diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /drivers/gpu/drm/i915/intel_ringbuffer.h | |
parent | Initial commit. (diff) | |
download | linux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip |
Adding upstream version 4.19.249.upstream/4.19.249
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/gpu/drm/i915/intel_ringbuffer.h')
-rw-r--r-- | drivers/gpu/drm/i915/intel_ringbuffer.h | 1192 |
1 files changed, 1192 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/intel_ringbuffer.h b/drivers/gpu/drm/i915/intel_ringbuffer.h new file mode 100644 index 000000000..eaf1a161b --- /dev/null +++ b/drivers/gpu/drm/i915/intel_ringbuffer.h @@ -0,0 +1,1192 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef _INTEL_RINGBUFFER_H_ +#define _INTEL_RINGBUFFER_H_ + +#include <linux/hashtable.h> +#include <linux/seqlock.h> + +#include "i915_gem_batch_pool.h" + +#include "i915_reg.h" +#include "i915_pmu.h" +#include "i915_request.h" +#include "i915_selftest.h" +#include "i915_timeline.h" +#include "intel_gpu_commands.h" + +struct drm_printer; +struct i915_sched_attr; + +#define I915_CMD_HASH_ORDER 9 + +/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill, + * but keeps the logic simple. Indeed, the whole purpose of this macro is just + * to give some inclination as to some of the magic values used in the various + * workarounds! + */ +#define CACHELINE_BYTES 64 +#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t)) + +struct intel_hw_status_page { + struct i915_vma *vma; + u32 *page_addr; + u32 ggtt_offset; +}; + +#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base)) +#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val) + +#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base)) +#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val) + +#define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base)) +#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val) + +#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base)) +#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val) + +#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base)) +#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val) + +#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base)) +#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val) + +/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to + * do the writes, and that must have qw aligned offsets, simply pretend it's 8b. + */ +enum intel_engine_hangcheck_action { + ENGINE_IDLE = 0, + ENGINE_WAIT, + ENGINE_ACTIVE_SEQNO, + ENGINE_ACTIVE_HEAD, + ENGINE_ACTIVE_SUBUNITS, + ENGINE_WAIT_KICK, + ENGINE_DEAD, +}; + +static inline const char * +hangcheck_action_to_str(const enum intel_engine_hangcheck_action a) +{ + switch (a) { + case ENGINE_IDLE: + return "idle"; + case ENGINE_WAIT: + return "wait"; + case ENGINE_ACTIVE_SEQNO: + return "active seqno"; + case ENGINE_ACTIVE_HEAD: + return "active head"; + case ENGINE_ACTIVE_SUBUNITS: + return "active subunits"; + case ENGINE_WAIT_KICK: + return "wait kick"; + case ENGINE_DEAD: + return "dead"; + } + + return "unknown"; +} + +#define I915_MAX_SLICES 3 +#define I915_MAX_SUBSLICES 8 + +#define instdone_slice_mask(dev_priv__) \ + (INTEL_GEN(dev_priv__) == 7 ? \ + 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask) + +#define instdone_subslice_mask(dev_priv__) \ + (INTEL_GEN(dev_priv__) == 7 ? \ + 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask[0]) + +#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \ + for ((slice__) = 0, (subslice__) = 0; \ + (slice__) < I915_MAX_SLICES; \ + (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \ + (slice__) += ((subslice__) == 0)) \ + for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \ + (BIT(subslice__) & instdone_subslice_mask(dev_priv__))) + +struct intel_instdone { + u32 instdone; + /* The following exist only in the RCS engine */ + u32 slice_common; + u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES]; + u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES]; +}; + +struct intel_engine_hangcheck { + u64 acthd; + u32 seqno; + enum intel_engine_hangcheck_action action; + unsigned long action_timestamp; + int deadlock; + struct intel_instdone instdone; + struct i915_request *active_request; + bool stalled:1; + bool wedged:1; +}; + +struct intel_ring { + struct i915_vma *vma; + void *vaddr; + + struct i915_timeline *timeline; + struct list_head request_list; + struct list_head active_link; + + u32 head; + u32 tail; + u32 emit; + + u32 space; + u32 size; + u32 effective_size; +}; + +struct i915_gem_context; +struct drm_i915_reg_table; + +/* + * we use a single page to load ctx workarounds so all of these + * values are referred in terms of dwords + * + * struct i915_wa_ctx_bb: + * offset: specifies batch starting position, also helpful in case + * if we want to have multiple batches at different offsets based on + * some criteria. It is not a requirement at the moment but provides + * an option for future use. + * size: size of the batch in DWORDS + */ +struct i915_ctx_workarounds { + struct i915_wa_ctx_bb { + u32 offset; + u32 size; + } indirect_ctx, per_ctx; + struct i915_vma *vma; +}; + +struct i915_request; + +#define I915_MAX_VCS 4 +#define I915_MAX_VECS 2 + +/* + * Engine IDs definitions. + * Keep instances of the same type engine together. + */ +enum intel_engine_id { + RCS = 0, + BCS, + VCS, + VCS2, + VCS3, + VCS4, +#define _VCS(n) (VCS + (n)) + VECS, + VECS2 +#define _VECS(n) (VECS + (n)) +}; + +struct i915_priolist { + struct rb_node node; + struct list_head requests; + int priority; +}; + +struct st_preempt_hang { + struct completion completion; + bool inject_hang; +}; + +/** + * struct intel_engine_execlists - execlist submission queue and port state + * + * The struct intel_engine_execlists represents the combined logical state of + * driver and the hardware state for execlist mode of submission. + */ +struct intel_engine_execlists { + /** + * @tasklet: softirq tasklet for bottom handler + */ + struct tasklet_struct tasklet; + + /** + * @default_priolist: priority list for I915_PRIORITY_NORMAL + */ + struct i915_priolist default_priolist; + + /** + * @no_priolist: priority lists disabled + */ + bool no_priolist; + + /** + * @submit_reg: gen-specific execlist submission register + * set to the ExecList Submission Port (elsp) register pre-Gen11 and to + * the ExecList Submission Queue Contents register array for Gen11+ + */ + u32 __iomem *submit_reg; + + /** + * @ctrl_reg: the enhanced execlists control register, used to load the + * submit queue on the HW and to request preemptions to idle + */ + u32 __iomem *ctrl_reg; + + /** + * @port: execlist port states + * + * For each hardware ELSP (ExecList Submission Port) we keep + * track of the last request and the number of times we submitted + * that port to hw. We then count the number of times the hw reports + * a context completion or preemption. As only one context can + * be active on hw, we limit resubmission of context to port[0]. This + * is called Lite Restore, of the context. + */ + struct execlist_port { + /** + * @request_count: combined request and submission count + */ + struct i915_request *request_count; +#define EXECLIST_COUNT_BITS 2 +#define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS) +#define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS) +#define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS) +#define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS) +#define port_set(p, packed) ((p)->request_count = (packed)) +#define port_isset(p) ((p)->request_count) +#define port_index(p, execlists) ((p) - (execlists)->port) + + /** + * @context_id: context ID for port + */ + GEM_DEBUG_DECL(u32 context_id); + +#define EXECLIST_MAX_PORTS 2 + } port[EXECLIST_MAX_PORTS]; + + /** + * @active: is the HW active? We consider the HW as active after + * submitting any context for execution and until we have seen the + * last context completion event. After that, we do not expect any + * more events until we submit, and so can park the HW. + * + * As we have a small number of different sources from which we feed + * the HW, we track the state of each inside a single bitfield. + */ + unsigned int active; +#define EXECLISTS_ACTIVE_USER 0 +#define EXECLISTS_ACTIVE_PREEMPT 1 +#define EXECLISTS_ACTIVE_HWACK 2 + + /** + * @port_mask: number of execlist ports - 1 + */ + unsigned int port_mask; + + /** + * @queue_priority: Highest pending priority. + * + * When we add requests into the queue, or adjust the priority of + * executing requests, we compute the maximum priority of those + * pending requests. We can then use this value to determine if + * we need to preempt the executing requests to service the queue. + */ + int queue_priority; + + /** + * @queue: queue of requests, in priority lists + */ + struct rb_root_cached queue; + + /** + * @csb_read: control register for Context Switch buffer + * + * Note this register is always in mmio. + */ + u32 __iomem *csb_read; + + /** + * @csb_write: control register for Context Switch buffer + * + * Note this register may be either mmio or HWSP shadow. + */ + u32 *csb_write; + + /** + * @csb_status: status array for Context Switch buffer + * + * Note these register may be either mmio or HWSP shadow. + */ + u32 *csb_status; + + /** + * @preempt_complete_status: expected CSB upon completing preemption + */ + u32 preempt_complete_status; + + /** + * @csb_write_reset: reset value for CSB write pointer + * + * As the CSB write pointer maybe either in HWSP or as a field + * inside an mmio register, we want to reprogram it slightly + * differently to avoid later confusion. + */ + u32 csb_write_reset; + + /** + * @csb_head: context status buffer head + */ + u8 csb_head; + + I915_SELFTEST_DECLARE(struct st_preempt_hang preempt_hang;) +}; + +#define INTEL_ENGINE_CS_MAX_NAME 8 + +struct intel_engine_cs { + struct drm_i915_private *i915; + char name[INTEL_ENGINE_CS_MAX_NAME]; + + enum intel_engine_id id; + unsigned int hw_id; + unsigned int guc_id; + + u8 uabi_id; + u8 uabi_class; + + u8 class; + u8 instance; + u32 context_size; + u32 mmio_base; + + struct intel_ring *buffer; + + struct i915_timeline timeline; + + struct drm_i915_gem_object *default_state; + void *pinned_default_state; + + unsigned long irq_posted; +#define ENGINE_IRQ_BREADCRUMB 0 + + /* Rather than have every client wait upon all user interrupts, + * with the herd waking after every interrupt and each doing the + * heavyweight seqno dance, we delegate the task (of being the + * bottom-half of the user interrupt) to the first client. After + * every interrupt, we wake up one client, who does the heavyweight + * coherent seqno read and either goes back to sleep (if incomplete), + * or wakes up all the completed clients in parallel, before then + * transferring the bottom-half status to the next client in the queue. + * + * Compared to walking the entire list of waiters in a single dedicated + * bottom-half, we reduce the latency of the first waiter by avoiding + * a context switch, but incur additional coherent seqno reads when + * following the chain of request breadcrumbs. Since it is most likely + * that we have a single client waiting on each seqno, then reducing + * the overhead of waking that client is much preferred. + */ + struct intel_breadcrumbs { + spinlock_t irq_lock; /* protects irq_*; irqsafe */ + struct intel_wait *irq_wait; /* oldest waiter by retirement */ + + spinlock_t rb_lock; /* protects the rb and wraps irq_lock */ + struct rb_root waiters; /* sorted by retirement, priority */ + struct list_head signals; /* sorted by retirement */ + struct task_struct *signaler; /* used for fence signalling */ + + struct timer_list fake_irq; /* used after a missed interrupt */ + struct timer_list hangcheck; /* detect missed interrupts */ + + unsigned int hangcheck_interrupts; + unsigned int irq_enabled; + unsigned int irq_count; + + bool irq_armed : 1; + I915_SELFTEST_DECLARE(bool mock : 1); + } breadcrumbs; + + struct { + /** + * @enable: Bitmask of enable sample events on this engine. + * + * Bits correspond to sample event types, for instance + * I915_SAMPLE_QUEUED is bit 0 etc. + */ + u32 enable; + /** + * @enable_count: Reference count for the enabled samplers. + * + * Index number corresponds to the bit number from @enable. + */ + unsigned int enable_count[I915_PMU_SAMPLE_BITS]; + /** + * @sample: Counter values for sampling events. + * + * Our internal timer stores the current counters in this field. + */ +#define I915_ENGINE_SAMPLE_MAX (I915_SAMPLE_SEMA + 1) + struct i915_pmu_sample sample[I915_ENGINE_SAMPLE_MAX]; + } pmu; + + /* + * A pool of objects to use as shadow copies of client batch buffers + * when the command parser is enabled. Prevents the client from + * modifying the batch contents after software parsing. + */ + struct i915_gem_batch_pool batch_pool; + + struct intel_hw_status_page status_page; + struct i915_ctx_workarounds wa_ctx; + struct i915_vma *scratch; + + u32 irq_keep_mask; /* always keep these interrupts */ + u32 irq_enable_mask; /* bitmask to enable ring interrupt */ + void (*irq_enable)(struct intel_engine_cs *engine); + void (*irq_disable)(struct intel_engine_cs *engine); + + int (*init_hw)(struct intel_engine_cs *engine); + + struct { + struct i915_request *(*prepare)(struct intel_engine_cs *engine); + void (*reset)(struct intel_engine_cs *engine, + struct i915_request *rq); + void (*finish)(struct intel_engine_cs *engine); + } reset; + + void (*park)(struct intel_engine_cs *engine); + void (*unpark)(struct intel_engine_cs *engine); + + void (*set_default_submission)(struct intel_engine_cs *engine); + + struct intel_context *(*context_pin)(struct intel_engine_cs *engine, + struct i915_gem_context *ctx); + + int (*request_alloc)(struct i915_request *rq); + int (*init_context)(struct i915_request *rq); + + int (*emit_flush)(struct i915_request *request, u32 mode); +#define EMIT_INVALIDATE BIT(0) +#define EMIT_FLUSH BIT(1) +#define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH) + int (*emit_bb_start)(struct i915_request *rq, + u64 offset, u32 length, + unsigned int dispatch_flags); +#define I915_DISPATCH_SECURE BIT(0) +#define I915_DISPATCH_PINNED BIT(1) +#define I915_DISPATCH_RS BIT(2) + void (*emit_breadcrumb)(struct i915_request *rq, u32 *cs); + int emit_breadcrumb_sz; + + /* Pass the request to the hardware queue (e.g. directly into + * the legacy ringbuffer or to the end of an execlist). + * + * This is called from an atomic context with irqs disabled; must + * be irq safe. + */ + void (*submit_request)(struct i915_request *rq); + + /* Call when the priority on a request has changed and it and its + * dependencies may need rescheduling. Note the request itself may + * not be ready to run! + * + * Called under the struct_mutex. + */ + void (*schedule)(struct i915_request *request, + const struct i915_sched_attr *attr); + + /* + * Cancel all requests on the hardware, or queued for execution. + * This should only cancel the ready requests that have been + * submitted to the engine (via the engine->submit_request callback). + * This is called when marking the device as wedged. + */ + void (*cancel_requests)(struct intel_engine_cs *engine); + + /* Some chipsets are not quite as coherent as advertised and need + * an expensive kick to force a true read of the up-to-date seqno. + * However, the up-to-date seqno is not always required and the last + * seen value is good enough. Note that the seqno will always be + * monotonic, even if not coherent. + */ + void (*irq_seqno_barrier)(struct intel_engine_cs *engine); + void (*cleanup)(struct intel_engine_cs *engine); + + /* GEN8 signal/wait table - never trust comments! + * signal to signal to signal to signal to signal to + * RCS VCS BCS VECS VCS2 + * -------------------------------------------------------------------- + * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) | + * |------------------------------------------------------------------- + * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) | + * |------------------------------------------------------------------- + * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) | + * |------------------------------------------------------------------- + * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) | + * |------------------------------------------------------------------- + * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) | + * |------------------------------------------------------------------- + * + * Generalization: + * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id) + * ie. transpose of g(x, y) + * + * sync from sync from sync from sync from sync from + * RCS VCS BCS VECS VCS2 + * -------------------------------------------------------------------- + * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) | + * |------------------------------------------------------------------- + * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) | + * |------------------------------------------------------------------- + * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) | + * |------------------------------------------------------------------- + * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) | + * |------------------------------------------------------------------- + * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) | + * |------------------------------------------------------------------- + * + * Generalization: + * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id) + * ie. transpose of f(x, y) + */ + struct { +#define GEN6_SEMAPHORE_LAST VECS_HW +#define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1) +#define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0) + struct { + /* our mbox written by others */ + u32 wait[GEN6_NUM_SEMAPHORES]; + /* mboxes this ring signals to */ + i915_reg_t signal[GEN6_NUM_SEMAPHORES]; + } mbox; + + /* AKA wait() */ + int (*sync_to)(struct i915_request *rq, + struct i915_request *signal); + u32 *(*signal)(struct i915_request *rq, u32 *cs); + } semaphore; + + struct intel_engine_execlists execlists; + + /* Contexts are pinned whilst they are active on the GPU. The last + * context executed remains active whilst the GPU is idle - the + * switch away and write to the context object only occurs on the + * next execution. Contexts are only unpinned on retirement of the + * following request ensuring that we can always write to the object + * on the context switch even after idling. Across suspend, we switch + * to the kernel context and trash it as the save may not happen + * before the hardware is powered down. + */ + struct intel_context *last_retired_context; + + /* status_notifier: list of callbacks for context-switch changes */ + struct atomic_notifier_head context_status_notifier; + + struct intel_engine_hangcheck hangcheck; + +#define I915_ENGINE_USING_CMD_PARSER BIT(0) +#define I915_ENGINE_SUPPORTS_STATS BIT(1) +#define I915_ENGINE_HAS_PREEMPTION BIT(2) +#define I915_ENGINE_REQUIRES_CMD_PARSER BIT(3) + unsigned int flags; + + /* + * Table of commands the command parser needs to know about + * for this engine. + */ + DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER); + + /* + * Table of registers allowed in commands that read/write registers. + */ + const struct drm_i915_reg_table *reg_tables; + int reg_table_count; + + /* + * Returns the bitmask for the length field of the specified command. + * Return 0 for an unrecognized/invalid command. + * + * If the command parser finds an entry for a command in the engine's + * cmd_tables, it gets the command's length based on the table entry. + * If not, it calls this function to determine the per-engine length + * field encoding for the command (i.e. different opcode ranges use + * certain bits to encode the command length in the header). + */ + u32 (*get_cmd_length_mask)(u32 cmd_header); + + struct { + /** + * @lock: Lock protecting the below fields. + */ + seqlock_t lock; + /** + * @enabled: Reference count indicating number of listeners. + */ + unsigned int enabled; + /** + * @active: Number of contexts currently scheduled in. + */ + unsigned int active; + /** + * @enabled_at: Timestamp when busy stats were enabled. + */ + ktime_t enabled_at; + /** + * @start: Timestamp of the last idle to active transition. + * + * Idle is defined as active == 0, active is active > 0. + */ + ktime_t start; + /** + * @total: Total time this engine was busy. + * + * Accumulated time not counting the most recent block in cases + * where engine is currently busy (active > 0). + */ + ktime_t total; + } stats; +}; + +static inline bool +intel_engine_using_cmd_parser(const struct intel_engine_cs *engine) +{ + return engine->flags & I915_ENGINE_USING_CMD_PARSER; +} + +static inline bool +intel_engine_requires_cmd_parser(const struct intel_engine_cs *engine) +{ + return engine->flags & I915_ENGINE_REQUIRES_CMD_PARSER; +} + +static inline bool +intel_engine_supports_stats(const struct intel_engine_cs *engine) +{ + return engine->flags & I915_ENGINE_SUPPORTS_STATS; +} + +static inline bool +intel_engine_has_preemption(const struct intel_engine_cs *engine) +{ + return engine->flags & I915_ENGINE_HAS_PREEMPTION; +} + +static inline bool __execlists_need_preempt(int prio, int last) +{ + return prio > max(0, last); +} + +static inline void +execlists_set_active(struct intel_engine_execlists *execlists, + unsigned int bit) +{ + __set_bit(bit, (unsigned long *)&execlists->active); +} + +static inline bool +execlists_set_active_once(struct intel_engine_execlists *execlists, + unsigned int bit) +{ + return !__test_and_set_bit(bit, (unsigned long *)&execlists->active); +} + +static inline void +execlists_clear_active(struct intel_engine_execlists *execlists, + unsigned int bit) +{ + __clear_bit(bit, (unsigned long *)&execlists->active); +} + +static inline void +execlists_clear_all_active(struct intel_engine_execlists *execlists) +{ + execlists->active = 0; +} + +static inline bool +execlists_is_active(const struct intel_engine_execlists *execlists, + unsigned int bit) +{ + return test_bit(bit, (unsigned long *)&execlists->active); +} + +void execlists_user_begin(struct intel_engine_execlists *execlists, + const struct execlist_port *port); +void execlists_user_end(struct intel_engine_execlists *execlists); + +void +execlists_cancel_port_requests(struct intel_engine_execlists * const execlists); + +void +execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists); + +static inline unsigned int +execlists_num_ports(const struct intel_engine_execlists * const execlists) +{ + return execlists->port_mask + 1; +} + +static inline struct execlist_port * +execlists_port_complete(struct intel_engine_execlists * const execlists, + struct execlist_port * const port) +{ + const unsigned int m = execlists->port_mask; + + GEM_BUG_ON(port_index(port, execlists) != 0); + GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER)); + + memmove(port, port + 1, m * sizeof(struct execlist_port)); + memset(port + m, 0, sizeof(struct execlist_port)); + + return port; +} + +static inline unsigned int +intel_engine_flag(const struct intel_engine_cs *engine) +{ + return BIT(engine->id); +} + +static inline u32 +intel_read_status_page(const struct intel_engine_cs *engine, int reg) +{ + /* Ensure that the compiler doesn't optimize away the load. */ + return READ_ONCE(engine->status_page.page_addr[reg]); +} + +static inline void +intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value) +{ + /* Writing into the status page should be done sparingly. Since + * we do when we are uncertain of the device state, we take a bit + * of extra paranoia to try and ensure that the HWS takes the value + * we give and that it doesn't end up trapped inside the CPU! + */ + if (static_cpu_has(X86_FEATURE_CLFLUSH)) { + mb(); + clflush(&engine->status_page.page_addr[reg]); + engine->status_page.page_addr[reg] = value; + clflush(&engine->status_page.page_addr[reg]); + mb(); + } else { + WRITE_ONCE(engine->status_page.page_addr[reg], value); + } +} + +/* + * Reads a dword out of the status page, which is written to from the command + * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or + * MI_STORE_DATA_IMM. + * + * The following dwords have a reserved meaning: + * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes. + * 0x04: ring 0 head pointer + * 0x05: ring 1 head pointer (915-class) + * 0x06: ring 2 head pointer (915-class) + * 0x10-0x1b: Context status DWords (GM45) + * 0x1f: Last written status offset. (GM45) + * 0x20-0x2f: Reserved (Gen6+) + * + * The area from dword 0x30 to 0x3ff is available for driver usage. + */ +#define I915_GEM_HWS_INDEX 0x30 +#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT) +#define I915_GEM_HWS_PREEMPT_INDEX 0x32 +#define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT_INDEX << MI_STORE_DWORD_INDEX_SHIFT) +#define I915_GEM_HWS_SCRATCH_INDEX 0x40 +#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT) + +#define I915_HWS_CSB_BUF0_INDEX 0x10 +#define I915_HWS_CSB_WRITE_INDEX 0x1f +#define CNL_HWS_CSB_WRITE_INDEX 0x2f + +struct intel_ring * +intel_engine_create_ring(struct intel_engine_cs *engine, + struct i915_timeline *timeline, + int size); +int intel_ring_pin(struct intel_ring *ring, + struct drm_i915_private *i915, + unsigned int offset_bias); +void intel_ring_reset(struct intel_ring *ring, u32 tail); +unsigned int intel_ring_update_space(struct intel_ring *ring); +void intel_ring_unpin(struct intel_ring *ring); +void intel_ring_free(struct intel_ring *ring); + +void intel_engine_stop(struct intel_engine_cs *engine); +void intel_engine_cleanup(struct intel_engine_cs *engine); + +void intel_legacy_submission_resume(struct drm_i915_private *dev_priv); + +int __must_check intel_ring_cacheline_align(struct i915_request *rq); + +int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes); +u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n); + +static inline void intel_ring_advance(struct i915_request *rq, u32 *cs) +{ + /* Dummy function. + * + * This serves as a placeholder in the code so that the reader + * can compare against the preceding intel_ring_begin() and + * check that the number of dwords emitted matches the space + * reserved for the command packet (i.e. the value passed to + * intel_ring_begin()). + */ + GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs); +} + +static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos) +{ + return pos & (ring->size - 1); +} + +static inline bool +intel_ring_offset_valid(const struct intel_ring *ring, + unsigned int pos) +{ + if (pos & -ring->size) /* must be strictly within the ring */ + return false; + + if (!IS_ALIGNED(pos, 8)) /* must be qword aligned */ + return false; + + return true; +} + +static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr) +{ + /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */ + u32 offset = addr - rq->ring->vaddr; + GEM_BUG_ON(offset > rq->ring->size); + return intel_ring_wrap(rq->ring, offset); +} + +static inline void +assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail) +{ + GEM_BUG_ON(!intel_ring_offset_valid(ring, tail)); + + /* + * "Ring Buffer Use" + * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 + * Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5 + * Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5 + * "If the Ring Buffer Head Pointer and the Tail Pointer are on the + * same cacheline, the Head Pointer must not be greater than the Tail + * Pointer." + * + * We use ring->head as the last known location of the actual RING_HEAD, + * it may have advanced but in the worst case it is equally the same + * as ring->head and so we should never program RING_TAIL to advance + * into the same cacheline as ring->head. + */ +#define cacheline(a) round_down(a, CACHELINE_BYTES) + GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) && + tail < ring->head); +#undef cacheline +} + +static inline unsigned int +intel_ring_set_tail(struct intel_ring *ring, unsigned int tail) +{ + /* Whilst writes to the tail are strictly order, there is no + * serialisation between readers and the writers. The tail may be + * read by i915_request_retire() just as it is being updated + * by execlists, as although the breadcrumb is complete, the context + * switch hasn't been seen. + */ + assert_ring_tail_valid(ring, tail); + ring->tail = tail; + return tail; +} + +void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno); + +void intel_engine_setup_common(struct intel_engine_cs *engine); +int intel_engine_init_common(struct intel_engine_cs *engine); +void intel_engine_cleanup_common(struct intel_engine_cs *engine); + +int intel_engine_create_scratch(struct intel_engine_cs *engine, + unsigned int size); +void intel_engine_cleanup_scratch(struct intel_engine_cs *engine); + +int intel_init_render_ring_buffer(struct intel_engine_cs *engine); +int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine); +int intel_init_blt_ring_buffer(struct intel_engine_cs *engine); +int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine); + +int intel_engine_stop_cs(struct intel_engine_cs *engine); + +u64 intel_engine_get_active_head(const struct intel_engine_cs *engine); +u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine); + +static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine) +{ + return intel_read_status_page(engine, I915_GEM_HWS_INDEX); +} + +static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine) +{ + /* We are only peeking at the tail of the submit queue (and not the + * queue itself) in order to gain a hint as to the current active + * state of the engine. Callers are not expected to be taking + * engine->timeline->lock, nor are they expected to be concerned + * wtih serialising this hint with anything, so document it as + * a hint and nothing more. + */ + return READ_ONCE(engine->timeline.seqno); +} + +void intel_engine_get_instdone(struct intel_engine_cs *engine, + struct intel_instdone *instdone); + +/* + * Arbitrary size for largest possible 'add request' sequence. The code paths + * are complex and variable. Empirical measurement shows that the worst case + * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However, + * we need to allocate double the largest single packet within that emission + * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW). + */ +#define MIN_SPACE_FOR_ADD_REQUEST 336 + +static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine) +{ + return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR; +} + +static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine) +{ + return engine->status_page.ggtt_offset + I915_GEM_HWS_PREEMPT_ADDR; +} + +/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */ +int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine); + +static inline void intel_wait_init(struct intel_wait *wait) +{ + wait->tsk = current; + wait->request = NULL; +} + +static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno) +{ + wait->tsk = current; + wait->seqno = seqno; +} + +static inline bool intel_wait_has_seqno(const struct intel_wait *wait) +{ + return wait->seqno; +} + +static inline bool +intel_wait_update_seqno(struct intel_wait *wait, u32 seqno) +{ + wait->seqno = seqno; + return intel_wait_has_seqno(wait); +} + +static inline bool +intel_wait_update_request(struct intel_wait *wait, + const struct i915_request *rq) +{ + return intel_wait_update_seqno(wait, i915_request_global_seqno(rq)); +} + +static inline bool +intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno) +{ + return wait->seqno == seqno; +} + +static inline bool +intel_wait_check_request(const struct intel_wait *wait, + const struct i915_request *rq) +{ + return intel_wait_check_seqno(wait, i915_request_global_seqno(rq)); +} + +static inline bool intel_wait_complete(const struct intel_wait *wait) +{ + return RB_EMPTY_NODE(&wait->node); +} + +bool intel_engine_add_wait(struct intel_engine_cs *engine, + struct intel_wait *wait); +void intel_engine_remove_wait(struct intel_engine_cs *engine, + struct intel_wait *wait); +bool intel_engine_enable_signaling(struct i915_request *request, bool wakeup); +void intel_engine_cancel_signaling(struct i915_request *request); + +static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine) +{ + return READ_ONCE(engine->breadcrumbs.irq_wait); +} + +unsigned int intel_engine_wakeup(struct intel_engine_cs *engine); +#define ENGINE_WAKEUP_WAITER BIT(0) +#define ENGINE_WAKEUP_ASLEEP BIT(1) + +void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine); +void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine); + +void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine); +void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine); + +void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine); +void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine); + +static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset) +{ + memset(batch, 0, 6 * sizeof(u32)); + + batch[0] = GFX_OP_PIPE_CONTROL(6); + batch[1] = flags; + batch[2] = offset; + + return batch + 6; +} + +static inline u32 * +gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset) +{ + /* We're using qword write, offset should be aligned to 8 bytes. */ + GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8)); + + /* w/a for post sync ops following a GPGPU operation we + * need a prior CS_STALL, which is emitted by the flush + * following the batch. + */ + *cs++ = GFX_OP_PIPE_CONTROL(6); + *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL | + PIPE_CONTROL_QW_WRITE; + *cs++ = gtt_offset; + *cs++ = 0; + *cs++ = value; + /* We're thrashing one dword of HWS. */ + *cs++ = 0; + + return cs; +} + +static inline u32 * +gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset) +{ + /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */ + GEM_BUG_ON(gtt_offset & (1 << 5)); + /* Offset should be aligned to 8 bytes for both (QW/DW) write types */ + GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8)); + + *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW; + *cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT; + *cs++ = 0; + *cs++ = value; + + return cs; +} + +void intel_engines_sanitize(struct drm_i915_private *i915); + +bool intel_engine_is_idle(struct intel_engine_cs *engine); +bool intel_engines_are_idle(struct drm_i915_private *dev_priv); + +bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine); +void intel_engine_lost_context(struct intel_engine_cs *engine); + +void intel_engines_park(struct drm_i915_private *i915); +void intel_engines_unpark(struct drm_i915_private *i915); + +void intel_engines_reset_default_submission(struct drm_i915_private *i915); +unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915); + +bool intel_engine_can_store_dword(struct intel_engine_cs *engine); + +__printf(3, 4) +void intel_engine_dump(struct intel_engine_cs *engine, + struct drm_printer *m, + const char *header, ...); + +struct intel_engine_cs * +intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance); + +static inline void intel_engine_context_in(struct intel_engine_cs *engine) +{ + unsigned long flags; + + if (READ_ONCE(engine->stats.enabled) == 0) + return; + + write_seqlock_irqsave(&engine->stats.lock, flags); + + if (engine->stats.enabled > 0) { + if (engine->stats.active++ == 0) + engine->stats.start = ktime_get(); + GEM_BUG_ON(engine->stats.active == 0); + } + + write_sequnlock_irqrestore(&engine->stats.lock, flags); +} + +static inline void intel_engine_context_out(struct intel_engine_cs *engine) +{ + unsigned long flags; + + if (READ_ONCE(engine->stats.enabled) == 0) + return; + + write_seqlock_irqsave(&engine->stats.lock, flags); + + if (engine->stats.enabled > 0) { + ktime_t last; + + if (engine->stats.active && --engine->stats.active == 0) { + /* + * Decrement the active context count and in case GPU + * is now idle add up to the running total. + */ + last = ktime_sub(ktime_get(), engine->stats.start); + + engine->stats.total = ktime_add(engine->stats.total, + last); + } else if (engine->stats.active == 0) { + /* + * After turning on engine stats, context out might be + * the first event in which case we account from the + * time stats gathering was turned on. + */ + last = ktime_sub(ktime_get(), engine->stats.enabled_at); + + engine->stats.total = ktime_add(engine->stats.total, + last); + } + } + + write_sequnlock_irqrestore(&engine->stats.lock, flags); +} + +int intel_enable_engine_stats(struct intel_engine_cs *engine); +void intel_disable_engine_stats(struct intel_engine_cs *engine); + +ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine); + +#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) + +static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists) +{ + if (!execlists->preempt_hang.inject_hang) + return false; + + complete(&execlists->preempt_hang.completion); + return true; +} + +#else + +static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists) +{ + return false; +} + +#endif + +#endif /* _INTEL_RINGBUFFER_H_ */ |