diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /fs/btrfs/delayed-inode.c | |
parent | Initial commit. (diff) | |
download | linux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip |
Adding upstream version 4.19.249.upstream/4.19.249
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/btrfs/delayed-inode.c')
-rw-r--r-- | fs/btrfs/delayed-inode.c | 1992 |
1 files changed, 1992 insertions, 0 deletions
diff --git a/fs/btrfs/delayed-inode.c b/fs/btrfs/delayed-inode.c new file mode 100644 index 000000000..1fbe2dee1 --- /dev/null +++ b/fs/btrfs/delayed-inode.c @@ -0,0 +1,1992 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2011 Fujitsu. All rights reserved. + * Written by Miao Xie <miaox@cn.fujitsu.com> + */ + +#include <linux/slab.h> +#include <linux/iversion.h> +#include <linux/sched/mm.h> +#include "delayed-inode.h" +#include "disk-io.h" +#include "transaction.h" +#include "ctree.h" +#include "qgroup.h" + +#define BTRFS_DELAYED_WRITEBACK 512 +#define BTRFS_DELAYED_BACKGROUND 128 +#define BTRFS_DELAYED_BATCH 16 + +static struct kmem_cache *delayed_node_cache; + +int __init btrfs_delayed_inode_init(void) +{ + delayed_node_cache = kmem_cache_create("btrfs_delayed_node", + sizeof(struct btrfs_delayed_node), + 0, + SLAB_MEM_SPREAD, + NULL); + if (!delayed_node_cache) + return -ENOMEM; + return 0; +} + +void __cold btrfs_delayed_inode_exit(void) +{ + kmem_cache_destroy(delayed_node_cache); +} + +static inline void btrfs_init_delayed_node( + struct btrfs_delayed_node *delayed_node, + struct btrfs_root *root, u64 inode_id) +{ + delayed_node->root = root; + delayed_node->inode_id = inode_id; + refcount_set(&delayed_node->refs, 0); + delayed_node->ins_root = RB_ROOT; + delayed_node->del_root = RB_ROOT; + mutex_init(&delayed_node->mutex); + INIT_LIST_HEAD(&delayed_node->n_list); + INIT_LIST_HEAD(&delayed_node->p_list); +} + +static inline int btrfs_is_continuous_delayed_item( + struct btrfs_delayed_item *item1, + struct btrfs_delayed_item *item2) +{ + if (item1->key.type == BTRFS_DIR_INDEX_KEY && + item1->key.objectid == item2->key.objectid && + item1->key.type == item2->key.type && + item1->key.offset + 1 == item2->key.offset) + return 1; + return 0; +} + +static struct btrfs_delayed_node *btrfs_get_delayed_node( + struct btrfs_inode *btrfs_inode) +{ + struct btrfs_root *root = btrfs_inode->root; + u64 ino = btrfs_ino(btrfs_inode); + struct btrfs_delayed_node *node; + + node = READ_ONCE(btrfs_inode->delayed_node); + if (node) { + refcount_inc(&node->refs); + return node; + } + + spin_lock(&root->inode_lock); + node = radix_tree_lookup(&root->delayed_nodes_tree, ino); + + if (node) { + if (btrfs_inode->delayed_node) { + refcount_inc(&node->refs); /* can be accessed */ + BUG_ON(btrfs_inode->delayed_node != node); + spin_unlock(&root->inode_lock); + return node; + } + + /* + * It's possible that we're racing into the middle of removing + * this node from the radix tree. In this case, the refcount + * was zero and it should never go back to one. Just return + * NULL like it was never in the radix at all; our release + * function is in the process of removing it. + * + * Some implementations of refcount_inc refuse to bump the + * refcount once it has hit zero. If we don't do this dance + * here, refcount_inc() may decide to just WARN_ONCE() instead + * of actually bumping the refcount. + * + * If this node is properly in the radix, we want to bump the + * refcount twice, once for the inode and once for this get + * operation. + */ + if (refcount_inc_not_zero(&node->refs)) { + refcount_inc(&node->refs); + btrfs_inode->delayed_node = node; + } else { + node = NULL; + } + + spin_unlock(&root->inode_lock); + return node; + } + spin_unlock(&root->inode_lock); + + return NULL; +} + +/* Will return either the node or PTR_ERR(-ENOMEM) */ +static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( + struct btrfs_inode *btrfs_inode) +{ + struct btrfs_delayed_node *node; + struct btrfs_root *root = btrfs_inode->root; + u64 ino = btrfs_ino(btrfs_inode); + int ret; + +again: + node = btrfs_get_delayed_node(btrfs_inode); + if (node) + return node; + + node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); + if (!node) + return ERR_PTR(-ENOMEM); + btrfs_init_delayed_node(node, root, ino); + + /* cached in the btrfs inode and can be accessed */ + refcount_set(&node->refs, 2); + + ret = radix_tree_preload(GFP_NOFS); + if (ret) { + kmem_cache_free(delayed_node_cache, node); + return ERR_PTR(ret); + } + + spin_lock(&root->inode_lock); + ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); + if (ret == -EEXIST) { + spin_unlock(&root->inode_lock); + kmem_cache_free(delayed_node_cache, node); + radix_tree_preload_end(); + goto again; + } + btrfs_inode->delayed_node = node; + spin_unlock(&root->inode_lock); + radix_tree_preload_end(); + + return node; +} + +/* + * Call it when holding delayed_node->mutex + * + * If mod = 1, add this node into the prepared list. + */ +static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, + struct btrfs_delayed_node *node, + int mod) +{ + spin_lock(&root->lock); + if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { + if (!list_empty(&node->p_list)) + list_move_tail(&node->p_list, &root->prepare_list); + else if (mod) + list_add_tail(&node->p_list, &root->prepare_list); + } else { + list_add_tail(&node->n_list, &root->node_list); + list_add_tail(&node->p_list, &root->prepare_list); + refcount_inc(&node->refs); /* inserted into list */ + root->nodes++; + set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); + } + spin_unlock(&root->lock); +} + +/* Call it when holding delayed_node->mutex */ +static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, + struct btrfs_delayed_node *node) +{ + spin_lock(&root->lock); + if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { + root->nodes--; + refcount_dec(&node->refs); /* not in the list */ + list_del_init(&node->n_list); + if (!list_empty(&node->p_list)) + list_del_init(&node->p_list); + clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); + } + spin_unlock(&root->lock); +} + +static struct btrfs_delayed_node *btrfs_first_delayed_node( + struct btrfs_delayed_root *delayed_root) +{ + struct list_head *p; + struct btrfs_delayed_node *node = NULL; + + spin_lock(&delayed_root->lock); + if (list_empty(&delayed_root->node_list)) + goto out; + + p = delayed_root->node_list.next; + node = list_entry(p, struct btrfs_delayed_node, n_list); + refcount_inc(&node->refs); +out: + spin_unlock(&delayed_root->lock); + + return node; +} + +static struct btrfs_delayed_node *btrfs_next_delayed_node( + struct btrfs_delayed_node *node) +{ + struct btrfs_delayed_root *delayed_root; + struct list_head *p; + struct btrfs_delayed_node *next = NULL; + + delayed_root = node->root->fs_info->delayed_root; + spin_lock(&delayed_root->lock); + if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { + /* not in the list */ + if (list_empty(&delayed_root->node_list)) + goto out; + p = delayed_root->node_list.next; + } else if (list_is_last(&node->n_list, &delayed_root->node_list)) + goto out; + else + p = node->n_list.next; + + next = list_entry(p, struct btrfs_delayed_node, n_list); + refcount_inc(&next->refs); +out: + spin_unlock(&delayed_root->lock); + + return next; +} + +static void __btrfs_release_delayed_node( + struct btrfs_delayed_node *delayed_node, + int mod) +{ + struct btrfs_delayed_root *delayed_root; + + if (!delayed_node) + return; + + delayed_root = delayed_node->root->fs_info->delayed_root; + + mutex_lock(&delayed_node->mutex); + if (delayed_node->count) + btrfs_queue_delayed_node(delayed_root, delayed_node, mod); + else + btrfs_dequeue_delayed_node(delayed_root, delayed_node); + mutex_unlock(&delayed_node->mutex); + + if (refcount_dec_and_test(&delayed_node->refs)) { + struct btrfs_root *root = delayed_node->root; + + spin_lock(&root->inode_lock); + /* + * Once our refcount goes to zero, nobody is allowed to bump it + * back up. We can delete it now. + */ + ASSERT(refcount_read(&delayed_node->refs) == 0); + radix_tree_delete(&root->delayed_nodes_tree, + delayed_node->inode_id); + spin_unlock(&root->inode_lock); + kmem_cache_free(delayed_node_cache, delayed_node); + } +} + +static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) +{ + __btrfs_release_delayed_node(node, 0); +} + +static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( + struct btrfs_delayed_root *delayed_root) +{ + struct list_head *p; + struct btrfs_delayed_node *node = NULL; + + spin_lock(&delayed_root->lock); + if (list_empty(&delayed_root->prepare_list)) + goto out; + + p = delayed_root->prepare_list.next; + list_del_init(p); + node = list_entry(p, struct btrfs_delayed_node, p_list); + refcount_inc(&node->refs); +out: + spin_unlock(&delayed_root->lock); + + return node; +} + +static inline void btrfs_release_prepared_delayed_node( + struct btrfs_delayed_node *node) +{ + __btrfs_release_delayed_node(node, 1); +} + +static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) +{ + struct btrfs_delayed_item *item; + item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); + if (item) { + item->data_len = data_len; + item->ins_or_del = 0; + item->bytes_reserved = 0; + item->delayed_node = NULL; + refcount_set(&item->refs, 1); + } + return item; +} + +/* + * __btrfs_lookup_delayed_item - look up the delayed item by key + * @delayed_node: pointer to the delayed node + * @key: the key to look up + * @prev: used to store the prev item if the right item isn't found + * @next: used to store the next item if the right item isn't found + * + * Note: if we don't find the right item, we will return the prev item and + * the next item. + */ +static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( + struct rb_root *root, + struct btrfs_key *key, + struct btrfs_delayed_item **prev, + struct btrfs_delayed_item **next) +{ + struct rb_node *node, *prev_node = NULL; + struct btrfs_delayed_item *delayed_item = NULL; + int ret = 0; + + node = root->rb_node; + + while (node) { + delayed_item = rb_entry(node, struct btrfs_delayed_item, + rb_node); + prev_node = node; + ret = btrfs_comp_cpu_keys(&delayed_item->key, key); + if (ret < 0) + node = node->rb_right; + else if (ret > 0) + node = node->rb_left; + else + return delayed_item; + } + + if (prev) { + if (!prev_node) + *prev = NULL; + else if (ret < 0) + *prev = delayed_item; + else if ((node = rb_prev(prev_node)) != NULL) { + *prev = rb_entry(node, struct btrfs_delayed_item, + rb_node); + } else + *prev = NULL; + } + + if (next) { + if (!prev_node) + *next = NULL; + else if (ret > 0) + *next = delayed_item; + else if ((node = rb_next(prev_node)) != NULL) { + *next = rb_entry(node, struct btrfs_delayed_item, + rb_node); + } else + *next = NULL; + } + return NULL; +} + +static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( + struct btrfs_delayed_node *delayed_node, + struct btrfs_key *key) +{ + return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, + NULL, NULL); +} + +static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, + struct btrfs_delayed_item *ins, + int action) +{ + struct rb_node **p, *node; + struct rb_node *parent_node = NULL; + struct rb_root *root; + struct btrfs_delayed_item *item; + int cmp; + + if (action == BTRFS_DELAYED_INSERTION_ITEM) + root = &delayed_node->ins_root; + else if (action == BTRFS_DELAYED_DELETION_ITEM) + root = &delayed_node->del_root; + else + BUG(); + p = &root->rb_node; + node = &ins->rb_node; + + while (*p) { + parent_node = *p; + item = rb_entry(parent_node, struct btrfs_delayed_item, + rb_node); + + cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); + if (cmp < 0) + p = &(*p)->rb_right; + else if (cmp > 0) + p = &(*p)->rb_left; + else + return -EEXIST; + } + + rb_link_node(node, parent_node, p); + rb_insert_color(node, root); + ins->delayed_node = delayed_node; + ins->ins_or_del = action; + + if (ins->key.type == BTRFS_DIR_INDEX_KEY && + action == BTRFS_DELAYED_INSERTION_ITEM && + ins->key.offset >= delayed_node->index_cnt) + delayed_node->index_cnt = ins->key.offset + 1; + + delayed_node->count++; + atomic_inc(&delayed_node->root->fs_info->delayed_root->items); + return 0; +} + +static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, + struct btrfs_delayed_item *item) +{ + return __btrfs_add_delayed_item(node, item, + BTRFS_DELAYED_INSERTION_ITEM); +} + +static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, + struct btrfs_delayed_item *item) +{ + return __btrfs_add_delayed_item(node, item, + BTRFS_DELAYED_DELETION_ITEM); +} + +static void finish_one_item(struct btrfs_delayed_root *delayed_root) +{ + int seq = atomic_inc_return(&delayed_root->items_seq); + + /* atomic_dec_return implies a barrier */ + if ((atomic_dec_return(&delayed_root->items) < + BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) + cond_wake_up_nomb(&delayed_root->wait); +} + +static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) +{ + struct rb_root *root; + struct btrfs_delayed_root *delayed_root; + + delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; + + BUG_ON(!delayed_root); + BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && + delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); + + if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) + root = &delayed_item->delayed_node->ins_root; + else + root = &delayed_item->delayed_node->del_root; + + rb_erase(&delayed_item->rb_node, root); + delayed_item->delayed_node->count--; + + finish_one_item(delayed_root); +} + +static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) +{ + if (item) { + __btrfs_remove_delayed_item(item); + if (refcount_dec_and_test(&item->refs)) + kfree(item); + } +} + +static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( + struct btrfs_delayed_node *delayed_node) +{ + struct rb_node *p; + struct btrfs_delayed_item *item = NULL; + + p = rb_first(&delayed_node->ins_root); + if (p) + item = rb_entry(p, struct btrfs_delayed_item, rb_node); + + return item; +} + +static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( + struct btrfs_delayed_node *delayed_node) +{ + struct rb_node *p; + struct btrfs_delayed_item *item = NULL; + + p = rb_first(&delayed_node->del_root); + if (p) + item = rb_entry(p, struct btrfs_delayed_item, rb_node); + + return item; +} + +static struct btrfs_delayed_item *__btrfs_next_delayed_item( + struct btrfs_delayed_item *item) +{ + struct rb_node *p; + struct btrfs_delayed_item *next = NULL; + + p = rb_next(&item->rb_node); + if (p) + next = rb_entry(p, struct btrfs_delayed_item, rb_node); + + return next; +} + +static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, + struct btrfs_root *root, + struct btrfs_delayed_item *item) +{ + struct btrfs_block_rsv *src_rsv; + struct btrfs_block_rsv *dst_rsv; + struct btrfs_fs_info *fs_info = root->fs_info; + u64 num_bytes; + int ret; + + if (!trans->bytes_reserved) + return 0; + + src_rsv = trans->block_rsv; + dst_rsv = &fs_info->delayed_block_rsv; + + num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); + + /* + * Here we migrate space rsv from transaction rsv, since have already + * reserved space when starting a transaction. So no need to reserve + * qgroup space here. + */ + ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); + if (!ret) { + trace_btrfs_space_reservation(fs_info, "delayed_item", + item->key.objectid, + num_bytes, 1); + item->bytes_reserved = num_bytes; + } + + return ret; +} + +static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, + struct btrfs_delayed_item *item) +{ + struct btrfs_block_rsv *rsv; + struct btrfs_fs_info *fs_info = root->fs_info; + + if (!item->bytes_reserved) + return; + + rsv = &fs_info->delayed_block_rsv; + /* + * Check btrfs_delayed_item_reserve_metadata() to see why we don't need + * to release/reserve qgroup space. + */ + trace_btrfs_space_reservation(fs_info, "delayed_item", + item->key.objectid, item->bytes_reserved, + 0); + btrfs_block_rsv_release(fs_info, rsv, + item->bytes_reserved); +} + +static int btrfs_delayed_inode_reserve_metadata( + struct btrfs_trans_handle *trans, + struct btrfs_root *root, + struct btrfs_inode *inode, + struct btrfs_delayed_node *node) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_block_rsv *src_rsv; + struct btrfs_block_rsv *dst_rsv; + u64 num_bytes; + int ret; + + src_rsv = trans->block_rsv; + dst_rsv = &fs_info->delayed_block_rsv; + + num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); + + /* + * btrfs_dirty_inode will update the inode under btrfs_join_transaction + * which doesn't reserve space for speed. This is a problem since we + * still need to reserve space for this update, so try to reserve the + * space. + * + * Now if src_rsv == delalloc_block_rsv we'll let it just steal since + * we always reserve enough to update the inode item. + */ + if (!src_rsv || (!trans->bytes_reserved && + src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { + ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true); + if (ret < 0) + return ret; + ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, + BTRFS_RESERVE_NO_FLUSH); + /* + * Since we're under a transaction reserve_metadata_bytes could + * try to commit the transaction which will make it return + * EAGAIN to make us stop the transaction we have, so return + * ENOSPC instead so that btrfs_dirty_inode knows what to do. + */ + if (ret == -EAGAIN) { + ret = -ENOSPC; + btrfs_qgroup_free_meta_prealloc(root, num_bytes); + } + if (!ret) { + node->bytes_reserved = num_bytes; + trace_btrfs_space_reservation(fs_info, + "delayed_inode", + btrfs_ino(inode), + num_bytes, 1); + } else { + btrfs_qgroup_free_meta_prealloc(root, num_bytes); + } + return ret; + } + + ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); + if (!ret) { + trace_btrfs_space_reservation(fs_info, "delayed_inode", + btrfs_ino(inode), num_bytes, 1); + node->bytes_reserved = num_bytes; + } + + return ret; +} + +static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, + struct btrfs_delayed_node *node, + bool qgroup_free) +{ + struct btrfs_block_rsv *rsv; + + if (!node->bytes_reserved) + return; + + rsv = &fs_info->delayed_block_rsv; + trace_btrfs_space_reservation(fs_info, "delayed_inode", + node->inode_id, node->bytes_reserved, 0); + btrfs_block_rsv_release(fs_info, rsv, + node->bytes_reserved); + if (qgroup_free) + btrfs_qgroup_free_meta_prealloc(node->root, + node->bytes_reserved); + else + btrfs_qgroup_convert_reserved_meta(node->root, + node->bytes_reserved); + node->bytes_reserved = 0; +} + +/* + * This helper will insert some continuous items into the same leaf according + * to the free space of the leaf. + */ +static int btrfs_batch_insert_items(struct btrfs_root *root, + struct btrfs_path *path, + struct btrfs_delayed_item *item) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_delayed_item *curr, *next; + int free_space; + int total_data_size = 0, total_size = 0; + struct extent_buffer *leaf; + char *data_ptr; + struct btrfs_key *keys; + u32 *data_size; + struct list_head head; + int slot; + int nitems; + int i; + int ret = 0; + + BUG_ON(!path->nodes[0]); + + leaf = path->nodes[0]; + free_space = btrfs_leaf_free_space(fs_info, leaf); + INIT_LIST_HEAD(&head); + + next = item; + nitems = 0; + + /* + * count the number of the continuous items that we can insert in batch + */ + while (total_size + next->data_len + sizeof(struct btrfs_item) <= + free_space) { + total_data_size += next->data_len; + total_size += next->data_len + sizeof(struct btrfs_item); + list_add_tail(&next->tree_list, &head); + nitems++; + + curr = next; + next = __btrfs_next_delayed_item(curr); + if (!next) + break; + + if (!btrfs_is_continuous_delayed_item(curr, next)) + break; + } + + if (!nitems) { + ret = 0; + goto out; + } + + /* + * we need allocate some memory space, but it might cause the task + * to sleep, so we set all locked nodes in the path to blocking locks + * first. + */ + btrfs_set_path_blocking(path); + + keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); + if (!keys) { + ret = -ENOMEM; + goto out; + } + + data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); + if (!data_size) { + ret = -ENOMEM; + goto error; + } + + /* get keys of all the delayed items */ + i = 0; + list_for_each_entry(next, &head, tree_list) { + keys[i] = next->key; + data_size[i] = next->data_len; + i++; + } + + /* reset all the locked nodes in the patch to spinning locks. */ + btrfs_clear_path_blocking(path, NULL, 0); + + /* insert the keys of the items */ + setup_items_for_insert(root, path, keys, data_size, + total_data_size, total_size, nitems); + + /* insert the dir index items */ + slot = path->slots[0]; + list_for_each_entry_safe(curr, next, &head, tree_list) { + data_ptr = btrfs_item_ptr(leaf, slot, char); + write_extent_buffer(leaf, &curr->data, + (unsigned long)data_ptr, + curr->data_len); + slot++; + + btrfs_delayed_item_release_metadata(root, curr); + + list_del(&curr->tree_list); + btrfs_release_delayed_item(curr); + } + +error: + kfree(data_size); + kfree(keys); +out: + return ret; +} + +/* + * This helper can just do simple insertion that needn't extend item for new + * data, such as directory name index insertion, inode insertion. + */ +static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, + struct btrfs_root *root, + struct btrfs_path *path, + struct btrfs_delayed_item *delayed_item) +{ + struct extent_buffer *leaf; + unsigned int nofs_flag; + char *ptr; + int ret; + + nofs_flag = memalloc_nofs_save(); + ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, + delayed_item->data_len); + memalloc_nofs_restore(nofs_flag); + if (ret < 0 && ret != -EEXIST) + return ret; + + leaf = path->nodes[0]; + + ptr = btrfs_item_ptr(leaf, path->slots[0], char); + + write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, + delayed_item->data_len); + btrfs_mark_buffer_dirty(leaf); + + btrfs_delayed_item_release_metadata(root, delayed_item); + return 0; +} + +/* + * we insert an item first, then if there are some continuous items, we try + * to insert those items into the same leaf. + */ +static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, + struct btrfs_path *path, + struct btrfs_root *root, + struct btrfs_delayed_node *node) +{ + struct btrfs_delayed_item *curr, *prev; + int ret = 0; + +do_again: + mutex_lock(&node->mutex); + curr = __btrfs_first_delayed_insertion_item(node); + if (!curr) + goto insert_end; + + ret = btrfs_insert_delayed_item(trans, root, path, curr); + if (ret < 0) { + btrfs_release_path(path); + goto insert_end; + } + + prev = curr; + curr = __btrfs_next_delayed_item(prev); + if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { + /* insert the continuous items into the same leaf */ + path->slots[0]++; + btrfs_batch_insert_items(root, path, curr); + } + btrfs_release_delayed_item(prev); + btrfs_mark_buffer_dirty(path->nodes[0]); + + btrfs_release_path(path); + mutex_unlock(&node->mutex); + goto do_again; + +insert_end: + mutex_unlock(&node->mutex); + return ret; +} + +static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, + struct btrfs_root *root, + struct btrfs_path *path, + struct btrfs_delayed_item *item) +{ + struct btrfs_delayed_item *curr, *next; + struct extent_buffer *leaf; + struct btrfs_key key; + struct list_head head; + int nitems, i, last_item; + int ret = 0; + + BUG_ON(!path->nodes[0]); + + leaf = path->nodes[0]; + + i = path->slots[0]; + last_item = btrfs_header_nritems(leaf) - 1; + if (i > last_item) + return -ENOENT; /* FIXME: Is errno suitable? */ + + next = item; + INIT_LIST_HEAD(&head); + btrfs_item_key_to_cpu(leaf, &key, i); + nitems = 0; + /* + * count the number of the dir index items that we can delete in batch + */ + while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { + list_add_tail(&next->tree_list, &head); + nitems++; + + curr = next; + next = __btrfs_next_delayed_item(curr); + if (!next) + break; + + if (!btrfs_is_continuous_delayed_item(curr, next)) + break; + + i++; + if (i > last_item) + break; + btrfs_item_key_to_cpu(leaf, &key, i); + } + + if (!nitems) + return 0; + + ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); + if (ret) + goto out; + + list_for_each_entry_safe(curr, next, &head, tree_list) { + btrfs_delayed_item_release_metadata(root, curr); + list_del(&curr->tree_list); + btrfs_release_delayed_item(curr); + } + +out: + return ret; +} + +static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, + struct btrfs_path *path, + struct btrfs_root *root, + struct btrfs_delayed_node *node) +{ + struct btrfs_delayed_item *curr, *prev; + unsigned int nofs_flag; + int ret = 0; + +do_again: + mutex_lock(&node->mutex); + curr = __btrfs_first_delayed_deletion_item(node); + if (!curr) + goto delete_fail; + + nofs_flag = memalloc_nofs_save(); + ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); + memalloc_nofs_restore(nofs_flag); + if (ret < 0) + goto delete_fail; + else if (ret > 0) { + /* + * can't find the item which the node points to, so this node + * is invalid, just drop it. + */ + prev = curr; + curr = __btrfs_next_delayed_item(prev); + btrfs_release_delayed_item(prev); + ret = 0; + btrfs_release_path(path); + if (curr) { + mutex_unlock(&node->mutex); + goto do_again; + } else + goto delete_fail; + } + + btrfs_batch_delete_items(trans, root, path, curr); + btrfs_release_path(path); + mutex_unlock(&node->mutex); + goto do_again; + +delete_fail: + btrfs_release_path(path); + mutex_unlock(&node->mutex); + return ret; +} + +static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) +{ + struct btrfs_delayed_root *delayed_root; + + if (delayed_node && + test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { + BUG_ON(!delayed_node->root); + clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); + delayed_node->count--; + + delayed_root = delayed_node->root->fs_info->delayed_root; + finish_one_item(delayed_root); + } +} + +static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) +{ + struct btrfs_delayed_root *delayed_root; + + ASSERT(delayed_node->root); + clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); + delayed_node->count--; + + delayed_root = delayed_node->root->fs_info->delayed_root; + finish_one_item(delayed_root); +} + +static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, + struct btrfs_root *root, + struct btrfs_path *path, + struct btrfs_delayed_node *node) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_key key; + struct btrfs_inode_item *inode_item; + struct extent_buffer *leaf; + unsigned int nofs_flag; + int mod; + int ret; + + key.objectid = node->inode_id; + key.type = BTRFS_INODE_ITEM_KEY; + key.offset = 0; + + if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) + mod = -1; + else + mod = 1; + + nofs_flag = memalloc_nofs_save(); + ret = btrfs_lookup_inode(trans, root, path, &key, mod); + memalloc_nofs_restore(nofs_flag); + if (ret > 0) + ret = -ENOENT; + if (ret < 0) + goto out; + + leaf = path->nodes[0]; + inode_item = btrfs_item_ptr(leaf, path->slots[0], + struct btrfs_inode_item); + write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, + sizeof(struct btrfs_inode_item)); + btrfs_mark_buffer_dirty(leaf); + + if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) + goto no_iref; + + path->slots[0]++; + if (path->slots[0] >= btrfs_header_nritems(leaf)) + goto search; +again: + btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); + if (key.objectid != node->inode_id) + goto out; + + if (key.type != BTRFS_INODE_REF_KEY && + key.type != BTRFS_INODE_EXTREF_KEY) + goto out; + + /* + * Delayed iref deletion is for the inode who has only one link, + * so there is only one iref. The case that several irefs are + * in the same item doesn't exist. + */ + btrfs_del_item(trans, root, path); +out: + btrfs_release_delayed_iref(node); +no_iref: + btrfs_release_path(path); +err_out: + btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); + btrfs_release_delayed_inode(node); + + /* + * If we fail to update the delayed inode we need to abort the + * transaction, because we could leave the inode with the improper + * counts behind. + */ + if (ret && ret != -ENOENT) + btrfs_abort_transaction(trans, ret); + + return ret; + +search: + btrfs_release_path(path); + + key.type = BTRFS_INODE_EXTREF_KEY; + key.offset = -1; + + nofs_flag = memalloc_nofs_save(); + ret = btrfs_search_slot(trans, root, &key, path, -1, 1); + memalloc_nofs_restore(nofs_flag); + if (ret < 0) + goto err_out; + ASSERT(ret); + + ret = 0; + leaf = path->nodes[0]; + path->slots[0]--; + goto again; +} + +static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, + struct btrfs_root *root, + struct btrfs_path *path, + struct btrfs_delayed_node *node) +{ + int ret; + + mutex_lock(&node->mutex); + if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { + mutex_unlock(&node->mutex); + return 0; + } + + ret = __btrfs_update_delayed_inode(trans, root, path, node); + mutex_unlock(&node->mutex); + return ret; +} + +static inline int +__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, + struct btrfs_path *path, + struct btrfs_delayed_node *node) +{ + int ret; + + ret = btrfs_insert_delayed_items(trans, path, node->root, node); + if (ret) + return ret; + + ret = btrfs_delete_delayed_items(trans, path, node->root, node); + if (ret) + return ret; + + ret = btrfs_update_delayed_inode(trans, node->root, path, node); + return ret; +} + +/* + * Called when committing the transaction. + * Returns 0 on success. + * Returns < 0 on error and returns with an aborted transaction with any + * outstanding delayed items cleaned up. + */ +static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) +{ + struct btrfs_fs_info *fs_info = trans->fs_info; + struct btrfs_delayed_root *delayed_root; + struct btrfs_delayed_node *curr_node, *prev_node; + struct btrfs_path *path; + struct btrfs_block_rsv *block_rsv; + int ret = 0; + bool count = (nr > 0); + + if (trans->aborted) + return -EIO; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + path->leave_spinning = 1; + + block_rsv = trans->block_rsv; + trans->block_rsv = &fs_info->delayed_block_rsv; + + delayed_root = fs_info->delayed_root; + + curr_node = btrfs_first_delayed_node(delayed_root); + while (curr_node && (!count || (count && nr--))) { + ret = __btrfs_commit_inode_delayed_items(trans, path, + curr_node); + if (ret) { + btrfs_release_delayed_node(curr_node); + curr_node = NULL; + btrfs_abort_transaction(trans, ret); + break; + } + + prev_node = curr_node; + curr_node = btrfs_next_delayed_node(curr_node); + btrfs_release_delayed_node(prev_node); + } + + if (curr_node) + btrfs_release_delayed_node(curr_node); + btrfs_free_path(path); + trans->block_rsv = block_rsv; + + return ret; +} + +int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) +{ + return __btrfs_run_delayed_items(trans, -1); +} + +int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) +{ + return __btrfs_run_delayed_items(trans, nr); +} + +int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, + struct btrfs_inode *inode) +{ + struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); + struct btrfs_path *path; + struct btrfs_block_rsv *block_rsv; + int ret; + + if (!delayed_node) + return 0; + + mutex_lock(&delayed_node->mutex); + if (!delayed_node->count) { + mutex_unlock(&delayed_node->mutex); + btrfs_release_delayed_node(delayed_node); + return 0; + } + mutex_unlock(&delayed_node->mutex); + + path = btrfs_alloc_path(); + if (!path) { + btrfs_release_delayed_node(delayed_node); + return -ENOMEM; + } + path->leave_spinning = 1; + + block_rsv = trans->block_rsv; + trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; + + ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); + + btrfs_release_delayed_node(delayed_node); + btrfs_free_path(path); + trans->block_rsv = block_rsv; + + return ret; +} + +int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) +{ + struct btrfs_fs_info *fs_info = inode->root->fs_info; + struct btrfs_trans_handle *trans; + struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); + struct btrfs_path *path; + struct btrfs_block_rsv *block_rsv; + int ret; + + if (!delayed_node) + return 0; + + mutex_lock(&delayed_node->mutex); + if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { + mutex_unlock(&delayed_node->mutex); + btrfs_release_delayed_node(delayed_node); + return 0; + } + mutex_unlock(&delayed_node->mutex); + + trans = btrfs_join_transaction(delayed_node->root); + if (IS_ERR(trans)) { + ret = PTR_ERR(trans); + goto out; + } + + path = btrfs_alloc_path(); + if (!path) { + ret = -ENOMEM; + goto trans_out; + } + path->leave_spinning = 1; + + block_rsv = trans->block_rsv; + trans->block_rsv = &fs_info->delayed_block_rsv; + + mutex_lock(&delayed_node->mutex); + if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) + ret = __btrfs_update_delayed_inode(trans, delayed_node->root, + path, delayed_node); + else + ret = 0; + mutex_unlock(&delayed_node->mutex); + + btrfs_free_path(path); + trans->block_rsv = block_rsv; +trans_out: + btrfs_end_transaction(trans); + btrfs_btree_balance_dirty(fs_info); +out: + btrfs_release_delayed_node(delayed_node); + + return ret; +} + +void btrfs_remove_delayed_node(struct btrfs_inode *inode) +{ + struct btrfs_delayed_node *delayed_node; + + delayed_node = READ_ONCE(inode->delayed_node); + if (!delayed_node) + return; + + inode->delayed_node = NULL; + btrfs_release_delayed_node(delayed_node); +} + +struct btrfs_async_delayed_work { + struct btrfs_delayed_root *delayed_root; + int nr; + struct btrfs_work work; +}; + +static void btrfs_async_run_delayed_root(struct btrfs_work *work) +{ + struct btrfs_async_delayed_work *async_work; + struct btrfs_delayed_root *delayed_root; + struct btrfs_trans_handle *trans; + struct btrfs_path *path; + struct btrfs_delayed_node *delayed_node = NULL; + struct btrfs_root *root; + struct btrfs_block_rsv *block_rsv; + int total_done = 0; + + async_work = container_of(work, struct btrfs_async_delayed_work, work); + delayed_root = async_work->delayed_root; + + path = btrfs_alloc_path(); + if (!path) + goto out; + + do { + if (atomic_read(&delayed_root->items) < + BTRFS_DELAYED_BACKGROUND / 2) + break; + + delayed_node = btrfs_first_prepared_delayed_node(delayed_root); + if (!delayed_node) + break; + + path->leave_spinning = 1; + root = delayed_node->root; + + trans = btrfs_join_transaction(root); + if (IS_ERR(trans)) { + btrfs_release_path(path); + btrfs_release_prepared_delayed_node(delayed_node); + total_done++; + continue; + } + + block_rsv = trans->block_rsv; + trans->block_rsv = &root->fs_info->delayed_block_rsv; + + __btrfs_commit_inode_delayed_items(trans, path, delayed_node); + + trans->block_rsv = block_rsv; + btrfs_end_transaction(trans); + btrfs_btree_balance_dirty_nodelay(root->fs_info); + + btrfs_release_path(path); + btrfs_release_prepared_delayed_node(delayed_node); + total_done++; + + } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) + || total_done < async_work->nr); + + btrfs_free_path(path); +out: + wake_up(&delayed_root->wait); + kfree(async_work); +} + + +static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, + struct btrfs_fs_info *fs_info, int nr) +{ + struct btrfs_async_delayed_work *async_work; + + async_work = kmalloc(sizeof(*async_work), GFP_NOFS); + if (!async_work) + return -ENOMEM; + + async_work->delayed_root = delayed_root; + btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper, + btrfs_async_run_delayed_root, NULL, NULL); + async_work->nr = nr; + + btrfs_queue_work(fs_info->delayed_workers, &async_work->work); + return 0; +} + +void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) +{ + WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); +} + +static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) +{ + int val = atomic_read(&delayed_root->items_seq); + + if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) + return 1; + + if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) + return 1; + + return 0; +} + +void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) +{ + struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; + + if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || + btrfs_workqueue_normal_congested(fs_info->delayed_workers)) + return; + + if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { + int seq; + int ret; + + seq = atomic_read(&delayed_root->items_seq); + + ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); + if (ret) + return; + + wait_event_interruptible(delayed_root->wait, + could_end_wait(delayed_root, seq)); + return; + } + + btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); +} + +/* Will return 0 or -ENOMEM */ +int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, + const char *name, int name_len, + struct btrfs_inode *dir, + struct btrfs_disk_key *disk_key, u8 type, + u64 index) +{ + struct btrfs_delayed_node *delayed_node; + struct btrfs_delayed_item *delayed_item; + struct btrfs_dir_item *dir_item; + int ret; + + delayed_node = btrfs_get_or_create_delayed_node(dir); + if (IS_ERR(delayed_node)) + return PTR_ERR(delayed_node); + + delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); + if (!delayed_item) { + ret = -ENOMEM; + goto release_node; + } + + delayed_item->key.objectid = btrfs_ino(dir); + delayed_item->key.type = BTRFS_DIR_INDEX_KEY; + delayed_item->key.offset = index; + + dir_item = (struct btrfs_dir_item *)delayed_item->data; + dir_item->location = *disk_key; + btrfs_set_stack_dir_transid(dir_item, trans->transid); + btrfs_set_stack_dir_data_len(dir_item, 0); + btrfs_set_stack_dir_name_len(dir_item, name_len); + btrfs_set_stack_dir_type(dir_item, type); + memcpy((char *)(dir_item + 1), name, name_len); + + ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item); + /* + * we have reserved enough space when we start a new transaction, + * so reserving metadata failure is impossible + */ + BUG_ON(ret); + + mutex_lock(&delayed_node->mutex); + ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); + if (unlikely(ret)) { + btrfs_err(trans->fs_info, + "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", + name_len, name, delayed_node->root->objectid, + delayed_node->inode_id, ret); + BUG(); + } + mutex_unlock(&delayed_node->mutex); + +release_node: + btrfs_release_delayed_node(delayed_node); + return ret; +} + +static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, + struct btrfs_delayed_node *node, + struct btrfs_key *key) +{ + struct btrfs_delayed_item *item; + + mutex_lock(&node->mutex); + item = __btrfs_lookup_delayed_insertion_item(node, key); + if (!item) { + mutex_unlock(&node->mutex); + return 1; + } + + btrfs_delayed_item_release_metadata(node->root, item); + btrfs_release_delayed_item(item); + mutex_unlock(&node->mutex); + return 0; +} + +int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, + struct btrfs_inode *dir, u64 index) +{ + struct btrfs_delayed_node *node; + struct btrfs_delayed_item *item; + struct btrfs_key item_key; + int ret; + + node = btrfs_get_or_create_delayed_node(dir); + if (IS_ERR(node)) + return PTR_ERR(node); + + item_key.objectid = btrfs_ino(dir); + item_key.type = BTRFS_DIR_INDEX_KEY; + item_key.offset = index; + + ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, + &item_key); + if (!ret) + goto end; + + item = btrfs_alloc_delayed_item(0); + if (!item) { + ret = -ENOMEM; + goto end; + } + + item->key = item_key; + + ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); + /* + * we have reserved enough space when we start a new transaction, + * so reserving metadata failure is impossible. + */ + BUG_ON(ret); + + mutex_lock(&node->mutex); + ret = __btrfs_add_delayed_deletion_item(node, item); + if (unlikely(ret)) { + btrfs_err(trans->fs_info, + "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", + index, node->root->objectid, node->inode_id, ret); + BUG(); + } + mutex_unlock(&node->mutex); +end: + btrfs_release_delayed_node(node); + return ret; +} + +int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) +{ + struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); + + if (!delayed_node) + return -ENOENT; + + /* + * Since we have held i_mutex of this directory, it is impossible that + * a new directory index is added into the delayed node and index_cnt + * is updated now. So we needn't lock the delayed node. + */ + if (!delayed_node->index_cnt) { + btrfs_release_delayed_node(delayed_node); + return -EINVAL; + } + + inode->index_cnt = delayed_node->index_cnt; + btrfs_release_delayed_node(delayed_node); + return 0; +} + +bool btrfs_readdir_get_delayed_items(struct inode *inode, + struct list_head *ins_list, + struct list_head *del_list) +{ + struct btrfs_delayed_node *delayed_node; + struct btrfs_delayed_item *item; + + delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); + if (!delayed_node) + return false; + + /* + * We can only do one readdir with delayed items at a time because of + * item->readdir_list. + */ + inode_unlock_shared(inode); + inode_lock(inode); + + mutex_lock(&delayed_node->mutex); + item = __btrfs_first_delayed_insertion_item(delayed_node); + while (item) { + refcount_inc(&item->refs); + list_add_tail(&item->readdir_list, ins_list); + item = __btrfs_next_delayed_item(item); + } + + item = __btrfs_first_delayed_deletion_item(delayed_node); + while (item) { + refcount_inc(&item->refs); + list_add_tail(&item->readdir_list, del_list); + item = __btrfs_next_delayed_item(item); + } + mutex_unlock(&delayed_node->mutex); + /* + * This delayed node is still cached in the btrfs inode, so refs + * must be > 1 now, and we needn't check it is going to be freed + * or not. + * + * Besides that, this function is used to read dir, we do not + * insert/delete delayed items in this period. So we also needn't + * requeue or dequeue this delayed node. + */ + refcount_dec(&delayed_node->refs); + + return true; +} + +void btrfs_readdir_put_delayed_items(struct inode *inode, + struct list_head *ins_list, + struct list_head *del_list) +{ + struct btrfs_delayed_item *curr, *next; + + list_for_each_entry_safe(curr, next, ins_list, readdir_list) { + list_del(&curr->readdir_list); + if (refcount_dec_and_test(&curr->refs)) + kfree(curr); + } + + list_for_each_entry_safe(curr, next, del_list, readdir_list) { + list_del(&curr->readdir_list); + if (refcount_dec_and_test(&curr->refs)) + kfree(curr); + } + + /* + * The VFS is going to do up_read(), so we need to downgrade back to a + * read lock. + */ + downgrade_write(&inode->i_rwsem); +} + +int btrfs_should_delete_dir_index(struct list_head *del_list, + u64 index) +{ + struct btrfs_delayed_item *curr; + int ret = 0; + + list_for_each_entry(curr, del_list, readdir_list) { + if (curr->key.offset > index) + break; + if (curr->key.offset == index) { + ret = 1; + break; + } + } + return ret; +} + +/* + * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree + * + */ +int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, + struct list_head *ins_list) +{ + struct btrfs_dir_item *di; + struct btrfs_delayed_item *curr, *next; + struct btrfs_key location; + char *name; + int name_len; + int over = 0; + unsigned char d_type; + + if (list_empty(ins_list)) + return 0; + + /* + * Changing the data of the delayed item is impossible. So + * we needn't lock them. And we have held i_mutex of the + * directory, nobody can delete any directory indexes now. + */ + list_for_each_entry_safe(curr, next, ins_list, readdir_list) { + list_del(&curr->readdir_list); + + if (curr->key.offset < ctx->pos) { + if (refcount_dec_and_test(&curr->refs)) + kfree(curr); + continue; + } + + ctx->pos = curr->key.offset; + + di = (struct btrfs_dir_item *)curr->data; + name = (char *)(di + 1); + name_len = btrfs_stack_dir_name_len(di); + + d_type = btrfs_filetype_table[di->type]; + btrfs_disk_key_to_cpu(&location, &di->location); + + over = !dir_emit(ctx, name, name_len, + location.objectid, d_type); + + if (refcount_dec_and_test(&curr->refs)) + kfree(curr); + + if (over) + return 1; + ctx->pos++; + } + return 0; +} + +static void fill_stack_inode_item(struct btrfs_trans_handle *trans, + struct btrfs_inode_item *inode_item, + struct inode *inode) +{ + btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); + btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); + btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); + btrfs_set_stack_inode_mode(inode_item, inode->i_mode); + btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); + btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); + btrfs_set_stack_inode_generation(inode_item, + BTRFS_I(inode)->generation); + btrfs_set_stack_inode_sequence(inode_item, + inode_peek_iversion(inode)); + btrfs_set_stack_inode_transid(inode_item, trans->transid); + btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); + btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); + btrfs_set_stack_inode_block_group(inode_item, 0); + + btrfs_set_stack_timespec_sec(&inode_item->atime, + inode->i_atime.tv_sec); + btrfs_set_stack_timespec_nsec(&inode_item->atime, + inode->i_atime.tv_nsec); + + btrfs_set_stack_timespec_sec(&inode_item->mtime, + inode->i_mtime.tv_sec); + btrfs_set_stack_timespec_nsec(&inode_item->mtime, + inode->i_mtime.tv_nsec); + + btrfs_set_stack_timespec_sec(&inode_item->ctime, + inode->i_ctime.tv_sec); + btrfs_set_stack_timespec_nsec(&inode_item->ctime, + inode->i_ctime.tv_nsec); + + btrfs_set_stack_timespec_sec(&inode_item->otime, + BTRFS_I(inode)->i_otime.tv_sec); + btrfs_set_stack_timespec_nsec(&inode_item->otime, + BTRFS_I(inode)->i_otime.tv_nsec); +} + +int btrfs_fill_inode(struct inode *inode, u32 *rdev) +{ + struct btrfs_delayed_node *delayed_node; + struct btrfs_inode_item *inode_item; + + delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); + if (!delayed_node) + return -ENOENT; + + mutex_lock(&delayed_node->mutex); + if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { + mutex_unlock(&delayed_node->mutex); + btrfs_release_delayed_node(delayed_node); + return -ENOENT; + } + + inode_item = &delayed_node->inode_item; + + i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); + i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); + btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); + inode->i_mode = btrfs_stack_inode_mode(inode_item); + set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); + inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); + BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); + BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); + + inode_set_iversion_queried(inode, + btrfs_stack_inode_sequence(inode_item)); + inode->i_rdev = 0; + *rdev = btrfs_stack_inode_rdev(inode_item); + BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); + + inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); + inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); + + inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); + inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); + + inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); + inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); + + BTRFS_I(inode)->i_otime.tv_sec = + btrfs_stack_timespec_sec(&inode_item->otime); + BTRFS_I(inode)->i_otime.tv_nsec = + btrfs_stack_timespec_nsec(&inode_item->otime); + + inode->i_generation = BTRFS_I(inode)->generation; + BTRFS_I(inode)->index_cnt = (u64)-1; + + mutex_unlock(&delayed_node->mutex); + btrfs_release_delayed_node(delayed_node); + return 0; +} + +int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, + struct btrfs_root *root, struct inode *inode) +{ + struct btrfs_delayed_node *delayed_node; + int ret = 0; + + delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode)); + if (IS_ERR(delayed_node)) + return PTR_ERR(delayed_node); + + mutex_lock(&delayed_node->mutex); + if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { + fill_stack_inode_item(trans, &delayed_node->inode_item, inode); + goto release_node; + } + + ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode), + delayed_node); + if (ret) + goto release_node; + + fill_stack_inode_item(trans, &delayed_node->inode_item, inode); + set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); + delayed_node->count++; + atomic_inc(&root->fs_info->delayed_root->items); +release_node: + mutex_unlock(&delayed_node->mutex); + btrfs_release_delayed_node(delayed_node); + return ret; +} + +int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) +{ + struct btrfs_fs_info *fs_info = inode->root->fs_info; + struct btrfs_delayed_node *delayed_node; + + /* + * we don't do delayed inode updates during log recovery because it + * leads to enospc problems. This means we also can't do + * delayed inode refs + */ + if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) + return -EAGAIN; + + delayed_node = btrfs_get_or_create_delayed_node(inode); + if (IS_ERR(delayed_node)) + return PTR_ERR(delayed_node); + + /* + * We don't reserve space for inode ref deletion is because: + * - We ONLY do async inode ref deletion for the inode who has only + * one link(i_nlink == 1), it means there is only one inode ref. + * And in most case, the inode ref and the inode item are in the + * same leaf, and we will deal with them at the same time. + * Since we are sure we will reserve the space for the inode item, + * it is unnecessary to reserve space for inode ref deletion. + * - If the inode ref and the inode item are not in the same leaf, + * We also needn't worry about enospc problem, because we reserve + * much more space for the inode update than it needs. + * - At the worst, we can steal some space from the global reservation. + * It is very rare. + */ + mutex_lock(&delayed_node->mutex); + if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) + goto release_node; + + set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); + delayed_node->count++; + atomic_inc(&fs_info->delayed_root->items); +release_node: + mutex_unlock(&delayed_node->mutex); + btrfs_release_delayed_node(delayed_node); + return 0; +} + +static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) +{ + struct btrfs_root *root = delayed_node->root; + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_delayed_item *curr_item, *prev_item; + + mutex_lock(&delayed_node->mutex); + curr_item = __btrfs_first_delayed_insertion_item(delayed_node); + while (curr_item) { + btrfs_delayed_item_release_metadata(root, curr_item); + prev_item = curr_item; + curr_item = __btrfs_next_delayed_item(prev_item); + btrfs_release_delayed_item(prev_item); + } + + curr_item = __btrfs_first_delayed_deletion_item(delayed_node); + while (curr_item) { + btrfs_delayed_item_release_metadata(root, curr_item); + prev_item = curr_item; + curr_item = __btrfs_next_delayed_item(prev_item); + btrfs_release_delayed_item(prev_item); + } + + if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) + btrfs_release_delayed_iref(delayed_node); + + if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { + btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); + btrfs_release_delayed_inode(delayed_node); + } + mutex_unlock(&delayed_node->mutex); +} + +void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) +{ + struct btrfs_delayed_node *delayed_node; + + delayed_node = btrfs_get_delayed_node(inode); + if (!delayed_node) + return; + + __btrfs_kill_delayed_node(delayed_node); + btrfs_release_delayed_node(delayed_node); +} + +void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) +{ + u64 inode_id = 0; + struct btrfs_delayed_node *delayed_nodes[8]; + int i, n; + + while (1) { + spin_lock(&root->inode_lock); + n = radix_tree_gang_lookup(&root->delayed_nodes_tree, + (void **)delayed_nodes, inode_id, + ARRAY_SIZE(delayed_nodes)); + if (!n) { + spin_unlock(&root->inode_lock); + break; + } + + inode_id = delayed_nodes[n - 1]->inode_id + 1; + for (i = 0; i < n; i++) { + /* + * Don't increase refs in case the node is dead and + * about to be removed from the tree in the loop below + */ + if (!refcount_inc_not_zero(&delayed_nodes[i]->refs)) + delayed_nodes[i] = NULL; + } + spin_unlock(&root->inode_lock); + + for (i = 0; i < n; i++) { + if (!delayed_nodes[i]) + continue; + __btrfs_kill_delayed_node(delayed_nodes[i]); + btrfs_release_delayed_node(delayed_nodes[i]); + } + } +} + +void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) +{ + struct btrfs_delayed_node *curr_node, *prev_node; + + curr_node = btrfs_first_delayed_node(fs_info->delayed_root); + while (curr_node) { + __btrfs_kill_delayed_node(curr_node); + + prev_node = curr_node; + curr_node = btrfs_next_delayed_node(curr_node); + btrfs_release_delayed_node(prev_node); + } +} + |