summaryrefslogtreecommitdiffstats
path: root/drivers/scsi/aic94xx/aic94xx_hwi.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
commit76cb841cb886eef6b3bee341a2266c76578724ad (patch)
treef5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /drivers/scsi/aic94xx/aic94xx_hwi.c
parentInitial commit. (diff)
downloadlinux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz
linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip
Adding upstream version 4.19.249.upstream/4.19.249
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/scsi/aic94xx/aic94xx_hwi.c')
-rw-r--r--drivers/scsi/aic94xx/aic94xx_hwi.c1391
1 files changed, 1391 insertions, 0 deletions
diff --git a/drivers/scsi/aic94xx/aic94xx_hwi.c b/drivers/scsi/aic94xx/aic94xx_hwi.c
new file mode 100644
index 000000000..3b8ad55e5
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_hwi.c
@@ -0,0 +1,1391 @@
+/*
+ * Aic94xx SAS/SATA driver hardware interface.
+ *
+ * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
+ * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
+ *
+ * This file is licensed under GPLv2.
+ *
+ * This file is part of the aic94xx driver.
+ *
+ * The aic94xx driver is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; version 2 of the
+ * License.
+ *
+ * The aic94xx driver is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with the aic94xx driver; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ */
+
+#include <linux/pci.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/module.h>
+#include <linux/firmware.h>
+
+#include "aic94xx.h"
+#include "aic94xx_reg.h"
+#include "aic94xx_hwi.h"
+#include "aic94xx_seq.h"
+#include "aic94xx_dump.h"
+
+u32 MBAR0_SWB_SIZE;
+
+/* ---------- Initialization ---------- */
+
+static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
+{
+ /* adapter came with a sas address */
+ if (asd_ha->hw_prof.sas_addr[0])
+ return 0;
+
+ return sas_request_addr(asd_ha->sas_ha.core.shost,
+ asd_ha->hw_prof.sas_addr);
+}
+
+static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
+{
+ int i;
+
+ for (i = 0; i < ASD_MAX_PHYS; i++) {
+ if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
+ continue;
+ /* Set a phy's address only if it has none.
+ */
+ ASD_DPRINTK("setting phy%d addr to %llx\n", i,
+ SAS_ADDR(asd_ha->hw_prof.sas_addr));
+ memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
+ asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
+ }
+}
+
+/* ---------- PHY initialization ---------- */
+
+static void asd_init_phy_identify(struct asd_phy *phy)
+{
+ phy->identify_frame = phy->id_frm_tok->vaddr;
+
+ memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
+
+ phy->identify_frame->dev_type = SAS_END_DEVICE;
+ if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
+ phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
+ if (phy->sas_phy.role & PHY_ROLE_TARGET)
+ phy->identify_frame->target_bits = phy->sas_phy.tproto;
+ memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
+ SAS_ADDR_SIZE);
+ phy->identify_frame->phy_id = phy->sas_phy.id;
+}
+
+static int asd_init_phy(struct asd_phy *phy)
+{
+ struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
+ struct asd_sas_phy *sas_phy = &phy->sas_phy;
+
+ sas_phy->enabled = 1;
+ sas_phy->class = SAS;
+ sas_phy->iproto = SAS_PROTOCOL_ALL;
+ sas_phy->tproto = 0;
+ sas_phy->type = PHY_TYPE_PHYSICAL;
+ sas_phy->role = PHY_ROLE_INITIATOR;
+ sas_phy->oob_mode = OOB_NOT_CONNECTED;
+ sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
+
+ phy->id_frm_tok = asd_alloc_coherent(asd_ha,
+ sizeof(*phy->identify_frame),
+ GFP_KERNEL);
+ if (!phy->id_frm_tok) {
+ asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
+ return -ENOMEM;
+ } else
+ asd_init_phy_identify(phy);
+
+ memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
+
+ return 0;
+}
+
+static void asd_init_ports(struct asd_ha_struct *asd_ha)
+{
+ int i;
+
+ spin_lock_init(&asd_ha->asd_ports_lock);
+ for (i = 0; i < ASD_MAX_PHYS; i++) {
+ struct asd_port *asd_port = &asd_ha->asd_ports[i];
+
+ memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
+ memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
+ asd_port->phy_mask = 0;
+ asd_port->num_phys = 0;
+ }
+}
+
+static int asd_init_phys(struct asd_ha_struct *asd_ha)
+{
+ u8 i;
+ u8 phy_mask = asd_ha->hw_prof.enabled_phys;
+
+ for (i = 0; i < ASD_MAX_PHYS; i++) {
+ struct asd_phy *phy = &asd_ha->phys[i];
+
+ phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
+ phy->asd_port = NULL;
+
+ phy->sas_phy.enabled = 0;
+ phy->sas_phy.id = i;
+ phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
+ phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
+ phy->sas_phy.ha = &asd_ha->sas_ha;
+ phy->sas_phy.lldd_phy = phy;
+ }
+
+ /* Now enable and initialize only the enabled phys. */
+ for_each_phy(phy_mask, phy_mask, i) {
+ int err = asd_init_phy(&asd_ha->phys[i]);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+/* ---------- Sliding windows ---------- */
+
+static int asd_init_sw(struct asd_ha_struct *asd_ha)
+{
+ struct pci_dev *pcidev = asd_ha->pcidev;
+ int err;
+ u32 v;
+
+ /* Unlock MBARs */
+ err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
+ if (err) {
+ asd_printk("couldn't access conf. space of %s\n",
+ pci_name(pcidev));
+ goto Err;
+ }
+ if (v)
+ err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
+ if (err) {
+ asd_printk("couldn't write to MBAR_KEY of %s\n",
+ pci_name(pcidev));
+ goto Err;
+ }
+
+ /* Set sliding windows A, B and C to point to proper internal
+ * memory regions.
+ */
+ pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
+ pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
+ REG_BASE_ADDR_CSEQCIO);
+ pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
+ asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
+ asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
+ asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
+ MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
+ if (!asd_ha->iospace) {
+ /* MBAR1 will point to OCM (On Chip Memory) */
+ pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
+ asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
+ }
+ spin_lock_init(&asd_ha->iolock);
+Err:
+ return err;
+}
+
+/* ---------- SCB initialization ---------- */
+
+/**
+ * asd_init_scbs - manually allocate the first SCB.
+ * @asd_ha: pointer to host adapter structure
+ *
+ * This allocates the very first SCB which would be sent to the
+ * sequencer for execution. Its bus address is written to
+ * CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of
+ * the _next_ scb to be DMA-ed to the host adapter is read from the last
+ * SCB DMA-ed to the host adapter, we have to always stay one step
+ * ahead of the sequencer and keep one SCB already allocated.
+ */
+static int asd_init_scbs(struct asd_ha_struct *asd_ha)
+{
+ struct asd_seq_data *seq = &asd_ha->seq;
+ int bitmap_bytes;
+
+ /* allocate the index array and bitmap */
+ asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
+ asd_ha->seq.tc_index_array = kcalloc(asd_ha->seq.tc_index_bitmap_bits,
+ sizeof(void *),
+ GFP_KERNEL);
+ if (!asd_ha->seq.tc_index_array)
+ return -ENOMEM;
+
+ bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
+ bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
+ asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
+ if (!asd_ha->seq.tc_index_bitmap) {
+ kfree(asd_ha->seq.tc_index_array);
+ asd_ha->seq.tc_index_array = NULL;
+ return -ENOMEM;
+ }
+
+ spin_lock_init(&seq->tc_index_lock);
+
+ seq->next_scb.size = sizeof(struct scb);
+ seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
+ &seq->next_scb.dma_handle);
+ if (!seq->next_scb.vaddr) {
+ kfree(asd_ha->seq.tc_index_bitmap);
+ kfree(asd_ha->seq.tc_index_array);
+ asd_ha->seq.tc_index_bitmap = NULL;
+ asd_ha->seq.tc_index_array = NULL;
+ return -ENOMEM;
+ }
+
+ seq->pending = 0;
+ spin_lock_init(&seq->pend_q_lock);
+ INIT_LIST_HEAD(&seq->pend_q);
+
+ return 0;
+}
+
+static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
+{
+ asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
+ asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
+ ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
+ asd_ha->hw_prof.max_scbs,
+ asd_ha->hw_prof.max_ddbs);
+}
+
+/* ---------- Done List initialization ---------- */
+
+static void asd_dl_tasklet_handler(unsigned long);
+
+static int asd_init_dl(struct asd_ha_struct *asd_ha)
+{
+ asd_ha->seq.actual_dl
+ = asd_alloc_coherent(asd_ha,
+ ASD_DL_SIZE * sizeof(struct done_list_struct),
+ GFP_KERNEL);
+ if (!asd_ha->seq.actual_dl)
+ return -ENOMEM;
+ asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
+ asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
+ asd_ha->seq.dl_next = 0;
+ tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
+ (unsigned long) asd_ha);
+
+ return 0;
+}
+
+/* ---------- EDB and ESCB init ---------- */
+
+static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
+{
+ struct asd_seq_data *seq = &asd_ha->seq;
+ int i;
+
+ seq->edb_arr = kmalloc_array(seq->num_edbs, sizeof(*seq->edb_arr),
+ gfp_flags);
+ if (!seq->edb_arr)
+ return -ENOMEM;
+
+ for (i = 0; i < seq->num_edbs; i++) {
+ seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
+ gfp_flags);
+ if (!seq->edb_arr[i])
+ goto Err_unroll;
+ memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
+ }
+
+ ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
+
+ return 0;
+
+Err_unroll:
+ for (i-- ; i >= 0; i--)
+ asd_free_coherent(asd_ha, seq->edb_arr[i]);
+ kfree(seq->edb_arr);
+ seq->edb_arr = NULL;
+
+ return -ENOMEM;
+}
+
+static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
+ gfp_t gfp_flags)
+{
+ struct asd_seq_data *seq = &asd_ha->seq;
+ struct asd_ascb *escb;
+ int i, escbs;
+
+ seq->escb_arr = kmalloc_array(seq->num_escbs, sizeof(*seq->escb_arr),
+ gfp_flags);
+ if (!seq->escb_arr)
+ return -ENOMEM;
+
+ escbs = seq->num_escbs;
+ escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
+ if (!escb) {
+ asd_printk("couldn't allocate list of escbs\n");
+ goto Err;
+ }
+ seq->num_escbs -= escbs; /* subtract what was not allocated */
+ ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
+
+ for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
+ struct asd_ascb,
+ list)) {
+ seq->escb_arr[i] = escb;
+ escb->scb->header.opcode = EMPTY_SCB;
+ }
+
+ return 0;
+Err:
+ kfree(seq->escb_arr);
+ seq->escb_arr = NULL;
+ return -ENOMEM;
+
+}
+
+static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
+{
+ struct asd_seq_data *seq = &asd_ha->seq;
+ int i, k, z = 0;
+
+ for (i = 0; i < seq->num_escbs; i++) {
+ struct asd_ascb *ascb = seq->escb_arr[i];
+ struct empty_scb *escb = &ascb->scb->escb;
+
+ ascb->edb_index = z;
+
+ escb->num_valid = ASD_EDBS_PER_SCB;
+
+ for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
+ struct sg_el *eb = &escb->eb[k];
+ struct asd_dma_tok *edb = seq->edb_arr[z++];
+
+ memset(eb, 0, sizeof(*eb));
+ eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
+ eb->size = cpu_to_le32(((u32) edb->size));
+ }
+ }
+}
+
+/**
+ * asd_init_escbs -- allocate and initialize empty scbs
+ * @asd_ha: pointer to host adapter structure
+ *
+ * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
+ * They transport sense data, etc.
+ */
+static int asd_init_escbs(struct asd_ha_struct *asd_ha)
+{
+ struct asd_seq_data *seq = &asd_ha->seq;
+ int err = 0;
+
+ /* Allocate two empty data buffers (edb) per sequencer. */
+ int edbs = 2*(1+asd_ha->hw_prof.num_phys);
+
+ seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
+ seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
+
+ err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
+ if (err) {
+ asd_printk("couldn't allocate edbs\n");
+ return err;
+ }
+
+ err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
+ if (err) {
+ asd_printk("couldn't allocate escbs\n");
+ return err;
+ }
+
+ asd_assign_edbs2escbs(asd_ha);
+ /* In order to insure that normal SCBs do not overfill sequencer
+ * memory and leave no space for escbs (halting condition),
+ * we increment pending here by the number of escbs. However,
+ * escbs are never pending.
+ */
+ seq->pending = seq->num_escbs;
+ seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
+
+ return 0;
+}
+
+/* ---------- HW initialization ---------- */
+
+/**
+ * asd_chip_hardrst -- hard reset the chip
+ * @asd_ha: pointer to host adapter structure
+ *
+ * This takes 16 cycles and is synchronous to CFCLK, which runs
+ * at 200 MHz, so this should take at most 80 nanoseconds.
+ */
+int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
+{
+ int i;
+ int count = 100;
+ u32 reg;
+
+ for (i = 0 ; i < 4 ; i++) {
+ asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
+ }
+
+ do {
+ udelay(1);
+ reg = asd_read_reg_dword(asd_ha, CHIMINT);
+ if (reg & HARDRSTDET) {
+ asd_write_reg_dword(asd_ha, CHIMINT,
+ HARDRSTDET|PORRSTDET);
+ return 0;
+ }
+ } while (--count > 0);
+
+ return -ENODEV;
+}
+
+/**
+ * asd_init_chip -- initialize the chip
+ * @asd_ha: pointer to host adapter structure
+ *
+ * Hard resets the chip, disables HA interrupts, downloads the sequnecer
+ * microcode and starts the sequencers. The caller has to explicitly
+ * enable HA interrupts with asd_enable_ints(asd_ha).
+ */
+static int asd_init_chip(struct asd_ha_struct *asd_ha)
+{
+ int err;
+
+ err = asd_chip_hardrst(asd_ha);
+ if (err) {
+ asd_printk("couldn't hard reset %s\n",
+ pci_name(asd_ha->pcidev));
+ goto out;
+ }
+
+ asd_disable_ints(asd_ha);
+
+ err = asd_init_seqs(asd_ha);
+ if (err) {
+ asd_printk("couldn't init seqs for %s\n",
+ pci_name(asd_ha->pcidev));
+ goto out;
+ }
+
+ err = asd_start_seqs(asd_ha);
+ if (err) {
+ asd_printk("couldn't start seqs for %s\n",
+ pci_name(asd_ha->pcidev));
+ goto out;
+ }
+out:
+ return err;
+}
+
+#define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
+
+static int max_devs = 0;
+module_param_named(max_devs, max_devs, int, S_IRUGO);
+MODULE_PARM_DESC(max_devs, "\n"
+ "\tMaximum number of SAS devices to support (not LUs).\n"
+ "\tDefault: 2176, Maximum: 65663.\n");
+
+static int max_cmnds = 0;
+module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
+MODULE_PARM_DESC(max_cmnds, "\n"
+ "\tMaximum number of commands queuable.\n"
+ "\tDefault: 512, Maximum: 66047.\n");
+
+static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
+{
+ unsigned long dma_addr = OCM_BASE_ADDR;
+ u32 d;
+
+ dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
+ asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
+ d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
+ d |= 4;
+ asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
+ asd_ha->hw_prof.max_ddbs += MAX_DEVS;
+}
+
+static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
+{
+ dma_addr_t dma_handle;
+ unsigned long dma_addr;
+ u32 d;
+ int size;
+
+ asd_extend_devctx_ocm(asd_ha);
+
+ asd_ha->hw_prof.ddb_ext = NULL;
+ if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
+ max_devs = asd_ha->hw_prof.max_ddbs;
+ return 0;
+ }
+
+ size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
+
+ asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
+ if (!asd_ha->hw_prof.ddb_ext) {
+ asd_printk("couldn't allocate memory for %d devices\n",
+ max_devs);
+ max_devs = asd_ha->hw_prof.max_ddbs;
+ return -ENOMEM;
+ }
+ dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
+ dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
+ dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
+ dma_handle = (dma_addr_t) dma_addr;
+ asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
+ d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
+ d &= ~4;
+ asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
+
+ asd_ha->hw_prof.max_ddbs = max_devs;
+
+ return 0;
+}
+
+static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
+{
+ dma_addr_t dma_handle;
+ unsigned long dma_addr;
+ u32 d;
+ int size;
+
+ asd_ha->hw_prof.scb_ext = NULL;
+ if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
+ max_cmnds = asd_ha->hw_prof.max_scbs;
+ return 0;
+ }
+
+ size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
+
+ asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
+ if (!asd_ha->hw_prof.scb_ext) {
+ asd_printk("couldn't allocate memory for %d commands\n",
+ max_cmnds);
+ max_cmnds = asd_ha->hw_prof.max_scbs;
+ return -ENOMEM;
+ }
+ dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
+ dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
+ dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
+ dma_handle = (dma_addr_t) dma_addr;
+ asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
+ d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
+ d &= ~1;
+ asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
+
+ asd_ha->hw_prof.max_scbs = max_cmnds;
+
+ return 0;
+}
+
+/**
+ * asd_init_ctxmem -- initialize context memory
+ * asd_ha: pointer to host adapter structure
+ *
+ * This function sets the maximum number of SCBs and
+ * DDBs which can be used by the sequencer. This is normally
+ * 512 and 128 respectively. If support for more SCBs or more DDBs
+ * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
+ * initialized here to extend context memory to point to host memory,
+ * thus allowing unlimited support for SCBs and DDBs -- only limited
+ * by host memory.
+ */
+static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
+{
+ int bitmap_bytes;
+
+ asd_get_max_scb_ddb(asd_ha);
+ asd_extend_devctx(asd_ha);
+ asd_extend_cmdctx(asd_ha);
+
+ /* The kernel wants bitmaps to be unsigned long sized. */
+ bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
+ bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
+ asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
+ if (!asd_ha->hw_prof.ddb_bitmap)
+ return -ENOMEM;
+ spin_lock_init(&asd_ha->hw_prof.ddb_lock);
+
+ return 0;
+}
+
+int asd_init_hw(struct asd_ha_struct *asd_ha)
+{
+ int err;
+ u32 v;
+
+ err = asd_init_sw(asd_ha);
+ if (err)
+ return err;
+
+ err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
+ if (err) {
+ asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
+ pci_name(asd_ha->pcidev));
+ return err;
+ }
+ err = pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
+ v | SC_TMR_DIS);
+ if (err) {
+ asd_printk("couldn't disable split completion timer of %s\n",
+ pci_name(asd_ha->pcidev));
+ return err;
+ }
+
+ err = asd_read_ocm(asd_ha);
+ if (err) {
+ asd_printk("couldn't read ocm(%d)\n", err);
+ /* While suspicios, it is not an error that we
+ * couldn't read the OCM. */
+ }
+
+ err = asd_read_flash(asd_ha);
+ if (err) {
+ asd_printk("couldn't read flash(%d)\n", err);
+ /* While suspicios, it is not an error that we
+ * couldn't read FLASH memory.
+ */
+ }
+
+ asd_init_ctxmem(asd_ha);
+
+ if (asd_get_user_sas_addr(asd_ha)) {
+ asd_printk("No SAS Address provided for %s\n",
+ pci_name(asd_ha->pcidev));
+ err = -ENODEV;
+ goto Out;
+ }
+
+ asd_propagate_sas_addr(asd_ha);
+
+ err = asd_init_phys(asd_ha);
+ if (err) {
+ asd_printk("couldn't initialize phys for %s\n",
+ pci_name(asd_ha->pcidev));
+ goto Out;
+ }
+
+ asd_init_ports(asd_ha);
+
+ err = asd_init_scbs(asd_ha);
+ if (err) {
+ asd_printk("couldn't initialize scbs for %s\n",
+ pci_name(asd_ha->pcidev));
+ goto Out;
+ }
+
+ err = asd_init_dl(asd_ha);
+ if (err) {
+ asd_printk("couldn't initialize the done list:%d\n",
+ err);
+ goto Out;
+ }
+
+ err = asd_init_escbs(asd_ha);
+ if (err) {
+ asd_printk("couldn't initialize escbs\n");
+ goto Out;
+ }
+
+ err = asd_init_chip(asd_ha);
+ if (err) {
+ asd_printk("couldn't init the chip\n");
+ goto Out;
+ }
+Out:
+ return err;
+}
+
+/* ---------- Chip reset ---------- */
+
+/**
+ * asd_chip_reset -- reset the host adapter, etc
+ * @asd_ha: pointer to host adapter structure of interest
+ *
+ * Called from the ISR. Hard reset the chip. Let everything
+ * timeout. This should be no different than hot-unplugging the
+ * host adapter. Once everything times out we'll init the chip with
+ * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
+ * XXX finish.
+ */
+static void asd_chip_reset(struct asd_ha_struct *asd_ha)
+{
+ ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
+ asd_chip_hardrst(asd_ha);
+}
+
+/* ---------- Done List Routines ---------- */
+
+static void asd_dl_tasklet_handler(unsigned long data)
+{
+ struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
+ struct asd_seq_data *seq = &asd_ha->seq;
+ unsigned long flags;
+
+ while (1) {
+ struct done_list_struct *dl = &seq->dl[seq->dl_next];
+ struct asd_ascb *ascb;
+
+ if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
+ break;
+
+ /* find the aSCB */
+ spin_lock_irqsave(&seq->tc_index_lock, flags);
+ ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
+ spin_unlock_irqrestore(&seq->tc_index_lock, flags);
+ if (unlikely(!ascb)) {
+ ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
+ goto next_1;
+ } else if (ascb->scb->header.opcode == EMPTY_SCB) {
+ goto out;
+ } else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
+ goto next_1;
+ }
+ spin_lock_irqsave(&seq->pend_q_lock, flags);
+ list_del_init(&ascb->list);
+ seq->pending--;
+ spin_unlock_irqrestore(&seq->pend_q_lock, flags);
+ out:
+ ascb->tasklet_complete(ascb, dl);
+
+ next_1:
+ seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
+ if (!seq->dl_next)
+ seq->dl_toggle ^= DL_TOGGLE_MASK;
+ }
+}
+
+/* ---------- Interrupt Service Routines ---------- */
+
+/**
+ * asd_process_donelist_isr -- schedule processing of done list entries
+ * @asd_ha: pointer to host adapter structure
+ */
+static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
+{
+ tasklet_schedule(&asd_ha->seq.dl_tasklet);
+}
+
+/**
+ * asd_com_sas_isr -- process device communication interrupt (COMINT)
+ * @asd_ha: pointer to host adapter structure
+ */
+static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
+{
+ u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
+
+ /* clear COMSTAT int */
+ asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
+
+ if (comstat & CSBUFPERR) {
+ asd_printk("%s: command/status buffer dma parity error\n",
+ pci_name(asd_ha->pcidev));
+ } else if (comstat & CSERR) {
+ int i;
+ u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
+ dmaerr &= 0xFF;
+ asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
+ "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
+ pci_name(asd_ha->pcidev),
+ dmaerr,
+ asd_read_reg_dword(asd_ha, CSDMAADR),
+ asd_read_reg_dword(asd_ha, CSDMAADR+4));
+ asd_printk("CSBUFFER:\n");
+ for (i = 0; i < 8; i++) {
+ asd_printk("%08x %08x %08x %08x\n",
+ asd_read_reg_dword(asd_ha, CSBUFFER),
+ asd_read_reg_dword(asd_ha, CSBUFFER+4),
+ asd_read_reg_dword(asd_ha, CSBUFFER+8),
+ asd_read_reg_dword(asd_ha, CSBUFFER+12));
+ }
+ asd_dump_seq_state(asd_ha, 0);
+ } else if (comstat & OVLYERR) {
+ u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
+ dmaerr = (dmaerr >> 8) & 0xFF;
+ asd_printk("%s: overlay dma error:0x%x\n",
+ pci_name(asd_ha->pcidev),
+ dmaerr);
+ }
+ asd_chip_reset(asd_ha);
+}
+
+static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
+{
+ static const char *halt_code[256] = {
+ "UNEXPECTED_INTERRUPT0",
+ "UNEXPECTED_INTERRUPT1",
+ "UNEXPECTED_INTERRUPT2",
+ "UNEXPECTED_INTERRUPT3",
+ "UNEXPECTED_INTERRUPT4",
+ "UNEXPECTED_INTERRUPT5",
+ "UNEXPECTED_INTERRUPT6",
+ "UNEXPECTED_INTERRUPT7",
+ "UNEXPECTED_INTERRUPT8",
+ "UNEXPECTED_INTERRUPT9",
+ "UNEXPECTED_INTERRUPT10",
+ [11 ... 19] = "unknown[11,19]",
+ "NO_FREE_SCB_AVAILABLE",
+ "INVALID_SCB_OPCODE",
+ "INVALID_MBX_OPCODE",
+ "INVALID_ATA_STATE",
+ "ATA_QUEUE_FULL",
+ "ATA_TAG_TABLE_FAULT",
+ "ATA_TAG_MASK_FAULT",
+ "BAD_LINK_QUEUE_STATE",
+ "DMA2CHIM_QUEUE_ERROR",
+ "EMPTY_SCB_LIST_FULL",
+ "unknown[30]",
+ "IN_USE_SCB_ON_FREE_LIST",
+ "BAD_OPEN_WAIT_STATE",
+ "INVALID_STP_AFFILIATION",
+ "unknown[34]",
+ "EXEC_QUEUE_ERROR",
+ "TOO_MANY_EMPTIES_NEEDED",
+ "EMPTY_REQ_QUEUE_ERROR",
+ "Q_MONIRTT_MGMT_ERROR",
+ "TARGET_MODE_FLOW_ERROR",
+ "DEVICE_QUEUE_NOT_FOUND",
+ "START_IRTT_TIMER_ERROR",
+ "ABORT_TASK_ILLEGAL_REQ",
+ [43 ... 255] = "unknown[43,255]"
+ };
+
+ if (dchstatus & CSEQINT) {
+ u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
+
+ if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
+ asd_printk("%s: CSEQ arp2int:0x%x\n",
+ pci_name(asd_ha->pcidev),
+ arp2int);
+ } else if (arp2int & ARP2HALTC)
+ asd_printk("%s: CSEQ halted: %s\n",
+ pci_name(asd_ha->pcidev),
+ halt_code[(arp2int>>16)&0xFF]);
+ else
+ asd_printk("%s: CARP2INT:0x%x\n",
+ pci_name(asd_ha->pcidev),
+ arp2int);
+ }
+ if (dchstatus & LSEQINT_MASK) {
+ int lseq;
+ u8 lseq_mask = dchstatus & LSEQINT_MASK;
+
+ for_each_sequencer(lseq_mask, lseq_mask, lseq) {
+ u32 arp2int = asd_read_reg_dword(asd_ha,
+ LmARP2INT(lseq));
+ if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
+ | ARP2CIOPERR)) {
+ asd_printk("%s: LSEQ%d arp2int:0x%x\n",
+ pci_name(asd_ha->pcidev),
+ lseq, arp2int);
+ /* XXX we should only do lseq reset */
+ } else if (arp2int & ARP2HALTC)
+ asd_printk("%s: LSEQ%d halted: %s\n",
+ pci_name(asd_ha->pcidev),
+ lseq,halt_code[(arp2int>>16)&0xFF]);
+ else
+ asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
+ pci_name(asd_ha->pcidev), lseq,
+ arp2int);
+ }
+ }
+ asd_chip_reset(asd_ha);
+}
+
+/**
+ * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
+ * @asd_ha: pointer to host adapter structure
+ */
+static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
+{
+ u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
+
+ if (dchstatus & CFIFTOERR) {
+ asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
+ asd_chip_reset(asd_ha);
+ } else
+ asd_arp2_err(asd_ha, dchstatus);
+}
+
+/**
+ * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
+ * @asd_ha: pointer to host adapter structure
+ */
+static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
+{
+ u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
+
+ if (!(stat0r & ASIERR)) {
+ asd_printk("hmm, EXSI interrupted but no error?\n");
+ return;
+ }
+
+ if (stat0r & ASIFMTERR) {
+ asd_printk("ASI SEEPROM format error for %s\n",
+ pci_name(asd_ha->pcidev));
+ } else if (stat0r & ASISEECHKERR) {
+ u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
+ asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
+ stat1r & CHECKSUM_MASK,
+ pci_name(asd_ha->pcidev));
+ } else {
+ u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
+
+ if (!(statr & CPI2ASIMSTERR_MASK)) {
+ ASD_DPRINTK("hmm, ASIERR?\n");
+ return;
+ } else {
+ u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
+ u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
+
+ asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
+ "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
+ "master id: 0x%x, master err: 0x%x\n",
+ pci_name(asd_ha->pcidev),
+ addr, data,
+ (statr & CPI2ASIBYTECNT_MASK) >> 16,
+ (statr & CPI2ASIBYTEEN_MASK) >> 12,
+ (statr & CPI2ASITARGERR_MASK) >> 8,
+ (statr & CPI2ASITARGMID_MASK) >> 4,
+ (statr & CPI2ASIMSTERR_MASK));
+ }
+ }
+ asd_chip_reset(asd_ha);
+}
+
+/**
+ * asd_hst_pcix_isr -- process host interface interrupts
+ * @asd_ha: pointer to host adapter structure
+ *
+ * Asserted on PCIX errors: target abort, etc.
+ */
+static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
+{
+ u16 status;
+ u32 pcix_status;
+ u32 ecc_status;
+
+ pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
+ pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
+ pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
+
+ if (status & PCI_STATUS_DETECTED_PARITY)
+ asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
+ else if (status & PCI_STATUS_REC_MASTER_ABORT)
+ asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
+ else if (status & PCI_STATUS_REC_TARGET_ABORT)
+ asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
+ else if (status & PCI_STATUS_PARITY)
+ asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
+ else if (pcix_status & RCV_SCE) {
+ asd_printk("received split completion error for %s\n",
+ pci_name(asd_ha->pcidev));
+ pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
+ /* XXX: Abort task? */
+ return;
+ } else if (pcix_status & UNEXP_SC) {
+ asd_printk("unexpected split completion for %s\n",
+ pci_name(asd_ha->pcidev));
+ pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
+ /* ignore */
+ return;
+ } else if (pcix_status & SC_DISCARD)
+ asd_printk("split completion discarded for %s\n",
+ pci_name(asd_ha->pcidev));
+ else if (ecc_status & UNCOR_ECCERR)
+ asd_printk("uncorrectable ECC error for %s\n",
+ pci_name(asd_ha->pcidev));
+ asd_chip_reset(asd_ha);
+}
+
+/**
+ * asd_hw_isr -- host adapter interrupt service routine
+ * @irq: ignored
+ * @dev_id: pointer to host adapter structure
+ *
+ * The ISR processes done list entries and level 3 error handling.
+ */
+irqreturn_t asd_hw_isr(int irq, void *dev_id)
+{
+ struct asd_ha_struct *asd_ha = dev_id;
+ u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
+
+ if (!chimint)
+ return IRQ_NONE;
+
+ asd_write_reg_dword(asd_ha, CHIMINT, chimint);
+ (void) asd_read_reg_dword(asd_ha, CHIMINT);
+
+ if (chimint & DLAVAIL)
+ asd_process_donelist_isr(asd_ha);
+ if (chimint & COMINT)
+ asd_com_sas_isr(asd_ha);
+ if (chimint & DEVINT)
+ asd_dch_sas_isr(asd_ha);
+ if (chimint & INITERR)
+ asd_rbi_exsi_isr(asd_ha);
+ if (chimint & HOSTERR)
+ asd_hst_pcix_isr(asd_ha);
+
+ return IRQ_HANDLED;
+}
+
+/* ---------- SCB handling ---------- */
+
+static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
+ gfp_t gfp_flags)
+{
+ extern struct kmem_cache *asd_ascb_cache;
+ struct asd_seq_data *seq = &asd_ha->seq;
+ struct asd_ascb *ascb;
+ unsigned long flags;
+
+ ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
+
+ if (ascb) {
+ ascb->dma_scb.size = sizeof(struct scb);
+ ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool,
+ gfp_flags,
+ &ascb->dma_scb.dma_handle);
+ if (!ascb->dma_scb.vaddr) {
+ kmem_cache_free(asd_ascb_cache, ascb);
+ return NULL;
+ }
+ memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb));
+ asd_init_ascb(asd_ha, ascb);
+
+ spin_lock_irqsave(&seq->tc_index_lock, flags);
+ ascb->tc_index = asd_tc_index_get(seq, ascb);
+ spin_unlock_irqrestore(&seq->tc_index_lock, flags);
+ if (ascb->tc_index == -1)
+ goto undo;
+
+ ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
+ }
+
+ return ascb;
+undo:
+ dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
+ ascb->dma_scb.dma_handle);
+ kmem_cache_free(asd_ascb_cache, ascb);
+ ASD_DPRINTK("no index for ascb\n");
+ return NULL;
+}
+
+/**
+ * asd_ascb_alloc_list -- allocate a list of aSCBs
+ * @asd_ha: pointer to host adapter structure
+ * @num: pointer to integer number of aSCBs
+ * @gfp_flags: GFP_ flags.
+ *
+ * This is the only function which is used to allocate aSCBs.
+ * It can allocate one or many. If more than one, then they form
+ * a linked list in two ways: by their list field of the ascb struct
+ * and by the next_scb field of the scb_header.
+ *
+ * Returns NULL if no memory was available, else pointer to a list
+ * of ascbs. When this function returns, @num would be the number
+ * of SCBs which were not able to be allocated, 0 if all requested
+ * were able to be allocated.
+ */
+struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
+ *asd_ha, int *num,
+ gfp_t gfp_flags)
+{
+ struct asd_ascb *first = NULL;
+
+ for ( ; *num > 0; --*num) {
+ struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
+
+ if (!ascb)
+ break;
+ else if (!first)
+ first = ascb;
+ else {
+ struct asd_ascb *last = list_entry(first->list.prev,
+ struct asd_ascb,
+ list);
+ list_add_tail(&ascb->list, &first->list);
+ last->scb->header.next_scb =
+ cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
+ }
+ }
+
+ return first;
+}
+
+/**
+ * asd_swap_head_scb -- swap the head scb
+ * @asd_ha: pointer to host adapter structure
+ * @ascb: pointer to the head of an ascb list
+ *
+ * The sequencer knows the DMA address of the next SCB to be DMAed to
+ * the host adapter, from initialization or from the last list DMAed.
+ * seq->next_scb keeps the address of this SCB. The sequencer will
+ * DMA to the host adapter this list of SCBs. But the head (first
+ * element) of this list is not known to the sequencer. Here we swap
+ * the head of the list with the known SCB (memcpy()).
+ * Only one memcpy() is required per list so it is in our interest
+ * to keep the list of SCB as long as possible so that the ratio
+ * of number of memcpy calls to the number of SCB DMA-ed is as small
+ * as possible.
+ *
+ * LOCKING: called with the pending list lock held.
+ */
+static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
+ struct asd_ascb *ascb)
+{
+ struct asd_seq_data *seq = &asd_ha->seq;
+ struct asd_ascb *last = list_entry(ascb->list.prev,
+ struct asd_ascb,
+ list);
+ struct asd_dma_tok t = ascb->dma_scb;
+
+ memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
+ ascb->dma_scb = seq->next_scb;
+ ascb->scb = ascb->dma_scb.vaddr;
+ seq->next_scb = t;
+ last->scb->header.next_scb =
+ cpu_to_le64(((u64)seq->next_scb.dma_handle));
+}
+
+/**
+ * asd_start_timers -- (add and) start timers of SCBs
+ * @list: pointer to struct list_head of the scbs
+ * @to: timeout in jiffies
+ *
+ * If an SCB in the @list has no timer function, assign the default
+ * one, then start the timer of the SCB. This function is
+ * intended to be called from asd_post_ascb_list(), just prior to
+ * posting the SCBs to the sequencer.
+ */
+static void asd_start_scb_timers(struct list_head *list)
+{
+ struct asd_ascb *ascb;
+ list_for_each_entry(ascb, list, list) {
+ if (!ascb->uldd_timer) {
+ ascb->timer.function = asd_ascb_timedout;
+ ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
+ add_timer(&ascb->timer);
+ }
+ }
+}
+
+/**
+ * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
+ * @asd_ha: pointer to a host adapter structure
+ * @ascb: pointer to the first aSCB in the list
+ * @num: number of aSCBs in the list (to be posted)
+ *
+ * See queueing comment in asd_post_escb_list().
+ *
+ * Additional note on queuing: In order to minimize the ratio of memcpy()
+ * to the number of ascbs sent, we try to batch-send as many ascbs as possible
+ * in one go.
+ * Two cases are possible:
+ * A) can_queue >= num,
+ * B) can_queue < num.
+ * Case A: we can send the whole batch at once. Increment "pending"
+ * in the beginning of this function, when it is checked, in order to
+ * eliminate races when this function is called by multiple processes.
+ * Case B: should never happen.
+ */
+int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
+ int num)
+{
+ unsigned long flags;
+ LIST_HEAD(list);
+ int can_queue;
+
+ spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
+ can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
+ if (can_queue >= num)
+ asd_ha->seq.pending += num;
+ else
+ can_queue = 0;
+
+ if (!can_queue) {
+ spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
+ asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
+ return -SAS_QUEUE_FULL;
+ }
+
+ asd_swap_head_scb(asd_ha, ascb);
+
+ __list_add(&list, ascb->list.prev, &ascb->list);
+
+ asd_start_scb_timers(&list);
+
+ asd_ha->seq.scbpro += num;
+ list_splice_init(&list, asd_ha->seq.pend_q.prev);
+ asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
+ spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
+
+ return 0;
+}
+
+/**
+ * asd_post_escb_list -- post a list of 1 or more empty scb
+ * @asd_ha: pointer to a host adapter structure
+ * @ascb: pointer to the first empty SCB in the list
+ * @num: number of aSCBs in the list (to be posted)
+ *
+ * This is essentially the same as asd_post_ascb_list, but we do not
+ * increment pending, add those to the pending list or get indexes.
+ * See asd_init_escbs() and asd_init_post_escbs().
+ *
+ * Since sending a list of ascbs is a superset of sending a single
+ * ascb, this function exists to generalize this. More specifically,
+ * when sending a list of those, we want to do only a _single_
+ * memcpy() at swap head, as opposed to for each ascb sent (in the
+ * case of sending them one by one). That is, we want to minimize the
+ * ratio of memcpy() operations to the number of ascbs sent. The same
+ * logic applies to asd_post_ascb_list().
+ */
+int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
+ int num)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
+ asd_swap_head_scb(asd_ha, ascb);
+ asd_ha->seq.scbpro += num;
+ asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
+ spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
+
+ return 0;
+}
+
+/* ---------- LED ---------- */
+
+/**
+ * asd_turn_led -- turn on/off an LED
+ * @asd_ha: pointer to host adapter structure
+ * @phy_id: the PHY id whose LED we want to manupulate
+ * @op: 1 to turn on, 0 to turn off
+ */
+void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
+{
+ if (phy_id < ASD_MAX_PHYS) {
+ u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
+ if (op)
+ v |= LEDPOL;
+ else
+ v &= ~LEDPOL;
+ asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
+ }
+}
+
+/**
+ * asd_control_led -- enable/disable an LED on the board
+ * @asd_ha: pointer to host adapter structure
+ * @phy_id: integer, the phy id
+ * @op: integer, 1 to enable, 0 to disable the LED
+ *
+ * First we output enable the LED, then we set the source
+ * to be an external module.
+ */
+void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
+{
+ if (phy_id < ASD_MAX_PHYS) {
+ u32 v;
+
+ v = asd_read_reg_dword(asd_ha, GPIOOER);
+ if (op)
+ v |= (1 << phy_id);
+ else
+ v &= ~(1 << phy_id);
+ asd_write_reg_dword(asd_ha, GPIOOER, v);
+
+ v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
+ if (op)
+ v |= (1 << phy_id);
+ else
+ v &= ~(1 << phy_id);
+ asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
+ }
+}
+
+/* ---------- PHY enable ---------- */
+
+static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
+{
+ struct asd_phy *phy = &asd_ha->phys[phy_id];
+
+ asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
+ asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
+ HOTPLUG_DELAY_TIMEOUT);
+
+ /* Get defaults from manuf. sector */
+ /* XXX we need defaults for those in case MS is broken. */
+ asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
+ phy->phy_desc->phy_control_0);
+ asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
+ phy->phy_desc->phy_control_1);
+ asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
+ phy->phy_desc->phy_control_2);
+ asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
+ phy->phy_desc->phy_control_3);
+
+ asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
+ ASD_COMINIT_TIMEOUT);
+
+ asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
+ phy->id_frm_tok->dma_handle);
+
+ asd_control_led(asd_ha, phy_id, 1);
+
+ return 0;
+}
+
+int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
+{
+ u8 phy_m;
+ u8 i;
+ int num = 0, k;
+ struct asd_ascb *ascb;
+ struct asd_ascb *ascb_list;
+
+ if (!phy_mask) {
+ asd_printk("%s called with phy_mask of 0!?\n", __func__);
+ return 0;
+ }
+
+ for_each_phy(phy_mask, phy_m, i) {
+ num++;
+ asd_enable_phy(asd_ha, i);
+ }
+
+ k = num;
+ ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
+ if (!ascb_list) {
+ asd_printk("no memory for control phy ascb list\n");
+ return -ENOMEM;
+ }
+ num -= k;
+
+ ascb = ascb_list;
+ for_each_phy(phy_mask, phy_m, i) {
+ asd_build_control_phy(ascb, i, ENABLE_PHY);
+ ascb = list_entry(ascb->list.next, struct asd_ascb, list);
+ }
+ ASD_DPRINTK("posting %d control phy scbs\n", num);
+ k = asd_post_ascb_list(asd_ha, ascb_list, num);
+ if (k)
+ asd_ascb_free_list(ascb_list);
+
+ return k;
+}