summaryrefslogtreecommitdiffstats
path: root/drivers/firmware/efi/libstub
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
commit76cb841cb886eef6b3bee341a2266c76578724ad (patch)
treef5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /drivers/firmware/efi/libstub
parentInitial commit. (diff)
downloadlinux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz
linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip
Adding upstream version 4.19.249.upstream/4.19.249
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--drivers/firmware/efi/libstub/Makefile103
-rw-r--r--drivers/firmware/efi/libstub/arm-stub.c379
-rw-r--r--drivers/firmware/efi/libstub/arm32-stub.c249
-rw-r--r--drivers/firmware/efi/libstub/arm64-stub.c159
-rw-r--r--drivers/firmware/efi/libstub/efi-stub-helper.c931
-rw-r--r--drivers/firmware/efi/libstub/efistub.h68
-rw-r--r--drivers/firmware/efi/libstub/fdt.c394
-rw-r--r--drivers/firmware/efi/libstub/gop.c314
-rw-r--r--drivers/firmware/efi/libstub/random.c192
-rw-r--r--drivers/firmware/efi/libstub/secureboot.c83
-rw-r--r--drivers/firmware/efi/libstub/string.c58
-rw-r--r--drivers/firmware/efi/libstub/tpm.c136
12 files changed, 3066 insertions, 0 deletions
diff --git a/drivers/firmware/efi/libstub/Makefile b/drivers/firmware/efi/libstub/Makefile
new file mode 100644
index 000000000..d3777d754
--- /dev/null
+++ b/drivers/firmware/efi/libstub/Makefile
@@ -0,0 +1,103 @@
+# SPDX-License-Identifier: GPL-2.0
+#
+# The stub may be linked into the kernel proper or into a separate boot binary,
+# but in either case, it executes before the kernel does (with MMU disabled) so
+# things like ftrace and stack-protector are likely to cause trouble if left
+# enabled, even if doing so doesn't break the build.
+#
+cflags-$(CONFIG_X86_32) := -march=i386
+cflags-$(CONFIG_X86_64) := -mcmodel=small
+cflags-$(CONFIG_X86) += -m$(BITS) -D__KERNEL__ -O2 \
+ -fPIC -fno-strict-aliasing -mno-red-zone \
+ -mno-mmx -mno-sse -fshort-wchar \
+ -Wno-pointer-sign \
+ $(call cc-disable-warning, address-of-packed-member) \
+ $(call cc-disable-warning, gnu)
+
+# arm64 uses the full KBUILD_CFLAGS so it's necessary to explicitly
+# disable the stackleak plugin
+cflags-$(CONFIG_ARM64) := $(subst -pg,,$(KBUILD_CFLAGS)) -fpie \
+ $(DISABLE_STACKLEAK_PLUGIN)
+cflags-$(CONFIG_ARM) := $(subst -pg,,$(KBUILD_CFLAGS)) \
+ -fno-builtin -fpic \
+ $(call cc-option,-mno-single-pic-base)
+
+cflags-$(CONFIG_EFI_ARMSTUB) += -I$(srctree)/scripts/dtc/libfdt
+
+KBUILD_CFLAGS := $(cflags-y) -DDISABLE_BRANCH_PROFILING \
+ -D__NO_FORTIFY \
+ $(call cc-option,-ffreestanding) \
+ $(call cc-option,-fno-stack-protector) \
+ $(call cc-option,-fno-addrsig) \
+ -D__DISABLE_EXPORTS
+
+GCOV_PROFILE := n
+KASAN_SANITIZE := n
+UBSAN_SANITIZE := n
+OBJECT_FILES_NON_STANDARD := y
+
+# Prevents link failures: __sanitizer_cov_trace_pc() is not linked in.
+KCOV_INSTRUMENT := n
+
+lib-y := efi-stub-helper.o gop.o secureboot.o tpm.o
+
+# include the stub's generic dependencies from lib/ when building for ARM/arm64
+arm-deps-y := fdt_rw.c fdt_ro.c fdt_wip.c fdt.c fdt_empty_tree.c fdt_sw.c
+arm-deps-$(CONFIG_ARM64) += sort.c
+
+$(obj)/lib-%.o: $(srctree)/lib/%.c FORCE
+ $(call if_changed_rule,cc_o_c)
+
+lib-$(CONFIG_EFI_ARMSTUB) += arm-stub.o fdt.o string.o random.o \
+ $(patsubst %.c,lib-%.o,$(arm-deps-y))
+
+lib-$(CONFIG_ARM) += arm32-stub.o
+lib-$(CONFIG_ARM64) += arm64-stub.o
+CFLAGS_arm64-stub.o := -DTEXT_OFFSET=$(TEXT_OFFSET)
+
+#
+# arm64 puts the stub in the kernel proper, which will unnecessarily retain all
+# code indefinitely unless it is annotated as __init/__initdata/__initconst etc.
+# So let's apply the __init annotations at the section level, by prefixing
+# the section names directly. This will ensure that even all the inline string
+# literals are covered.
+# The fact that the stub and the kernel proper are essentially the same binary
+# also means that we need to be extra careful to make sure that the stub does
+# not rely on any absolute symbol references, considering that the virtual
+# kernel mapping that the linker uses is not active yet when the stub is
+# executing. So build all C dependencies of the EFI stub into libstub, and do
+# a verification pass to see if any absolute relocations exist in any of the
+# object files.
+#
+extra-$(CONFIG_EFI_ARMSTUB) := $(lib-y)
+lib-$(CONFIG_EFI_ARMSTUB) := $(patsubst %.o,%.stub.o,$(lib-y))
+
+STUBCOPY_RM-y := -R *ksymtab* -R *kcrctab*
+STUBCOPY_FLAGS-$(CONFIG_ARM64) += --prefix-alloc-sections=.init \
+ --prefix-symbols=__efistub_
+STUBCOPY_RELOC-$(CONFIG_ARM64) := R_AARCH64_ABS
+
+$(obj)/%.stub.o: $(obj)/%.o FORCE
+ $(call if_changed,stubcopy)
+
+#
+# Strip debug sections and some other sections that may legally contain
+# absolute relocations, so that we can inspect the remaining sections for
+# such relocations. If none are found, regenerate the output object, but
+# this time, use objcopy and leave all sections in place.
+#
+quiet_cmd_stubcopy = STUBCPY $@
+ cmd_stubcopy = if $(STRIP) --strip-debug $(STUBCOPY_RM-y) -o $@ $<; \
+ then if $(OBJDUMP) -r $@ | grep $(STUBCOPY_RELOC-y); \
+ then (echo >&2 "$@: absolute symbol references not allowed in the EFI stub"; \
+ rm -f $@; /bin/false); \
+ else $(OBJCOPY) $(STUBCOPY_FLAGS-y) $< $@; fi \
+ else /bin/false; fi
+
+#
+# ARM discards the .data section because it disallows r/w data in the
+# decompressor. So move our .data to .data.efistub, which is preserved
+# explicitly by the decompressor linker script.
+#
+STUBCOPY_FLAGS-$(CONFIG_ARM) += --rename-section .data=.data.efistub
+STUBCOPY_RELOC-$(CONFIG_ARM) := R_ARM_ABS
diff --git a/drivers/firmware/efi/libstub/arm-stub.c b/drivers/firmware/efi/libstub/arm-stub.c
new file mode 100644
index 000000000..6c09644d6
--- /dev/null
+++ b/drivers/firmware/efi/libstub/arm-stub.c
@@ -0,0 +1,379 @@
+/*
+ * EFI stub implementation that is shared by arm and arm64 architectures.
+ * This should be #included by the EFI stub implementation files.
+ *
+ * Copyright (C) 2013,2014 Linaro Limited
+ * Roy Franz <roy.franz@linaro.org
+ * Copyright (C) 2013 Red Hat, Inc.
+ * Mark Salter <msalter@redhat.com>
+ *
+ * This file is part of the Linux kernel, and is made available under the
+ * terms of the GNU General Public License version 2.
+ *
+ */
+
+#include <linux/efi.h>
+#include <linux/sort.h>
+#include <asm/efi.h>
+
+#include "efistub.h"
+
+/*
+ * This is the base address at which to start allocating virtual memory ranges
+ * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
+ * any allocation we choose, and eliminate the risk of a conflict after kexec.
+ * The value chosen is the largest non-zero power of 2 suitable for this purpose
+ * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
+ * be mapped efficiently.
+ * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
+ * map everything below 1 GB. (512 MB is a reasonable upper bound for the
+ * entire footprint of the UEFI runtime services memory regions)
+ */
+#define EFI_RT_VIRTUAL_BASE SZ_512M
+#define EFI_RT_VIRTUAL_SIZE SZ_512M
+
+#ifdef CONFIG_ARM64
+# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE_64
+#else
+# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE
+#endif
+
+static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
+
+void efi_char16_printk(efi_system_table_t *sys_table_arg,
+ efi_char16_t *str)
+{
+ struct efi_simple_text_output_protocol *out;
+
+ out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
+ out->output_string(out, str);
+}
+
+static struct screen_info *setup_graphics(efi_system_table_t *sys_table_arg)
+{
+ efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
+ efi_status_t status;
+ unsigned long size;
+ void **gop_handle = NULL;
+ struct screen_info *si = NULL;
+
+ size = 0;
+ status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL,
+ &gop_proto, NULL, &size, gop_handle);
+ if (status == EFI_BUFFER_TOO_SMALL) {
+ si = alloc_screen_info(sys_table_arg);
+ if (!si)
+ return NULL;
+ efi_setup_gop(sys_table_arg, si, &gop_proto, size);
+ }
+ return si;
+}
+
+/*
+ * This function handles the architcture specific differences between arm and
+ * arm64 regarding where the kernel image must be loaded and any memory that
+ * must be reserved. On failure it is required to free all
+ * all allocations it has made.
+ */
+efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
+ unsigned long *image_addr,
+ unsigned long *image_size,
+ unsigned long *reserve_addr,
+ unsigned long *reserve_size,
+ unsigned long dram_base,
+ efi_loaded_image_t *image);
+/*
+ * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint
+ * that is described in the PE/COFF header. Most of the code is the same
+ * for both archictectures, with the arch-specific code provided in the
+ * handle_kernel_image() function.
+ */
+unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
+ unsigned long *image_addr)
+{
+ efi_loaded_image_t *image;
+ efi_status_t status;
+ unsigned long image_size = 0;
+ unsigned long dram_base;
+ /* addr/point and size pairs for memory management*/
+ unsigned long initrd_addr;
+ u64 initrd_size = 0;
+ unsigned long fdt_addr = 0; /* Original DTB */
+ unsigned long fdt_size = 0;
+ char *cmdline_ptr = NULL;
+ int cmdline_size = 0;
+ unsigned long new_fdt_addr;
+ efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
+ unsigned long reserve_addr = 0;
+ unsigned long reserve_size = 0;
+ enum efi_secureboot_mode secure_boot;
+ struct screen_info *si;
+
+ /* Check if we were booted by the EFI firmware */
+ if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
+ goto fail;
+
+ status = check_platform_features(sys_table);
+ if (status != EFI_SUCCESS)
+ goto fail;
+
+ /*
+ * Get a handle to the loaded image protocol. This is used to get
+ * information about the running image, such as size and the command
+ * line.
+ */
+ status = sys_table->boottime->handle_protocol(handle,
+ &loaded_image_proto, (void *)&image);
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
+ goto fail;
+ }
+
+ dram_base = get_dram_base(sys_table);
+ if (dram_base == EFI_ERROR) {
+ pr_efi_err(sys_table, "Failed to find DRAM base\n");
+ goto fail;
+ }
+
+ /*
+ * Get the command line from EFI, using the LOADED_IMAGE
+ * protocol. We are going to copy the command line into the
+ * device tree, so this can be allocated anywhere.
+ */
+ cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
+ if (!cmdline_ptr) {
+ pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
+ goto fail;
+ }
+
+ if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
+ IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
+ cmdline_size == 0)
+ efi_parse_options(CONFIG_CMDLINE);
+
+ if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
+ efi_parse_options(cmdline_ptr);
+
+ pr_efi(sys_table, "Booting Linux Kernel...\n");
+
+ si = setup_graphics(sys_table);
+
+ status = handle_kernel_image(sys_table, image_addr, &image_size,
+ &reserve_addr,
+ &reserve_size,
+ dram_base, image);
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table, "Failed to relocate kernel\n");
+ goto fail_free_cmdline;
+ }
+
+ /* Ask the firmware to clear memory on unclean shutdown */
+ efi_enable_reset_attack_mitigation(sys_table);
+
+ secure_boot = efi_get_secureboot(sys_table);
+
+ /*
+ * Unauthenticated device tree data is a security hazard, so ignore
+ * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure
+ * boot is enabled if we can't determine its state.
+ */
+ if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
+ secure_boot != efi_secureboot_mode_disabled) {
+ if (strstr(cmdline_ptr, "dtb="))
+ pr_efi(sys_table, "Ignoring DTB from command line.\n");
+ } else {
+ status = handle_cmdline_files(sys_table, image, cmdline_ptr,
+ "dtb=",
+ ~0UL, &fdt_addr, &fdt_size);
+
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table, "Failed to load device tree!\n");
+ goto fail_free_image;
+ }
+ }
+
+ if (fdt_addr) {
+ pr_efi(sys_table, "Using DTB from command line\n");
+ } else {
+ /* Look for a device tree configuration table entry. */
+ fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
+ if (fdt_addr)
+ pr_efi(sys_table, "Using DTB from configuration table\n");
+ }
+
+ if (!fdt_addr)
+ pr_efi(sys_table, "Generating empty DTB\n");
+
+ status = handle_cmdline_files(sys_table, image, cmdline_ptr, "initrd=",
+ efi_get_max_initrd_addr(dram_base,
+ *image_addr),
+ (unsigned long *)&initrd_addr,
+ (unsigned long *)&initrd_size);
+ if (status != EFI_SUCCESS)
+ pr_efi_err(sys_table, "Failed initrd from command line!\n");
+
+ efi_random_get_seed(sys_table);
+
+ /* hibernation expects the runtime regions to stay in the same place */
+ if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr()) {
+ /*
+ * Randomize the base of the UEFI runtime services region.
+ * Preserve the 2 MB alignment of the region by taking a
+ * shift of 21 bit positions into account when scaling
+ * the headroom value using a 32-bit random value.
+ */
+ static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
+ EFI_RT_VIRTUAL_BASE -
+ EFI_RT_VIRTUAL_SIZE;
+ u32 rnd;
+
+ status = efi_get_random_bytes(sys_table, sizeof(rnd),
+ (u8 *)&rnd);
+ if (status == EFI_SUCCESS) {
+ virtmap_base = EFI_RT_VIRTUAL_BASE +
+ (((headroom >> 21) * rnd) >> (32 - 21));
+ }
+ }
+
+ new_fdt_addr = fdt_addr;
+ status = allocate_new_fdt_and_exit_boot(sys_table, handle,
+ &new_fdt_addr, efi_get_max_fdt_addr(dram_base),
+ initrd_addr, initrd_size, cmdline_ptr,
+ fdt_addr, fdt_size);
+
+ /*
+ * If all went well, we need to return the FDT address to the
+ * calling function so it can be passed to kernel as part of
+ * the kernel boot protocol.
+ */
+ if (status == EFI_SUCCESS)
+ return new_fdt_addr;
+
+ pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
+
+ efi_free(sys_table, initrd_size, initrd_addr);
+ efi_free(sys_table, fdt_size, fdt_addr);
+
+fail_free_image:
+ efi_free(sys_table, image_size, *image_addr);
+ efi_free(sys_table, reserve_size, reserve_addr);
+fail_free_cmdline:
+ free_screen_info(sys_table, si);
+ efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
+fail:
+ return EFI_ERROR;
+}
+
+static int cmp_mem_desc(const void *l, const void *r)
+{
+ const efi_memory_desc_t *left = l, *right = r;
+
+ return (left->phys_addr > right->phys_addr) ? 1 : -1;
+}
+
+/*
+ * Returns whether region @left ends exactly where region @right starts,
+ * or false if either argument is NULL.
+ */
+static bool regions_are_adjacent(efi_memory_desc_t *left,
+ efi_memory_desc_t *right)
+{
+ u64 left_end;
+
+ if (left == NULL || right == NULL)
+ return false;
+
+ left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;
+
+ return left_end == right->phys_addr;
+}
+
+/*
+ * Returns whether region @left and region @right have compatible memory type
+ * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
+ */
+static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
+ efi_memory_desc_t *right)
+{
+ static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
+ EFI_MEMORY_WC | EFI_MEMORY_UC |
+ EFI_MEMORY_RUNTIME;
+
+ return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
+}
+
+/*
+ * efi_get_virtmap() - create a virtual mapping for the EFI memory map
+ *
+ * This function populates the virt_addr fields of all memory region descriptors
+ * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
+ * are also copied to @runtime_map, and their total count is returned in @count.
+ */
+void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
+ unsigned long desc_size, efi_memory_desc_t *runtime_map,
+ int *count)
+{
+ u64 efi_virt_base = virtmap_base;
+ efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
+ int l;
+
+ /*
+ * To work around potential issues with the Properties Table feature
+ * introduced in UEFI 2.5, which may split PE/COFF executable images
+ * in memory into several RuntimeServicesCode and RuntimeServicesData
+ * regions, we need to preserve the relative offsets between adjacent
+ * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
+ * The easiest way to find adjacent regions is to sort the memory map
+ * before traversing it.
+ */
+ if (IS_ENABLED(CONFIG_ARM64))
+ sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc,
+ NULL);
+
+ for (l = 0; l < map_size; l += desc_size, prev = in) {
+ u64 paddr, size;
+
+ in = (void *)memory_map + l;
+ if (!(in->attribute & EFI_MEMORY_RUNTIME))
+ continue;
+
+ paddr = in->phys_addr;
+ size = in->num_pages * EFI_PAGE_SIZE;
+
+ if (novamap()) {
+ in->virt_addr = in->phys_addr;
+ continue;
+ }
+
+ /*
+ * Make the mapping compatible with 64k pages: this allows
+ * a 4k page size kernel to kexec a 64k page size kernel and
+ * vice versa.
+ */
+ if ((IS_ENABLED(CONFIG_ARM64) &&
+ !regions_are_adjacent(prev, in)) ||
+ !regions_have_compatible_memory_type_attrs(prev, in)) {
+
+ paddr = round_down(in->phys_addr, SZ_64K);
+ size += in->phys_addr - paddr;
+
+ /*
+ * Avoid wasting memory on PTEs by choosing a virtual
+ * base that is compatible with section mappings if this
+ * region has the appropriate size and physical
+ * alignment. (Sections are 2 MB on 4k granule kernels)
+ */
+ if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
+ efi_virt_base = round_up(efi_virt_base, SZ_2M);
+ else
+ efi_virt_base = round_up(efi_virt_base, SZ_64K);
+ }
+
+ in->virt_addr = efi_virt_base + in->phys_addr - paddr;
+ efi_virt_base += size;
+
+ memcpy(out, in, desc_size);
+ out = (void *)out + desc_size;
+ ++*count;
+ }
+}
diff --git a/drivers/firmware/efi/libstub/arm32-stub.c b/drivers/firmware/efi/libstub/arm32-stub.c
new file mode 100644
index 000000000..becbda445
--- /dev/null
+++ b/drivers/firmware/efi/libstub/arm32-stub.c
@@ -0,0 +1,249 @@
+/*
+ * Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+#include <linux/efi.h>
+#include <asm/efi.h>
+
+#include "efistub.h"
+
+efi_status_t check_platform_features(efi_system_table_t *sys_table_arg)
+{
+ int block;
+
+ /* non-LPAE kernels can run anywhere */
+ if (!IS_ENABLED(CONFIG_ARM_LPAE))
+ return EFI_SUCCESS;
+
+ /* LPAE kernels need compatible hardware */
+ block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
+ if (block < 5) {
+ pr_efi_err(sys_table_arg, "This LPAE kernel is not supported by your CPU\n");
+ return EFI_UNSUPPORTED;
+ }
+ return EFI_SUCCESS;
+}
+
+static efi_guid_t screen_info_guid = LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID;
+
+struct screen_info *alloc_screen_info(efi_system_table_t *sys_table_arg)
+{
+ struct screen_info *si;
+ efi_status_t status;
+
+ /*
+ * Unlike on arm64, where we can directly fill out the screen_info
+ * structure from the stub, we need to allocate a buffer to hold
+ * its contents while we hand over to the kernel proper from the
+ * decompressor.
+ */
+ status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
+ sizeof(*si), (void **)&si);
+
+ if (status != EFI_SUCCESS)
+ return NULL;
+
+ status = efi_call_early(install_configuration_table,
+ &screen_info_guid, si);
+ if (status == EFI_SUCCESS)
+ return si;
+
+ efi_call_early(free_pool, si);
+ return NULL;
+}
+
+void free_screen_info(efi_system_table_t *sys_table_arg, struct screen_info *si)
+{
+ if (!si)
+ return;
+
+ efi_call_early(install_configuration_table, &screen_info_guid, NULL);
+ efi_call_early(free_pool, si);
+}
+
+static efi_status_t reserve_kernel_base(efi_system_table_t *sys_table_arg,
+ unsigned long dram_base,
+ unsigned long *reserve_addr,
+ unsigned long *reserve_size)
+{
+ efi_physical_addr_t alloc_addr;
+ efi_memory_desc_t *memory_map;
+ unsigned long nr_pages, map_size, desc_size, buff_size;
+ efi_status_t status;
+ unsigned long l;
+
+ struct efi_boot_memmap map = {
+ .map = &memory_map,
+ .map_size = &map_size,
+ .desc_size = &desc_size,
+ .desc_ver = NULL,
+ .key_ptr = NULL,
+ .buff_size = &buff_size,
+ };
+
+ /*
+ * Reserve memory for the uncompressed kernel image. This is
+ * all that prevents any future allocations from conflicting
+ * with the kernel. Since we can't tell from the compressed
+ * image how much DRAM the kernel actually uses (due to BSS
+ * size uncertainty) we allocate the maximum possible size.
+ * Do this very early, as prints can cause memory allocations
+ * that may conflict with this.
+ */
+ alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE;
+ nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE;
+ status = efi_call_early(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
+ EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr);
+ if (status == EFI_SUCCESS) {
+ if (alloc_addr == dram_base) {
+ *reserve_addr = alloc_addr;
+ *reserve_size = MAX_UNCOMP_KERNEL_SIZE;
+ return EFI_SUCCESS;
+ }
+ /*
+ * If we end up here, the allocation succeeded but starts below
+ * dram_base. This can only occur if the real base of DRAM is
+ * not a multiple of 128 MB, in which case dram_base will have
+ * been rounded up. Since this implies that a part of the region
+ * was already occupied, we need to fall through to the code
+ * below to ensure that the existing allocations don't conflict.
+ * For this reason, we use EFI_BOOT_SERVICES_DATA above and not
+ * EFI_LOADER_DATA, which we wouldn't able to distinguish from
+ * allocations that we want to disallow.
+ */
+ }
+
+ /*
+ * If the allocation above failed, we may still be able to proceed:
+ * if the only allocations in the region are of types that will be
+ * released to the OS after ExitBootServices(), the decompressor can
+ * safely overwrite them.
+ */
+ status = efi_get_memory_map(sys_table_arg, &map);
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table_arg,
+ "reserve_kernel_base(): Unable to retrieve memory map.\n");
+ return status;
+ }
+
+ for (l = 0; l < map_size; l += desc_size) {
+ efi_memory_desc_t *desc;
+ u64 start, end;
+
+ desc = (void *)memory_map + l;
+ start = desc->phys_addr;
+ end = start + desc->num_pages * EFI_PAGE_SIZE;
+
+ /* Skip if entry does not intersect with region */
+ if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
+ end <= dram_base)
+ continue;
+
+ switch (desc->type) {
+ case EFI_BOOT_SERVICES_CODE:
+ case EFI_BOOT_SERVICES_DATA:
+ /* Ignore types that are released to the OS anyway */
+ continue;
+
+ case EFI_CONVENTIONAL_MEMORY:
+ /*
+ * Reserve the intersection between this entry and the
+ * region.
+ */
+ start = max(start, (u64)dram_base);
+ end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
+
+ status = efi_call_early(allocate_pages,
+ EFI_ALLOCATE_ADDRESS,
+ EFI_LOADER_DATA,
+ (end - start) / EFI_PAGE_SIZE,
+ &start);
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table_arg,
+ "reserve_kernel_base(): alloc failed.\n");
+ goto out;
+ }
+ break;
+
+ case EFI_LOADER_CODE:
+ case EFI_LOADER_DATA:
+ /*
+ * These regions may be released and reallocated for
+ * another purpose (including EFI_RUNTIME_SERVICE_DATA)
+ * at any time during the execution of the OS loader,
+ * so we cannot consider them as safe.
+ */
+ default:
+ /*
+ * Treat any other allocation in the region as unsafe */
+ status = EFI_OUT_OF_RESOURCES;
+ goto out;
+ }
+ }
+
+ status = EFI_SUCCESS;
+out:
+ efi_call_early(free_pool, memory_map);
+ return status;
+}
+
+efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
+ unsigned long *image_addr,
+ unsigned long *image_size,
+ unsigned long *reserve_addr,
+ unsigned long *reserve_size,
+ unsigned long dram_base,
+ efi_loaded_image_t *image)
+{
+ efi_status_t status;
+
+ /*
+ * Verify that the DRAM base address is compatible with the ARM
+ * boot protocol, which determines the base of DRAM by masking
+ * off the low 27 bits of the address at which the zImage is
+ * loaded. These assumptions are made by the decompressor,
+ * before any memory map is available.
+ */
+ dram_base = round_up(dram_base, SZ_128M);
+
+ status = reserve_kernel_base(sys_table, dram_base, reserve_addr,
+ reserve_size);
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table, "Unable to allocate memory for uncompressed kernel.\n");
+ return status;
+ }
+
+ /*
+ * Relocate the zImage, so that it appears in the lowest 128 MB
+ * memory window.
+ */
+ *image_size = image->image_size;
+ status = efi_relocate_kernel(sys_table, image_addr, *image_size,
+ *image_size,
+ dram_base + MAX_UNCOMP_KERNEL_SIZE, 0);
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table, "Failed to relocate kernel.\n");
+ efi_free(sys_table, *reserve_size, *reserve_addr);
+ *reserve_size = 0;
+ return status;
+ }
+
+ /*
+ * Check to see if we were able to allocate memory low enough
+ * in memory. The kernel determines the base of DRAM from the
+ * address at which the zImage is loaded.
+ */
+ if (*image_addr + *image_size > dram_base + ZIMAGE_OFFSET_LIMIT) {
+ pr_efi_err(sys_table, "Failed to relocate kernel, no low memory available.\n");
+ efi_free(sys_table, *reserve_size, *reserve_addr);
+ *reserve_size = 0;
+ efi_free(sys_table, *image_size, *image_addr);
+ *image_size = 0;
+ return EFI_LOAD_ERROR;
+ }
+ return EFI_SUCCESS;
+}
diff --git a/drivers/firmware/efi/libstub/arm64-stub.c b/drivers/firmware/efi/libstub/arm64-stub.c
new file mode 100644
index 000000000..1b4d465cc
--- /dev/null
+++ b/drivers/firmware/efi/libstub/arm64-stub.c
@@ -0,0 +1,159 @@
+/*
+ * Copyright (C) 2013, 2014 Linaro Ltd; <roy.franz@linaro.org>
+ *
+ * This file implements the EFI boot stub for the arm64 kernel.
+ * Adapted from ARM version by Mark Salter <msalter@redhat.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+/*
+ * To prevent the compiler from emitting GOT-indirected (and thus absolute)
+ * references to the section markers, override their visibility as 'hidden'
+ */
+#pragma GCC visibility push(hidden)
+#include <asm/sections.h>
+#pragma GCC visibility pop
+
+#include <linux/efi.h>
+#include <asm/efi.h>
+#include <asm/memory.h>
+#include <asm/sysreg.h>
+
+#include "efistub.h"
+
+efi_status_t check_platform_features(efi_system_table_t *sys_table_arg)
+{
+ u64 tg;
+
+ /* UEFI mandates support for 4 KB granularity, no need to check */
+ if (IS_ENABLED(CONFIG_ARM64_4K_PAGES))
+ return EFI_SUCCESS;
+
+ tg = (read_cpuid(ID_AA64MMFR0_EL1) >> ID_AA64MMFR0_TGRAN_SHIFT) & 0xf;
+ if (tg != ID_AA64MMFR0_TGRAN_SUPPORTED) {
+ if (IS_ENABLED(CONFIG_ARM64_64K_PAGES))
+ pr_efi_err(sys_table_arg, "This 64 KB granular kernel is not supported by your CPU\n");
+ else
+ pr_efi_err(sys_table_arg, "This 16 KB granular kernel is not supported by your CPU\n");
+ return EFI_UNSUPPORTED;
+ }
+ return EFI_SUCCESS;
+}
+
+efi_status_t handle_kernel_image(efi_system_table_t *sys_table_arg,
+ unsigned long *image_addr,
+ unsigned long *image_size,
+ unsigned long *reserve_addr,
+ unsigned long *reserve_size,
+ unsigned long dram_base,
+ efi_loaded_image_t *image)
+{
+ efi_status_t status;
+ unsigned long kernel_size, kernel_memsize = 0;
+ void *old_image_addr = (void *)*image_addr;
+ unsigned long preferred_offset;
+ u64 phys_seed = 0;
+
+ if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
+ if (!nokaslr()) {
+ status = efi_get_random_bytes(sys_table_arg,
+ sizeof(phys_seed),
+ (u8 *)&phys_seed);
+ if (status == EFI_NOT_FOUND) {
+ pr_efi(sys_table_arg, "EFI_RNG_PROTOCOL unavailable, no randomness supplied\n");
+ } else if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table_arg, "efi_get_random_bytes() failed\n");
+ return status;
+ }
+ } else {
+ pr_efi(sys_table_arg, "KASLR disabled on kernel command line\n");
+ }
+ }
+
+ /*
+ * The preferred offset of the kernel Image is TEXT_OFFSET bytes beyond
+ * a 2 MB aligned base, which itself may be lower than dram_base, as
+ * long as the resulting offset equals or exceeds it.
+ */
+ preferred_offset = round_down(dram_base, MIN_KIMG_ALIGN) + TEXT_OFFSET;
+ if (preferred_offset < dram_base)
+ preferred_offset += MIN_KIMG_ALIGN;
+
+ kernel_size = _edata - _text;
+ kernel_memsize = kernel_size + (_end - _edata);
+
+ if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && phys_seed != 0) {
+ /*
+ * If CONFIG_DEBUG_ALIGN_RODATA is not set, produce a
+ * displacement in the interval [0, MIN_KIMG_ALIGN) that
+ * doesn't violate this kernel's de-facto alignment
+ * constraints.
+ */
+ u32 mask = (MIN_KIMG_ALIGN - 1) & ~(EFI_KIMG_ALIGN - 1);
+ u32 offset = !IS_ENABLED(CONFIG_DEBUG_ALIGN_RODATA) ?
+ (phys_seed >> 32) & mask : TEXT_OFFSET;
+
+ /*
+ * With CONFIG_RANDOMIZE_TEXT_OFFSET=y, TEXT_OFFSET may not
+ * be a multiple of EFI_KIMG_ALIGN, and we must ensure that
+ * we preserve the misalignment of 'offset' relative to
+ * EFI_KIMG_ALIGN so that statically allocated objects whose
+ * alignment exceeds PAGE_SIZE appear correctly aligned in
+ * memory.
+ */
+ offset |= TEXT_OFFSET % EFI_KIMG_ALIGN;
+
+ /*
+ * If KASLR is enabled, and we have some randomness available,
+ * locate the kernel at a randomized offset in physical memory.
+ */
+ *reserve_size = kernel_memsize + offset;
+ status = efi_random_alloc(sys_table_arg, *reserve_size,
+ MIN_KIMG_ALIGN, reserve_addr,
+ (u32)phys_seed);
+
+ *image_addr = *reserve_addr + offset;
+ } else {
+ /*
+ * Else, try a straight allocation at the preferred offset.
+ * This will work around the issue where, if dram_base == 0x0,
+ * efi_low_alloc() refuses to allocate at 0x0 (to prevent the
+ * address of the allocation to be mistaken for a FAIL return
+ * value or a NULL pointer). It will also ensure that, on
+ * platforms where the [dram_base, dram_base + TEXT_OFFSET)
+ * interval is partially occupied by the firmware (like on APM
+ * Mustang), we can still place the kernel at the address
+ * 'dram_base + TEXT_OFFSET'.
+ */
+ if (*image_addr == preferred_offset)
+ return EFI_SUCCESS;
+
+ *image_addr = *reserve_addr = preferred_offset;
+ *reserve_size = round_up(kernel_memsize, EFI_ALLOC_ALIGN);
+
+ status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
+ EFI_LOADER_DATA,
+ *reserve_size / EFI_PAGE_SIZE,
+ (efi_physical_addr_t *)reserve_addr);
+ }
+
+ if (status != EFI_SUCCESS) {
+ *reserve_size = kernel_memsize + TEXT_OFFSET;
+ status = efi_low_alloc(sys_table_arg, *reserve_size,
+ MIN_KIMG_ALIGN, reserve_addr);
+
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table_arg, "Failed to relocate kernel\n");
+ *reserve_size = 0;
+ return status;
+ }
+ *image_addr = *reserve_addr + TEXT_OFFSET;
+ }
+ memcpy((void *)*image_addr, old_image_addr, kernel_size);
+
+ return EFI_SUCCESS;
+}
diff --git a/drivers/firmware/efi/libstub/efi-stub-helper.c b/drivers/firmware/efi/libstub/efi-stub-helper.c
new file mode 100644
index 000000000..442f51c2a
--- /dev/null
+++ b/drivers/firmware/efi/libstub/efi-stub-helper.c
@@ -0,0 +1,931 @@
+/*
+ * Helper functions used by the EFI stub on multiple
+ * architectures. This should be #included by the EFI stub
+ * implementation files.
+ *
+ * Copyright 2011 Intel Corporation; author Matt Fleming
+ *
+ * This file is part of the Linux kernel, and is made available
+ * under the terms of the GNU General Public License version 2.
+ *
+ */
+
+#include <linux/efi.h>
+#include <asm/efi.h>
+
+#include "efistub.h"
+
+/*
+ * Some firmware implementations have problems reading files in one go.
+ * A read chunk size of 1MB seems to work for most platforms.
+ *
+ * Unfortunately, reading files in chunks triggers *other* bugs on some
+ * platforms, so we provide a way to disable this workaround, which can
+ * be done by passing "efi=nochunk" on the EFI boot stub command line.
+ *
+ * If you experience issues with initrd images being corrupt it's worth
+ * trying efi=nochunk, but chunking is enabled by default because there
+ * are far more machines that require the workaround than those that
+ * break with it enabled.
+ */
+#define EFI_READ_CHUNK_SIZE (1024 * 1024)
+
+static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE;
+
+static int __section(.data) __nokaslr;
+static int __section(.data) __quiet;
+static int __section(.data) __novamap;
+
+int __pure nokaslr(void)
+{
+ return __nokaslr;
+}
+int __pure is_quiet(void)
+{
+ return __quiet;
+}
+int __pure novamap(void)
+{
+ return __novamap;
+}
+
+#define EFI_MMAP_NR_SLACK_SLOTS 8
+
+struct file_info {
+ efi_file_handle_t *handle;
+ u64 size;
+};
+
+void efi_printk(efi_system_table_t *sys_table_arg, char *str)
+{
+ char *s8;
+
+ for (s8 = str; *s8; s8++) {
+ efi_char16_t ch[2] = { 0 };
+
+ ch[0] = *s8;
+ if (*s8 == '\n') {
+ efi_char16_t nl[2] = { '\r', 0 };
+ efi_char16_printk(sys_table_arg, nl);
+ }
+
+ efi_char16_printk(sys_table_arg, ch);
+ }
+}
+
+static inline bool mmap_has_headroom(unsigned long buff_size,
+ unsigned long map_size,
+ unsigned long desc_size)
+{
+ unsigned long slack = buff_size - map_size;
+
+ return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS;
+}
+
+efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg,
+ struct efi_boot_memmap *map)
+{
+ efi_memory_desc_t *m = NULL;
+ efi_status_t status;
+ unsigned long key;
+ u32 desc_version;
+
+ *map->desc_size = sizeof(*m);
+ *map->map_size = *map->desc_size * 32;
+ *map->buff_size = *map->map_size;
+again:
+ status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
+ *map->map_size, (void **)&m);
+ if (status != EFI_SUCCESS)
+ goto fail;
+
+ *map->desc_size = 0;
+ key = 0;
+ status = efi_call_early(get_memory_map, map->map_size, m,
+ &key, map->desc_size, &desc_version);
+ if (status == EFI_BUFFER_TOO_SMALL ||
+ !mmap_has_headroom(*map->buff_size, *map->map_size,
+ *map->desc_size)) {
+ efi_call_early(free_pool, m);
+ /*
+ * Make sure there is some entries of headroom so that the
+ * buffer can be reused for a new map after allocations are
+ * no longer permitted. Its unlikely that the map will grow to
+ * exceed this headroom once we are ready to trigger
+ * ExitBootServices()
+ */
+ *map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS;
+ *map->buff_size = *map->map_size;
+ goto again;
+ }
+
+ if (status != EFI_SUCCESS)
+ efi_call_early(free_pool, m);
+
+ if (map->key_ptr && status == EFI_SUCCESS)
+ *map->key_ptr = key;
+ if (map->desc_ver && status == EFI_SUCCESS)
+ *map->desc_ver = desc_version;
+
+fail:
+ *map->map = m;
+ return status;
+}
+
+
+unsigned long get_dram_base(efi_system_table_t *sys_table_arg)
+{
+ efi_status_t status;
+ unsigned long map_size, buff_size;
+ unsigned long membase = EFI_ERROR;
+ struct efi_memory_map map;
+ efi_memory_desc_t *md;
+ struct efi_boot_memmap boot_map;
+
+ boot_map.map = (efi_memory_desc_t **)&map.map;
+ boot_map.map_size = &map_size;
+ boot_map.desc_size = &map.desc_size;
+ boot_map.desc_ver = NULL;
+ boot_map.key_ptr = NULL;
+ boot_map.buff_size = &buff_size;
+
+ status = efi_get_memory_map(sys_table_arg, &boot_map);
+ if (status != EFI_SUCCESS)
+ return membase;
+
+ map.map_end = map.map + map_size;
+
+ for_each_efi_memory_desc_in_map(&map, md) {
+ if (md->attribute & EFI_MEMORY_WB) {
+ if (membase > md->phys_addr)
+ membase = md->phys_addr;
+ }
+ }
+
+ efi_call_early(free_pool, map.map);
+
+ return membase;
+}
+
+/*
+ * Allocate at the highest possible address that is not above 'max'.
+ */
+efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg,
+ unsigned long size, unsigned long align,
+ unsigned long *addr, unsigned long max)
+{
+ unsigned long map_size, desc_size, buff_size;
+ efi_memory_desc_t *map;
+ efi_status_t status;
+ unsigned long nr_pages;
+ u64 max_addr = 0;
+ int i;
+ struct efi_boot_memmap boot_map;
+
+ boot_map.map = &map;
+ boot_map.map_size = &map_size;
+ boot_map.desc_size = &desc_size;
+ boot_map.desc_ver = NULL;
+ boot_map.key_ptr = NULL;
+ boot_map.buff_size = &buff_size;
+
+ status = efi_get_memory_map(sys_table_arg, &boot_map);
+ if (status != EFI_SUCCESS)
+ goto fail;
+
+ /*
+ * Enforce minimum alignment that EFI or Linux requires when
+ * requesting a specific address. We are doing page-based (or
+ * larger) allocations, and both the address and size must meet
+ * alignment constraints.
+ */
+ if (align < EFI_ALLOC_ALIGN)
+ align = EFI_ALLOC_ALIGN;
+
+ size = round_up(size, EFI_ALLOC_ALIGN);
+ nr_pages = size / EFI_PAGE_SIZE;
+again:
+ for (i = 0; i < map_size / desc_size; i++) {
+ efi_memory_desc_t *desc;
+ unsigned long m = (unsigned long)map;
+ u64 start, end;
+
+ desc = efi_early_memdesc_ptr(m, desc_size, i);
+ if (desc->type != EFI_CONVENTIONAL_MEMORY)
+ continue;
+
+ if (desc->num_pages < nr_pages)
+ continue;
+
+ start = desc->phys_addr;
+ end = start + desc->num_pages * EFI_PAGE_SIZE;
+
+ if (end > max)
+ end = max;
+
+ if ((start + size) > end)
+ continue;
+
+ if (round_down(end - size, align) < start)
+ continue;
+
+ start = round_down(end - size, align);
+
+ /*
+ * Don't allocate at 0x0. It will confuse code that
+ * checks pointers against NULL.
+ */
+ if (start == 0x0)
+ continue;
+
+ if (start > max_addr)
+ max_addr = start;
+ }
+
+ if (!max_addr)
+ status = EFI_NOT_FOUND;
+ else {
+ status = efi_call_early(allocate_pages,
+ EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
+ nr_pages, &max_addr);
+ if (status != EFI_SUCCESS) {
+ max = max_addr;
+ max_addr = 0;
+ goto again;
+ }
+
+ *addr = max_addr;
+ }
+
+ efi_call_early(free_pool, map);
+fail:
+ return status;
+}
+
+/*
+ * Allocate at the lowest possible address.
+ */
+efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg,
+ unsigned long size, unsigned long align,
+ unsigned long *addr)
+{
+ unsigned long map_size, desc_size, buff_size;
+ efi_memory_desc_t *map;
+ efi_status_t status;
+ unsigned long nr_pages;
+ int i;
+ struct efi_boot_memmap boot_map;
+
+ boot_map.map = &map;
+ boot_map.map_size = &map_size;
+ boot_map.desc_size = &desc_size;
+ boot_map.desc_ver = NULL;
+ boot_map.key_ptr = NULL;
+ boot_map.buff_size = &buff_size;
+
+ status = efi_get_memory_map(sys_table_arg, &boot_map);
+ if (status != EFI_SUCCESS)
+ goto fail;
+
+ /*
+ * Enforce minimum alignment that EFI or Linux requires when
+ * requesting a specific address. We are doing page-based (or
+ * larger) allocations, and both the address and size must meet
+ * alignment constraints.
+ */
+ if (align < EFI_ALLOC_ALIGN)
+ align = EFI_ALLOC_ALIGN;
+
+ size = round_up(size, EFI_ALLOC_ALIGN);
+ nr_pages = size / EFI_PAGE_SIZE;
+ for (i = 0; i < map_size / desc_size; i++) {
+ efi_memory_desc_t *desc;
+ unsigned long m = (unsigned long)map;
+ u64 start, end;
+
+ desc = efi_early_memdesc_ptr(m, desc_size, i);
+
+ if (desc->type != EFI_CONVENTIONAL_MEMORY)
+ continue;
+
+ if (desc->num_pages < nr_pages)
+ continue;
+
+ start = desc->phys_addr;
+ end = start + desc->num_pages * EFI_PAGE_SIZE;
+
+ /*
+ * Don't allocate at 0x0. It will confuse code that
+ * checks pointers against NULL. Skip the first 8
+ * bytes so we start at a nice even number.
+ */
+ if (start == 0x0)
+ start += 8;
+
+ start = round_up(start, align);
+ if ((start + size) > end)
+ continue;
+
+ status = efi_call_early(allocate_pages,
+ EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
+ nr_pages, &start);
+ if (status == EFI_SUCCESS) {
+ *addr = start;
+ break;
+ }
+ }
+
+ if (i == map_size / desc_size)
+ status = EFI_NOT_FOUND;
+
+ efi_call_early(free_pool, map);
+fail:
+ return status;
+}
+
+void efi_free(efi_system_table_t *sys_table_arg, unsigned long size,
+ unsigned long addr)
+{
+ unsigned long nr_pages;
+
+ if (!size)
+ return;
+
+ nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
+ efi_call_early(free_pages, addr, nr_pages);
+}
+
+static efi_status_t efi_file_size(efi_system_table_t *sys_table_arg, void *__fh,
+ efi_char16_t *filename_16, void **handle,
+ u64 *file_sz)
+{
+ efi_file_handle_t *h, *fh = __fh;
+ efi_file_info_t *info;
+ efi_status_t status;
+ efi_guid_t info_guid = EFI_FILE_INFO_ID;
+ unsigned long info_sz;
+
+ status = efi_call_proto(efi_file_handle, open, fh, &h, filename_16,
+ EFI_FILE_MODE_READ, (u64)0);
+ if (status != EFI_SUCCESS) {
+ efi_printk(sys_table_arg, "Failed to open file: ");
+ efi_char16_printk(sys_table_arg, filename_16);
+ efi_printk(sys_table_arg, "\n");
+ return status;
+ }
+
+ *handle = h;
+
+ info_sz = 0;
+ status = efi_call_proto(efi_file_handle, get_info, h, &info_guid,
+ &info_sz, NULL);
+ if (status != EFI_BUFFER_TOO_SMALL) {
+ efi_printk(sys_table_arg, "Failed to get file info size\n");
+ return status;
+ }
+
+grow:
+ status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
+ info_sz, (void **)&info);
+ if (status != EFI_SUCCESS) {
+ efi_printk(sys_table_arg, "Failed to alloc mem for file info\n");
+ return status;
+ }
+
+ status = efi_call_proto(efi_file_handle, get_info, h, &info_guid,
+ &info_sz, info);
+ if (status == EFI_BUFFER_TOO_SMALL) {
+ efi_call_early(free_pool, info);
+ goto grow;
+ }
+
+ *file_sz = info->file_size;
+ efi_call_early(free_pool, info);
+
+ if (status != EFI_SUCCESS)
+ efi_printk(sys_table_arg, "Failed to get initrd info\n");
+
+ return status;
+}
+
+static efi_status_t efi_file_read(void *handle, unsigned long *size, void *addr)
+{
+ return efi_call_proto(efi_file_handle, read, handle, size, addr);
+}
+
+static efi_status_t efi_file_close(void *handle)
+{
+ return efi_call_proto(efi_file_handle, close, handle);
+}
+
+static efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
+ efi_loaded_image_t *image,
+ efi_file_handle_t **__fh)
+{
+ efi_file_io_interface_t *io;
+ efi_file_handle_t *fh;
+ efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
+ efi_status_t status;
+ void *handle = (void *)(unsigned long)efi_table_attr(efi_loaded_image,
+ device_handle,
+ image);
+
+ status = efi_call_early(handle_protocol, handle,
+ &fs_proto, (void **)&io);
+ if (status != EFI_SUCCESS) {
+ efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
+ return status;
+ }
+
+ status = efi_call_proto(efi_file_io_interface, open_volume, io, &fh);
+ if (status != EFI_SUCCESS)
+ efi_printk(sys_table_arg, "Failed to open volume\n");
+ else
+ *__fh = fh;
+
+ return status;
+}
+
+/*
+ * Parse the ASCII string 'cmdline' for EFI options, denoted by the efi=
+ * option, e.g. efi=nochunk.
+ *
+ * It should be noted that efi= is parsed in two very different
+ * environments, first in the early boot environment of the EFI boot
+ * stub, and subsequently during the kernel boot.
+ */
+efi_status_t efi_parse_options(char const *cmdline)
+{
+ char *str;
+
+ str = strstr(cmdline, "nokaslr");
+ if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
+ __nokaslr = 1;
+
+ str = strstr(cmdline, "quiet");
+ if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
+ __quiet = 1;
+
+ /*
+ * If no EFI parameters were specified on the cmdline we've got
+ * nothing to do.
+ */
+ str = strstr(cmdline, "efi=");
+ if (!str)
+ return EFI_SUCCESS;
+
+ /* Skip ahead to first argument */
+ str += strlen("efi=");
+
+ /*
+ * Remember, because efi= is also used by the kernel we need to
+ * skip over arguments we don't understand.
+ */
+ while (*str && *str != ' ') {
+ if (!strncmp(str, "nochunk", 7)) {
+ str += strlen("nochunk");
+ __chunk_size = -1UL;
+ }
+
+ if (!strncmp(str, "novamap", 7)) {
+ str += strlen("novamap");
+ __novamap = 1;
+ }
+
+ /* Group words together, delimited by "," */
+ while (*str && *str != ' ' && *str != ',')
+ str++;
+
+ if (*str == ',')
+ str++;
+ }
+
+ return EFI_SUCCESS;
+}
+
+/*
+ * Check the cmdline for a LILO-style file= arguments.
+ *
+ * We only support loading a file from the same filesystem as
+ * the kernel image.
+ */
+efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg,
+ efi_loaded_image_t *image,
+ char *cmd_line, char *option_string,
+ unsigned long max_addr,
+ unsigned long *load_addr,
+ unsigned long *load_size)
+{
+ struct file_info *files;
+ unsigned long file_addr;
+ u64 file_size_total;
+ efi_file_handle_t *fh = NULL;
+ efi_status_t status;
+ int nr_files;
+ char *str;
+ int i, j, k;
+
+ file_addr = 0;
+ file_size_total = 0;
+
+ str = cmd_line;
+
+ j = 0; /* See close_handles */
+
+ if (!load_addr || !load_size)
+ return EFI_INVALID_PARAMETER;
+
+ *load_addr = 0;
+ *load_size = 0;
+
+ if (!str || !*str)
+ return EFI_SUCCESS;
+
+ for (nr_files = 0; *str; nr_files++) {
+ str = strstr(str, option_string);
+ if (!str)
+ break;
+
+ str += strlen(option_string);
+
+ /* Skip any leading slashes */
+ while (*str == '/' || *str == '\\')
+ str++;
+
+ while (*str && *str != ' ' && *str != '\n')
+ str++;
+ }
+
+ if (!nr_files)
+ return EFI_SUCCESS;
+
+ status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
+ nr_files * sizeof(*files), (void **)&files);
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table_arg, "Failed to alloc mem for file handle list\n");
+ goto fail;
+ }
+
+ str = cmd_line;
+ for (i = 0; i < nr_files; i++) {
+ struct file_info *file;
+ efi_char16_t filename_16[256];
+ efi_char16_t *p;
+
+ str = strstr(str, option_string);
+ if (!str)
+ break;
+
+ str += strlen(option_string);
+
+ file = &files[i];
+ p = filename_16;
+
+ /* Skip any leading slashes */
+ while (*str == '/' || *str == '\\')
+ str++;
+
+ while (*str && *str != ' ' && *str != '\n') {
+ if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
+ break;
+
+ if (*str == '/') {
+ *p++ = '\\';
+ str++;
+ } else {
+ *p++ = *str++;
+ }
+ }
+
+ *p = '\0';
+
+ /* Only open the volume once. */
+ if (!i) {
+ status = efi_open_volume(sys_table_arg, image, &fh);
+ if (status != EFI_SUCCESS)
+ goto free_files;
+ }
+
+ status = efi_file_size(sys_table_arg, fh, filename_16,
+ (void **)&file->handle, &file->size);
+ if (status != EFI_SUCCESS)
+ goto close_handles;
+
+ file_size_total += file->size;
+ }
+
+ if (file_size_total) {
+ unsigned long addr;
+
+ /*
+ * Multiple files need to be at consecutive addresses in memory,
+ * so allocate enough memory for all the files. This is used
+ * for loading multiple files.
+ */
+ status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000,
+ &file_addr, max_addr);
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table_arg, "Failed to alloc highmem for files\n");
+ goto close_handles;
+ }
+
+ /* We've run out of free low memory. */
+ if (file_addr > max_addr) {
+ pr_efi_err(sys_table_arg, "We've run out of free low memory\n");
+ status = EFI_INVALID_PARAMETER;
+ goto free_file_total;
+ }
+
+ addr = file_addr;
+ for (j = 0; j < nr_files; j++) {
+ unsigned long size;
+
+ size = files[j].size;
+ while (size) {
+ unsigned long chunksize;
+
+ if (IS_ENABLED(CONFIG_X86) && size > __chunk_size)
+ chunksize = __chunk_size;
+ else
+ chunksize = size;
+
+ status = efi_file_read(files[j].handle,
+ &chunksize,
+ (void *)addr);
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table_arg, "Failed to read file\n");
+ goto free_file_total;
+ }
+ addr += chunksize;
+ size -= chunksize;
+ }
+
+ efi_file_close(files[j].handle);
+ }
+
+ }
+
+ efi_call_early(free_pool, files);
+
+ *load_addr = file_addr;
+ *load_size = file_size_total;
+
+ return status;
+
+free_file_total:
+ efi_free(sys_table_arg, file_size_total, file_addr);
+
+close_handles:
+ for (k = j; k < i; k++)
+ efi_file_close(files[k].handle);
+free_files:
+ efi_call_early(free_pool, files);
+fail:
+ *load_addr = 0;
+ *load_size = 0;
+
+ return status;
+}
+/*
+ * Relocate a kernel image, either compressed or uncompressed.
+ * In the ARM64 case, all kernel images are currently
+ * uncompressed, and as such when we relocate it we need to
+ * allocate additional space for the BSS segment. Any low
+ * memory that this function should avoid needs to be
+ * unavailable in the EFI memory map, as if the preferred
+ * address is not available the lowest available address will
+ * be used.
+ */
+efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg,
+ unsigned long *image_addr,
+ unsigned long image_size,
+ unsigned long alloc_size,
+ unsigned long preferred_addr,
+ unsigned long alignment)
+{
+ unsigned long cur_image_addr;
+ unsigned long new_addr = 0;
+ efi_status_t status;
+ unsigned long nr_pages;
+ efi_physical_addr_t efi_addr = preferred_addr;
+
+ if (!image_addr || !image_size || !alloc_size)
+ return EFI_INVALID_PARAMETER;
+ if (alloc_size < image_size)
+ return EFI_INVALID_PARAMETER;
+
+ cur_image_addr = *image_addr;
+
+ /*
+ * The EFI firmware loader could have placed the kernel image
+ * anywhere in memory, but the kernel has restrictions on the
+ * max physical address it can run at. Some architectures
+ * also have a prefered address, so first try to relocate
+ * to the preferred address. If that fails, allocate as low
+ * as possible while respecting the required alignment.
+ */
+ nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
+ status = efi_call_early(allocate_pages,
+ EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
+ nr_pages, &efi_addr);
+ new_addr = efi_addr;
+ /*
+ * If preferred address allocation failed allocate as low as
+ * possible.
+ */
+ if (status != EFI_SUCCESS) {
+ status = efi_low_alloc(sys_table_arg, alloc_size, alignment,
+ &new_addr);
+ }
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table_arg, "Failed to allocate usable memory for kernel.\n");
+ return status;
+ }
+
+ /*
+ * We know source/dest won't overlap since both memory ranges
+ * have been allocated by UEFI, so we can safely use memcpy.
+ */
+ memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
+
+ /* Return the new address of the relocated image. */
+ *image_addr = new_addr;
+
+ return status;
+}
+
+/*
+ * Get the number of UTF-8 bytes corresponding to an UTF-16 character.
+ * This overestimates for surrogates, but that is okay.
+ */
+static int efi_utf8_bytes(u16 c)
+{
+ return 1 + (c >= 0x80) + (c >= 0x800);
+}
+
+/*
+ * Convert an UTF-16 string, not necessarily null terminated, to UTF-8.
+ */
+static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n)
+{
+ unsigned int c;
+
+ while (n--) {
+ c = *src++;
+ if (n && c >= 0xd800 && c <= 0xdbff &&
+ *src >= 0xdc00 && *src <= 0xdfff) {
+ c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff);
+ src++;
+ n--;
+ }
+ if (c >= 0xd800 && c <= 0xdfff)
+ c = 0xfffd; /* Unmatched surrogate */
+ if (c < 0x80) {
+ *dst++ = c;
+ continue;
+ }
+ if (c < 0x800) {
+ *dst++ = 0xc0 + (c >> 6);
+ goto t1;
+ }
+ if (c < 0x10000) {
+ *dst++ = 0xe0 + (c >> 12);
+ goto t2;
+ }
+ *dst++ = 0xf0 + (c >> 18);
+ *dst++ = 0x80 + ((c >> 12) & 0x3f);
+ t2:
+ *dst++ = 0x80 + ((c >> 6) & 0x3f);
+ t1:
+ *dst++ = 0x80 + (c & 0x3f);
+ }
+
+ return dst;
+}
+
+#ifndef MAX_CMDLINE_ADDRESS
+#define MAX_CMDLINE_ADDRESS ULONG_MAX
+#endif
+
+/*
+ * Convert the unicode UEFI command line to ASCII to pass to kernel.
+ * Size of memory allocated return in *cmd_line_len.
+ * Returns NULL on error.
+ */
+char *efi_convert_cmdline(efi_system_table_t *sys_table_arg,
+ efi_loaded_image_t *image,
+ int *cmd_line_len)
+{
+ const u16 *s2;
+ u8 *s1 = NULL;
+ unsigned long cmdline_addr = 0;
+ int load_options_chars = image->load_options_size / 2; /* UTF-16 */
+ const u16 *options = image->load_options;
+ int options_bytes = 0; /* UTF-8 bytes */
+ int options_chars = 0; /* UTF-16 chars */
+ efi_status_t status;
+ u16 zero = 0;
+
+ if (options) {
+ s2 = options;
+ while (*s2 && *s2 != '\n'
+ && options_chars < load_options_chars) {
+ options_bytes += efi_utf8_bytes(*s2++);
+ options_chars++;
+ }
+ }
+
+ if (!options_chars) {
+ /* No command line options, so return empty string*/
+ options = &zero;
+ }
+
+ options_bytes++; /* NUL termination */
+
+ status = efi_high_alloc(sys_table_arg, options_bytes, 0,
+ &cmdline_addr, MAX_CMDLINE_ADDRESS);
+ if (status != EFI_SUCCESS)
+ return NULL;
+
+ s1 = (u8 *)cmdline_addr;
+ s2 = (const u16 *)options;
+
+ s1 = efi_utf16_to_utf8(s1, s2, options_chars);
+ *s1 = '\0';
+
+ *cmd_line_len = options_bytes;
+ return (char *)cmdline_addr;
+}
+
+/*
+ * Handle calling ExitBootServices according to the requirements set out by the
+ * spec. Obtains the current memory map, and returns that info after calling
+ * ExitBootServices. The client must specify a function to perform any
+ * processing of the memory map data prior to ExitBootServices. A client
+ * specific structure may be passed to the function via priv. The client
+ * function may be called multiple times.
+ */
+efi_status_t efi_exit_boot_services(efi_system_table_t *sys_table_arg,
+ void *handle,
+ struct efi_boot_memmap *map,
+ void *priv,
+ efi_exit_boot_map_processing priv_func)
+{
+ efi_status_t status;
+
+ status = efi_get_memory_map(sys_table_arg, map);
+
+ if (status != EFI_SUCCESS)
+ goto fail;
+
+ status = priv_func(sys_table_arg, map, priv);
+ if (status != EFI_SUCCESS)
+ goto free_map;
+
+ status = efi_call_early(exit_boot_services, handle, *map->key_ptr);
+
+ if (status == EFI_INVALID_PARAMETER) {
+ /*
+ * The memory map changed between efi_get_memory_map() and
+ * exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4:
+ * EFI_BOOT_SERVICES.ExitBootServices we need to get the
+ * updated map, and try again. The spec implies one retry
+ * should be sufficent, which is confirmed against the EDK2
+ * implementation. Per the spec, we can only invoke
+ * get_memory_map() and exit_boot_services() - we cannot alloc
+ * so efi_get_memory_map() cannot be used, and we must reuse
+ * the buffer. For all practical purposes, the headroom in the
+ * buffer should account for any changes in the map so the call
+ * to get_memory_map() is expected to succeed here.
+ */
+ *map->map_size = *map->buff_size;
+ status = efi_call_early(get_memory_map,
+ map->map_size,
+ *map->map,
+ map->key_ptr,
+ map->desc_size,
+ map->desc_ver);
+
+ /* exit_boot_services() was called, thus cannot free */
+ if (status != EFI_SUCCESS)
+ goto fail;
+
+ status = priv_func(sys_table_arg, map, priv);
+ /* exit_boot_services() was called, thus cannot free */
+ if (status != EFI_SUCCESS)
+ goto fail;
+
+ status = efi_call_early(exit_boot_services, handle, *map->key_ptr);
+ }
+
+ /* exit_boot_services() was called, thus cannot free */
+ if (status != EFI_SUCCESS)
+ goto fail;
+
+ return EFI_SUCCESS;
+
+free_map:
+ efi_call_early(free_pool, *map->map);
+fail:
+ return status;
+}
diff --git a/drivers/firmware/efi/libstub/efistub.h b/drivers/firmware/efi/libstub/efistub.h
new file mode 100644
index 000000000..337b52c47
--- /dev/null
+++ b/drivers/firmware/efi/libstub/efistub.h
@@ -0,0 +1,68 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+#ifndef _DRIVERS_FIRMWARE_EFI_EFISTUB_H
+#define _DRIVERS_FIRMWARE_EFI_EFISTUB_H
+
+/* error code which can't be mistaken for valid address */
+#define EFI_ERROR (~0UL)
+
+/*
+ * __init annotations should not be used in the EFI stub, since the code is
+ * either included in the decompressor (x86, ARM) where they have no effect,
+ * or the whole stub is __init annotated at the section level (arm64), by
+ * renaming the sections, in which case the __init annotation will be
+ * redundant, and will result in section names like .init.init.text, and our
+ * linker script does not expect that.
+ */
+#undef __init
+
+/*
+ * Allow the platform to override the allocation granularity: this allows
+ * systems that have the capability to run with a larger page size to deal
+ * with the allocations for initrd and fdt more efficiently.
+ */
+#ifndef EFI_ALLOC_ALIGN
+#define EFI_ALLOC_ALIGN EFI_PAGE_SIZE
+#endif
+
+extern int __pure nokaslr(void);
+extern int __pure is_quiet(void);
+extern int __pure novamap(void);
+
+#define pr_efi(sys_table, msg) do { \
+ if (!is_quiet()) efi_printk(sys_table, "EFI stub: "msg); \
+} while (0)
+
+#define pr_efi_err(sys_table, msg) efi_printk(sys_table, "EFI stub: ERROR: "msg)
+
+void efi_char16_printk(efi_system_table_t *, efi_char16_t *);
+
+unsigned long get_dram_base(efi_system_table_t *sys_table_arg);
+
+efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
+ void *handle,
+ unsigned long *new_fdt_addr,
+ unsigned long max_addr,
+ u64 initrd_addr, u64 initrd_size,
+ char *cmdline_ptr,
+ unsigned long fdt_addr,
+ unsigned long fdt_size);
+
+void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size);
+
+void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
+ unsigned long desc_size, efi_memory_desc_t *runtime_map,
+ int *count);
+
+efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table,
+ unsigned long size, u8 *out);
+
+efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg,
+ unsigned long size, unsigned long align,
+ unsigned long *addr, unsigned long random_seed);
+
+efi_status_t check_platform_features(efi_system_table_t *sys_table_arg);
+
+efi_status_t efi_random_get_seed(efi_system_table_t *sys_table_arg);
+
+#endif
diff --git a/drivers/firmware/efi/libstub/fdt.c b/drivers/firmware/efi/libstub/fdt.c
new file mode 100644
index 000000000..dba296a44
--- /dev/null
+++ b/drivers/firmware/efi/libstub/fdt.c
@@ -0,0 +1,394 @@
+/*
+ * FDT related Helper functions used by the EFI stub on multiple
+ * architectures. This should be #included by the EFI stub
+ * implementation files.
+ *
+ * Copyright 2013 Linaro Limited; author Roy Franz
+ *
+ * This file is part of the Linux kernel, and is made available
+ * under the terms of the GNU General Public License version 2.
+ *
+ */
+
+#include <linux/efi.h>
+#include <linux/libfdt.h>
+#include <asm/efi.h>
+
+#include "efistub.h"
+
+#define EFI_DT_ADDR_CELLS_DEFAULT 2
+#define EFI_DT_SIZE_CELLS_DEFAULT 2
+
+static void fdt_update_cell_size(efi_system_table_t *sys_table, void *fdt)
+{
+ int offset;
+
+ offset = fdt_path_offset(fdt, "/");
+ /* Set the #address-cells and #size-cells values for an empty tree */
+
+ fdt_setprop_u32(fdt, offset, "#address-cells",
+ EFI_DT_ADDR_CELLS_DEFAULT);
+
+ fdt_setprop_u32(fdt, offset, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT);
+}
+
+static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
+ unsigned long orig_fdt_size,
+ void *fdt, int new_fdt_size, char *cmdline_ptr,
+ u64 initrd_addr, u64 initrd_size)
+{
+ int node, num_rsv;
+ int status;
+ u32 fdt_val32;
+ u64 fdt_val64;
+
+ /* Do some checks on provided FDT, if it exists*/
+ if (orig_fdt) {
+ if (fdt_check_header(orig_fdt)) {
+ pr_efi_err(sys_table, "Device Tree header not valid!\n");
+ return EFI_LOAD_ERROR;
+ }
+ /*
+ * We don't get the size of the FDT if we get if from a
+ * configuration table.
+ */
+ if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
+ pr_efi_err(sys_table, "Truncated device tree! foo!\n");
+ return EFI_LOAD_ERROR;
+ }
+ }
+
+ if (orig_fdt) {
+ status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
+ } else {
+ status = fdt_create_empty_tree(fdt, new_fdt_size);
+ if (status == 0) {
+ /*
+ * Any failure from the following function is non
+ * critical
+ */
+ fdt_update_cell_size(sys_table, fdt);
+ }
+ }
+
+ if (status != 0)
+ goto fdt_set_fail;
+
+ /*
+ * Delete all memory reserve map entries. When booting via UEFI,
+ * kernel will use the UEFI memory map to find reserved regions.
+ */
+ num_rsv = fdt_num_mem_rsv(fdt);
+ while (num_rsv-- > 0)
+ fdt_del_mem_rsv(fdt, num_rsv);
+
+ node = fdt_subnode_offset(fdt, 0, "chosen");
+ if (node < 0) {
+ node = fdt_add_subnode(fdt, 0, "chosen");
+ if (node < 0) {
+ status = node; /* node is error code when negative */
+ goto fdt_set_fail;
+ }
+ }
+
+ if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
+ status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
+ strlen(cmdline_ptr) + 1);
+ if (status)
+ goto fdt_set_fail;
+ }
+
+ /* Set initrd address/end in device tree, if present */
+ if (initrd_size != 0) {
+ u64 initrd_image_end;
+ u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
+
+ status = fdt_setprop(fdt, node, "linux,initrd-start",
+ &initrd_image_start, sizeof(u64));
+ if (status)
+ goto fdt_set_fail;
+ initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
+ status = fdt_setprop(fdt, node, "linux,initrd-end",
+ &initrd_image_end, sizeof(u64));
+ if (status)
+ goto fdt_set_fail;
+ }
+
+ /* Add FDT entries for EFI runtime services in chosen node. */
+ node = fdt_subnode_offset(fdt, 0, "chosen");
+ fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
+ status = fdt_setprop(fdt, node, "linux,uefi-system-table",
+ &fdt_val64, sizeof(fdt_val64));
+ if (status)
+ goto fdt_set_fail;
+
+ fdt_val64 = U64_MAX; /* placeholder */
+ status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
+ &fdt_val64, sizeof(fdt_val64));
+ if (status)
+ goto fdt_set_fail;
+
+ fdt_val32 = U32_MAX; /* placeholder */
+ status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
+ &fdt_val32, sizeof(fdt_val32));
+ if (status)
+ goto fdt_set_fail;
+
+ status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
+ &fdt_val32, sizeof(fdt_val32));
+ if (status)
+ goto fdt_set_fail;
+
+ status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
+ &fdt_val32, sizeof(fdt_val32));
+ if (status)
+ goto fdt_set_fail;
+
+ if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
+ efi_status_t efi_status;
+
+ efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
+ (u8 *)&fdt_val64);
+ if (efi_status == EFI_SUCCESS) {
+ status = fdt_setprop(fdt, node, "kaslr-seed",
+ &fdt_val64, sizeof(fdt_val64));
+ if (status)
+ goto fdt_set_fail;
+ } else if (efi_status != EFI_NOT_FOUND) {
+ return efi_status;
+ }
+ }
+
+ /* shrink the FDT back to its minimum size */
+ fdt_pack(fdt);
+
+ return EFI_SUCCESS;
+
+fdt_set_fail:
+ if (status == -FDT_ERR_NOSPACE)
+ return EFI_BUFFER_TOO_SMALL;
+
+ return EFI_LOAD_ERROR;
+}
+
+static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
+{
+ int node = fdt_path_offset(fdt, "/chosen");
+ u64 fdt_val64;
+ u32 fdt_val32;
+ int err;
+
+ if (node < 0)
+ return EFI_LOAD_ERROR;
+
+ fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
+ err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-start",
+ &fdt_val64, sizeof(fdt_val64));
+ if (err)
+ return EFI_LOAD_ERROR;
+
+ fdt_val32 = cpu_to_fdt32(*map->map_size);
+ err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-size",
+ &fdt_val32, sizeof(fdt_val32));
+ if (err)
+ return EFI_LOAD_ERROR;
+
+ fdt_val32 = cpu_to_fdt32(*map->desc_size);
+ err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-size",
+ &fdt_val32, sizeof(fdt_val32));
+ if (err)
+ return EFI_LOAD_ERROR;
+
+ fdt_val32 = cpu_to_fdt32(*map->desc_ver);
+ err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-ver",
+ &fdt_val32, sizeof(fdt_val32));
+ if (err)
+ return EFI_LOAD_ERROR;
+
+ return EFI_SUCCESS;
+}
+
+#ifndef EFI_FDT_ALIGN
+#define EFI_FDT_ALIGN EFI_PAGE_SIZE
+#endif
+
+struct exit_boot_struct {
+ efi_memory_desc_t *runtime_map;
+ int *runtime_entry_count;
+ void *new_fdt_addr;
+};
+
+static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
+ struct efi_boot_memmap *map,
+ void *priv)
+{
+ struct exit_boot_struct *p = priv;
+ /*
+ * Update the memory map with virtual addresses. The function will also
+ * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
+ * entries so that we can pass it straight to SetVirtualAddressMap()
+ */
+ efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
+ p->runtime_map, p->runtime_entry_count);
+
+ return update_fdt_memmap(p->new_fdt_addr, map);
+}
+
+#ifndef MAX_FDT_SIZE
+#define MAX_FDT_SIZE SZ_2M
+#endif
+
+/*
+ * Allocate memory for a new FDT, then add EFI, commandline, and
+ * initrd related fields to the FDT. This routine increases the
+ * FDT allocation size until the allocated memory is large
+ * enough. EFI allocations are in EFI_PAGE_SIZE granules,
+ * which are fixed at 4K bytes, so in most cases the first
+ * allocation should succeed.
+ * EFI boot services are exited at the end of this function.
+ * There must be no allocations between the get_memory_map()
+ * call and the exit_boot_services() call, so the exiting of
+ * boot services is very tightly tied to the creation of the FDT
+ * with the final memory map in it.
+ */
+
+efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
+ void *handle,
+ unsigned long *new_fdt_addr,
+ unsigned long max_addr,
+ u64 initrd_addr, u64 initrd_size,
+ char *cmdline_ptr,
+ unsigned long fdt_addr,
+ unsigned long fdt_size)
+{
+ unsigned long map_size, desc_size, buff_size;
+ u32 desc_ver;
+ unsigned long mmap_key;
+ efi_memory_desc_t *memory_map, *runtime_map;
+ efi_status_t status;
+ int runtime_entry_count = 0;
+ struct efi_boot_memmap map;
+ struct exit_boot_struct priv;
+
+ map.map = &runtime_map;
+ map.map_size = &map_size;
+ map.desc_size = &desc_size;
+ map.desc_ver = &desc_ver;
+ map.key_ptr = &mmap_key;
+ map.buff_size = &buff_size;
+
+ /*
+ * Get a copy of the current memory map that we will use to prepare
+ * the input for SetVirtualAddressMap(). We don't have to worry about
+ * subsequent allocations adding entries, since they could not affect
+ * the number of EFI_MEMORY_RUNTIME regions.
+ */
+ status = efi_get_memory_map(sys_table, &map);
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
+ return status;
+ }
+
+ pr_efi(sys_table,
+ "Exiting boot services and installing virtual address map...\n");
+
+ map.map = &memory_map;
+ status = efi_high_alloc(sys_table, MAX_FDT_SIZE, EFI_FDT_ALIGN,
+ new_fdt_addr, max_addr);
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table,
+ "Unable to allocate memory for new device tree.\n");
+ goto fail;
+ }
+
+ /*
+ * Now that we have done our final memory allocation (and free)
+ * we can get the memory map key needed for exit_boot_services().
+ */
+ status = efi_get_memory_map(sys_table, &map);
+ if (status != EFI_SUCCESS)
+ goto fail_free_new_fdt;
+
+ status = update_fdt(sys_table, (void *)fdt_addr, fdt_size,
+ (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
+ initrd_addr, initrd_size);
+
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table, "Unable to construct new device tree.\n");
+ goto fail_free_new_fdt;
+ }
+
+ priv.runtime_map = runtime_map;
+ priv.runtime_entry_count = &runtime_entry_count;
+ priv.new_fdt_addr = (void *)*new_fdt_addr;
+ status = efi_exit_boot_services(sys_table, handle, &map, &priv,
+ exit_boot_func);
+
+ if (status == EFI_SUCCESS) {
+ efi_set_virtual_address_map_t *svam;
+
+ if (novamap())
+ return EFI_SUCCESS;
+
+ /* Install the new virtual address map */
+ svam = sys_table->runtime->set_virtual_address_map;
+ status = svam(runtime_entry_count * desc_size, desc_size,
+ desc_ver, runtime_map);
+
+ /*
+ * We are beyond the point of no return here, so if the call to
+ * SetVirtualAddressMap() failed, we need to signal that to the
+ * incoming kernel but proceed normally otherwise.
+ */
+ if (status != EFI_SUCCESS) {
+ int l;
+
+ /*
+ * Set the virtual address field of all
+ * EFI_MEMORY_RUNTIME entries to 0. This will signal
+ * the incoming kernel that no virtual translation has
+ * been installed.
+ */
+ for (l = 0; l < map_size; l += desc_size) {
+ efi_memory_desc_t *p = (void *)memory_map + l;
+
+ if (p->attribute & EFI_MEMORY_RUNTIME)
+ p->virt_addr = 0;
+ }
+ }
+ return EFI_SUCCESS;
+ }
+
+ pr_efi_err(sys_table, "Exit boot services failed.\n");
+
+fail_free_new_fdt:
+ efi_free(sys_table, MAX_FDT_SIZE, *new_fdt_addr);
+
+fail:
+ sys_table->boottime->free_pool(runtime_map);
+ return EFI_LOAD_ERROR;
+}
+
+void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
+{
+ efi_guid_t fdt_guid = DEVICE_TREE_GUID;
+ efi_config_table_t *tables;
+ void *fdt;
+ int i;
+
+ tables = (efi_config_table_t *) sys_table->tables;
+ fdt = NULL;
+
+ for (i = 0; i < sys_table->nr_tables; i++)
+ if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
+ fdt = (void *) tables[i].table;
+ if (fdt_check_header(fdt) != 0) {
+ pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
+ return NULL;
+ }
+ *fdt_size = fdt_totalsize(fdt);
+ break;
+ }
+
+ return fdt;
+}
diff --git a/drivers/firmware/efi/libstub/gop.c b/drivers/firmware/efi/libstub/gop.c
new file mode 100644
index 000000000..fd8053f95
--- /dev/null
+++ b/drivers/firmware/efi/libstub/gop.c
@@ -0,0 +1,314 @@
+/* -----------------------------------------------------------------------
+ *
+ * Copyright 2011 Intel Corporation; author Matt Fleming
+ *
+ * This file is part of the Linux kernel, and is made available under
+ * the terms of the GNU General Public License version 2.
+ *
+ * ----------------------------------------------------------------------- */
+
+#include <linux/efi.h>
+#include <linux/screen_info.h>
+#include <asm/efi.h>
+#include <asm/setup.h>
+
+static void find_bits(unsigned long mask, u8 *pos, u8 *size)
+{
+ u8 first, len;
+
+ first = 0;
+ len = 0;
+
+ if (mask) {
+ while (!(mask & 0x1)) {
+ mask = mask >> 1;
+ first++;
+ }
+
+ while (mask & 0x1) {
+ mask = mask >> 1;
+ len++;
+ }
+ }
+
+ *pos = first;
+ *size = len;
+}
+
+static void
+setup_pixel_info(struct screen_info *si, u32 pixels_per_scan_line,
+ struct efi_pixel_bitmask pixel_info, int pixel_format)
+{
+ if (pixel_format == PIXEL_RGB_RESERVED_8BIT_PER_COLOR) {
+ si->lfb_depth = 32;
+ si->lfb_linelength = pixels_per_scan_line * 4;
+ si->red_size = 8;
+ si->red_pos = 0;
+ si->green_size = 8;
+ si->green_pos = 8;
+ si->blue_size = 8;
+ si->blue_pos = 16;
+ si->rsvd_size = 8;
+ si->rsvd_pos = 24;
+ } else if (pixel_format == PIXEL_BGR_RESERVED_8BIT_PER_COLOR) {
+ si->lfb_depth = 32;
+ si->lfb_linelength = pixels_per_scan_line * 4;
+ si->red_size = 8;
+ si->red_pos = 16;
+ si->green_size = 8;
+ si->green_pos = 8;
+ si->blue_size = 8;
+ si->blue_pos = 0;
+ si->rsvd_size = 8;
+ si->rsvd_pos = 24;
+ } else if (pixel_format == PIXEL_BIT_MASK) {
+ find_bits(pixel_info.red_mask, &si->red_pos, &si->red_size);
+ find_bits(pixel_info.green_mask, &si->green_pos,
+ &si->green_size);
+ find_bits(pixel_info.blue_mask, &si->blue_pos, &si->blue_size);
+ find_bits(pixel_info.reserved_mask, &si->rsvd_pos,
+ &si->rsvd_size);
+ si->lfb_depth = si->red_size + si->green_size +
+ si->blue_size + si->rsvd_size;
+ si->lfb_linelength = (pixels_per_scan_line * si->lfb_depth) / 8;
+ } else {
+ si->lfb_depth = 4;
+ si->lfb_linelength = si->lfb_width / 2;
+ si->red_size = 0;
+ si->red_pos = 0;
+ si->green_size = 0;
+ si->green_pos = 0;
+ si->blue_size = 0;
+ si->blue_pos = 0;
+ si->rsvd_size = 0;
+ si->rsvd_pos = 0;
+ }
+}
+
+static efi_status_t
+setup_gop32(efi_system_table_t *sys_table_arg, struct screen_info *si,
+ efi_guid_t *proto, unsigned long size, void **gop_handle)
+{
+ struct efi_graphics_output_protocol_32 *gop32, *first_gop;
+ unsigned long nr_gops;
+ u16 width, height;
+ u32 pixels_per_scan_line;
+ u32 ext_lfb_base;
+ u64 fb_base;
+ struct efi_pixel_bitmask pixel_info;
+ int pixel_format;
+ efi_status_t status;
+ u32 *handles = (u32 *)(unsigned long)gop_handle;
+ int i;
+
+ first_gop = NULL;
+ gop32 = NULL;
+
+ nr_gops = size / sizeof(u32);
+ for (i = 0; i < nr_gops; i++) {
+ struct efi_graphics_output_protocol_mode_32 *mode;
+ struct efi_graphics_output_mode_info *info = NULL;
+ efi_guid_t conout_proto = EFI_CONSOLE_OUT_DEVICE_GUID;
+ bool conout_found = false;
+ void *dummy = NULL;
+ efi_handle_t h = (efi_handle_t)(unsigned long)handles[i];
+ u64 current_fb_base;
+
+ status = efi_call_early(handle_protocol, h,
+ proto, (void **)&gop32);
+ if (status != EFI_SUCCESS)
+ continue;
+
+ status = efi_call_early(handle_protocol, h,
+ &conout_proto, &dummy);
+ if (status == EFI_SUCCESS)
+ conout_found = true;
+
+ mode = (void *)(unsigned long)gop32->mode;
+ info = (void *)(unsigned long)mode->info;
+ current_fb_base = mode->frame_buffer_base;
+
+ if ((!first_gop || conout_found) &&
+ info->pixel_format != PIXEL_BLT_ONLY) {
+ /*
+ * Systems that use the UEFI Console Splitter may
+ * provide multiple GOP devices, not all of which are
+ * backed by real hardware. The workaround is to search
+ * for a GOP implementing the ConOut protocol, and if
+ * one isn't found, to just fall back to the first GOP.
+ */
+ width = info->horizontal_resolution;
+ height = info->vertical_resolution;
+ pixel_format = info->pixel_format;
+ pixel_info = info->pixel_information;
+ pixels_per_scan_line = info->pixels_per_scan_line;
+ fb_base = current_fb_base;
+
+ /*
+ * Once we've found a GOP supporting ConOut,
+ * don't bother looking any further.
+ */
+ first_gop = gop32;
+ if (conout_found)
+ break;
+ }
+ }
+
+ /* Did we find any GOPs? */
+ if (!first_gop)
+ return EFI_NOT_FOUND;
+
+ /* EFI framebuffer */
+ si->orig_video_isVGA = VIDEO_TYPE_EFI;
+
+ si->lfb_width = width;
+ si->lfb_height = height;
+ si->lfb_base = fb_base;
+
+ ext_lfb_base = (u64)(unsigned long)fb_base >> 32;
+ if (ext_lfb_base) {
+ si->capabilities |= VIDEO_CAPABILITY_64BIT_BASE;
+ si->ext_lfb_base = ext_lfb_base;
+ }
+
+ si->pages = 1;
+
+ setup_pixel_info(si, pixels_per_scan_line, pixel_info, pixel_format);
+
+ si->lfb_size = si->lfb_linelength * si->lfb_height;
+
+ si->capabilities |= VIDEO_CAPABILITY_SKIP_QUIRKS;
+
+ return EFI_SUCCESS;
+}
+
+static efi_status_t
+setup_gop64(efi_system_table_t *sys_table_arg, struct screen_info *si,
+ efi_guid_t *proto, unsigned long size, void **gop_handle)
+{
+ struct efi_graphics_output_protocol_64 *gop64, *first_gop;
+ unsigned long nr_gops;
+ u16 width, height;
+ u32 pixels_per_scan_line;
+ u32 ext_lfb_base;
+ u64 fb_base;
+ struct efi_pixel_bitmask pixel_info;
+ int pixel_format;
+ efi_status_t status;
+ u64 *handles = (u64 *)(unsigned long)gop_handle;
+ int i;
+
+ first_gop = NULL;
+ gop64 = NULL;
+
+ nr_gops = size / sizeof(u64);
+ for (i = 0; i < nr_gops; i++) {
+ struct efi_graphics_output_protocol_mode_64 *mode;
+ struct efi_graphics_output_mode_info *info = NULL;
+ efi_guid_t conout_proto = EFI_CONSOLE_OUT_DEVICE_GUID;
+ bool conout_found = false;
+ void *dummy = NULL;
+ efi_handle_t h = (efi_handle_t)(unsigned long)handles[i];
+ u64 current_fb_base;
+
+ status = efi_call_early(handle_protocol, h,
+ proto, (void **)&gop64);
+ if (status != EFI_SUCCESS)
+ continue;
+
+ status = efi_call_early(handle_protocol, h,
+ &conout_proto, &dummy);
+ if (status == EFI_SUCCESS)
+ conout_found = true;
+
+ mode = (void *)(unsigned long)gop64->mode;
+ info = (void *)(unsigned long)mode->info;
+ current_fb_base = mode->frame_buffer_base;
+
+ if ((!first_gop || conout_found) &&
+ info->pixel_format != PIXEL_BLT_ONLY) {
+ /*
+ * Systems that use the UEFI Console Splitter may
+ * provide multiple GOP devices, not all of which are
+ * backed by real hardware. The workaround is to search
+ * for a GOP implementing the ConOut protocol, and if
+ * one isn't found, to just fall back to the first GOP.
+ */
+ width = info->horizontal_resolution;
+ height = info->vertical_resolution;
+ pixel_format = info->pixel_format;
+ pixel_info = info->pixel_information;
+ pixels_per_scan_line = info->pixels_per_scan_line;
+ fb_base = current_fb_base;
+
+ /*
+ * Once we've found a GOP supporting ConOut,
+ * don't bother looking any further.
+ */
+ first_gop = gop64;
+ if (conout_found)
+ break;
+ }
+ }
+
+ /* Did we find any GOPs? */
+ if (!first_gop)
+ return EFI_NOT_FOUND;
+
+ /* EFI framebuffer */
+ si->orig_video_isVGA = VIDEO_TYPE_EFI;
+
+ si->lfb_width = width;
+ si->lfb_height = height;
+ si->lfb_base = fb_base;
+
+ ext_lfb_base = (u64)(unsigned long)fb_base >> 32;
+ if (ext_lfb_base) {
+ si->capabilities |= VIDEO_CAPABILITY_64BIT_BASE;
+ si->ext_lfb_base = ext_lfb_base;
+ }
+
+ si->pages = 1;
+
+ setup_pixel_info(si, pixels_per_scan_line, pixel_info, pixel_format);
+
+ si->lfb_size = si->lfb_linelength * si->lfb_height;
+
+ si->capabilities |= VIDEO_CAPABILITY_SKIP_QUIRKS;
+
+ return EFI_SUCCESS;
+}
+
+/*
+ * See if we have Graphics Output Protocol
+ */
+efi_status_t efi_setup_gop(efi_system_table_t *sys_table_arg,
+ struct screen_info *si, efi_guid_t *proto,
+ unsigned long size)
+{
+ efi_status_t status;
+ void **gop_handle = NULL;
+
+ status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
+ size, (void **)&gop_handle);
+ if (status != EFI_SUCCESS)
+ return status;
+
+ status = efi_call_early(locate_handle,
+ EFI_LOCATE_BY_PROTOCOL,
+ proto, NULL, &size, gop_handle);
+ if (status != EFI_SUCCESS)
+ goto free_handle;
+
+ if (efi_is_64bit()) {
+ status = setup_gop64(sys_table_arg, si, proto, size,
+ gop_handle);
+ } else {
+ status = setup_gop32(sys_table_arg, si, proto, size,
+ gop_handle);
+ }
+
+free_handle:
+ efi_call_early(free_pool, gop_handle);
+ return status;
+}
diff --git a/drivers/firmware/efi/libstub/random.c b/drivers/firmware/efi/libstub/random.c
new file mode 100644
index 000000000..e0e603a89
--- /dev/null
+++ b/drivers/firmware/efi/libstub/random.c
@@ -0,0 +1,192 @@
+/*
+ * Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/efi.h>
+#include <linux/log2.h>
+#include <asm/efi.h>
+
+#include "efistub.h"
+
+struct efi_rng_protocol {
+ efi_status_t (*get_info)(struct efi_rng_protocol *,
+ unsigned long *, efi_guid_t *);
+ efi_status_t (*get_rng)(struct efi_rng_protocol *,
+ efi_guid_t *, unsigned long, u8 *out);
+};
+
+efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg,
+ unsigned long size, u8 *out)
+{
+ efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
+ efi_status_t status;
+ struct efi_rng_protocol *rng;
+
+ status = efi_call_early(locate_protocol, &rng_proto, NULL,
+ (void **)&rng);
+ if (status != EFI_SUCCESS)
+ return status;
+
+ return rng->get_rng(rng, NULL, size, out);
+}
+
+/*
+ * Return the number of slots covered by this entry, i.e., the number of
+ * addresses it covers that are suitably aligned and supply enough room
+ * for the allocation.
+ */
+static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
+ unsigned long size,
+ unsigned long align_shift)
+{
+ unsigned long align = 1UL << align_shift;
+ u64 first_slot, last_slot, region_end;
+
+ if (md->type != EFI_CONVENTIONAL_MEMORY)
+ return 0;
+
+ region_end = min((u64)ULONG_MAX, md->phys_addr + md->num_pages*EFI_PAGE_SIZE - 1);
+
+ first_slot = round_up(md->phys_addr, align);
+ last_slot = round_down(region_end - size + 1, align);
+
+ if (first_slot > last_slot)
+ return 0;
+
+ return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1;
+}
+
+/*
+ * The UEFI memory descriptors have a virtual address field that is only used
+ * when installing the virtual mapping using SetVirtualAddressMap(). Since it
+ * is unused here, we can reuse it to keep track of each descriptor's slot
+ * count.
+ */
+#define MD_NUM_SLOTS(md) ((md)->virt_addr)
+
+efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg,
+ unsigned long size,
+ unsigned long align,
+ unsigned long *addr,
+ unsigned long random_seed)
+{
+ unsigned long map_size, desc_size, total_slots = 0, target_slot;
+ unsigned long buff_size;
+ efi_status_t status;
+ efi_memory_desc_t *memory_map;
+ int map_offset;
+ struct efi_boot_memmap map;
+
+ map.map = &memory_map;
+ map.map_size = &map_size;
+ map.desc_size = &desc_size;
+ map.desc_ver = NULL;
+ map.key_ptr = NULL;
+ map.buff_size = &buff_size;
+
+ status = efi_get_memory_map(sys_table_arg, &map);
+ if (status != EFI_SUCCESS)
+ return status;
+
+ if (align < EFI_ALLOC_ALIGN)
+ align = EFI_ALLOC_ALIGN;
+
+ /* count the suitable slots in each memory map entry */
+ for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
+ efi_memory_desc_t *md = (void *)memory_map + map_offset;
+ unsigned long slots;
+
+ slots = get_entry_num_slots(md, size, ilog2(align));
+ MD_NUM_SLOTS(md) = slots;
+ total_slots += slots;
+ }
+
+ /* find a random number between 0 and total_slots */
+ target_slot = (total_slots * (u16)random_seed) >> 16;
+
+ /*
+ * target_slot is now a value in the range [0, total_slots), and so
+ * it corresponds with exactly one of the suitable slots we recorded
+ * when iterating over the memory map the first time around.
+ *
+ * So iterate over the memory map again, subtracting the number of
+ * slots of each entry at each iteration, until we have found the entry
+ * that covers our chosen slot. Use the residual value of target_slot
+ * to calculate the randomly chosen address, and allocate it directly
+ * using EFI_ALLOCATE_ADDRESS.
+ */
+ for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
+ efi_memory_desc_t *md = (void *)memory_map + map_offset;
+ efi_physical_addr_t target;
+ unsigned long pages;
+
+ if (target_slot >= MD_NUM_SLOTS(md)) {
+ target_slot -= MD_NUM_SLOTS(md);
+ continue;
+ }
+
+ target = round_up(md->phys_addr, align) + target_slot * align;
+ pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
+
+ status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
+ EFI_LOADER_DATA, pages, &target);
+ if (status == EFI_SUCCESS)
+ *addr = target;
+ break;
+ }
+
+ efi_call_early(free_pool, memory_map);
+
+ return status;
+}
+
+efi_status_t efi_random_get_seed(efi_system_table_t *sys_table_arg)
+{
+ efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
+ efi_guid_t rng_algo_raw = EFI_RNG_ALGORITHM_RAW;
+ efi_guid_t rng_table_guid = LINUX_EFI_RANDOM_SEED_TABLE_GUID;
+ struct efi_rng_protocol *rng;
+ struct linux_efi_random_seed *seed;
+ efi_status_t status;
+
+ status = efi_call_early(locate_protocol, &rng_proto, NULL,
+ (void **)&rng);
+ if (status != EFI_SUCCESS)
+ return status;
+
+ status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
+ sizeof(*seed) + EFI_RANDOM_SEED_SIZE,
+ (void **)&seed);
+ if (status != EFI_SUCCESS)
+ return status;
+
+ status = rng->get_rng(rng, &rng_algo_raw, EFI_RANDOM_SEED_SIZE,
+ seed->bits);
+ if (status == EFI_UNSUPPORTED)
+ /*
+ * Use whatever algorithm we have available if the raw algorithm
+ * is not implemented.
+ */
+ status = rng->get_rng(rng, NULL, EFI_RANDOM_SEED_SIZE,
+ seed->bits);
+
+ if (status != EFI_SUCCESS)
+ goto err_freepool;
+
+ seed->size = EFI_RANDOM_SEED_SIZE;
+ status = efi_call_early(install_configuration_table, &rng_table_guid,
+ seed);
+ if (status != EFI_SUCCESS)
+ goto err_freepool;
+
+ return EFI_SUCCESS;
+
+err_freepool:
+ efi_call_early(free_pool, seed);
+ return status;
+}
diff --git a/drivers/firmware/efi/libstub/secureboot.c b/drivers/firmware/efi/libstub/secureboot.c
new file mode 100644
index 000000000..72d9dfbeb
--- /dev/null
+++ b/drivers/firmware/efi/libstub/secureboot.c
@@ -0,0 +1,83 @@
+/*
+ * Secure boot handling.
+ *
+ * Copyright (C) 2013,2014 Linaro Limited
+ * Roy Franz <roy.franz@linaro.org
+ * Copyright (C) 2013 Red Hat, Inc.
+ * Mark Salter <msalter@redhat.com>
+ *
+ * This file is part of the Linux kernel, and is made available under the
+ * terms of the GNU General Public License version 2.
+ */
+#include <linux/efi.h>
+#include <asm/efi.h>
+
+#include "efistub.h"
+
+/* BIOS variables */
+static const efi_guid_t efi_variable_guid = EFI_GLOBAL_VARIABLE_GUID;
+static const efi_char16_t efi_SecureBoot_name[] = L"SecureBoot";
+static const efi_char16_t efi_SetupMode_name[] = L"SetupMode";
+
+/* SHIM variables */
+static const efi_guid_t shim_guid = EFI_SHIM_LOCK_GUID;
+static const efi_char16_t shim_MokSBState_name[] = L"MokSBState";
+
+#define get_efi_var(name, vendor, ...) \
+ efi_call_runtime(get_variable, \
+ (efi_char16_t *)(name), (efi_guid_t *)(vendor), \
+ __VA_ARGS__);
+
+/*
+ * Determine whether we're in secure boot mode.
+ *
+ * Please keep the logic in sync with
+ * arch/x86/xen/efi.c:xen_efi_get_secureboot().
+ */
+enum efi_secureboot_mode efi_get_secureboot(efi_system_table_t *sys_table_arg)
+{
+ u32 attr;
+ u8 secboot, setupmode, moksbstate;
+ unsigned long size;
+ efi_status_t status;
+
+ size = sizeof(secboot);
+ status = get_efi_var(efi_SecureBoot_name, &efi_variable_guid,
+ NULL, &size, &secboot);
+ if (status == EFI_NOT_FOUND)
+ return efi_secureboot_mode_disabled;
+ if (status != EFI_SUCCESS)
+ goto out_efi_err;
+
+ size = sizeof(setupmode);
+ status = get_efi_var(efi_SetupMode_name, &efi_variable_guid,
+ NULL, &size, &setupmode);
+ if (status != EFI_SUCCESS)
+ goto out_efi_err;
+
+ if (secboot == 0 || setupmode == 1)
+ return efi_secureboot_mode_disabled;
+
+ /*
+ * See if a user has put the shim into insecure mode. If so, and if the
+ * variable doesn't have the runtime attribute set, we might as well
+ * honor that.
+ */
+ size = sizeof(moksbstate);
+ status = get_efi_var(shim_MokSBState_name, &shim_guid,
+ &attr, &size, &moksbstate);
+
+ /* If it fails, we don't care why. Default to secure */
+ if (status != EFI_SUCCESS)
+ goto secure_boot_enabled;
+ if (!(attr & EFI_VARIABLE_RUNTIME_ACCESS) && moksbstate == 1)
+ return efi_secureboot_mode_disabled;
+
+secure_boot_enabled:
+ pr_efi(sys_table_arg, "UEFI Secure Boot is enabled.\n");
+ return efi_secureboot_mode_enabled;
+
+out_efi_err:
+ pr_efi_err(sys_table_arg, "Could not determine UEFI Secure Boot status.\n");
+ return efi_secureboot_mode_unknown;
+}
diff --git a/drivers/firmware/efi/libstub/string.c b/drivers/firmware/efi/libstub/string.c
new file mode 100644
index 000000000..ed10e3f60
--- /dev/null
+++ b/drivers/firmware/efi/libstub/string.c
@@ -0,0 +1,58 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Taken from:
+ * linux/lib/string.c
+ *
+ * Copyright (C) 1991, 1992 Linus Torvalds
+ */
+
+#include <linux/types.h>
+#include <linux/string.h>
+
+#ifndef __HAVE_ARCH_STRSTR
+/**
+ * strstr - Find the first substring in a %NUL terminated string
+ * @s1: The string to be searched
+ * @s2: The string to search for
+ */
+char *strstr(const char *s1, const char *s2)
+{
+ size_t l1, l2;
+
+ l2 = strlen(s2);
+ if (!l2)
+ return (char *)s1;
+ l1 = strlen(s1);
+ while (l1 >= l2) {
+ l1--;
+ if (!memcmp(s1, s2, l2))
+ return (char *)s1;
+ s1++;
+ }
+ return NULL;
+}
+#endif
+
+#ifndef __HAVE_ARCH_STRNCMP
+/**
+ * strncmp - Compare two length-limited strings
+ * @cs: One string
+ * @ct: Another string
+ * @count: The maximum number of bytes to compare
+ */
+int strncmp(const char *cs, const char *ct, size_t count)
+{
+ unsigned char c1, c2;
+
+ while (count) {
+ c1 = *cs++;
+ c2 = *ct++;
+ if (c1 != c2)
+ return c1 < c2 ? -1 : 1;
+ if (!c1)
+ break;
+ count--;
+ }
+ return 0;
+}
+#endif
diff --git a/drivers/firmware/efi/libstub/tpm.c b/drivers/firmware/efi/libstub/tpm.c
new file mode 100644
index 000000000..a90b0b8fc
--- /dev/null
+++ b/drivers/firmware/efi/libstub/tpm.c
@@ -0,0 +1,136 @@
+/*
+ * TPM handling.
+ *
+ * Copyright (C) 2016 CoreOS, Inc
+ * Copyright (C) 2017 Google, Inc.
+ * Matthew Garrett <mjg59@google.com>
+ * Thiebaud Weksteen <tweek@google.com>
+ *
+ * This file is part of the Linux kernel, and is made available under the
+ * terms of the GNU General Public License version 2.
+ */
+#include <linux/efi.h>
+#include <linux/tpm_eventlog.h>
+#include <asm/efi.h>
+
+#include "efistub.h"
+
+#ifdef CONFIG_RESET_ATTACK_MITIGATION
+static const efi_char16_t efi_MemoryOverWriteRequest_name[] =
+ L"MemoryOverwriteRequestControl";
+
+#define MEMORY_ONLY_RESET_CONTROL_GUID \
+ EFI_GUID(0xe20939be, 0x32d4, 0x41be, 0xa1, 0x50, 0x89, 0x7f, 0x85, 0xd4, 0x98, 0x29)
+
+#define get_efi_var(name, vendor, ...) \
+ efi_call_runtime(get_variable, \
+ (efi_char16_t *)(name), (efi_guid_t *)(vendor), \
+ __VA_ARGS__)
+
+#define set_efi_var(name, vendor, ...) \
+ efi_call_runtime(set_variable, \
+ (efi_char16_t *)(name), (efi_guid_t *)(vendor), \
+ __VA_ARGS__)
+
+/*
+ * Enable reboot attack mitigation. This requests that the firmware clear the
+ * RAM on next reboot before proceeding with boot, ensuring that any secrets
+ * are cleared. If userland has ensured that all secrets have been removed
+ * from RAM before reboot it can simply reset this variable.
+ */
+void efi_enable_reset_attack_mitigation(efi_system_table_t *sys_table_arg)
+{
+ u8 val = 1;
+ efi_guid_t var_guid = MEMORY_ONLY_RESET_CONTROL_GUID;
+ efi_status_t status;
+ unsigned long datasize = 0;
+
+ status = get_efi_var(efi_MemoryOverWriteRequest_name, &var_guid,
+ NULL, &datasize, NULL);
+
+ if (status == EFI_NOT_FOUND)
+ return;
+
+ set_efi_var(efi_MemoryOverWriteRequest_name, &var_guid,
+ EFI_VARIABLE_NON_VOLATILE |
+ EFI_VARIABLE_BOOTSERVICE_ACCESS |
+ EFI_VARIABLE_RUNTIME_ACCESS, sizeof(val), &val);
+}
+
+#endif
+
+static void efi_retrieve_tpm2_eventlog_1_2(efi_system_table_t *sys_table_arg)
+{
+ efi_guid_t tcg2_guid = EFI_TCG2_PROTOCOL_GUID;
+ efi_guid_t linux_eventlog_guid = LINUX_EFI_TPM_EVENT_LOG_GUID;
+ efi_status_t status;
+ efi_physical_addr_t log_location = 0, log_last_entry = 0;
+ struct linux_efi_tpm_eventlog *log_tbl = NULL;
+ unsigned long first_entry_addr, last_entry_addr;
+ size_t log_size, last_entry_size;
+ efi_bool_t truncated;
+ void *tcg2_protocol = NULL;
+
+ status = efi_call_early(locate_protocol, &tcg2_guid, NULL,
+ &tcg2_protocol);
+ if (status != EFI_SUCCESS)
+ return;
+
+ status = efi_call_proto(efi_tcg2_protocol, get_event_log, tcg2_protocol,
+ EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2,
+ &log_location, &log_last_entry, &truncated);
+ if (status != EFI_SUCCESS)
+ return;
+
+ if (!log_location)
+ return;
+ first_entry_addr = (unsigned long) log_location;
+
+ /*
+ * We populate the EFI table even if the logs are empty.
+ */
+ if (!log_last_entry) {
+ log_size = 0;
+ } else {
+ last_entry_addr = (unsigned long) log_last_entry;
+ /*
+ * get_event_log only returns the address of the last entry.
+ * We need to calculate its size to deduce the full size of
+ * the logs.
+ */
+ last_entry_size = sizeof(struct tcpa_event) +
+ ((struct tcpa_event *) last_entry_addr)->event_size;
+ log_size = log_last_entry - log_location + last_entry_size;
+ }
+
+ /* Allocate space for the logs and copy them. */
+ status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
+ sizeof(*log_tbl) + log_size,
+ (void **) &log_tbl);
+
+ if (status != EFI_SUCCESS) {
+ efi_printk(sys_table_arg,
+ "Unable to allocate memory for event log\n");
+ return;
+ }
+
+ memset(log_tbl, 0, sizeof(*log_tbl) + log_size);
+ log_tbl->size = log_size;
+ log_tbl->version = EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2;
+ memcpy(log_tbl->log, (void *) first_entry_addr, log_size);
+
+ status = efi_call_early(install_configuration_table,
+ &linux_eventlog_guid, log_tbl);
+ if (status != EFI_SUCCESS)
+ goto err_free;
+ return;
+
+err_free:
+ efi_call_early(free_pool, log_tbl);
+}
+
+void efi_retrieve_tpm2_eventlog(efi_system_table_t *sys_table_arg)
+{
+ /* Only try to retrieve the logs in 1.2 format. */
+ efi_retrieve_tpm2_eventlog_1_2(sys_table_arg);
+}