diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 01:02:30 +0000 |
commit | 76cb841cb886eef6b3bee341a2266c76578724ad (patch) | |
tree | f5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /fs/xfs/xfs_aops.c | |
parent | Initial commit. (diff) | |
download | linux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip |
Adding upstream version 4.19.249.upstream/4.19.249
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | fs/xfs/xfs_aops.c | 1043 |
1 files changed, 1043 insertions, 0 deletions
diff --git a/fs/xfs/xfs_aops.c b/fs/xfs/xfs_aops.c new file mode 100644 index 000000000..b69786694 --- /dev/null +++ b/fs/xfs/xfs_aops.c @@ -0,0 +1,1043 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2000-2005 Silicon Graphics, Inc. + * Copyright (c) 2016-2018 Christoph Hellwig. + * All Rights Reserved. + */ +#include "xfs.h" +#include "xfs_shared.h" +#include "xfs_format.h" +#include "xfs_log_format.h" +#include "xfs_trans_resv.h" +#include "xfs_mount.h" +#include "xfs_inode.h" +#include "xfs_trans.h" +#include "xfs_inode_item.h" +#include "xfs_alloc.h" +#include "xfs_error.h" +#include "xfs_iomap.h" +#include "xfs_trace.h" +#include "xfs_bmap.h" +#include "xfs_bmap_util.h" +#include "xfs_bmap_btree.h" +#include "xfs_reflink.h" +#include <linux/writeback.h> + +/* + * structure owned by writepages passed to individual writepage calls + */ +struct xfs_writepage_ctx { + struct xfs_bmbt_irec imap; + unsigned int io_type; + unsigned int cow_seq; + struct xfs_ioend *ioend; +}; + +struct block_device * +xfs_find_bdev_for_inode( + struct inode *inode) +{ + struct xfs_inode *ip = XFS_I(inode); + struct xfs_mount *mp = ip->i_mount; + + if (XFS_IS_REALTIME_INODE(ip)) + return mp->m_rtdev_targp->bt_bdev; + else + return mp->m_ddev_targp->bt_bdev; +} + +struct dax_device * +xfs_find_daxdev_for_inode( + struct inode *inode) +{ + struct xfs_inode *ip = XFS_I(inode); + struct xfs_mount *mp = ip->i_mount; + + if (XFS_IS_REALTIME_INODE(ip)) + return mp->m_rtdev_targp->bt_daxdev; + else + return mp->m_ddev_targp->bt_daxdev; +} + +static void +xfs_finish_page_writeback( + struct inode *inode, + struct bio_vec *bvec, + int error) +{ + struct iomap_page *iop = to_iomap_page(bvec->bv_page); + + if (error) { + SetPageError(bvec->bv_page); + mapping_set_error(inode->i_mapping, -EIO); + } + + ASSERT(iop || i_blocksize(inode) == PAGE_SIZE); + ASSERT(!iop || atomic_read(&iop->write_count) > 0); + + if (!iop || atomic_dec_and_test(&iop->write_count)) + end_page_writeback(bvec->bv_page); +} + +/* + * We're now finished for good with this ioend structure. Update the page + * state, release holds on bios, and finally free up memory. Do not use the + * ioend after this. + */ +STATIC void +xfs_destroy_ioend( + struct xfs_ioend *ioend, + int error) +{ + struct inode *inode = ioend->io_inode; + struct bio *bio = &ioend->io_inline_bio; + struct bio *last = ioend->io_bio, *next; + u64 start = bio->bi_iter.bi_sector; + bool quiet = bio_flagged(bio, BIO_QUIET); + + for (bio = &ioend->io_inline_bio; bio; bio = next) { + struct bio_vec *bvec; + int i; + + /* + * For the last bio, bi_private points to the ioend, so we + * need to explicitly end the iteration here. + */ + if (bio == last) + next = NULL; + else + next = bio->bi_private; + + /* walk each page on bio, ending page IO on them */ + bio_for_each_segment_all(bvec, bio, i) + xfs_finish_page_writeback(inode, bvec, error); + bio_put(bio); + } + + if (unlikely(error && !quiet)) { + xfs_err_ratelimited(XFS_I(inode)->i_mount, + "writeback error on sector %llu", start); + } +} + +/* + * Fast and loose check if this write could update the on-disk inode size. + */ +static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) +{ + return ioend->io_offset + ioend->io_size > + XFS_I(ioend->io_inode)->i_d.di_size; +} + +STATIC int +xfs_setfilesize_trans_alloc( + struct xfs_ioend *ioend) +{ + struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; + struct xfs_trans *tp; + int error; + + error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, + XFS_TRANS_NOFS, &tp); + if (error) + return error; + + ioend->io_append_trans = tp; + + /* + * We may pass freeze protection with a transaction. So tell lockdep + * we released it. + */ + __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); + /* + * We hand off the transaction to the completion thread now, so + * clear the flag here. + */ + current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); + return 0; +} + +/* + * Update on-disk file size now that data has been written to disk. + */ +STATIC int +__xfs_setfilesize( + struct xfs_inode *ip, + struct xfs_trans *tp, + xfs_off_t offset, + size_t size) +{ + xfs_fsize_t isize; + + xfs_ilock(ip, XFS_ILOCK_EXCL); + isize = xfs_new_eof(ip, offset + size); + if (!isize) { + xfs_iunlock(ip, XFS_ILOCK_EXCL); + xfs_trans_cancel(tp); + return 0; + } + + trace_xfs_setfilesize(ip, offset, size); + + ip->i_d.di_size = isize; + xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); + xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); + + return xfs_trans_commit(tp); +} + +int +xfs_setfilesize( + struct xfs_inode *ip, + xfs_off_t offset, + size_t size) +{ + struct xfs_mount *mp = ip->i_mount; + struct xfs_trans *tp; + int error; + + error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); + if (error) + return error; + + return __xfs_setfilesize(ip, tp, offset, size); +} + +STATIC int +xfs_setfilesize_ioend( + struct xfs_ioend *ioend, + int error) +{ + struct xfs_inode *ip = XFS_I(ioend->io_inode); + struct xfs_trans *tp = ioend->io_append_trans; + + /* + * The transaction may have been allocated in the I/O submission thread, + * thus we need to mark ourselves as being in a transaction manually. + * Similarly for freeze protection. + */ + current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); + __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); + + /* we abort the update if there was an IO error */ + if (error) { + xfs_trans_cancel(tp); + return error; + } + + return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); +} + +/* + * IO write completion. + */ +STATIC void +xfs_end_io( + struct work_struct *work) +{ + struct xfs_ioend *ioend = + container_of(work, struct xfs_ioend, io_work); + struct xfs_inode *ip = XFS_I(ioend->io_inode); + xfs_off_t offset = ioend->io_offset; + size_t size = ioend->io_size; + int error; + + /* + * Just clean up the in-memory strutures if the fs has been shut down. + */ + if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { + error = -EIO; + goto done; + } + + /* + * Clean up any COW blocks on an I/O error. + */ + error = blk_status_to_errno(ioend->io_bio->bi_status); + if (unlikely(error)) { + switch (ioend->io_type) { + case XFS_IO_COW: + xfs_reflink_cancel_cow_range(ip, offset, size, true); + break; + } + + goto done; + } + + /* + * Success: commit the COW or unwritten blocks if needed. + */ + switch (ioend->io_type) { + case XFS_IO_COW: + error = xfs_reflink_end_cow(ip, offset, size); + break; + case XFS_IO_UNWRITTEN: + /* writeback should never update isize */ + error = xfs_iomap_write_unwritten(ip, offset, size, false); + break; + default: + ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans); + break; + } + +done: + if (ioend->io_append_trans) + error = xfs_setfilesize_ioend(ioend, error); + xfs_destroy_ioend(ioend, error); +} + +STATIC void +xfs_end_bio( + struct bio *bio) +{ + struct xfs_ioend *ioend = bio->bi_private; + struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; + + if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW) + queue_work(mp->m_unwritten_workqueue, &ioend->io_work); + else if (ioend->io_append_trans) + queue_work(mp->m_data_workqueue, &ioend->io_work); + else + xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status)); +} + +STATIC int +xfs_map_blocks( + struct xfs_writepage_ctx *wpc, + struct inode *inode, + loff_t offset) +{ + struct xfs_inode *ip = XFS_I(inode); + struct xfs_mount *mp = ip->i_mount; + ssize_t count = i_blocksize(inode); + xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset), end_fsb; + xfs_fileoff_t cow_fsb = NULLFILEOFF; + struct xfs_bmbt_irec imap; + int whichfork = XFS_DATA_FORK; + struct xfs_iext_cursor icur; + bool imap_valid; + int error = 0; + + /* + * We have to make sure the cached mapping is within EOF to protect + * against eofblocks trimming on file release leaving us with a stale + * mapping. Otherwise, a page for a subsequent file extending buffered + * write could get picked up by this writeback cycle and written to the + * wrong blocks. + * + * Note that what we really want here is a generic mapping invalidation + * mechanism to protect us from arbitrary extent modifying contexts, not + * just eofblocks. + */ + xfs_trim_extent_eof(&wpc->imap, ip); + + /* + * COW fork blocks can overlap data fork blocks even if the blocks + * aren't shared. COW I/O always takes precedent, so we must always + * check for overlap on reflink inodes unless the mapping is already a + * COW one, or the COW fork hasn't changed from the last time we looked + * at it. + * + * It's safe to check the COW fork if_seq here without the ILOCK because + * we've indirectly protected against concurrent updates: writeback has + * the page locked, which prevents concurrent invalidations by reflink + * and directio and prevents concurrent buffered writes to the same + * page. Changes to if_seq always happen under i_lock, which protects + * against concurrent updates and provides a memory barrier on the way + * out that ensures that we always see the current value. + */ + imap_valid = offset_fsb >= wpc->imap.br_startoff && + offset_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount; + if (imap_valid && + (!xfs_inode_has_cow_data(ip) || + wpc->io_type == XFS_IO_COW || + wpc->cow_seq == READ_ONCE(ip->i_cowfp->if_seq))) + return 0; + + if (XFS_FORCED_SHUTDOWN(mp)) + return -EIO; + + /* + * If we don't have a valid map, now it's time to get a new one for this + * offset. This will convert delayed allocations (including COW ones) + * into real extents. If we return without a valid map, it means we + * landed in a hole and we skip the block. + */ + xfs_ilock(ip, XFS_ILOCK_SHARED); + ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || + (ip->i_df.if_flags & XFS_IFEXTENTS)); + ASSERT(offset <= mp->m_super->s_maxbytes); + + if (offset > mp->m_super->s_maxbytes - count) + count = mp->m_super->s_maxbytes - offset; + end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); + + /* + * Check if this is offset is covered by a COW extents, and if yes use + * it directly instead of looking up anything in the data fork. + */ + if (xfs_inode_has_cow_data(ip) && + xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) + cow_fsb = imap.br_startoff; + if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { + wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); + xfs_iunlock(ip, XFS_ILOCK_SHARED); + /* + * Truncate can race with writeback since writeback doesn't + * take the iolock and truncate decreases the file size before + * it starts truncating the pages between new_size and old_size. + * Therefore, we can end up in the situation where writeback + * gets a CoW fork mapping but the truncate makes the mapping + * invalid and we end up in here trying to get a new mapping. + * bail out here so that we simply never get a valid mapping + * and so we drop the write altogether. The page truncation + * will kill the contents anyway. + */ + if (offset > i_size_read(inode)) { + wpc->io_type = XFS_IO_HOLE; + return 0; + } + whichfork = XFS_COW_FORK; + wpc->io_type = XFS_IO_COW; + goto allocate_blocks; + } + + /* + * Map valid and no COW extent in the way? We're done. + */ + if (imap_valid) { + xfs_iunlock(ip, XFS_ILOCK_SHARED); + return 0; + } + + /* + * If we don't have a valid map, now it's time to get a new one for this + * offset. This will convert delayed allocations (including COW ones) + * into real extents. + */ + if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) + imap.br_startoff = end_fsb; /* fake a hole past EOF */ + xfs_iunlock(ip, XFS_ILOCK_SHARED); + + if (imap.br_startoff > offset_fsb) { + /* landed in a hole or beyond EOF */ + imap.br_blockcount = imap.br_startoff - offset_fsb; + imap.br_startoff = offset_fsb; + imap.br_startblock = HOLESTARTBLOCK; + wpc->io_type = XFS_IO_HOLE; + } else { + /* + * Truncate to the next COW extent if there is one. This is the + * only opportunity to do this because we can skip COW fork + * lookups for the subsequent blocks in the mapping; however, + * the requirement to treat the COW range separately remains. + */ + if (cow_fsb != NULLFILEOFF && + cow_fsb < imap.br_startoff + imap.br_blockcount) + imap.br_blockcount = cow_fsb - imap.br_startoff; + + if (isnullstartblock(imap.br_startblock)) { + /* got a delalloc extent */ + wpc->io_type = XFS_IO_DELALLOC; + goto allocate_blocks; + } + + if (imap.br_state == XFS_EXT_UNWRITTEN) + wpc->io_type = XFS_IO_UNWRITTEN; + else + wpc->io_type = XFS_IO_OVERWRITE; + } + + wpc->imap = imap; + xfs_trim_extent_eof(&wpc->imap, ip); + trace_xfs_map_blocks_found(ip, offset, count, wpc->io_type, &imap); + return 0; +allocate_blocks: + error = xfs_iomap_write_allocate(ip, whichfork, offset, &imap, + &wpc->cow_seq); + if (error) + return error; + ASSERT(whichfork == XFS_COW_FORK || cow_fsb == NULLFILEOFF || + imap.br_startoff + imap.br_blockcount <= cow_fsb); + wpc->imap = imap; + xfs_trim_extent_eof(&wpc->imap, ip); + trace_xfs_map_blocks_alloc(ip, offset, count, wpc->io_type, &imap); + return 0; +} + +/* + * Submit the bio for an ioend. We are passed an ioend with a bio attached to + * it, and we submit that bio. The ioend may be used for multiple bio + * submissions, so we only want to allocate an append transaction for the ioend + * once. In the case of multiple bio submission, each bio will take an IO + * reference to the ioend to ensure that the ioend completion is only done once + * all bios have been submitted and the ioend is really done. + * + * If @fail is non-zero, it means that we have a situation where some part of + * the submission process has failed after we have marked paged for writeback + * and unlocked them. In this situation, we need to fail the bio and ioend + * rather than submit it to IO. This typically only happens on a filesystem + * shutdown. + */ +STATIC int +xfs_submit_ioend( + struct writeback_control *wbc, + struct xfs_ioend *ioend, + int status) +{ + /* Convert CoW extents to regular */ + if (!status && ioend->io_type == XFS_IO_COW) { + /* + * Yuk. This can do memory allocation, but is not a + * transactional operation so everything is done in GFP_KERNEL + * context. That can deadlock, because we hold pages in + * writeback state and GFP_KERNEL allocations can block on them. + * Hence we must operate in nofs conditions here. + */ + unsigned nofs_flag; + + nofs_flag = memalloc_nofs_save(); + status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), + ioend->io_offset, ioend->io_size); + memalloc_nofs_restore(nofs_flag); + } + + /* Reserve log space if we might write beyond the on-disk inode size. */ + if (!status && + ioend->io_type != XFS_IO_UNWRITTEN && + xfs_ioend_is_append(ioend) && + !ioend->io_append_trans) + status = xfs_setfilesize_trans_alloc(ioend); + + ioend->io_bio->bi_private = ioend; + ioend->io_bio->bi_end_io = xfs_end_bio; + ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); + + /* + * If we are failing the IO now, just mark the ioend with an + * error and finish it. This will run IO completion immediately + * as there is only one reference to the ioend at this point in + * time. + */ + if (status) { + ioend->io_bio->bi_status = errno_to_blk_status(status); + bio_endio(ioend->io_bio); + return status; + } + + ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; + submit_bio(ioend->io_bio); + return 0; +} + +static struct xfs_ioend * +xfs_alloc_ioend( + struct inode *inode, + unsigned int type, + xfs_off_t offset, + struct block_device *bdev, + sector_t sector) +{ + struct xfs_ioend *ioend; + struct bio *bio; + + bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset); + bio_set_dev(bio, bdev); + bio->bi_iter.bi_sector = sector; + + ioend = container_of(bio, struct xfs_ioend, io_inline_bio); + INIT_LIST_HEAD(&ioend->io_list); + ioend->io_type = type; + ioend->io_inode = inode; + ioend->io_size = 0; + ioend->io_offset = offset; + INIT_WORK(&ioend->io_work, xfs_end_io); + ioend->io_append_trans = NULL; + ioend->io_bio = bio; + return ioend; +} + +/* + * Allocate a new bio, and chain the old bio to the new one. + * + * Note that we have to do perform the chaining in this unintuitive order + * so that the bi_private linkage is set up in the right direction for the + * traversal in xfs_destroy_ioend(). + */ +static void +xfs_chain_bio( + struct xfs_ioend *ioend, + struct writeback_control *wbc, + struct block_device *bdev, + sector_t sector) +{ + struct bio *new; + + new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); + bio_set_dev(new, bdev); + new->bi_iter.bi_sector = sector; + bio_chain(ioend->io_bio, new); + bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ + ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); + ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; + submit_bio(ioend->io_bio); + ioend->io_bio = new; +} + +/* + * Test to see if we have an existing ioend structure that we could append to + * first, otherwise finish off the current ioend and start another. + */ +STATIC void +xfs_add_to_ioend( + struct inode *inode, + xfs_off_t offset, + struct page *page, + struct iomap_page *iop, + struct xfs_writepage_ctx *wpc, + struct writeback_control *wbc, + struct list_head *iolist) +{ + struct xfs_inode *ip = XFS_I(inode); + struct xfs_mount *mp = ip->i_mount; + struct block_device *bdev = xfs_find_bdev_for_inode(inode); + unsigned len = i_blocksize(inode); + unsigned poff = offset & (PAGE_SIZE - 1); + sector_t sector; + + sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) + + ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9); + + if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type || + sector != bio_end_sector(wpc->ioend->io_bio) || + offset != wpc->ioend->io_offset + wpc->ioend->io_size) { + if (wpc->ioend) + list_add(&wpc->ioend->io_list, iolist); + wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, + bdev, sector); + } + + if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff)) { + if (iop) + atomic_inc(&iop->write_count); + if (bio_full(wpc->ioend->io_bio)) + xfs_chain_bio(wpc->ioend, wbc, bdev, sector); + __bio_add_page(wpc->ioend->io_bio, page, len, poff); + } + + wpc->ioend->io_size += len; +} + +STATIC void +xfs_vm_invalidatepage( + struct page *page, + unsigned int offset, + unsigned int length) +{ + trace_xfs_invalidatepage(page->mapping->host, page, offset, length); + iomap_invalidatepage(page, offset, length); +} + +/* + * If the page has delalloc blocks on it, we need to punch them out before we + * invalidate the page. If we don't, we leave a stale delalloc mapping on the + * inode that can trip up a later direct I/O read operation on the same region. + * + * We prevent this by truncating away the delalloc regions on the page. Because + * they are delalloc, we can do this without needing a transaction. Indeed - if + * we get ENOSPC errors, we have to be able to do this truncation without a + * transaction as there is no space left for block reservation (typically why we + * see a ENOSPC in writeback). + */ +STATIC void +xfs_aops_discard_page( + struct page *page) +{ + struct inode *inode = page->mapping->host; + struct xfs_inode *ip = XFS_I(inode); + struct xfs_mount *mp = ip->i_mount; + loff_t offset = page_offset(page); + xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset); + int error; + + if (XFS_FORCED_SHUTDOWN(mp)) + goto out_invalidate; + + xfs_alert(mp, + "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.", + page, ip->i_ino, offset); + + error = xfs_bmap_punch_delalloc_range(ip, start_fsb, + PAGE_SIZE / i_blocksize(inode)); + if (error && !XFS_FORCED_SHUTDOWN(mp)) + xfs_alert(mp, "page discard unable to remove delalloc mapping."); +out_invalidate: + xfs_vm_invalidatepage(page, 0, PAGE_SIZE); +} + +/* + * We implement an immediate ioend submission policy here to avoid needing to + * chain multiple ioends and hence nest mempool allocations which can violate + * forward progress guarantees we need to provide. The current ioend we are + * adding blocks to is cached on the writepage context, and if the new block + * does not append to the cached ioend it will create a new ioend and cache that + * instead. + * + * If a new ioend is created and cached, the old ioend is returned and queued + * locally for submission once the entire page is processed or an error has been + * detected. While ioends are submitted immediately after they are completed, + * batching optimisations are provided by higher level block plugging. + * + * At the end of a writeback pass, there will be a cached ioend remaining on the + * writepage context that the caller will need to submit. + */ +static int +xfs_writepage_map( + struct xfs_writepage_ctx *wpc, + struct writeback_control *wbc, + struct inode *inode, + struct page *page, + uint64_t end_offset) +{ + LIST_HEAD(submit_list); + struct iomap_page *iop = to_iomap_page(page); + unsigned len = i_blocksize(inode); + struct xfs_ioend *ioend, *next; + uint64_t file_offset; /* file offset of page */ + int error = 0, count = 0, i; + + ASSERT(iop || i_blocksize(inode) == PAGE_SIZE); + ASSERT(!iop || atomic_read(&iop->write_count) == 0); + + /* + * Walk through the page to find areas to write back. If we run off the + * end of the current map or find the current map invalid, grab a new + * one. + */ + for (i = 0, file_offset = page_offset(page); + i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset; + i++, file_offset += len) { + if (iop && !test_bit(i, iop->uptodate)) + continue; + + error = xfs_map_blocks(wpc, inode, file_offset); + if (error) + break; + if (wpc->io_type == XFS_IO_HOLE) + continue; + xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc, + &submit_list); + count++; + } + + ASSERT(wpc->ioend || list_empty(&submit_list)); + ASSERT(PageLocked(page)); + ASSERT(!PageWriteback(page)); + + /* + * On error, we have to fail the ioend here because we may have set + * pages under writeback, we have to make sure we run IO completion to + * mark the error state of the IO appropriately, so we can't cancel the + * ioend directly here. That means we have to mark this page as under + * writeback if we included any blocks from it in the ioend chain so + * that completion treats it correctly. + * + * If we didn't include the page in the ioend, the on error we can + * simply discard and unlock it as there are no other users of the page + * now. The caller will still need to trigger submission of outstanding + * ioends on the writepage context so they are treated correctly on + * error. + */ + if (unlikely(error)) { + if (!count) { + xfs_aops_discard_page(page); + ClearPageUptodate(page); + unlock_page(page); + goto done; + } + + /* + * If the page was not fully cleaned, we need to ensure that the + * higher layers come back to it correctly. That means we need + * to keep the page dirty, and for WB_SYNC_ALL writeback we need + * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed + * so another attempt to write this page in this writeback sweep + * will be made. + */ + set_page_writeback_keepwrite(page); + } else { + clear_page_dirty_for_io(page); + set_page_writeback(page); + } + + unlock_page(page); + + /* + * Preserve the original error if there was one, otherwise catch + * submission errors here and propagate into subsequent ioend + * submissions. + */ + list_for_each_entry_safe(ioend, next, &submit_list, io_list) { + int error2; + + list_del_init(&ioend->io_list); + error2 = xfs_submit_ioend(wbc, ioend, error); + if (error2 && !error) + error = error2; + } + + /* + * We can end up here with no error and nothing to write only if we race + * with a partial page truncate on a sub-page block sized filesystem. + */ + if (!count) + end_page_writeback(page); +done: + mapping_set_error(page->mapping, error); + return error; +} + +/* + * Write out a dirty page. + * + * For delalloc space on the page we need to allocate space and flush it. + * For unwritten space on the page we need to start the conversion to + * regular allocated space. + */ +STATIC int +xfs_do_writepage( + struct page *page, + struct writeback_control *wbc, + void *data) +{ + struct xfs_writepage_ctx *wpc = data; + struct inode *inode = page->mapping->host; + loff_t offset; + uint64_t end_offset; + pgoff_t end_index; + + trace_xfs_writepage(inode, page, 0, 0); + + /* + * Refuse to write the page out if we are called from reclaim context. + * + * This avoids stack overflows when called from deeply used stacks in + * random callers for direct reclaim or memcg reclaim. We explicitly + * allow reclaim from kswapd as the stack usage there is relatively low. + * + * This should never happen except in the case of a VM regression so + * warn about it. + */ + if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == + PF_MEMALLOC)) + goto redirty; + + /* + * Given that we do not allow direct reclaim to call us, we should + * never be called while in a filesystem transaction. + */ + if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS)) + goto redirty; + + /* + * Is this page beyond the end of the file? + * + * The page index is less than the end_index, adjust the end_offset + * to the highest offset that this page should represent. + * ----------------------------------------------------- + * | file mapping | <EOF> | + * ----------------------------------------------------- + * | Page ... | Page N-2 | Page N-1 | Page N | | + * ^--------------------------------^----------|-------- + * | desired writeback range | see else | + * ---------------------------------^------------------| + */ + offset = i_size_read(inode); + end_index = offset >> PAGE_SHIFT; + if (page->index < end_index) + end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; + else { + /* + * Check whether the page to write out is beyond or straddles + * i_size or not. + * ------------------------------------------------------- + * | file mapping | <EOF> | + * ------------------------------------------------------- + * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | + * ^--------------------------------^-----------|--------- + * | | Straddles | + * ---------------------------------^-----------|--------| + */ + unsigned offset_into_page = offset & (PAGE_SIZE - 1); + + /* + * Skip the page if it is fully outside i_size, e.g. due to a + * truncate operation that is in progress. We must redirty the + * page so that reclaim stops reclaiming it. Otherwise + * xfs_vm_releasepage() is called on it and gets confused. + * + * Note that the end_index is unsigned long, it would overflow + * if the given offset is greater than 16TB on 32-bit system + * and if we do check the page is fully outside i_size or not + * via "if (page->index >= end_index + 1)" as "end_index + 1" + * will be evaluated to 0. Hence this page will be redirtied + * and be written out repeatedly which would result in an + * infinite loop, the user program that perform this operation + * will hang. Instead, we can verify this situation by checking + * if the page to write is totally beyond the i_size or if it's + * offset is just equal to the EOF. + */ + if (page->index > end_index || + (page->index == end_index && offset_into_page == 0)) + goto redirty; + + /* + * The page straddles i_size. It must be zeroed out on each + * and every writepage invocation because it may be mmapped. + * "A file is mapped in multiples of the page size. For a file + * that is not a multiple of the page size, the remaining + * memory is zeroed when mapped, and writes to that region are + * not written out to the file." + */ + zero_user_segment(page, offset_into_page, PAGE_SIZE); + + /* Adjust the end_offset to the end of file */ + end_offset = offset; + } + + return xfs_writepage_map(wpc, wbc, inode, page, end_offset); + +redirty: + redirty_page_for_writepage(wbc, page); + unlock_page(page); + return 0; +} + +STATIC int +xfs_vm_writepage( + struct page *page, + struct writeback_control *wbc) +{ + struct xfs_writepage_ctx wpc = { + .io_type = XFS_IO_INVALID, + }; + int ret; + + ret = xfs_do_writepage(page, wbc, &wpc); + if (wpc.ioend) + ret = xfs_submit_ioend(wbc, wpc.ioend, ret); + return ret; +} + +STATIC int +xfs_vm_writepages( + struct address_space *mapping, + struct writeback_control *wbc) +{ + struct xfs_writepage_ctx wpc = { + .io_type = XFS_IO_INVALID, + }; + int ret; + + xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); + ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); + if (wpc.ioend) + ret = xfs_submit_ioend(wbc, wpc.ioend, ret); + return ret; +} + +STATIC int +xfs_dax_writepages( + struct address_space *mapping, + struct writeback_control *wbc) +{ + xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); + return dax_writeback_mapping_range(mapping, + xfs_find_bdev_for_inode(mapping->host), wbc); +} + +STATIC int +xfs_vm_releasepage( + struct page *page, + gfp_t gfp_mask) +{ + trace_xfs_releasepage(page->mapping->host, page, 0, 0); + return iomap_releasepage(page, gfp_mask); +} + +STATIC sector_t +xfs_vm_bmap( + struct address_space *mapping, + sector_t block) +{ + struct xfs_inode *ip = XFS_I(mapping->host); + + trace_xfs_vm_bmap(ip); + + /* + * The swap code (ab-)uses ->bmap to get a block mapping and then + * bypasses the file system for actual I/O. We really can't allow + * that on reflinks inodes, so we have to skip out here. And yes, + * 0 is the magic code for a bmap error. + * + * Since we don't pass back blockdev info, we can't return bmap + * information for rt files either. + */ + if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip)) + return 0; + return iomap_bmap(mapping, block, &xfs_iomap_ops); +} + +STATIC int +xfs_vm_readpage( + struct file *unused, + struct page *page) +{ + trace_xfs_vm_readpage(page->mapping->host, 1); + return iomap_readpage(page, &xfs_iomap_ops); +} + +STATIC int +xfs_vm_readpages( + struct file *unused, + struct address_space *mapping, + struct list_head *pages, + unsigned nr_pages) +{ + trace_xfs_vm_readpages(mapping->host, nr_pages); + return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops); +} + +static int +xfs_iomap_swapfile_activate( + struct swap_info_struct *sis, + struct file *swap_file, + sector_t *span) +{ + sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file)); + return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops); +} + +const struct address_space_operations xfs_address_space_operations = { + .readpage = xfs_vm_readpage, + .readpages = xfs_vm_readpages, + .writepage = xfs_vm_writepage, + .writepages = xfs_vm_writepages, + .set_page_dirty = iomap_set_page_dirty, + .releasepage = xfs_vm_releasepage, + .invalidatepage = xfs_vm_invalidatepage, + .bmap = xfs_vm_bmap, + .direct_IO = noop_direct_IO, + .migratepage = iomap_migrate_page, + .is_partially_uptodate = iomap_is_partially_uptodate, + .error_remove_page = generic_error_remove_page, + .swap_activate = xfs_iomap_swapfile_activate, +}; + +const struct address_space_operations xfs_dax_aops = { + .writepages = xfs_dax_writepages, + .direct_IO = noop_direct_IO, + .set_page_dirty = noop_set_page_dirty, + .invalidatepage = noop_invalidatepage, + .swap_activate = xfs_iomap_swapfile_activate, +}; |