summaryrefslogtreecommitdiffstats
path: root/kernel/time/ntp.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
commit76cb841cb886eef6b3bee341a2266c76578724ad (patch)
treef5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /kernel/time/ntp.c
parentInitial commit. (diff)
downloadlinux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz
linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip
Adding upstream version 4.19.249.upstream/4.19.249
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'kernel/time/ntp.c')
-rw-r--r--kernel/time/ntp.c1038
1 files changed, 1038 insertions, 0 deletions
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c
new file mode 100644
index 000000000..e1110a7bd
--- /dev/null
+++ b/kernel/time/ntp.c
@@ -0,0 +1,1038 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * NTP state machine interfaces and logic.
+ *
+ * This code was mainly moved from kernel/timer.c and kernel/time.c
+ * Please see those files for relevant copyright info and historical
+ * changelogs.
+ */
+#include <linux/capability.h>
+#include <linux/clocksource.h>
+#include <linux/workqueue.h>
+#include <linux/hrtimer.h>
+#include <linux/jiffies.h>
+#include <linux/math64.h>
+#include <linux/timex.h>
+#include <linux/time.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/math64.h>
+
+#include "ntp_internal.h"
+#include "timekeeping_internal.h"
+
+
+/*
+ * NTP timekeeping variables:
+ *
+ * Note: All of the NTP state is protected by the timekeeping locks.
+ */
+
+
+/* USER_HZ period (usecs): */
+unsigned long tick_usec = USER_TICK_USEC;
+
+/* SHIFTED_HZ period (nsecs): */
+unsigned long tick_nsec;
+
+static u64 tick_length;
+static u64 tick_length_base;
+
+#define SECS_PER_DAY 86400
+#define MAX_TICKADJ 500LL /* usecs */
+#define MAX_TICKADJ_SCALED \
+ (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
+#define MAX_TAI_OFFSET 100000
+
+/*
+ * phase-lock loop variables
+ */
+
+/*
+ * clock synchronization status
+ *
+ * (TIME_ERROR prevents overwriting the CMOS clock)
+ */
+static int time_state = TIME_OK;
+
+/* clock status bits: */
+static int time_status = STA_UNSYNC;
+
+/* time adjustment (nsecs): */
+static s64 time_offset;
+
+/* pll time constant: */
+static long time_constant = 2;
+
+/* maximum error (usecs): */
+static long time_maxerror = NTP_PHASE_LIMIT;
+
+/* estimated error (usecs): */
+static long time_esterror = NTP_PHASE_LIMIT;
+
+/* frequency offset (scaled nsecs/secs): */
+static s64 time_freq;
+
+/* time at last adjustment (secs): */
+static time64_t time_reftime;
+
+static long time_adjust;
+
+/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
+static s64 ntp_tick_adj;
+
+/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
+static time64_t ntp_next_leap_sec = TIME64_MAX;
+
+#ifdef CONFIG_NTP_PPS
+
+/*
+ * The following variables are used when a pulse-per-second (PPS) signal
+ * is available. They establish the engineering parameters of the clock
+ * discipline loop when controlled by the PPS signal.
+ */
+#define PPS_VALID 10 /* PPS signal watchdog max (s) */
+#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
+#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
+#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
+#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
+ increase pps_shift or consecutive bad
+ intervals to decrease it */
+#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
+
+static int pps_valid; /* signal watchdog counter */
+static long pps_tf[3]; /* phase median filter */
+static long pps_jitter; /* current jitter (ns) */
+static struct timespec64 pps_fbase; /* beginning of the last freq interval */
+static int pps_shift; /* current interval duration (s) (shift) */
+static int pps_intcnt; /* interval counter */
+static s64 pps_freq; /* frequency offset (scaled ns/s) */
+static long pps_stabil; /* current stability (scaled ns/s) */
+
+/*
+ * PPS signal quality monitors
+ */
+static long pps_calcnt; /* calibration intervals */
+static long pps_jitcnt; /* jitter limit exceeded */
+static long pps_stbcnt; /* stability limit exceeded */
+static long pps_errcnt; /* calibration errors */
+
+
+/* PPS kernel consumer compensates the whole phase error immediately.
+ * Otherwise, reduce the offset by a fixed factor times the time constant.
+ */
+static inline s64 ntp_offset_chunk(s64 offset)
+{
+ if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
+ return offset;
+ else
+ return shift_right(offset, SHIFT_PLL + time_constant);
+}
+
+static inline void pps_reset_freq_interval(void)
+{
+ /* the PPS calibration interval may end
+ surprisingly early */
+ pps_shift = PPS_INTMIN;
+ pps_intcnt = 0;
+}
+
+/**
+ * pps_clear - Clears the PPS state variables
+ */
+static inline void pps_clear(void)
+{
+ pps_reset_freq_interval();
+ pps_tf[0] = 0;
+ pps_tf[1] = 0;
+ pps_tf[2] = 0;
+ pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
+ pps_freq = 0;
+}
+
+/* Decrease pps_valid to indicate that another second has passed since
+ * the last PPS signal. When it reaches 0, indicate that PPS signal is
+ * missing.
+ */
+static inline void pps_dec_valid(void)
+{
+ if (pps_valid > 0)
+ pps_valid--;
+ else {
+ time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
+ STA_PPSWANDER | STA_PPSERROR);
+ pps_clear();
+ }
+}
+
+static inline void pps_set_freq(s64 freq)
+{
+ pps_freq = freq;
+}
+
+static inline int is_error_status(int status)
+{
+ return (status & (STA_UNSYNC|STA_CLOCKERR))
+ /* PPS signal lost when either PPS time or
+ * PPS frequency synchronization requested
+ */
+ || ((status & (STA_PPSFREQ|STA_PPSTIME))
+ && !(status & STA_PPSSIGNAL))
+ /* PPS jitter exceeded when
+ * PPS time synchronization requested */
+ || ((status & (STA_PPSTIME|STA_PPSJITTER))
+ == (STA_PPSTIME|STA_PPSJITTER))
+ /* PPS wander exceeded or calibration error when
+ * PPS frequency synchronization requested
+ */
+ || ((status & STA_PPSFREQ)
+ && (status & (STA_PPSWANDER|STA_PPSERROR)));
+}
+
+static inline void pps_fill_timex(struct timex *txc)
+{
+ txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
+ PPM_SCALE_INV, NTP_SCALE_SHIFT);
+ txc->jitter = pps_jitter;
+ if (!(time_status & STA_NANO))
+ txc->jitter /= NSEC_PER_USEC;
+ txc->shift = pps_shift;
+ txc->stabil = pps_stabil;
+ txc->jitcnt = pps_jitcnt;
+ txc->calcnt = pps_calcnt;
+ txc->errcnt = pps_errcnt;
+ txc->stbcnt = pps_stbcnt;
+}
+
+#else /* !CONFIG_NTP_PPS */
+
+static inline s64 ntp_offset_chunk(s64 offset)
+{
+ return shift_right(offset, SHIFT_PLL + time_constant);
+}
+
+static inline void pps_reset_freq_interval(void) {}
+static inline void pps_clear(void) {}
+static inline void pps_dec_valid(void) {}
+static inline void pps_set_freq(s64 freq) {}
+
+static inline int is_error_status(int status)
+{
+ return status & (STA_UNSYNC|STA_CLOCKERR);
+}
+
+static inline void pps_fill_timex(struct timex *txc)
+{
+ /* PPS is not implemented, so these are zero */
+ txc->ppsfreq = 0;
+ txc->jitter = 0;
+ txc->shift = 0;
+ txc->stabil = 0;
+ txc->jitcnt = 0;
+ txc->calcnt = 0;
+ txc->errcnt = 0;
+ txc->stbcnt = 0;
+}
+
+#endif /* CONFIG_NTP_PPS */
+
+
+/**
+ * ntp_synced - Returns 1 if the NTP status is not UNSYNC
+ *
+ */
+static inline int ntp_synced(void)
+{
+ return !(time_status & STA_UNSYNC);
+}
+
+
+/*
+ * NTP methods:
+ */
+
+/*
+ * Update (tick_length, tick_length_base, tick_nsec), based
+ * on (tick_usec, ntp_tick_adj, time_freq):
+ */
+static void ntp_update_frequency(void)
+{
+ u64 second_length;
+ u64 new_base;
+
+ second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
+ << NTP_SCALE_SHIFT;
+
+ second_length += ntp_tick_adj;
+ second_length += time_freq;
+
+ tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
+ new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
+
+ /*
+ * Don't wait for the next second_overflow, apply
+ * the change to the tick length immediately:
+ */
+ tick_length += new_base - tick_length_base;
+ tick_length_base = new_base;
+}
+
+static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
+{
+ time_status &= ~STA_MODE;
+
+ if (secs < MINSEC)
+ return 0;
+
+ if (!(time_status & STA_FLL) && (secs <= MAXSEC))
+ return 0;
+
+ time_status |= STA_MODE;
+
+ return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
+}
+
+static void ntp_update_offset(long offset)
+{
+ s64 freq_adj;
+ s64 offset64;
+ long secs;
+
+ if (!(time_status & STA_PLL))
+ return;
+
+ if (!(time_status & STA_NANO)) {
+ /* Make sure the multiplication below won't overflow */
+ offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
+ offset *= NSEC_PER_USEC;
+ }
+
+ /*
+ * Scale the phase adjustment and
+ * clamp to the operating range.
+ */
+ offset = clamp(offset, -MAXPHASE, MAXPHASE);
+
+ /*
+ * Select how the frequency is to be controlled
+ * and in which mode (PLL or FLL).
+ */
+ secs = (long)(__ktime_get_real_seconds() - time_reftime);
+ if (unlikely(time_status & STA_FREQHOLD))
+ secs = 0;
+
+ time_reftime = __ktime_get_real_seconds();
+
+ offset64 = offset;
+ freq_adj = ntp_update_offset_fll(offset64, secs);
+
+ /*
+ * Clamp update interval to reduce PLL gain with low
+ * sampling rate (e.g. intermittent network connection)
+ * to avoid instability.
+ */
+ if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
+ secs = 1 << (SHIFT_PLL + 1 + time_constant);
+
+ freq_adj += (offset64 * secs) <<
+ (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
+
+ freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
+
+ time_freq = max(freq_adj, -MAXFREQ_SCALED);
+
+ time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
+}
+
+/**
+ * ntp_clear - Clears the NTP state variables
+ */
+void ntp_clear(void)
+{
+ time_adjust = 0; /* stop active adjtime() */
+ time_status |= STA_UNSYNC;
+ time_maxerror = NTP_PHASE_LIMIT;
+ time_esterror = NTP_PHASE_LIMIT;
+
+ ntp_update_frequency();
+
+ tick_length = tick_length_base;
+ time_offset = 0;
+
+ ntp_next_leap_sec = TIME64_MAX;
+ /* Clear PPS state variables */
+ pps_clear();
+}
+
+
+u64 ntp_tick_length(void)
+{
+ return tick_length;
+}
+
+/**
+ * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
+ *
+ * Provides the time of the next leapsecond against CLOCK_REALTIME in
+ * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
+ */
+ktime_t ntp_get_next_leap(void)
+{
+ ktime_t ret;
+
+ if ((time_state == TIME_INS) && (time_status & STA_INS))
+ return ktime_set(ntp_next_leap_sec, 0);
+ ret = KTIME_MAX;
+ return ret;
+}
+
+/*
+ * this routine handles the overflow of the microsecond field
+ *
+ * The tricky bits of code to handle the accurate clock support
+ * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
+ * They were originally developed for SUN and DEC kernels.
+ * All the kudos should go to Dave for this stuff.
+ *
+ * Also handles leap second processing, and returns leap offset
+ */
+int second_overflow(time64_t secs)
+{
+ s64 delta;
+ int leap = 0;
+ s32 rem;
+
+ /*
+ * Leap second processing. If in leap-insert state at the end of the
+ * day, the system clock is set back one second; if in leap-delete
+ * state, the system clock is set ahead one second.
+ */
+ switch (time_state) {
+ case TIME_OK:
+ if (time_status & STA_INS) {
+ time_state = TIME_INS;
+ div_s64_rem(secs, SECS_PER_DAY, &rem);
+ ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
+ } else if (time_status & STA_DEL) {
+ time_state = TIME_DEL;
+ div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
+ ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
+ }
+ break;
+ case TIME_INS:
+ if (!(time_status & STA_INS)) {
+ ntp_next_leap_sec = TIME64_MAX;
+ time_state = TIME_OK;
+ } else if (secs == ntp_next_leap_sec) {
+ leap = -1;
+ time_state = TIME_OOP;
+ printk(KERN_NOTICE
+ "Clock: inserting leap second 23:59:60 UTC\n");
+ }
+ break;
+ case TIME_DEL:
+ if (!(time_status & STA_DEL)) {
+ ntp_next_leap_sec = TIME64_MAX;
+ time_state = TIME_OK;
+ } else if (secs == ntp_next_leap_sec) {
+ leap = 1;
+ ntp_next_leap_sec = TIME64_MAX;
+ time_state = TIME_WAIT;
+ printk(KERN_NOTICE
+ "Clock: deleting leap second 23:59:59 UTC\n");
+ }
+ break;
+ case TIME_OOP:
+ ntp_next_leap_sec = TIME64_MAX;
+ time_state = TIME_WAIT;
+ break;
+ case TIME_WAIT:
+ if (!(time_status & (STA_INS | STA_DEL)))
+ time_state = TIME_OK;
+ break;
+ }
+
+
+ /* Bump the maxerror field */
+ time_maxerror += MAXFREQ / NSEC_PER_USEC;
+ if (time_maxerror > NTP_PHASE_LIMIT) {
+ time_maxerror = NTP_PHASE_LIMIT;
+ time_status |= STA_UNSYNC;
+ }
+
+ /* Compute the phase adjustment for the next second */
+ tick_length = tick_length_base;
+
+ delta = ntp_offset_chunk(time_offset);
+ time_offset -= delta;
+ tick_length += delta;
+
+ /* Check PPS signal */
+ pps_dec_valid();
+
+ if (!time_adjust)
+ goto out;
+
+ if (time_adjust > MAX_TICKADJ) {
+ time_adjust -= MAX_TICKADJ;
+ tick_length += MAX_TICKADJ_SCALED;
+ goto out;
+ }
+
+ if (time_adjust < -MAX_TICKADJ) {
+ time_adjust += MAX_TICKADJ;
+ tick_length -= MAX_TICKADJ_SCALED;
+ goto out;
+ }
+
+ tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
+ << NTP_SCALE_SHIFT;
+ time_adjust = 0;
+
+out:
+ return leap;
+}
+
+static void sync_hw_clock(struct work_struct *work);
+static DECLARE_DELAYED_WORK(sync_work, sync_hw_clock);
+
+static void sched_sync_hw_clock(struct timespec64 now,
+ unsigned long target_nsec, bool fail)
+
+{
+ struct timespec64 next;
+
+ ktime_get_real_ts64(&next);
+ if (!fail)
+ next.tv_sec = 659;
+ else {
+ /*
+ * Try again as soon as possible. Delaying long periods
+ * decreases the accuracy of the work queue timer. Due to this
+ * the algorithm is very likely to require a short-sleep retry
+ * after the above long sleep to synchronize ts_nsec.
+ */
+ next.tv_sec = 0;
+ }
+
+ /* Compute the needed delay that will get to tv_nsec == target_nsec */
+ next.tv_nsec = target_nsec - next.tv_nsec;
+ if (next.tv_nsec <= 0)
+ next.tv_nsec += NSEC_PER_SEC;
+ if (next.tv_nsec >= NSEC_PER_SEC) {
+ next.tv_sec++;
+ next.tv_nsec -= NSEC_PER_SEC;
+ }
+
+ queue_delayed_work(system_power_efficient_wq, &sync_work,
+ timespec64_to_jiffies(&next));
+}
+
+static void sync_rtc_clock(void)
+{
+ unsigned long target_nsec;
+ struct timespec64 adjust, now;
+ int rc;
+
+ if (!IS_ENABLED(CONFIG_RTC_SYSTOHC))
+ return;
+
+ ktime_get_real_ts64(&now);
+
+ adjust = now;
+ if (persistent_clock_is_local)
+ adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
+
+ /*
+ * The current RTC in use will provide the target_nsec it wants to be
+ * called at, and does rtc_tv_nsec_ok internally.
+ */
+ rc = rtc_set_ntp_time(adjust, &target_nsec);
+ if (rc == -ENODEV)
+ return;
+
+ sched_sync_hw_clock(now, target_nsec, rc);
+}
+
+#ifdef CONFIG_GENERIC_CMOS_UPDATE
+int __weak update_persistent_clock(struct timespec now)
+{
+ return -ENODEV;
+}
+
+int __weak update_persistent_clock64(struct timespec64 now64)
+{
+ struct timespec now;
+
+ now = timespec64_to_timespec(now64);
+ return update_persistent_clock(now);
+}
+#endif
+
+static bool sync_cmos_clock(void)
+{
+ static bool no_cmos;
+ struct timespec64 now;
+ struct timespec64 adjust;
+ int rc = -EPROTO;
+ long target_nsec = NSEC_PER_SEC / 2;
+
+ if (!IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE))
+ return false;
+
+ if (no_cmos)
+ return false;
+
+ /*
+ * Historically update_persistent_clock64() has followed x86
+ * semantics, which match the MC146818A/etc RTC. This RTC will store
+ * 'adjust' and then in .5s it will advance once second.
+ *
+ * Architectures are strongly encouraged to use rtclib and not
+ * implement this legacy API.
+ */
+ ktime_get_real_ts64(&now);
+ if (rtc_tv_nsec_ok(-1 * target_nsec, &adjust, &now)) {
+ if (persistent_clock_is_local)
+ adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
+ rc = update_persistent_clock64(adjust);
+ /*
+ * The machine does not support update_persistent_clock64 even
+ * though it defines CONFIG_GENERIC_CMOS_UPDATE.
+ */
+ if (rc == -ENODEV) {
+ no_cmos = true;
+ return false;
+ }
+ }
+
+ sched_sync_hw_clock(now, target_nsec, rc);
+ return true;
+}
+
+/*
+ * If we have an externally synchronized Linux clock, then update RTC clock
+ * accordingly every ~11 minutes. Generally RTCs can only store second
+ * precision, but many RTCs will adjust the phase of their second tick to
+ * match the moment of update. This infrastructure arranges to call to the RTC
+ * set at the correct moment to phase synchronize the RTC second tick over
+ * with the kernel clock.
+ */
+static void sync_hw_clock(struct work_struct *work)
+{
+ if (!ntp_synced())
+ return;
+
+ if (sync_cmos_clock())
+ return;
+
+ sync_rtc_clock();
+}
+
+void ntp_notify_cmos_timer(void)
+{
+ if (!ntp_synced())
+ return;
+
+ if (IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE) ||
+ IS_ENABLED(CONFIG_RTC_SYSTOHC))
+ queue_delayed_work(system_power_efficient_wq, &sync_work, 0);
+}
+
+/*
+ * Propagate a new txc->status value into the NTP state:
+ */
+static inline void process_adj_status(const struct timex *txc)
+{
+ if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
+ time_state = TIME_OK;
+ time_status = STA_UNSYNC;
+ ntp_next_leap_sec = TIME64_MAX;
+ /* restart PPS frequency calibration */
+ pps_reset_freq_interval();
+ }
+
+ /*
+ * If we turn on PLL adjustments then reset the
+ * reference time to current time.
+ */
+ if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
+ time_reftime = __ktime_get_real_seconds();
+
+ /* only set allowed bits */
+ time_status &= STA_RONLY;
+ time_status |= txc->status & ~STA_RONLY;
+}
+
+
+static inline void process_adjtimex_modes(const struct timex *txc, s32 *time_tai)
+{
+ if (txc->modes & ADJ_STATUS)
+ process_adj_status(txc);
+
+ if (txc->modes & ADJ_NANO)
+ time_status |= STA_NANO;
+
+ if (txc->modes & ADJ_MICRO)
+ time_status &= ~STA_NANO;
+
+ if (txc->modes & ADJ_FREQUENCY) {
+ time_freq = txc->freq * PPM_SCALE;
+ time_freq = min(time_freq, MAXFREQ_SCALED);
+ time_freq = max(time_freq, -MAXFREQ_SCALED);
+ /* update pps_freq */
+ pps_set_freq(time_freq);
+ }
+
+ if (txc->modes & ADJ_MAXERROR)
+ time_maxerror = txc->maxerror;
+
+ if (txc->modes & ADJ_ESTERROR)
+ time_esterror = txc->esterror;
+
+ if (txc->modes & ADJ_TIMECONST) {
+ time_constant = txc->constant;
+ if (!(time_status & STA_NANO))
+ time_constant += 4;
+ time_constant = min(time_constant, (long)MAXTC);
+ time_constant = max(time_constant, 0l);
+ }
+
+ if (txc->modes & ADJ_TAI &&
+ txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
+ *time_tai = txc->constant;
+
+ if (txc->modes & ADJ_OFFSET)
+ ntp_update_offset(txc->offset);
+
+ if (txc->modes & ADJ_TICK)
+ tick_usec = txc->tick;
+
+ if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
+ ntp_update_frequency();
+}
+
+
+/*
+ * adjtimex mainly allows reading (and writing, if superuser) of
+ * kernel time-keeping variables. used by xntpd.
+ */
+int __do_adjtimex(struct timex *txc, const struct timespec64 *ts, s32 *time_tai)
+{
+ int result;
+
+ if (txc->modes & ADJ_ADJTIME) {
+ long save_adjust = time_adjust;
+
+ if (!(txc->modes & ADJ_OFFSET_READONLY)) {
+ /* adjtime() is independent from ntp_adjtime() */
+ time_adjust = txc->offset;
+ ntp_update_frequency();
+ }
+ txc->offset = save_adjust;
+ } else {
+
+ /* If there are input parameters, then process them: */
+ if (txc->modes)
+ process_adjtimex_modes(txc, time_tai);
+
+ txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
+ NTP_SCALE_SHIFT);
+ if (!(time_status & STA_NANO))
+ txc->offset /= NSEC_PER_USEC;
+ }
+
+ result = time_state; /* mostly `TIME_OK' */
+ /* check for errors */
+ if (is_error_status(time_status))
+ result = TIME_ERROR;
+
+ txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
+ PPM_SCALE_INV, NTP_SCALE_SHIFT);
+ txc->maxerror = time_maxerror;
+ txc->esterror = time_esterror;
+ txc->status = time_status;
+ txc->constant = time_constant;
+ txc->precision = 1;
+ txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
+ txc->tick = tick_usec;
+ txc->tai = *time_tai;
+
+ /* fill PPS status fields */
+ pps_fill_timex(txc);
+
+ txc->time.tv_sec = (time_t)ts->tv_sec;
+ txc->time.tv_usec = ts->tv_nsec;
+ if (!(time_status & STA_NANO))
+ txc->time.tv_usec /= NSEC_PER_USEC;
+
+ /* Handle leapsec adjustments */
+ if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
+ if ((time_state == TIME_INS) && (time_status & STA_INS)) {
+ result = TIME_OOP;
+ txc->tai++;
+ txc->time.tv_sec--;
+ }
+ if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
+ result = TIME_WAIT;
+ txc->tai--;
+ txc->time.tv_sec++;
+ }
+ if ((time_state == TIME_OOP) &&
+ (ts->tv_sec == ntp_next_leap_sec)) {
+ result = TIME_WAIT;
+ }
+ }
+
+ return result;
+}
+
+#ifdef CONFIG_NTP_PPS
+
+/* actually struct pps_normtime is good old struct timespec, but it is
+ * semantically different (and it is the reason why it was invented):
+ * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
+ * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
+struct pps_normtime {
+ s64 sec; /* seconds */
+ long nsec; /* nanoseconds */
+};
+
+/* normalize the timestamp so that nsec is in the
+ ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
+static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
+{
+ struct pps_normtime norm = {
+ .sec = ts.tv_sec,
+ .nsec = ts.tv_nsec
+ };
+
+ if (norm.nsec > (NSEC_PER_SEC >> 1)) {
+ norm.nsec -= NSEC_PER_SEC;
+ norm.sec++;
+ }
+
+ return norm;
+}
+
+/* get current phase correction and jitter */
+static inline long pps_phase_filter_get(long *jitter)
+{
+ *jitter = pps_tf[0] - pps_tf[1];
+ if (*jitter < 0)
+ *jitter = -*jitter;
+
+ /* TODO: test various filters */
+ return pps_tf[0];
+}
+
+/* add the sample to the phase filter */
+static inline void pps_phase_filter_add(long err)
+{
+ pps_tf[2] = pps_tf[1];
+ pps_tf[1] = pps_tf[0];
+ pps_tf[0] = err;
+}
+
+/* decrease frequency calibration interval length.
+ * It is halved after four consecutive unstable intervals.
+ */
+static inline void pps_dec_freq_interval(void)
+{
+ if (--pps_intcnt <= -PPS_INTCOUNT) {
+ pps_intcnt = -PPS_INTCOUNT;
+ if (pps_shift > PPS_INTMIN) {
+ pps_shift--;
+ pps_intcnt = 0;
+ }
+ }
+}
+
+/* increase frequency calibration interval length.
+ * It is doubled after four consecutive stable intervals.
+ */
+static inline void pps_inc_freq_interval(void)
+{
+ if (++pps_intcnt >= PPS_INTCOUNT) {
+ pps_intcnt = PPS_INTCOUNT;
+ if (pps_shift < PPS_INTMAX) {
+ pps_shift++;
+ pps_intcnt = 0;
+ }
+ }
+}
+
+/* update clock frequency based on MONOTONIC_RAW clock PPS signal
+ * timestamps
+ *
+ * At the end of the calibration interval the difference between the
+ * first and last MONOTONIC_RAW clock timestamps divided by the length
+ * of the interval becomes the frequency update. If the interval was
+ * too long, the data are discarded.
+ * Returns the difference between old and new frequency values.
+ */
+static long hardpps_update_freq(struct pps_normtime freq_norm)
+{
+ long delta, delta_mod;
+ s64 ftemp;
+
+ /* check if the frequency interval was too long */
+ if (freq_norm.sec > (2 << pps_shift)) {
+ time_status |= STA_PPSERROR;
+ pps_errcnt++;
+ pps_dec_freq_interval();
+ printk_deferred(KERN_ERR
+ "hardpps: PPSERROR: interval too long - %lld s\n",
+ freq_norm.sec);
+ return 0;
+ }
+
+ /* here the raw frequency offset and wander (stability) is
+ * calculated. If the wander is less than the wander threshold
+ * the interval is increased; otherwise it is decreased.
+ */
+ ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
+ freq_norm.sec);
+ delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
+ pps_freq = ftemp;
+ if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
+ printk_deferred(KERN_WARNING
+ "hardpps: PPSWANDER: change=%ld\n", delta);
+ time_status |= STA_PPSWANDER;
+ pps_stbcnt++;
+ pps_dec_freq_interval();
+ } else { /* good sample */
+ pps_inc_freq_interval();
+ }
+
+ /* the stability metric is calculated as the average of recent
+ * frequency changes, but is used only for performance
+ * monitoring
+ */
+ delta_mod = delta;
+ if (delta_mod < 0)
+ delta_mod = -delta_mod;
+ pps_stabil += (div_s64(((s64)delta_mod) <<
+ (NTP_SCALE_SHIFT - SHIFT_USEC),
+ NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
+
+ /* if enabled, the system clock frequency is updated */
+ if ((time_status & STA_PPSFREQ) != 0 &&
+ (time_status & STA_FREQHOLD) == 0) {
+ time_freq = pps_freq;
+ ntp_update_frequency();
+ }
+
+ return delta;
+}
+
+/* correct REALTIME clock phase error against PPS signal */
+static void hardpps_update_phase(long error)
+{
+ long correction = -error;
+ long jitter;
+
+ /* add the sample to the median filter */
+ pps_phase_filter_add(correction);
+ correction = pps_phase_filter_get(&jitter);
+
+ /* Nominal jitter is due to PPS signal noise. If it exceeds the
+ * threshold, the sample is discarded; otherwise, if so enabled,
+ * the time offset is updated.
+ */
+ if (jitter > (pps_jitter << PPS_POPCORN)) {
+ printk_deferred(KERN_WARNING
+ "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
+ jitter, (pps_jitter << PPS_POPCORN));
+ time_status |= STA_PPSJITTER;
+ pps_jitcnt++;
+ } else if (time_status & STA_PPSTIME) {
+ /* correct the time using the phase offset */
+ time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
+ NTP_INTERVAL_FREQ);
+ /* cancel running adjtime() */
+ time_adjust = 0;
+ }
+ /* update jitter */
+ pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
+}
+
+/*
+ * __hardpps() - discipline CPU clock oscillator to external PPS signal
+ *
+ * This routine is called at each PPS signal arrival in order to
+ * discipline the CPU clock oscillator to the PPS signal. It takes two
+ * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
+ * is used to correct clock phase error and the latter is used to
+ * correct the frequency.
+ *
+ * This code is based on David Mills's reference nanokernel
+ * implementation. It was mostly rewritten but keeps the same idea.
+ */
+void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
+{
+ struct pps_normtime pts_norm, freq_norm;
+
+ pts_norm = pps_normalize_ts(*phase_ts);
+
+ /* clear the error bits, they will be set again if needed */
+ time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
+
+ /* indicate signal presence */
+ time_status |= STA_PPSSIGNAL;
+ pps_valid = PPS_VALID;
+
+ /* when called for the first time,
+ * just start the frequency interval */
+ if (unlikely(pps_fbase.tv_sec == 0)) {
+ pps_fbase = *raw_ts;
+ return;
+ }
+
+ /* ok, now we have a base for frequency calculation */
+ freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
+
+ /* check that the signal is in the range
+ * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
+ if ((freq_norm.sec == 0) ||
+ (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
+ (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
+ time_status |= STA_PPSJITTER;
+ /* restart the frequency calibration interval */
+ pps_fbase = *raw_ts;
+ printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
+ return;
+ }
+
+ /* signal is ok */
+
+ /* check if the current frequency interval is finished */
+ if (freq_norm.sec >= (1 << pps_shift)) {
+ pps_calcnt++;
+ /* restart the frequency calibration interval */
+ pps_fbase = *raw_ts;
+ hardpps_update_freq(freq_norm);
+ }
+
+ hardpps_update_phase(pts_norm.nsec);
+
+}
+#endif /* CONFIG_NTP_PPS */
+
+static int __init ntp_tick_adj_setup(char *str)
+{
+ int rc = kstrtos64(str, 0, &ntp_tick_adj);
+ if (rc)
+ return rc;
+
+ ntp_tick_adj <<= NTP_SCALE_SHIFT;
+ return 1;
+}
+
+__setup("ntp_tick_adj=", ntp_tick_adj_setup);
+
+void __init ntp_init(void)
+{
+ ntp_clear();
+}