3: /* Separate instruction and data caches */
+ return true;
+ default: /* Reserved: we can't know instruction or data. */
+ return false;
+ }
+}
+
+static int demux_c15_get(u64 id, void __user *uaddr)
+{
+ u32 val;
+ u32 __user *uval = uaddr;
+
+ /* Fail if we have unknown bits set. */
+ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
+ | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
+ return -ENOENT;
+
+ switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
+ case KVM_REG_ARM_DEMUX_ID_CCSIDR:
+ if (KVM_REG_SIZE(id) != 4)
+ return -ENOENT;
+ val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
+ >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
+ if (!is_valid_cache(val))
+ return -ENOENT;
+
+ return put_user(get_ccsidr(val), uval);
+ default:
+ return -ENOENT;
+ }
+}
+
+static int demux_c15_set(u64 id, void __user *uaddr)
+{
+ u32 val, newval;
+ u32 __user *uval = uaddr;
+
+ /* Fail if we have unknown bits set. */
+ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
+ | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
+ return -ENOENT;
+
+ switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
+ case KVM_REG_ARM_DEMUX_ID_CCSIDR:
+ if (KVM_REG_SIZE(id) != 4)
+ return -ENOENT;
+ val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
+ >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
+ if (!is_valid_cache(val))
+ return -ENOENT;
+
+ if (get_user(newval, uval))
+ return -EFAULT;
+
+ /* This is also invariant: you can't change it. */
+ if (newval != get_ccsidr(val))
+ return -EINVAL;
+ return 0;
+ default:
+ return -ENOENT;
+ }
+}
+
+int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ const struct sys_reg_desc *r;
+ void __user *uaddr = (void __user *)(unsigned long)reg->addr;
+
+ if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
+ return demux_c15_get(reg->id, uaddr);
+
+ if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
+ return -ENOENT;
+
+ r = index_to_sys_reg_desc(vcpu, reg->id);
+ if (!r)
+ return get_invariant_sys_reg(reg->id, uaddr);
+
+ if (r->get_user)
+ return (r->get_user)(vcpu, r, reg, uaddr);
+
+ return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
+}
+
+int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
+{
+ const struct sys_reg_desc *r;
+ void __user *uaddr = (void __user *)(unsigned long)reg->addr;
+
+ if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
+ return demux_c15_set(reg->id, uaddr);
+
+ if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
+ return -ENOENT;
+
+ r = index_to_sys_reg_desc(vcpu, reg->id);
+ if (!r)
+ return set_invariant_sys_reg(reg->id, uaddr);
+
+ if (r->set_user)
+ return (r->set_user)(vcpu, r, reg, uaddr);
+
+ return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
+}
+
+static unsigned int num_demux_regs(void)
+{
+ unsigned int i, count = 0;
+
+ for (i = 0; i < CSSELR_MAX; i++)
+ if (is_valid_cache(i))
+ count++;
+
+ return count;
+}
+
+static int write_demux_regids(u64 __user *uindices)
+{
+ u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
+ unsigned int i;
+
+ val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
+ for (i = 0; i < CSSELR_MAX; i++) {
+ if (!is_valid_cache(i))
+ continue;
+ if (put_user(val | i, uindices))
+ return -EFAULT;
+ uindices++;
+ }
+ return 0;
+}
+
+static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
+{
+ return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
+ KVM_REG_ARM64_SYSREG |
+ (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
+ (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
+ (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
+ (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
+ (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
+}
+
+static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
+{
+ if (!*uind)
+ return true;
+
+ if (put_user(sys_reg_to_index(reg), *uind))
+ return false;
+
+ (*uind)++;
+ return true;
+}
+
+static int walk_one_sys_reg(const struct sys_reg_desc *rd,
+ u64 __user **uind,
+ unsigned int *total)
+{
+ /*
+ * Ignore registers we trap but don't save,
+ * and for which no custom user accessor is provided.
+ */
+ if (!(rd->reg || rd->get_user))
+ return 0;
+
+ if (!copy_reg_to_user(rd, uind))
+ return -EFAULT;
+
+ (*total)++;
+ return 0;
+}
+
+/* Assumed ordered tables, see kvm_sys_reg_table_init. */
+static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
+{
+ const struct sys_reg_desc *i1, *i2, *end1, *end2;
+ unsigned int total = 0;
+ size_t num;
+ int err;
+
+ /* We check for duplicates here, to allow arch-specific overrides. */
+ i1 = get_target_table(vcpu->arch.target, true, &num);
+ end1 = i1 + num;
+ i2 = sys_reg_descs;
+ end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
+
+ BUG_ON(i1 == end1 || i2 == end2);
+
+ /* Walk carefully, as both tables may refer to the same register. */
+ while (i1 || i2) {
+ int cmp = cmp_sys_reg(i1, i2);
+ /* target-specific overrides generic entry. */
+ if (cmp <= 0)
+ err = walk_one_sys_reg(i1, &uind, &total);
+ else
+ err = walk_one_sys_reg(i2, &uind, &total);
+
+ if (err)
+ return err;
+
+ if (cmp <= 0 && ++i1 == end1)
+ i1 = NULL;
+ if (cmp >= 0 && ++i2 == end2)
+ i2 = NULL;
+ }
+ return total;
+}
+
+unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
+{
+ return ARRAY_SIZE(invariant_sys_regs)
+ + num_demux_regs()
+ + walk_sys_regs(vcpu, (u64 __user *)NULL);
+}
+
+int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
+{
+ unsigned int i;
+ int err;
+
+ /* Then give them all the invariant registers' indices. */
+ for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
+ if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
+ return -EFAULT;
+ uindices++;
+ }
+
+ err = walk_sys_regs(vcpu, uindices);
+ if (err < 0)
+ return err;
+ uindices += err;
+
+ return write_demux_regids(uindices);
+}
+
+static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
+{
+ unsigned int i;
+
+ for (i = 1; i < n; i++) {
+ if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
+ kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+void kvm_sys_reg_table_init(void)
+{
+ unsigned int i;
+ struct sys_reg_desc clidr;
+
+ /* Make sure tables are unique and in order. */
+ BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
+ BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
+ BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
+ BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
+ BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
+ BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
+
+ /* We abuse the reset function to overwrite the table itself. */
+ for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
+ invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
+
+ /*
+ * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
+ *
+ * If software reads the Cache Type fields from Ctype1
+ * upwards, once it has seen a value of 0b000, no caches
+ * exist at further-out levels of the hierarchy. So, for
+ * example, if Ctype3 is the first Cache Type field with a
+ * value of 0b000, the values of Ctype4 to Ctype7 must be
+ * ignored.
+ */
+ get_clidr_el1(NULL, &clidr); /* Ugly... */
+ cache_levels = clidr.val;
+ for (i = 0; i < 7; i++)
+ if (((cache_levels >> (i*3)) & 7) == 0)
+ break;
+ /* Clear all higher bits. */
+ cache_levels &= (1 << (i*3))-1;
+}
+
+/**
+ * kvm_reset_sys_regs - sets system registers to reset value
+ * @vcpu: The VCPU pointer
+ *
+ * This function finds the right table above and sets the registers on the
+ * virtual CPU struct to their architecturally defined reset values.
+ */
+void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
+{
+ size_t num;
+ const struct sys_reg_desc *table;
+ DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, };
+
+ /* Generic chip reset first (so target could override). */
+ reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap);
+
+ table = get_target_table(vcpu->arch.target, true, &num);
+ reset_sys_reg_descs(vcpu, table, num, bmap);
+
+ for (num = 1; num < NR_SYS_REGS; num++) {
+ if (WARN(!test_bit(num, bmap),
+ "Didn't reset __vcpu_sys_reg(%zi)\n", num))
+ break;
+ }
+}