diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /arch/x86/kvm/paging_tmpl.h | |
parent | Initial commit. (diff) | |
download | linux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip |
Adding upstream version 4.19.249.upstream/4.19.249
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/kvm/paging_tmpl.h')
-rw-r--r-- | arch/x86/kvm/paging_tmpl.h | 1083 |
1 files changed, 1083 insertions, 0 deletions
diff --git a/arch/x86/kvm/paging_tmpl.h b/arch/x86/kvm/paging_tmpl.h new file mode 100644 index 000000000..9e15818de --- /dev/null +++ b/arch/x86/kvm/paging_tmpl.h @@ -0,0 +1,1083 @@ +/* + * Kernel-based Virtual Machine driver for Linux + * + * This module enables machines with Intel VT-x extensions to run virtual + * machines without emulation or binary translation. + * + * MMU support + * + * Copyright (C) 2006 Qumranet, Inc. + * Copyright 2010 Red Hat, Inc. and/or its affiliates. + * + * Authors: + * Yaniv Kamay <yaniv@qumranet.com> + * Avi Kivity <avi@qumranet.com> + * + * This work is licensed under the terms of the GNU GPL, version 2. See + * the COPYING file in the top-level directory. + * + */ + +/* + * We need the mmu code to access both 32-bit and 64-bit guest ptes, + * so the code in this file is compiled twice, once per pte size. + */ + +#if PTTYPE == 64 + #define pt_element_t u64 + #define guest_walker guest_walker64 + #define FNAME(name) paging##64_##name + #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK + #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) + #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) + #define PT_INDEX(addr, level) PT64_INDEX(addr, level) + #define PT_LEVEL_BITS PT64_LEVEL_BITS + #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT + #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT + #define PT_HAVE_ACCESSED_DIRTY(mmu) true + #ifdef CONFIG_X86_64 + #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL + #define CMPXCHG cmpxchg + #else + #define CMPXCHG cmpxchg64 + #define PT_MAX_FULL_LEVELS 2 + #endif +#elif PTTYPE == 32 + #define pt_element_t u32 + #define guest_walker guest_walker32 + #define FNAME(name) paging##32_##name + #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK + #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) + #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) + #define PT_INDEX(addr, level) PT32_INDEX(addr, level) + #define PT_LEVEL_BITS PT32_LEVEL_BITS + #define PT_MAX_FULL_LEVELS 2 + #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT + #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT + #define PT_HAVE_ACCESSED_DIRTY(mmu) true + #define CMPXCHG cmpxchg +#elif PTTYPE == PTTYPE_EPT + #define pt_element_t u64 + #define guest_walker guest_walkerEPT + #define FNAME(name) ept_##name + #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK + #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) + #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) + #define PT_INDEX(addr, level) PT64_INDEX(addr, level) + #define PT_LEVEL_BITS PT64_LEVEL_BITS + #define PT_GUEST_DIRTY_SHIFT 9 + #define PT_GUEST_ACCESSED_SHIFT 8 + #define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad) + #define CMPXCHG cmpxchg64 + #define PT_MAX_FULL_LEVELS 4 +#else + #error Invalid PTTYPE value +#endif + +#define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT) +#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT) + +#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) +#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL) + +/* + * The guest_walker structure emulates the behavior of the hardware page + * table walker. + */ +struct guest_walker { + int level; + unsigned max_level; + gfn_t table_gfn[PT_MAX_FULL_LEVELS]; + pt_element_t ptes[PT_MAX_FULL_LEVELS]; + pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; + gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; + pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; + bool pte_writable[PT_MAX_FULL_LEVELS]; + unsigned int pt_access[PT_MAX_FULL_LEVELS]; + unsigned int pte_access; + gfn_t gfn; + struct x86_exception fault; +}; + +static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) +{ + return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; +} + +static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access, + unsigned gpte) +{ + unsigned mask; + + /* dirty bit is not supported, so no need to track it */ + if (!PT_HAVE_ACCESSED_DIRTY(mmu)) + return; + + BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); + + mask = (unsigned)~ACC_WRITE_MASK; + /* Allow write access to dirty gptes */ + mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & + PT_WRITABLE_MASK; + *access &= mask; +} + +static inline int FNAME(is_present_gpte)(unsigned long pte) +{ +#if PTTYPE != PTTYPE_EPT + return pte & PT_PRESENT_MASK; +#else + return pte & 7; +#endif +} + +static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, + pt_element_t __user *ptep_user, unsigned index, + pt_element_t orig_pte, pt_element_t new_pte) +{ + int npages; + pt_element_t ret; + pt_element_t *table; + struct page *page; + + npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page); + /* Check if the user is doing something meaningless. */ + if (unlikely(npages != 1)) + return -EFAULT; + + table = kmap_atomic(page); + ret = CMPXCHG(&table[index], orig_pte, new_pte); + kunmap_atomic(table); + + kvm_release_page_dirty(page); + + return (ret != orig_pte); +} + +static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, + struct kvm_mmu_page *sp, u64 *spte, + u64 gpte) +{ + if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL)) + goto no_present; + + if (!FNAME(is_present_gpte)(gpte)) + goto no_present; + + /* if accessed bit is not supported prefetch non accessed gpte */ + if (PT_HAVE_ACCESSED_DIRTY(&vcpu->arch.mmu) && !(gpte & PT_GUEST_ACCESSED_MASK)) + goto no_present; + + return false; + +no_present: + drop_spte(vcpu->kvm, spte); + return true; +} + +/* + * For PTTYPE_EPT, a page table can be executable but not readable + * on supported processors. Therefore, set_spte does not automatically + * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK + * to signify readability since it isn't used in the EPT case + */ +static inline unsigned FNAME(gpte_access)(u64 gpte) +{ + unsigned access; +#if PTTYPE == PTTYPE_EPT + access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | + ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | + ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0); +#else + BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK); + BUILD_BUG_ON(ACC_EXEC_MASK != 1); + access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK); + /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */ + access ^= (gpte >> PT64_NX_SHIFT); +#endif + + return access; +} + +static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, + struct kvm_mmu *mmu, + struct guest_walker *walker, + gpa_t addr, int write_fault) +{ + unsigned level, index; + pt_element_t pte, orig_pte; + pt_element_t __user *ptep_user; + gfn_t table_gfn; + int ret; + + /* dirty/accessed bits are not supported, so no need to update them */ + if (!PT_HAVE_ACCESSED_DIRTY(mmu)) + return 0; + + for (level = walker->max_level; level >= walker->level; --level) { + pte = orig_pte = walker->ptes[level - 1]; + table_gfn = walker->table_gfn[level - 1]; + ptep_user = walker->ptep_user[level - 1]; + index = offset_in_page(ptep_user) / sizeof(pt_element_t); + if (!(pte & PT_GUEST_ACCESSED_MASK)) { + trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); + pte |= PT_GUEST_ACCESSED_MASK; + } + if (level == walker->level && write_fault && + !(pte & PT_GUEST_DIRTY_MASK)) { + trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); +#if PTTYPE == PTTYPE_EPT + if (kvm_arch_write_log_dirty(vcpu, addr)) + return -EINVAL; +#endif + pte |= PT_GUEST_DIRTY_MASK; + } + if (pte == orig_pte) + continue; + + /* + * If the slot is read-only, simply do not process the accessed + * and dirty bits. This is the correct thing to do if the slot + * is ROM, and page tables in read-as-ROM/write-as-MMIO slots + * are only supported if the accessed and dirty bits are already + * set in the ROM (so that MMIO writes are never needed). + * + * Note that NPT does not allow this at all and faults, since + * it always wants nested page table entries for the guest + * page tables to be writable. And EPT works but will simply + * overwrite the read-only memory to set the accessed and dirty + * bits. + */ + if (unlikely(!walker->pte_writable[level - 1])) + continue; + + ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte); + if (ret) + return ret; + + kvm_vcpu_mark_page_dirty(vcpu, table_gfn); + walker->ptes[level - 1] = pte; + } + return 0; +} + +static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte) +{ + unsigned pkeys = 0; +#if PTTYPE == 64 + pte_t pte = {.pte = gpte}; + + pkeys = pte_flags_pkey(pte_flags(pte)); +#endif + return pkeys; +} + +/* + * Fetch a guest pte for a guest virtual address, or for an L2's GPA. + */ +static int FNAME(walk_addr_generic)(struct guest_walker *walker, + struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, + gpa_t addr, u32 access) +{ + int ret; + pt_element_t pte; + pt_element_t __user *uninitialized_var(ptep_user); + gfn_t table_gfn; + u64 pt_access, pte_access; + unsigned index, accessed_dirty, pte_pkey; + unsigned nested_access; + gpa_t pte_gpa; + bool have_ad; + int offset; + u64 walk_nx_mask = 0; + const int write_fault = access & PFERR_WRITE_MASK; + const int user_fault = access & PFERR_USER_MASK; + const int fetch_fault = access & PFERR_FETCH_MASK; + u16 errcode = 0; + gpa_t real_gpa; + gfn_t gfn; + + trace_kvm_mmu_pagetable_walk(addr, access); +retry_walk: + walker->level = mmu->root_level; + pte = mmu->get_cr3(vcpu); + have_ad = PT_HAVE_ACCESSED_DIRTY(mmu); + +#if PTTYPE == 64 + walk_nx_mask = 1ULL << PT64_NX_SHIFT; + if (walker->level == PT32E_ROOT_LEVEL) { + pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); + trace_kvm_mmu_paging_element(pte, walker->level); + if (!FNAME(is_present_gpte)(pte)) + goto error; + --walker->level; + } +#endif + walker->max_level = walker->level; + ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu))); + + /* + * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging + * by the MOV to CR instruction are treated as reads and do not cause the + * processor to set the dirty flag in any EPT paging-structure entry. + */ + nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK; + + pte_access = ~0; + ++walker->level; + + do { + gfn_t real_gfn; + unsigned long host_addr; + + pt_access = pte_access; + --walker->level; + + index = PT_INDEX(addr, walker->level); + table_gfn = gpte_to_gfn(pte); + offset = index * sizeof(pt_element_t); + pte_gpa = gfn_to_gpa(table_gfn) + offset; + + BUG_ON(walker->level < 1); + walker->table_gfn[walker->level - 1] = table_gfn; + walker->pte_gpa[walker->level - 1] = pte_gpa; + + real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn), + nested_access, + &walker->fault); + + /* + * FIXME: This can happen if emulation (for of an INS/OUTS + * instruction) triggers a nested page fault. The exit + * qualification / exit info field will incorrectly have + * "guest page access" as the nested page fault's cause, + * instead of "guest page structure access". To fix this, + * the x86_exception struct should be augmented with enough + * information to fix the exit_qualification or exit_info_1 + * fields. + */ + if (unlikely(real_gfn == UNMAPPED_GVA)) + return 0; + + real_gfn = gpa_to_gfn(real_gfn); + + host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn, + &walker->pte_writable[walker->level - 1]); + if (unlikely(kvm_is_error_hva(host_addr))) + goto error; + + ptep_user = (pt_element_t __user *)((void *)host_addr + offset); + if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte)))) + goto error; + walker->ptep_user[walker->level - 1] = ptep_user; + + trace_kvm_mmu_paging_element(pte, walker->level); + + /* + * Inverting the NX it lets us AND it like other + * permission bits. + */ + pte_access = pt_access & (pte ^ walk_nx_mask); + + if (unlikely(!FNAME(is_present_gpte)(pte))) + goto error; + + if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) { + errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK; + goto error; + } + + walker->ptes[walker->level - 1] = pte; + + /* Convert to ACC_*_MASK flags for struct guest_walker. */ + walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask); + } while (!is_last_gpte(mmu, walker->level, pte)); + + pte_pkey = FNAME(gpte_pkeys)(vcpu, pte); + accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0; + + /* Convert to ACC_*_MASK flags for struct guest_walker. */ + walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask); + errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access); + if (unlikely(errcode)) + goto error; + + gfn = gpte_to_gfn_lvl(pte, walker->level); + gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; + + if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36()) + gfn += pse36_gfn_delta(pte); + + real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault); + if (real_gpa == UNMAPPED_GVA) + return 0; + + walker->gfn = real_gpa >> PAGE_SHIFT; + + if (!write_fault) + FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte); + else + /* + * On a write fault, fold the dirty bit into accessed_dirty. + * For modes without A/D bits support accessed_dirty will be + * always clear. + */ + accessed_dirty &= pte >> + (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); + + if (unlikely(!accessed_dirty)) { + ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, + addr, write_fault); + if (unlikely(ret < 0)) + goto error; + else if (ret) + goto retry_walk; + } + + pgprintk("%s: pte %llx pte_access %x pt_access %x\n", + __func__, (u64)pte, walker->pte_access, + walker->pt_access[walker->level - 1]); + return 1; + +error: + errcode |= write_fault | user_fault; + if (fetch_fault && (mmu->nx || + kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))) + errcode |= PFERR_FETCH_MASK; + + walker->fault.vector = PF_VECTOR; + walker->fault.error_code_valid = true; + walker->fault.error_code = errcode; + +#if PTTYPE == PTTYPE_EPT + /* + * Use PFERR_RSVD_MASK in error_code to to tell if EPT + * misconfiguration requires to be injected. The detection is + * done by is_rsvd_bits_set() above. + * + * We set up the value of exit_qualification to inject: + * [2:0] - Derive from the access bits. The exit_qualification might be + * out of date if it is serving an EPT misconfiguration. + * [5:3] - Calculated by the page walk of the guest EPT page tables + * [7:8] - Derived from [7:8] of real exit_qualification + * + * The other bits are set to 0. + */ + if (!(errcode & PFERR_RSVD_MASK)) { + vcpu->arch.exit_qualification &= 0x180; + if (write_fault) + vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE; + if (user_fault) + vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ; + if (fetch_fault) + vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR; + vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3; + } +#endif + walker->fault.address = addr; + walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; + + trace_kvm_mmu_walker_error(walker->fault.error_code); + return 0; +} + +static int FNAME(walk_addr)(struct guest_walker *walker, + struct kvm_vcpu *vcpu, gpa_t addr, u32 access) +{ + return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr, + access); +} + +#if PTTYPE != PTTYPE_EPT +static int FNAME(walk_addr_nested)(struct guest_walker *walker, + struct kvm_vcpu *vcpu, gva_t addr, + u32 access) +{ + return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu, + addr, access); +} +#endif + +static bool +FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, + u64 *spte, pt_element_t gpte, bool no_dirty_log) +{ + unsigned pte_access; + gfn_t gfn; + kvm_pfn_t pfn; + + if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) + return false; + + pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); + + gfn = gpte_to_gfn(gpte); + pte_access = sp->role.access & FNAME(gpte_access)(gpte); + FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte); + pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn, + no_dirty_log && (pte_access & ACC_WRITE_MASK)); + if (is_error_pfn(pfn)) + return false; + + /* + * we call mmu_set_spte() with host_writable = true because + * pte_prefetch_gfn_to_pfn always gets a writable pfn. + */ + mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn, + true, true); + + kvm_release_pfn_clean(pfn); + return true; +} + +static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, + u64 *spte, const void *pte) +{ + pt_element_t gpte = *(const pt_element_t *)pte; + + FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false); +} + +static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, + struct guest_walker *gw, int level) +{ + pt_element_t curr_pte; + gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; + u64 mask; + int r, index; + + if (level == PT_PAGE_TABLE_LEVEL) { + mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; + base_gpa = pte_gpa & ~mask; + index = (pte_gpa - base_gpa) / sizeof(pt_element_t); + + r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, + gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); + curr_pte = gw->prefetch_ptes[index]; + } else + r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, + &curr_pte, sizeof(curr_pte)); + + return r || curr_pte != gw->ptes[level - 1]; +} + +static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, + u64 *sptep) +{ + struct kvm_mmu_page *sp; + pt_element_t *gptep = gw->prefetch_ptes; + u64 *spte; + int i; + + sp = page_header(__pa(sptep)); + + if (sp->role.level > PT_PAGE_TABLE_LEVEL) + return; + + if (sp->role.direct) + return __direct_pte_prefetch(vcpu, sp, sptep); + + i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); + spte = sp->spt + i; + + for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { + if (spte == sptep) + continue; + + if (is_shadow_present_pte(*spte)) + continue; + + if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true)) + break; + } +} + +/* + * Fetch a shadow pte for a specific level in the paging hierarchy. + * If the guest tries to write a write-protected page, we need to + * emulate this operation, return 1 to indicate this case. + */ +static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr, + struct guest_walker *gw, + int write_fault, int hlevel, + kvm_pfn_t pfn, bool map_writable, bool prefault, + bool lpage_disallowed) +{ + struct kvm_mmu_page *sp = NULL; + struct kvm_shadow_walk_iterator it; + unsigned int direct_access, access; + int top_level, ret; + gfn_t gfn, base_gfn; + + direct_access = gw->pte_access; + + top_level = vcpu->arch.mmu.root_level; + if (top_level == PT32E_ROOT_LEVEL) + top_level = PT32_ROOT_LEVEL; + /* + * Verify that the top-level gpte is still there. Since the page + * is a root page, it is either write protected (and cannot be + * changed from now on) or it is invalid (in which case, we don't + * really care if it changes underneath us after this point). + */ + if (FNAME(gpte_changed)(vcpu, gw, top_level)) + goto out_gpte_changed; + + if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) + goto out_gpte_changed; + + for (shadow_walk_init(&it, vcpu, addr); + shadow_walk_okay(&it) && it.level > gw->level; + shadow_walk_next(&it)) { + gfn_t table_gfn; + + clear_sp_write_flooding_count(it.sptep); + drop_large_spte(vcpu, it.sptep); + + sp = NULL; + if (!is_shadow_present_pte(*it.sptep)) { + table_gfn = gw->table_gfn[it.level - 2]; + access = gw->pt_access[it.level - 2]; + sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1, + false, access); + } + + /* + * Verify that the gpte in the page we've just write + * protected is still there. + */ + if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) + goto out_gpte_changed; + + if (sp) + link_shadow_page(vcpu, it.sptep, sp); + } + + /* + * FNAME(page_fault) might have clobbered the bottom bits of + * gw->gfn, restore them from the virtual address. + */ + gfn = gw->gfn | ((addr & PT_LVL_OFFSET_MASK(gw->level)) >> PAGE_SHIFT); + base_gfn = gfn; + + trace_kvm_mmu_spte_requested(addr, gw->level, pfn); + + for (; shadow_walk_okay(&it); shadow_walk_next(&it)) { + clear_sp_write_flooding_count(it.sptep); + + /* + * We cannot overwrite existing page tables with an NX + * large page, as the leaf could be executable. + */ + disallowed_hugepage_adjust(it, gfn, &pfn, &hlevel); + + base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); + if (it.level == hlevel) + break; + + validate_direct_spte(vcpu, it.sptep, direct_access); + + drop_large_spte(vcpu, it.sptep); + + if (!is_shadow_present_pte(*it.sptep)) { + sp = kvm_mmu_get_page(vcpu, base_gfn, addr, + it.level - 1, true, direct_access); + link_shadow_page(vcpu, it.sptep, sp); + if (lpage_disallowed) + account_huge_nx_page(vcpu->kvm, sp); + } + } + + ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, + it.level, base_gfn, pfn, prefault, map_writable); + FNAME(pte_prefetch)(vcpu, gw, it.sptep); + ++vcpu->stat.pf_fixed; + return ret; + +out_gpte_changed: + return RET_PF_RETRY; +} + + /* + * To see whether the mapped gfn can write its page table in the current + * mapping. + * + * It is the helper function of FNAME(page_fault). When guest uses large page + * size to map the writable gfn which is used as current page table, we should + * force kvm to use small page size to map it because new shadow page will be + * created when kvm establishes shadow page table that stop kvm using large + * page size. Do it early can avoid unnecessary #PF and emulation. + * + * @write_fault_to_shadow_pgtable will return true if the fault gfn is + * currently used as its page table. + * + * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok + * since the PDPT is always shadowed, that means, we can not use large page + * size to map the gfn which is used as PDPT. + */ +static bool +FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu, + struct guest_walker *walker, int user_fault, + bool *write_fault_to_shadow_pgtable) +{ + int level; + gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1); + bool self_changed = false; + + if (!(walker->pte_access & ACC_WRITE_MASK || + (!is_write_protection(vcpu) && !user_fault))) + return false; + + for (level = walker->level; level <= walker->max_level; level++) { + gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1]; + + self_changed |= !(gfn & mask); + *write_fault_to_shadow_pgtable |= !gfn; + } + + return self_changed; +} + +/* + * Page fault handler. There are several causes for a page fault: + * - there is no shadow pte for the guest pte + * - write access through a shadow pte marked read only so that we can set + * the dirty bit + * - write access to a shadow pte marked read only so we can update the page + * dirty bitmap, when userspace requests it + * - mmio access; in this case we will never install a present shadow pte + * - normal guest page fault due to the guest pte marked not present, not + * writable, or not executable + * + * Returns: 1 if we need to emulate the instruction, 0 otherwise, or + * a negative value on error. + */ +static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code, + bool prefault) +{ + int write_fault = error_code & PFERR_WRITE_MASK; + int user_fault = error_code & PFERR_USER_MASK; + struct guest_walker walker; + int r; + kvm_pfn_t pfn; + int level = PT_PAGE_TABLE_LEVEL; + unsigned long mmu_seq; + bool map_writable, is_self_change_mapping; + bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) && + is_nx_huge_page_enabled(); + bool force_pt_level = lpage_disallowed; + + pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code); + + r = mmu_topup_memory_caches(vcpu); + if (r) + return r; + + /* + * If PFEC.RSVD is set, this is a shadow page fault. + * The bit needs to be cleared before walking guest page tables. + */ + error_code &= ~PFERR_RSVD_MASK; + + /* + * Look up the guest pte for the faulting address. + */ + r = FNAME(walk_addr)(&walker, vcpu, addr, error_code); + + /* + * The page is not mapped by the guest. Let the guest handle it. + */ + if (!r) { + pgprintk("%s: guest page fault\n", __func__); + if (!prefault) + inject_page_fault(vcpu, &walker.fault); + + return RET_PF_RETRY; + } + + if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) { + shadow_page_table_clear_flood(vcpu, addr); + return RET_PF_EMULATE; + } + + vcpu->arch.write_fault_to_shadow_pgtable = false; + + is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu, + &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable); + + if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) { + level = mapping_level(vcpu, walker.gfn, &force_pt_level); + if (likely(!force_pt_level)) { + level = min(walker.level, level); + walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1); + } + } else + force_pt_level = true; + + mmu_seq = vcpu->kvm->mmu_notifier_seq; + smp_rmb(); + + if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault, + &map_writable)) + return RET_PF_RETRY; + + if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r)) + return r; + + /* + * Do not change pte_access if the pfn is a mmio page, otherwise + * we will cache the incorrect access into mmio spte. + */ + if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) && + !is_write_protection(vcpu) && !user_fault && + !is_noslot_pfn(pfn)) { + walker.pte_access |= ACC_WRITE_MASK; + walker.pte_access &= ~ACC_USER_MASK; + + /* + * If we converted a user page to a kernel page, + * so that the kernel can write to it when cr0.wp=0, + * then we should prevent the kernel from executing it + * if SMEP is enabled. + */ + if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)) + walker.pte_access &= ~ACC_EXEC_MASK; + } + + r = RET_PF_RETRY; + spin_lock(&vcpu->kvm->mmu_lock); + if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) + goto out_unlock; + + kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); + if (make_mmu_pages_available(vcpu) < 0) + goto out_unlock; + if (!force_pt_level) + transparent_hugepage_adjust(vcpu, walker.gfn, &pfn, &level); + r = FNAME(fetch)(vcpu, addr, &walker, write_fault, + level, pfn, map_writable, prefault, lpage_disallowed); + kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); + +out_unlock: + spin_unlock(&vcpu->kvm->mmu_lock); + kvm_release_pfn_clean(pfn); + return r; +} + +static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) +{ + int offset = 0; + + WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); + + if (PTTYPE == 32) + offset = sp->role.quadrant << PT64_LEVEL_BITS; + + return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); +} + +static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa) +{ + struct kvm_shadow_walk_iterator iterator; + struct kvm_mmu_page *sp; + int level; + u64 *sptep; + + vcpu_clear_mmio_info(vcpu, gva); + + /* + * No need to check return value here, rmap_can_add() can + * help us to skip pte prefetch later. + */ + mmu_topup_memory_caches(vcpu); + + if (!VALID_PAGE(root_hpa)) { + WARN_ON(1); + return; + } + + spin_lock(&vcpu->kvm->mmu_lock); + for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) { + level = iterator.level; + sptep = iterator.sptep; + + sp = page_header(__pa(sptep)); + if (is_last_spte(*sptep, level)) { + pt_element_t gpte; + gpa_t pte_gpa; + + if (!sp->unsync) + break; + + pte_gpa = FNAME(get_level1_sp_gpa)(sp); + pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); + + if (mmu_page_zap_pte(vcpu->kvm, sp, sptep)) + kvm_flush_remote_tlbs(vcpu->kvm); + + if (!rmap_can_add(vcpu)) + break; + + if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, + sizeof(pt_element_t))) + break; + + FNAME(update_pte)(vcpu, sp, sptep, &gpte); + } + + if (!is_shadow_present_pte(*sptep) || !sp->unsync_children) + break; + } + spin_unlock(&vcpu->kvm->mmu_lock); +} + +/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */ +static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access, + struct x86_exception *exception) +{ + struct guest_walker walker; + gpa_t gpa = UNMAPPED_GVA; + int r; + + r = FNAME(walk_addr)(&walker, vcpu, addr, access); + + if (r) { + gpa = gfn_to_gpa(walker.gfn); + gpa |= addr & ~PAGE_MASK; + } else if (exception) + *exception = walker.fault; + + return gpa; +} + +#if PTTYPE != PTTYPE_EPT +/* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */ +static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr, + u32 access, + struct x86_exception *exception) +{ + struct guest_walker walker; + gpa_t gpa = UNMAPPED_GVA; + int r; + +#ifndef CONFIG_X86_64 + /* A 64-bit GVA should be impossible on 32-bit KVM. */ + WARN_ON_ONCE(vaddr >> 32); +#endif + + r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access); + + if (r) { + gpa = gfn_to_gpa(walker.gfn); + gpa |= vaddr & ~PAGE_MASK; + } else if (exception) + *exception = walker.fault; + + return gpa; +} +#endif + +/* + * Using the cached information from sp->gfns is safe because: + * - The spte has a reference to the struct page, so the pfn for a given gfn + * can't change unless all sptes pointing to it are nuked first. + * + * Note: + * We should flush all tlbs if spte is dropped even though guest is + * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page + * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't + * used by guest then tlbs are not flushed, so guest is allowed to access the + * freed pages. + * And we increase kvm->tlbs_dirty to delay tlbs flush in this case. + */ +static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) +{ + int i, nr_present = 0; + bool host_writable; + gpa_t first_pte_gpa; + int set_spte_ret = 0; + + /* direct kvm_mmu_page can not be unsync. */ + BUG_ON(sp->role.direct); + + first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); + + for (i = 0; i < PT64_ENT_PER_PAGE; i++) { + unsigned pte_access; + pt_element_t gpte; + gpa_t pte_gpa; + gfn_t gfn; + + if (!sp->spt[i]) + continue; + + pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); + + if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, + sizeof(pt_element_t))) + return 0; + + if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) { + /* + * Update spte before increasing tlbs_dirty to make + * sure no tlb flush is lost after spte is zapped; see + * the comments in kvm_flush_remote_tlbs(). + */ + smp_wmb(); + vcpu->kvm->tlbs_dirty++; + continue; + } + + gfn = gpte_to_gfn(gpte); + pte_access = sp->role.access; + pte_access &= FNAME(gpte_access)(gpte); + FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte); + + if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access, + &nr_present)) + continue; + + if (gfn != sp->gfns[i]) { + drop_spte(vcpu->kvm, &sp->spt[i]); + /* + * The same as above where we are doing + * prefetch_invalid_gpte(). + */ + smp_wmb(); + vcpu->kvm->tlbs_dirty++; + continue; + } + + nr_present++; + + host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE; + + set_spte_ret |= set_spte(vcpu, &sp->spt[i], + pte_access, PT_PAGE_TABLE_LEVEL, + gfn, spte_to_pfn(sp->spt[i]), + true, false, host_writable); + } + + if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH) + kvm_flush_remote_tlbs(vcpu->kvm); + + return nr_present; +} + +#undef pt_element_t +#undef guest_walker +#undef FNAME +#undef PT_BASE_ADDR_MASK +#undef PT_INDEX +#undef PT_LVL_ADDR_MASK +#undef PT_LVL_OFFSET_MASK +#undef PT_LEVEL_BITS +#undef PT_MAX_FULL_LEVELS +#undef gpte_to_gfn +#undef gpte_to_gfn_lvl +#undef CMPXCHG +#undef PT_GUEST_ACCESSED_MASK +#undef PT_GUEST_DIRTY_MASK +#undef PT_GUEST_DIRTY_SHIFT +#undef PT_GUEST_ACCESSED_SHIFT +#undef PT_HAVE_ACCESSED_DIRTY |