diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /drivers/md/bcache/alloc.c | |
parent | Initial commit. (diff) | |
download | linux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip |
Adding upstream version 4.19.249.upstream/4.19.249
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/md/bcache/alloc.c')
-rw-r--r-- | drivers/md/bcache/alloc.c | 743 |
1 files changed, 743 insertions, 0 deletions
diff --git a/drivers/md/bcache/alloc.c b/drivers/md/bcache/alloc.c new file mode 100644 index 000000000..46794cac1 --- /dev/null +++ b/drivers/md/bcache/alloc.c @@ -0,0 +1,743 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Primary bucket allocation code + * + * Copyright 2012 Google, Inc. + * + * Allocation in bcache is done in terms of buckets: + * + * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in + * btree pointers - they must match for the pointer to be considered valid. + * + * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a + * bucket simply by incrementing its gen. + * + * The gens (along with the priorities; it's really the gens are important but + * the code is named as if it's the priorities) are written in an arbitrary list + * of buckets on disk, with a pointer to them in the journal header. + * + * When we invalidate a bucket, we have to write its new gen to disk and wait + * for that write to complete before we use it - otherwise after a crash we + * could have pointers that appeared to be good but pointed to data that had + * been overwritten. + * + * Since the gens and priorities are all stored contiguously on disk, we can + * batch this up: We fill up the free_inc list with freshly invalidated buckets, + * call prio_write(), and when prio_write() finishes we pull buckets off the + * free_inc list and optionally discard them. + * + * free_inc isn't the only freelist - if it was, we'd often to sleep while + * priorities and gens were being written before we could allocate. c->free is a + * smaller freelist, and buckets on that list are always ready to be used. + * + * If we've got discards enabled, that happens when a bucket moves from the + * free_inc list to the free list. + * + * There is another freelist, because sometimes we have buckets that we know + * have nothing pointing into them - these we can reuse without waiting for + * priorities to be rewritten. These come from freed btree nodes and buckets + * that garbage collection discovered no longer had valid keys pointing into + * them (because they were overwritten). That's the unused list - buckets on the + * unused list move to the free list, optionally being discarded in the process. + * + * It's also important to ensure that gens don't wrap around - with respect to + * either the oldest gen in the btree or the gen on disk. This is quite + * difficult to do in practice, but we explicitly guard against it anyways - if + * a bucket is in danger of wrapping around we simply skip invalidating it that + * time around, and we garbage collect or rewrite the priorities sooner than we + * would have otherwise. + * + * bch_bucket_alloc() allocates a single bucket from a specific cache. + * + * bch_bucket_alloc_set() allocates one or more buckets from different caches + * out of a cache set. + * + * free_some_buckets() drives all the processes described above. It's called + * from bch_bucket_alloc() and a few other places that need to make sure free + * buckets are ready. + * + * invalidate_buckets_(lru|fifo)() find buckets that are available to be + * invalidated, and then invalidate them and stick them on the free_inc list - + * in either lru or fifo order. + */ + +#include "bcache.h" +#include "btree.h" + +#include <linux/blkdev.h> +#include <linux/kthread.h> +#include <linux/random.h> +#include <trace/events/bcache.h> + +#define MAX_OPEN_BUCKETS 128 + +/* Bucket heap / gen */ + +uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) +{ + uint8_t ret = ++b->gen; + + ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); + WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); + + return ret; +} + +void bch_rescale_priorities(struct cache_set *c, int sectors) +{ + struct cache *ca; + struct bucket *b; + unsigned int next = c->nbuckets * c->sb.bucket_size / 1024; + unsigned int i; + int r; + + atomic_sub(sectors, &c->rescale); + + do { + r = atomic_read(&c->rescale); + + if (r >= 0) + return; + } while (atomic_cmpxchg(&c->rescale, r, r + next) != r); + + mutex_lock(&c->bucket_lock); + + c->min_prio = USHRT_MAX; + + for_each_cache(ca, c, i) + for_each_bucket(b, ca) + if (b->prio && + b->prio != BTREE_PRIO && + !atomic_read(&b->pin)) { + b->prio--; + c->min_prio = min(c->min_prio, b->prio); + } + + mutex_unlock(&c->bucket_lock); +} + +/* + * Background allocation thread: scans for buckets to be invalidated, + * invalidates them, rewrites prios/gens (marking them as invalidated on disk), + * then optionally issues discard commands to the newly free buckets, then puts + * them on the various freelists. + */ + +static inline bool can_inc_bucket_gen(struct bucket *b) +{ + return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX; +} + +bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b) +{ + BUG_ON(!ca->set->gc_mark_valid); + + return (!GC_MARK(b) || + GC_MARK(b) == GC_MARK_RECLAIMABLE) && + !atomic_read(&b->pin) && + can_inc_bucket_gen(b); +} + +void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) +{ + lockdep_assert_held(&ca->set->bucket_lock); + BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE); + + if (GC_SECTORS_USED(b)) + trace_bcache_invalidate(ca, b - ca->buckets); + + bch_inc_gen(ca, b); + b->prio = INITIAL_PRIO; + atomic_inc(&b->pin); +} + +static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) +{ + __bch_invalidate_one_bucket(ca, b); + + fifo_push(&ca->free_inc, b - ca->buckets); +} + +/* + * Determines what order we're going to reuse buckets, smallest bucket_prio() + * first: we also take into account the number of sectors of live data in that + * bucket, and in order for that multiply to make sense we have to scale bucket + * + * Thus, we scale the bucket priorities so that the bucket with the smallest + * prio is worth 1/8th of what INITIAL_PRIO is worth. + */ + +#define bucket_prio(b) \ +({ \ + unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \ + \ + (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \ +}) + +#define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r)) +#define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r)) + +static void invalidate_buckets_lru(struct cache *ca) +{ + struct bucket *b; + ssize_t i; + + ca->heap.used = 0; + + for_each_bucket(b, ca) { + if (!bch_can_invalidate_bucket(ca, b)) + continue; + + if (!heap_full(&ca->heap)) + heap_add(&ca->heap, b, bucket_max_cmp); + else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { + ca->heap.data[0] = b; + heap_sift(&ca->heap, 0, bucket_max_cmp); + } + } + + for (i = ca->heap.used / 2 - 1; i >= 0; --i) + heap_sift(&ca->heap, i, bucket_min_cmp); + + while (!fifo_full(&ca->free_inc)) { + if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { + /* + * We don't want to be calling invalidate_buckets() + * multiple times when it can't do anything + */ + ca->invalidate_needs_gc = 1; + wake_up_gc(ca->set); + return; + } + + bch_invalidate_one_bucket(ca, b); + } +} + +static void invalidate_buckets_fifo(struct cache *ca) +{ + struct bucket *b; + size_t checked = 0; + + while (!fifo_full(&ca->free_inc)) { + if (ca->fifo_last_bucket < ca->sb.first_bucket || + ca->fifo_last_bucket >= ca->sb.nbuckets) + ca->fifo_last_bucket = ca->sb.first_bucket; + + b = ca->buckets + ca->fifo_last_bucket++; + + if (bch_can_invalidate_bucket(ca, b)) + bch_invalidate_one_bucket(ca, b); + + if (++checked >= ca->sb.nbuckets) { + ca->invalidate_needs_gc = 1; + wake_up_gc(ca->set); + return; + } + } +} + +static void invalidate_buckets_random(struct cache *ca) +{ + struct bucket *b; + size_t checked = 0; + + while (!fifo_full(&ca->free_inc)) { + size_t n; + + get_random_bytes(&n, sizeof(n)); + + n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); + n += ca->sb.first_bucket; + + b = ca->buckets + n; + + if (bch_can_invalidate_bucket(ca, b)) + bch_invalidate_one_bucket(ca, b); + + if (++checked >= ca->sb.nbuckets / 2) { + ca->invalidate_needs_gc = 1; + wake_up_gc(ca->set); + return; + } + } +} + +static void invalidate_buckets(struct cache *ca) +{ + BUG_ON(ca->invalidate_needs_gc); + + switch (CACHE_REPLACEMENT(&ca->sb)) { + case CACHE_REPLACEMENT_LRU: + invalidate_buckets_lru(ca); + break; + case CACHE_REPLACEMENT_FIFO: + invalidate_buckets_fifo(ca); + break; + case CACHE_REPLACEMENT_RANDOM: + invalidate_buckets_random(ca); + break; + } +} + +#define allocator_wait(ca, cond) \ +do { \ + while (1) { \ + set_current_state(TASK_INTERRUPTIBLE); \ + if (cond) \ + break; \ + \ + mutex_unlock(&(ca)->set->bucket_lock); \ + if (kthread_should_stop() || \ + test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) { \ + set_current_state(TASK_RUNNING); \ + goto out; \ + } \ + \ + schedule(); \ + mutex_lock(&(ca)->set->bucket_lock); \ + } \ + __set_current_state(TASK_RUNNING); \ +} while (0) + +static int bch_allocator_push(struct cache *ca, long bucket) +{ + unsigned int i; + + /* Prios/gens are actually the most important reserve */ + if (fifo_push(&ca->free[RESERVE_PRIO], bucket)) + return true; + + for (i = 0; i < RESERVE_NR; i++) + if (fifo_push(&ca->free[i], bucket)) + return true; + + return false; +} + +static int bch_allocator_thread(void *arg) +{ + struct cache *ca = arg; + + mutex_lock(&ca->set->bucket_lock); + + while (1) { + /* + * First, we pull buckets off of the unused and free_inc lists, + * possibly issue discards to them, then we add the bucket to + * the free list: + */ + while (1) { + long bucket; + + if (!fifo_pop(&ca->free_inc, bucket)) + break; + + if (ca->discard) { + mutex_unlock(&ca->set->bucket_lock); + blkdev_issue_discard(ca->bdev, + bucket_to_sector(ca->set, bucket), + ca->sb.bucket_size, GFP_KERNEL, 0); + mutex_lock(&ca->set->bucket_lock); + } + + allocator_wait(ca, bch_allocator_push(ca, bucket)); + wake_up(&ca->set->btree_cache_wait); + wake_up(&ca->set->bucket_wait); + } + + /* + * We've run out of free buckets, we need to find some buckets + * we can invalidate. First, invalidate them in memory and add + * them to the free_inc list: + */ + +retry_invalidate: + allocator_wait(ca, ca->set->gc_mark_valid && + !ca->invalidate_needs_gc); + invalidate_buckets(ca); + + /* + * Now, we write their new gens to disk so we can start writing + * new stuff to them: + */ + allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); + if (CACHE_SYNC(&ca->set->sb)) { + /* + * This could deadlock if an allocation with a btree + * node locked ever blocked - having the btree node + * locked would block garbage collection, but here we're + * waiting on garbage collection before we invalidate + * and free anything. + * + * But this should be safe since the btree code always + * uses btree_check_reserve() before allocating now, and + * if it fails it blocks without btree nodes locked. + */ + if (!fifo_full(&ca->free_inc)) + goto retry_invalidate; + + if (bch_prio_write(ca, false) < 0) { + ca->invalidate_needs_gc = 1; + wake_up_gc(ca->set); + } + } + } +out: + wait_for_kthread_stop(); + return 0; +} + +/* Allocation */ + +long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait) +{ + DEFINE_WAIT(w); + struct bucket *b; + long r; + + + /* No allocation if CACHE_SET_IO_DISABLE bit is set */ + if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags))) + return -1; + + /* fastpath */ + if (fifo_pop(&ca->free[RESERVE_NONE], r) || + fifo_pop(&ca->free[reserve], r)) + goto out; + + if (!wait) { + trace_bcache_alloc_fail(ca, reserve); + return -1; + } + + do { + prepare_to_wait(&ca->set->bucket_wait, &w, + TASK_UNINTERRUPTIBLE); + + mutex_unlock(&ca->set->bucket_lock); + schedule(); + mutex_lock(&ca->set->bucket_lock); + } while (!fifo_pop(&ca->free[RESERVE_NONE], r) && + !fifo_pop(&ca->free[reserve], r)); + + finish_wait(&ca->set->bucket_wait, &w); +out: + if (ca->alloc_thread) + wake_up_process(ca->alloc_thread); + + trace_bcache_alloc(ca, reserve); + + if (expensive_debug_checks(ca->set)) { + size_t iter; + long i; + unsigned int j; + + for (iter = 0; iter < prio_buckets(ca) * 2; iter++) + BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); + + for (j = 0; j < RESERVE_NR; j++) + fifo_for_each(i, &ca->free[j], iter) + BUG_ON(i == r); + fifo_for_each(i, &ca->free_inc, iter) + BUG_ON(i == r); + } + + b = ca->buckets + r; + + BUG_ON(atomic_read(&b->pin) != 1); + + SET_GC_SECTORS_USED(b, ca->sb.bucket_size); + + if (reserve <= RESERVE_PRIO) { + SET_GC_MARK(b, GC_MARK_METADATA); + SET_GC_MOVE(b, 0); + b->prio = BTREE_PRIO; + } else { + SET_GC_MARK(b, GC_MARK_RECLAIMABLE); + SET_GC_MOVE(b, 0); + b->prio = INITIAL_PRIO; + } + + if (ca->set->avail_nbuckets > 0) { + ca->set->avail_nbuckets--; + bch_update_bucket_in_use(ca->set, &ca->set->gc_stats); + } + + return r; +} + +void __bch_bucket_free(struct cache *ca, struct bucket *b) +{ + SET_GC_MARK(b, 0); + SET_GC_SECTORS_USED(b, 0); + + if (ca->set->avail_nbuckets < ca->set->nbuckets) { + ca->set->avail_nbuckets++; + bch_update_bucket_in_use(ca->set, &ca->set->gc_stats); + } +} + +void bch_bucket_free(struct cache_set *c, struct bkey *k) +{ + unsigned int i; + + for (i = 0; i < KEY_PTRS(k); i++) + __bch_bucket_free(PTR_CACHE(c, k, i), + PTR_BUCKET(c, k, i)); +} + +int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve, + struct bkey *k, int n, bool wait) +{ + int i; + + /* No allocation if CACHE_SET_IO_DISABLE bit is set */ + if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) + return -1; + + lockdep_assert_held(&c->bucket_lock); + BUG_ON(!n || n > c->caches_loaded || n > 8); + + bkey_init(k); + + /* sort by free space/prio of oldest data in caches */ + + for (i = 0; i < n; i++) { + struct cache *ca = c->cache_by_alloc[i]; + long b = bch_bucket_alloc(ca, reserve, wait); + + if (b == -1) + goto err; + + k->ptr[i] = MAKE_PTR(ca->buckets[b].gen, + bucket_to_sector(c, b), + ca->sb.nr_this_dev); + + SET_KEY_PTRS(k, i + 1); + } + + return 0; +err: + bch_bucket_free(c, k); + bkey_put(c, k); + return -1; +} + +int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve, + struct bkey *k, int n, bool wait) +{ + int ret; + + mutex_lock(&c->bucket_lock); + ret = __bch_bucket_alloc_set(c, reserve, k, n, wait); + mutex_unlock(&c->bucket_lock); + return ret; +} + +/* Sector allocator */ + +struct open_bucket { + struct list_head list; + unsigned int last_write_point; + unsigned int sectors_free; + BKEY_PADDED(key); +}; + +/* + * We keep multiple buckets open for writes, and try to segregate different + * write streams for better cache utilization: first we try to segregate flash + * only volume write streams from cached devices, secondly we look for a bucket + * where the last write to it was sequential with the current write, and + * failing that we look for a bucket that was last used by the same task. + * + * The ideas is if you've got multiple tasks pulling data into the cache at the + * same time, you'll get better cache utilization if you try to segregate their + * data and preserve locality. + * + * For example, dirty sectors of flash only volume is not reclaimable, if their + * dirty sectors mixed with dirty sectors of cached device, such buckets will + * be marked as dirty and won't be reclaimed, though the dirty data of cached + * device have been written back to backend device. + * + * And say you've starting Firefox at the same time you're copying a + * bunch of files. Firefox will likely end up being fairly hot and stay in the + * cache awhile, but the data you copied might not be; if you wrote all that + * data to the same buckets it'd get invalidated at the same time. + * + * Both of those tasks will be doing fairly random IO so we can't rely on + * detecting sequential IO to segregate their data, but going off of the task + * should be a sane heuristic. + */ +static struct open_bucket *pick_data_bucket(struct cache_set *c, + const struct bkey *search, + unsigned int write_point, + struct bkey *alloc) +{ + struct open_bucket *ret, *ret_task = NULL; + + list_for_each_entry_reverse(ret, &c->data_buckets, list) + if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) != + UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)])) + continue; + else if (!bkey_cmp(&ret->key, search)) + goto found; + else if (ret->last_write_point == write_point) + ret_task = ret; + + ret = ret_task ?: list_first_entry(&c->data_buckets, + struct open_bucket, list); +found: + if (!ret->sectors_free && KEY_PTRS(alloc)) { + ret->sectors_free = c->sb.bucket_size; + bkey_copy(&ret->key, alloc); + bkey_init(alloc); + } + + if (!ret->sectors_free) + ret = NULL; + + return ret; +} + +/* + * Allocates some space in the cache to write to, and k to point to the newly + * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the + * end of the newly allocated space). + * + * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many + * sectors were actually allocated. + * + * If s->writeback is true, will not fail. + */ +bool bch_alloc_sectors(struct cache_set *c, + struct bkey *k, + unsigned int sectors, + unsigned int write_point, + unsigned int write_prio, + bool wait) +{ + struct open_bucket *b; + BKEY_PADDED(key) alloc; + unsigned int i; + + /* + * We might have to allocate a new bucket, which we can't do with a + * spinlock held. So if we have to allocate, we drop the lock, allocate + * and then retry. KEY_PTRS() indicates whether alloc points to + * allocated bucket(s). + */ + + bkey_init(&alloc.key); + spin_lock(&c->data_bucket_lock); + + while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) { + unsigned int watermark = write_prio + ? RESERVE_MOVINGGC + : RESERVE_NONE; + + spin_unlock(&c->data_bucket_lock); + + if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait)) + return false; + + spin_lock(&c->data_bucket_lock); + } + + /* + * If we had to allocate, we might race and not need to allocate the + * second time we call pick_data_bucket(). If we allocated a bucket but + * didn't use it, drop the refcount bch_bucket_alloc_set() took: + */ + if (KEY_PTRS(&alloc.key)) + bkey_put(c, &alloc.key); + + for (i = 0; i < KEY_PTRS(&b->key); i++) + EBUG_ON(ptr_stale(c, &b->key, i)); + + /* Set up the pointer to the space we're allocating: */ + + for (i = 0; i < KEY_PTRS(&b->key); i++) + k->ptr[i] = b->key.ptr[i]; + + sectors = min(sectors, b->sectors_free); + + SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); + SET_KEY_SIZE(k, sectors); + SET_KEY_PTRS(k, KEY_PTRS(&b->key)); + + /* + * Move b to the end of the lru, and keep track of what this bucket was + * last used for: + */ + list_move_tail(&b->list, &c->data_buckets); + bkey_copy_key(&b->key, k); + b->last_write_point = write_point; + + b->sectors_free -= sectors; + + for (i = 0; i < KEY_PTRS(&b->key); i++) { + SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); + + atomic_long_add(sectors, + &PTR_CACHE(c, &b->key, i)->sectors_written); + } + + if (b->sectors_free < c->sb.block_size) + b->sectors_free = 0; + + /* + * k takes refcounts on the buckets it points to until it's inserted + * into the btree, but if we're done with this bucket we just transfer + * get_data_bucket()'s refcount. + */ + if (b->sectors_free) + for (i = 0; i < KEY_PTRS(&b->key); i++) + atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); + + spin_unlock(&c->data_bucket_lock); + return true; +} + +/* Init */ + +void bch_open_buckets_free(struct cache_set *c) +{ + struct open_bucket *b; + + while (!list_empty(&c->data_buckets)) { + b = list_first_entry(&c->data_buckets, + struct open_bucket, list); + list_del(&b->list); + kfree(b); + } +} + +int bch_open_buckets_alloc(struct cache_set *c) +{ + int i; + + spin_lock_init(&c->data_bucket_lock); + + for (i = 0; i < MAX_OPEN_BUCKETS; i++) { + struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); + + if (!b) + return -ENOMEM; + + list_add(&b->list, &c->data_buckets); + } + + return 0; +} + +int bch_cache_allocator_start(struct cache *ca) +{ + struct task_struct *k = kthread_run(bch_allocator_thread, + ca, "bcache_allocator"); + if (IS_ERR(k)) + return PTR_ERR(k); + + ca->alloc_thread = k; + return 0; +} |