summaryrefslogtreecommitdiffstats
path: root/include/media/demux.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
commit76cb841cb886eef6b3bee341a2266c76578724ad (patch)
treef5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /include/media/demux.h
parentInitial commit. (diff)
downloadlinux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz
linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip
Adding upstream version 4.19.249.upstream/4.19.249
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--include/media/demux.h600
1 files changed, 600 insertions, 0 deletions
diff --git a/include/media/demux.h b/include/media/demux.h
new file mode 100644
index 000000000..bf00a5a41
--- /dev/null
+++ b/include/media/demux.h
@@ -0,0 +1,600 @@
+/*
+ * demux.h
+ *
+ * The Kernel Digital TV Demux kABI defines a driver-internal interface for
+ * registering low-level, hardware specific driver to a hardware independent
+ * demux layer.
+ *
+ * Copyright (c) 2002 Convergence GmbH
+ *
+ * based on code:
+ * Copyright (c) 2000 Nokia Research Center
+ * Tampere, FINLAND
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public License
+ * as published by the Free Software Foundation; either version 2.1
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ */
+
+#ifndef __DEMUX_H
+#define __DEMUX_H
+
+#include <linux/types.h>
+#include <linux/errno.h>
+#include <linux/list.h>
+#include <linux/time.h>
+#include <linux/dvb/dmx.h>
+
+/*
+ * Common definitions
+ */
+
+/*
+ * DMX_MAX_FILTER_SIZE: Maximum length (in bytes) of a section/PES filter.
+ */
+
+#ifndef DMX_MAX_FILTER_SIZE
+#define DMX_MAX_FILTER_SIZE 18
+#endif
+
+/*
+ * DMX_MAX_SECFEED_SIZE: Maximum length (in bytes) of a private section feed
+ * filter.
+ */
+
+#ifndef DMX_MAX_SECTION_SIZE
+#define DMX_MAX_SECTION_SIZE 4096
+#endif
+#ifndef DMX_MAX_SECFEED_SIZE
+#define DMX_MAX_SECFEED_SIZE (DMX_MAX_SECTION_SIZE + 188)
+#endif
+
+/*
+ * TS packet reception
+ */
+
+/**
+ * enum ts_filter_type - filter type bitmap for dmx_ts_feed.set\(\)
+ *
+ * @TS_PACKET: Send TS packets (188 bytes) to callback (default).
+ * @TS_PAYLOAD_ONLY: In case TS_PACKET is set, only send the TS payload
+ * (<=184 bytes per packet) to callback
+ * @TS_DECODER: Send stream to built-in decoder (if present).
+ * @TS_DEMUX: In case TS_PACKET is set, send the TS to the demux
+ * device, not to the dvr device
+ */
+enum ts_filter_type {
+ TS_PACKET = 1,
+ TS_PAYLOAD_ONLY = 2,
+ TS_DECODER = 4,
+ TS_DEMUX = 8,
+};
+
+/**
+ * struct dmx_ts_feed - Structure that contains a TS feed filter
+ *
+ * @is_filtering: Set to non-zero when filtering in progress
+ * @parent: pointer to struct dmx_demux
+ * @priv: pointer to private data of the API client
+ * @set: sets the TS filter
+ * @start_filtering: starts TS filtering
+ * @stop_filtering: stops TS filtering
+ *
+ * A TS feed is typically mapped to a hardware PID filter on the demux chip.
+ * Using this API, the client can set the filtering properties to start/stop
+ * filtering TS packets on a particular TS feed.
+ */
+struct dmx_ts_feed {
+ int is_filtering;
+ struct dmx_demux *parent;
+ void *priv;
+ int (*set)(struct dmx_ts_feed *feed,
+ u16 pid,
+ int type,
+ enum dmx_ts_pes pes_type,
+ ktime_t timeout);
+ int (*start_filtering)(struct dmx_ts_feed *feed);
+ int (*stop_filtering)(struct dmx_ts_feed *feed);
+};
+
+/*
+ * Section reception
+ */
+
+/**
+ * struct dmx_section_filter - Structure that describes a section filter
+ *
+ * @filter_value: Contains up to 16 bytes (128 bits) of the TS section header
+ * that will be matched by the section filter
+ * @filter_mask: Contains a 16 bytes (128 bits) filter mask with the bits
+ * specified by @filter_value that will be used on the filter
+ * match logic.
+ * @filter_mode: Contains a 16 bytes (128 bits) filter mode.
+ * @parent: Back-pointer to struct dmx_section_feed.
+ * @priv: Pointer to private data of the API client.
+ *
+ *
+ * The @filter_mask controls which bits of @filter_value are compared with
+ * the section headers/payload. On a binary value of 1 in filter_mask, the
+ * corresponding bits are compared. The filter only accepts sections that are
+ * equal to filter_value in all the tested bit positions.
+ */
+struct dmx_section_filter {
+ u8 filter_value[DMX_MAX_FILTER_SIZE];
+ u8 filter_mask[DMX_MAX_FILTER_SIZE];
+ u8 filter_mode[DMX_MAX_FILTER_SIZE];
+ struct dmx_section_feed *parent;
+
+ void *priv;
+};
+
+/**
+ * struct dmx_section_feed - Structure that contains a section feed filter
+ *
+ * @is_filtering: Set to non-zero when filtering in progress
+ * @parent: pointer to struct dmx_demux
+ * @priv: pointer to private data of the API client
+ * @check_crc: If non-zero, check the CRC values of filtered sections.
+ * @set: sets the section filter
+ * @allocate_filter: This function is used to allocate a section filter on
+ * the demux. It should only be called when no filtering
+ * is in progress on this section feed. If a filter cannot
+ * be allocated, the function fails with -ENOSPC.
+ * @release_filter: This function releases all the resources of a
+ * previously allocated section filter. The function
+ * should not be called while filtering is in progress
+ * on this section feed. After calling this function,
+ * the caller should not try to dereference the filter
+ * pointer.
+ * @start_filtering: starts section filtering
+ * @stop_filtering: stops section filtering
+ *
+ * A TS feed is typically mapped to a hardware PID filter on the demux chip.
+ * Using this API, the client can set the filtering properties to start/stop
+ * filtering TS packets on a particular TS feed.
+ */
+struct dmx_section_feed {
+ int is_filtering;
+ struct dmx_demux *parent;
+ void *priv;
+
+ int check_crc;
+
+ /* private: Used internally at dvb_demux.c */
+ u32 crc_val;
+
+ u8 *secbuf;
+ u8 secbuf_base[DMX_MAX_SECFEED_SIZE];
+ u16 secbufp, seclen, tsfeedp;
+
+ /* public: */
+ int (*set)(struct dmx_section_feed *feed,
+ u16 pid,
+ int check_crc);
+ int (*allocate_filter)(struct dmx_section_feed *feed,
+ struct dmx_section_filter **filter);
+ int (*release_filter)(struct dmx_section_feed *feed,
+ struct dmx_section_filter *filter);
+ int (*start_filtering)(struct dmx_section_feed *feed);
+ int (*stop_filtering)(struct dmx_section_feed *feed);
+};
+
+/**
+ * typedef dmx_ts_cb - DVB demux TS filter callback function prototype
+ *
+ * @buffer1: Pointer to the start of the filtered TS packets.
+ * @buffer1_length: Length of the TS data in buffer1.
+ * @buffer2: Pointer to the tail of the filtered TS packets, or NULL.
+ * @buffer2_length: Length of the TS data in buffer2.
+ * @source: Indicates which TS feed is the source of the callback.
+ * @buffer_flags: Address where buffer flags are stored. Those are
+ * used to report discontinuity users via DVB
+ * memory mapped API, as defined by
+ * &enum dmx_buffer_flags.
+ *
+ * This function callback prototype, provided by the client of the demux API,
+ * is called from the demux code. The function is only called when filtering
+ * on a TS feed has been enabled using the start_filtering\(\) function at
+ * the &dmx_demux.
+ * Any TS packets that match the filter settings are copied to a circular
+ * buffer. The filtered TS packets are delivered to the client using this
+ * callback function.
+ * It is expected that the @buffer1 and @buffer2 callback parameters point to
+ * addresses within the circular buffer, but other implementations are also
+ * possible. Note that the called party should not try to free the memory
+ * the @buffer1 and @buffer2 parameters point to.
+ *
+ * When this function is called, the @buffer1 parameter typically points to
+ * the start of the first undelivered TS packet within a circular buffer.
+ * The @buffer2 buffer parameter is normally NULL, except when the received
+ * TS packets have crossed the last address of the circular buffer and
+ * "wrapped" to the beginning of the buffer. In the latter case the @buffer1
+ * parameter would contain an address within the circular buffer, while the
+ * @buffer2 parameter would contain the first address of the circular buffer.
+ * The number of bytes delivered with this function (i.e. @buffer1_length +
+ * @buffer2_length) is usually equal to the value of callback_length parameter
+ * given in the set() function, with one exception: if a timeout occurs before
+ * receiving callback_length bytes of TS data, any undelivered packets are
+ * immediately delivered to the client by calling this function. The timeout
+ * duration is controlled by the set() function in the TS Feed API.
+ *
+ * If a TS packet is received with errors that could not be fixed by the
+ * TS-level forward error correction (FEC), the Transport_error_indicator
+ * flag of the TS packet header should be set. The TS packet should not be
+ * discarded, as the error can possibly be corrected by a higher layer
+ * protocol. If the called party is slow in processing the callback, it
+ * is possible that the circular buffer eventually fills up. If this happens,
+ * the demux driver should discard any TS packets received while the buffer
+ * is full and return -EOVERFLOW.
+ *
+ * The type of data returned to the callback can be selected by the
+ * &dmx_ts_feed.@set function. The type parameter decides if the raw
+ * TS packet (TS_PACKET) or just the payload (TS_PACKET|TS_PAYLOAD_ONLY)
+ * should be returned. If additionally the TS_DECODER bit is set the stream
+ * will also be sent to the hardware MPEG decoder.
+ *
+ * Return:
+ *
+ * - 0, on success;
+ *
+ * - -EOVERFLOW, on buffer overflow.
+ */
+typedef int (*dmx_ts_cb)(const u8 *buffer1,
+ size_t buffer1_length,
+ const u8 *buffer2,
+ size_t buffer2_length,
+ struct dmx_ts_feed *source,
+ u32 *buffer_flags);
+
+/**
+ * typedef dmx_section_cb - DVB demux TS filter callback function prototype
+ *
+ * @buffer1: Pointer to the start of the filtered section, e.g.
+ * within the circular buffer of the demux driver.
+ * @buffer1_len: Length of the filtered section data in @buffer1,
+ * including headers and CRC.
+ * @buffer2: Pointer to the tail of the filtered section data,
+ * or NULL. Useful to handle the wrapping of a
+ * circular buffer.
+ * @buffer2_len: Length of the filtered section data in @buffer2,
+ * including headers and CRC.
+ * @source: Indicates which section feed is the source of the
+ * callback.
+ * @buffer_flags: Address where buffer flags are stored. Those are
+ * used to report discontinuity users via DVB
+ * memory mapped API, as defined by
+ * &enum dmx_buffer_flags.
+ *
+ * This function callback prototype, provided by the client of the demux API,
+ * is called from the demux code. The function is only called when
+ * filtering of sections has been enabled using the function
+ * &dmx_ts_feed.@start_filtering. When the demux driver has received a
+ * complete section that matches at least one section filter, the client
+ * is notified via this callback function. Normally this function is called
+ * for each received section; however, it is also possible to deliver
+ * multiple sections with one callback, for example when the system load
+ * is high. If an error occurs while receiving a section, this
+ * function should be called with the corresponding error type set in the
+ * success field, whether or not there is data to deliver. The Section Feed
+ * implementation should maintain a circular buffer for received sections.
+ * However, this is not necessary if the Section Feed API is implemented as
+ * a client of the TS Feed API, because the TS Feed implementation then
+ * buffers the received data. The size of the circular buffer can be
+ * configured using the &dmx_ts_feed.@set function in the Section Feed API.
+ * If there is no room in the circular buffer when a new section is received,
+ * the section must be discarded. If this happens, the value of the success
+ * parameter should be DMX_OVERRUN_ERROR on the next callback.
+ */
+typedef int (*dmx_section_cb)(const u8 *buffer1,
+ size_t buffer1_len,
+ const u8 *buffer2,
+ size_t buffer2_len,
+ struct dmx_section_filter *source,
+ u32 *buffer_flags);
+
+/*
+ * DVB Front-End
+ */
+
+/**
+ * enum dmx_frontend_source - Used to identify the type of frontend
+ *
+ * @DMX_MEMORY_FE: The source of the demux is memory. It means that
+ * the MPEG-TS to be filtered comes from userspace,
+ * via write() syscall.
+ *
+ * @DMX_FRONTEND_0: The source of the demux is a frontend connected
+ * to the demux.
+ */
+enum dmx_frontend_source {
+ DMX_MEMORY_FE,
+ DMX_FRONTEND_0,
+};
+
+/**
+ * struct dmx_frontend - Structure that lists the frontends associated with
+ * a demux
+ *
+ * @connectivity_list: List of front-ends that can be connected to a
+ * particular demux;
+ * @source: Type of the frontend.
+ *
+ * FIXME: this structure should likely be replaced soon by some
+ * media-controller based logic.
+ */
+struct dmx_frontend {
+ struct list_head connectivity_list;
+ enum dmx_frontend_source source;
+};
+
+/*
+ * MPEG-2 TS Demux
+ */
+
+/**
+ * enum dmx_demux_caps - MPEG-2 TS Demux capabilities bitmap
+ *
+ * @DMX_TS_FILTERING: set if TS filtering is supported;
+ * @DMX_SECTION_FILTERING: set if section filtering is supported;
+ * @DMX_MEMORY_BASED_FILTERING: set if write() available.
+ *
+ * Those flags are OR'ed in the &dmx_demux.capabilities field
+ */
+enum dmx_demux_caps {
+ DMX_TS_FILTERING = 1,
+ DMX_SECTION_FILTERING = 4,
+ DMX_MEMORY_BASED_FILTERING = 8,
+};
+
+/*
+ * Demux resource type identifier.
+ */
+
+/**
+ * DMX_FE_ENTRY - Casts elements in the list of registered
+ * front-ends from the generic type struct list_head
+ * to the type * struct dmx_frontend
+ *
+ * @list: list of struct dmx_frontend
+ */
+#define DMX_FE_ENTRY(list) \
+ list_entry(list, struct dmx_frontend, connectivity_list)
+
+/**
+ * struct dmx_demux - Structure that contains the demux capabilities and
+ * callbacks.
+ *
+ * @capabilities: Bitfield of capability flags.
+ *
+ * @frontend: Front-end connected to the demux
+ *
+ * @priv: Pointer to private data of the API client
+ *
+ * @open: This function reserves the demux for use by the caller and, if
+ * necessary, initializes the demux. When the demux is no longer needed,
+ * the function @close should be called. It should be possible for
+ * multiple clients to access the demux at the same time. Thus, the
+ * function implementation should increment the demux usage count when
+ * @open is called and decrement it when @close is called.
+ * The @demux function parameter contains a pointer to the demux API and
+ * instance data.
+ * It returns:
+ * 0 on success;
+ * -EUSERS, if maximum usage count was reached;
+ * -EINVAL, on bad parameter.
+ *
+ * @close: This function reserves the demux for use by the caller and, if
+ * necessary, initializes the demux. When the demux is no longer needed,
+ * the function @close should be called. It should be possible for
+ * multiple clients to access the demux at the same time. Thus, the
+ * function implementation should increment the demux usage count when
+ * @open is called and decrement it when @close is called.
+ * The @demux function parameter contains a pointer to the demux API and
+ * instance data.
+ * It returns:
+ * 0 on success;
+ * -ENODEV, if demux was not in use (e. g. no users);
+ * -EINVAL, on bad parameter.
+ *
+ * @write: This function provides the demux driver with a memory buffer
+ * containing TS packets. Instead of receiving TS packets from the DVB
+ * front-end, the demux driver software will read packets from memory.
+ * Any clients of this demux with active TS, PES or Section filters will
+ * receive filtered data via the Demux callback API (see 0). The function
+ * returns when all the data in the buffer has been consumed by the demux.
+ * Demux hardware typically cannot read TS from memory. If this is the
+ * case, memory-based filtering has to be implemented entirely in software.
+ * The @demux function parameter contains a pointer to the demux API and
+ * instance data.
+ * The @buf function parameter contains a pointer to the TS data in
+ * kernel-space memory.
+ * The @count function parameter contains the length of the TS data.
+ * It returns:
+ * 0 on success;
+ * -ERESTARTSYS, if mutex lock was interrupted;
+ * -EINTR, if a signal handling is pending;
+ * -ENODEV, if demux was removed;
+ * -EINVAL, on bad parameter.
+ *
+ * @allocate_ts_feed: Allocates a new TS feed, which is used to filter the TS
+ * packets carrying a certain PID. The TS feed normally corresponds to a
+ * hardware PID filter on the demux chip.
+ * The @demux function parameter contains a pointer to the demux API and
+ * instance data.
+ * The @feed function parameter contains a pointer to the TS feed API and
+ * instance data.
+ * The @callback function parameter contains a pointer to the callback
+ * function for passing received TS packet.
+ * It returns:
+ * 0 on success;
+ * -ERESTARTSYS, if mutex lock was interrupted;
+ * -EBUSY, if no more TS feeds is available;
+ * -EINVAL, on bad parameter.
+ *
+ * @release_ts_feed: Releases the resources allocated with @allocate_ts_feed.
+ * Any filtering in progress on the TS feed should be stopped before
+ * calling this function.
+ * The @demux function parameter contains a pointer to the demux API and
+ * instance data.
+ * The @feed function parameter contains a pointer to the TS feed API and
+ * instance data.
+ * It returns:
+ * 0 on success;
+ * -EINVAL on bad parameter.
+ *
+ * @allocate_section_feed: Allocates a new section feed, i.e. a demux resource
+ * for filtering and receiving sections. On platforms with hardware
+ * support for section filtering, a section feed is directly mapped to
+ * the demux HW. On other platforms, TS packets are first PID filtered in
+ * hardware and a hardware section filter then emulated in software. The
+ * caller obtains an API pointer of type dmx_section_feed_t as an out
+ * parameter. Using this API the caller can set filtering parameters and
+ * start receiving sections.
+ * The @demux function parameter contains a pointer to the demux API and
+ * instance data.
+ * The @feed function parameter contains a pointer to the TS feed API and
+ * instance data.
+ * The @callback function parameter contains a pointer to the callback
+ * function for passing received TS packet.
+ * It returns:
+ * 0 on success;
+ * -EBUSY, if no more TS feeds is available;
+ * -EINVAL, on bad parameter.
+ *
+ * @release_section_feed: Releases the resources allocated with
+ * @allocate_section_feed, including allocated filters. Any filtering in
+ * progress on the section feed should be stopped before calling this
+ * function.
+ * The @demux function parameter contains a pointer to the demux API and
+ * instance data.
+ * The @feed function parameter contains a pointer to the TS feed API and
+ * instance data.
+ * It returns:
+ * 0 on success;
+ * -EINVAL, on bad parameter.
+ *
+ * @add_frontend: Registers a connectivity between a demux and a front-end,
+ * i.e., indicates that the demux can be connected via a call to
+ * @connect_frontend to use the given front-end as a TS source. The
+ * client of this function has to allocate dynamic or static memory for
+ * the frontend structure and initialize its fields before calling this
+ * function. This function is normally called during the driver
+ * initialization. The caller must not free the memory of the frontend
+ * struct before successfully calling @remove_frontend.
+ * The @demux function parameter contains a pointer to the demux API and
+ * instance data.
+ * The @frontend function parameter contains a pointer to the front-end
+ * instance data.
+ * It returns:
+ * 0 on success;
+ * -EINVAL, on bad parameter.
+ *
+ * @remove_frontend: Indicates that the given front-end, registered by a call
+ * to @add_frontend, can no longer be connected as a TS source by this
+ * demux. The function should be called when a front-end driver or a demux
+ * driver is removed from the system. If the front-end is in use, the
+ * function fails with the return value of -EBUSY. After successfully
+ * calling this function, the caller can free the memory of the frontend
+ * struct if it was dynamically allocated before the @add_frontend
+ * operation.
+ * The @demux function parameter contains a pointer to the demux API and
+ * instance data.
+ * The @frontend function parameter contains a pointer to the front-end
+ * instance data.
+ * It returns:
+ * 0 on success;
+ * -ENODEV, if the front-end was not found,
+ * -EINVAL, on bad parameter.
+ *
+ * @get_frontends: Provides the APIs of the front-ends that have been
+ * registered for this demux. Any of the front-ends obtained with this
+ * call can be used as a parameter for @connect_frontend. The include
+ * file demux.h contains the macro DMX_FE_ENTRY() for converting an
+ * element of the generic type struct &list_head * to the type
+ * struct &dmx_frontend *. The caller must not free the memory of any of
+ * the elements obtained via this function call.
+ * The @demux function parameter contains a pointer to the demux API and
+ * instance data.
+ * It returns a struct list_head pointer to the list of front-end
+ * interfaces, or NULL in the case of an empty list.
+ *
+ * @connect_frontend: Connects the TS output of the front-end to the input of
+ * the demux. A demux can only be connected to a front-end registered to
+ * the demux with the function @add_frontend. It may or may not be
+ * possible to connect multiple demuxes to the same front-end, depending
+ * on the capabilities of the HW platform. When not used, the front-end
+ * should be released by calling @disconnect_frontend.
+ * The @demux function parameter contains a pointer to the demux API and
+ * instance data.
+ * The @frontend function parameter contains a pointer to the front-end
+ * instance data.
+ * It returns:
+ * 0 on success;
+ * -EINVAL, on bad parameter.
+ *
+ * @disconnect_frontend: Disconnects the demux and a front-end previously
+ * connected by a @connect_frontend call.
+ * The @demux function parameter contains a pointer to the demux API and
+ * instance data.
+ * It returns:
+ * 0 on success;
+ * -EINVAL on bad parameter.
+ *
+ * @get_pes_pids: Get the PIDs for DMX_PES_AUDIO0, DMX_PES_VIDEO0,
+ * DMX_PES_TELETEXT0, DMX_PES_SUBTITLE0 and DMX_PES_PCR0.
+ * The @demux function parameter contains a pointer to the demux API and
+ * instance data.
+ * The @pids function parameter contains an array with five u16 elements
+ * where the PIDs will be stored.
+ * It returns:
+ * 0 on success;
+ * -EINVAL on bad parameter.
+ */
+struct dmx_demux {
+ enum dmx_demux_caps capabilities;
+ struct dmx_frontend *frontend;
+ void *priv;
+ int (*open)(struct dmx_demux *demux);
+ int (*close)(struct dmx_demux *demux);
+ int (*write)(struct dmx_demux *demux, const char __user *buf,
+ size_t count);
+ int (*allocate_ts_feed)(struct dmx_demux *demux,
+ struct dmx_ts_feed **feed,
+ dmx_ts_cb callback);
+ int (*release_ts_feed)(struct dmx_demux *demux,
+ struct dmx_ts_feed *feed);
+ int (*allocate_section_feed)(struct dmx_demux *demux,
+ struct dmx_section_feed **feed,
+ dmx_section_cb callback);
+ int (*release_section_feed)(struct dmx_demux *demux,
+ struct dmx_section_feed *feed);
+ int (*add_frontend)(struct dmx_demux *demux,
+ struct dmx_frontend *frontend);
+ int (*remove_frontend)(struct dmx_demux *demux,
+ struct dmx_frontend *frontend);
+ struct list_head *(*get_frontends)(struct dmx_demux *demux);
+ int (*connect_frontend)(struct dmx_demux *demux,
+ struct dmx_frontend *frontend);
+ int (*disconnect_frontend)(struct dmx_demux *demux);
+
+ int (*get_pes_pids)(struct dmx_demux *demux, u16 *pids);
+
+ /* private: */
+
+ /*
+ * Only used at av7110, to read some data from firmware.
+ * As this was never documented, we have no clue about what's
+ * there, and its usage on other drivers aren't encouraged.
+ */
+ int (*get_stc)(struct dmx_demux *demux, unsigned int num,
+ u64 *stc, unsigned int *base);
+};
+
+#endif /* #ifndef __DEMUX_H */