summaryrefslogtreecommitdiffstats
path: root/mm/page_alloc.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:02:30 +0000
commit76cb841cb886eef6b3bee341a2266c76578724ad (patch)
treef5892e5ba6cc11949952a6ce4ecbe6d516d6ce58 /mm/page_alloc.c
parentInitial commit. (diff)
downloadlinux-76cb841cb886eef6b3bee341a2266c76578724ad.tar.xz
linux-76cb841cb886eef6b3bee341a2266c76578724ad.zip
Adding upstream version 4.19.249.upstream/4.19.249
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'mm/page_alloc.c')
-rw-r--r--mm/page_alloc.c8203
1 files changed, 8203 insertions, 0 deletions
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
new file mode 100644
index 000000000..9c35403d9
--- /dev/null
+++ b/mm/page_alloc.c
@@ -0,0 +1,8203 @@
+/*
+ * linux/mm/page_alloc.c
+ *
+ * Manages the free list, the system allocates free pages here.
+ * Note that kmalloc() lives in slab.c
+ *
+ * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
+ * Swap reorganised 29.12.95, Stephen Tweedie
+ * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
+ * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
+ * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
+ * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
+ * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
+ * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
+ */
+
+#include <linux/stddef.h>
+#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/interrupt.h>
+#include <linux/pagemap.h>
+#include <linux/jiffies.h>
+#include <linux/bootmem.h>
+#include <linux/memblock.h>
+#include <linux/compiler.h>
+#include <linux/kernel.h>
+#include <linux/kasan.h>
+#include <linux/module.h>
+#include <linux/suspend.h>
+#include <linux/pagevec.h>
+#include <linux/blkdev.h>
+#include <linux/slab.h>
+#include <linux/ratelimit.h>
+#include <linux/oom.h>
+#include <linux/topology.h>
+#include <linux/sysctl.h>
+#include <linux/cpu.h>
+#include <linux/cpuset.h>
+#include <linux/memory_hotplug.h>
+#include <linux/nodemask.h>
+#include <linux/vmalloc.h>
+#include <linux/vmstat.h>
+#include <linux/mempolicy.h>
+#include <linux/memremap.h>
+#include <linux/stop_machine.h>
+#include <linux/sort.h>
+#include <linux/pfn.h>
+#include <linux/backing-dev.h>
+#include <linux/fault-inject.h>
+#include <linux/page-isolation.h>
+#include <linux/page_ext.h>
+#include <linux/debugobjects.h>
+#include <linux/kmemleak.h>
+#include <linux/compaction.h>
+#include <trace/events/kmem.h>
+#include <trace/events/oom.h>
+#include <linux/prefetch.h>
+#include <linux/mm_inline.h>
+#include <linux/migrate.h>
+#include <linux/hugetlb.h>
+#include <linux/sched/rt.h>
+#include <linux/sched/mm.h>
+#include <linux/page_owner.h>
+#include <linux/kthread.h>
+#include <linux/memcontrol.h>
+#include <linux/ftrace.h>
+#include <linux/lockdep.h>
+#include <linux/nmi.h>
+#include <linux/khugepaged.h>
+
+#include <asm/sections.h>
+#include <asm/tlbflush.h>
+#include <asm/div64.h>
+#include "internal.h"
+
+/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
+static DEFINE_MUTEX(pcp_batch_high_lock);
+#define MIN_PERCPU_PAGELIST_FRACTION (8)
+
+#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
+DEFINE_PER_CPU(int, numa_node);
+EXPORT_PER_CPU_SYMBOL(numa_node);
+#endif
+
+DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
+
+#ifdef CONFIG_HAVE_MEMORYLESS_NODES
+/*
+ * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
+ * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
+ * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
+ * defined in <linux/topology.h>.
+ */
+DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
+EXPORT_PER_CPU_SYMBOL(_numa_mem_);
+int _node_numa_mem_[MAX_NUMNODES];
+#endif
+
+/* work_structs for global per-cpu drains */
+DEFINE_MUTEX(pcpu_drain_mutex);
+DEFINE_PER_CPU(struct work_struct, pcpu_drain);
+
+#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
+volatile unsigned long latent_entropy __latent_entropy;
+EXPORT_SYMBOL(latent_entropy);
+#endif
+
+/*
+ * Array of node states.
+ */
+nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
+ [N_POSSIBLE] = NODE_MASK_ALL,
+ [N_ONLINE] = { { [0] = 1UL } },
+#ifndef CONFIG_NUMA
+ [N_NORMAL_MEMORY] = { { [0] = 1UL } },
+#ifdef CONFIG_HIGHMEM
+ [N_HIGH_MEMORY] = { { [0] = 1UL } },
+#endif
+ [N_MEMORY] = { { [0] = 1UL } },
+ [N_CPU] = { { [0] = 1UL } },
+#endif /* NUMA */
+};
+EXPORT_SYMBOL(node_states);
+
+/* Protect totalram_pages and zone->managed_pages */
+static DEFINE_SPINLOCK(managed_page_count_lock);
+
+unsigned long totalram_pages __read_mostly;
+unsigned long totalreserve_pages __read_mostly;
+unsigned long totalcma_pages __read_mostly;
+
+int percpu_pagelist_fraction;
+gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
+
+/*
+ * A cached value of the page's pageblock's migratetype, used when the page is
+ * put on a pcplist. Used to avoid the pageblock migratetype lookup when
+ * freeing from pcplists in most cases, at the cost of possibly becoming stale.
+ * Also the migratetype set in the page does not necessarily match the pcplist
+ * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
+ * other index - this ensures that it will be put on the correct CMA freelist.
+ */
+static inline int get_pcppage_migratetype(struct page *page)
+{
+ return page->index;
+}
+
+static inline void set_pcppage_migratetype(struct page *page, int migratetype)
+{
+ page->index = migratetype;
+}
+
+#ifdef CONFIG_PM_SLEEP
+/*
+ * The following functions are used by the suspend/hibernate code to temporarily
+ * change gfp_allowed_mask in order to avoid using I/O during memory allocations
+ * while devices are suspended. To avoid races with the suspend/hibernate code,
+ * they should always be called with system_transition_mutex held
+ * (gfp_allowed_mask also should only be modified with system_transition_mutex
+ * held, unless the suspend/hibernate code is guaranteed not to run in parallel
+ * with that modification).
+ */
+
+static gfp_t saved_gfp_mask;
+
+void pm_restore_gfp_mask(void)
+{
+ WARN_ON(!mutex_is_locked(&system_transition_mutex));
+ if (saved_gfp_mask) {
+ gfp_allowed_mask = saved_gfp_mask;
+ saved_gfp_mask = 0;
+ }
+}
+
+void pm_restrict_gfp_mask(void)
+{
+ WARN_ON(!mutex_is_locked(&system_transition_mutex));
+ WARN_ON(saved_gfp_mask);
+ saved_gfp_mask = gfp_allowed_mask;
+ gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
+}
+
+bool pm_suspended_storage(void)
+{
+ if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
+ return false;
+ return true;
+}
+#endif /* CONFIG_PM_SLEEP */
+
+#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
+unsigned int pageblock_order __read_mostly;
+#endif
+
+static void __free_pages_ok(struct page *page, unsigned int order);
+
+/*
+ * results with 256, 32 in the lowmem_reserve sysctl:
+ * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
+ * 1G machine -> (16M dma, 784M normal, 224M high)
+ * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
+ * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
+ * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
+ *
+ * TBD: should special case ZONE_DMA32 machines here - in those we normally
+ * don't need any ZONE_NORMAL reservation
+ */
+int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
+#ifdef CONFIG_ZONE_DMA
+ [ZONE_DMA] = 256,
+#endif
+#ifdef CONFIG_ZONE_DMA32
+ [ZONE_DMA32] = 256,
+#endif
+ [ZONE_NORMAL] = 32,
+#ifdef CONFIG_HIGHMEM
+ [ZONE_HIGHMEM] = 0,
+#endif
+ [ZONE_MOVABLE] = 0,
+};
+
+EXPORT_SYMBOL(totalram_pages);
+
+static char * const zone_names[MAX_NR_ZONES] = {
+#ifdef CONFIG_ZONE_DMA
+ "DMA",
+#endif
+#ifdef CONFIG_ZONE_DMA32
+ "DMA32",
+#endif
+ "Normal",
+#ifdef CONFIG_HIGHMEM
+ "HighMem",
+#endif
+ "Movable",
+#ifdef CONFIG_ZONE_DEVICE
+ "Device",
+#endif
+};
+
+char * const migratetype_names[MIGRATE_TYPES] = {
+ "Unmovable",
+ "Movable",
+ "Reclaimable",
+ "HighAtomic",
+#ifdef CONFIG_CMA
+ "CMA",
+#endif
+#ifdef CONFIG_MEMORY_ISOLATION
+ "Isolate",
+#endif
+};
+
+compound_page_dtor * const compound_page_dtors[] = {
+ NULL,
+ free_compound_page,
+#ifdef CONFIG_HUGETLB_PAGE
+ free_huge_page,
+#endif
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ free_transhuge_page,
+#endif
+};
+
+int min_free_kbytes = 1024;
+int user_min_free_kbytes = -1;
+int watermark_scale_factor = 10;
+
+static unsigned long nr_kernel_pages __meminitdata;
+static unsigned long nr_all_pages __meminitdata;
+static unsigned long dma_reserve __meminitdata;
+
+#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
+static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
+static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
+static unsigned long required_kernelcore __initdata;
+static unsigned long required_kernelcore_percent __initdata;
+static unsigned long required_movablecore __initdata;
+static unsigned long required_movablecore_percent __initdata;
+static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
+static bool mirrored_kernelcore __meminitdata;
+
+/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
+int movable_zone;
+EXPORT_SYMBOL(movable_zone);
+#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
+
+#if MAX_NUMNODES > 1
+int nr_node_ids __read_mostly = MAX_NUMNODES;
+int nr_online_nodes __read_mostly = 1;
+EXPORT_SYMBOL(nr_node_ids);
+EXPORT_SYMBOL(nr_online_nodes);
+#endif
+
+int page_group_by_mobility_disabled __read_mostly;
+
+#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
+/*
+ * During boot we initialize deferred pages on-demand, as needed, but once
+ * page_alloc_init_late() has finished, the deferred pages are all initialized,
+ * and we can permanently disable that path.
+ */
+static DEFINE_STATIC_KEY_TRUE(deferred_pages);
+
+/*
+ * Calling kasan_free_pages() only after deferred memory initialization
+ * has completed. Poisoning pages during deferred memory init will greatly
+ * lengthen the process and cause problem in large memory systems as the
+ * deferred pages initialization is done with interrupt disabled.
+ *
+ * Assuming that there will be no reference to those newly initialized
+ * pages before they are ever allocated, this should have no effect on
+ * KASAN memory tracking as the poison will be properly inserted at page
+ * allocation time. The only corner case is when pages are allocated by
+ * on-demand allocation and then freed again before the deferred pages
+ * initialization is done, but this is not likely to happen.
+ */
+static inline void kasan_free_nondeferred_pages(struct page *page, int order)
+{
+ if (!static_branch_unlikely(&deferred_pages))
+ kasan_free_pages(page, order);
+}
+
+/* Returns true if the struct page for the pfn is uninitialised */
+static inline bool __meminit early_page_uninitialised(unsigned long pfn)
+{
+ int nid = early_pfn_to_nid(pfn);
+
+ if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
+ return true;
+
+ return false;
+}
+
+/*
+ * Returns false when the remaining initialisation should be deferred until
+ * later in the boot cycle when it can be parallelised.
+ */
+static inline bool update_defer_init(pg_data_t *pgdat,
+ unsigned long pfn, unsigned long zone_end,
+ unsigned long *nr_initialised)
+{
+ /* Always populate low zones for address-constrained allocations */
+ if (zone_end < pgdat_end_pfn(pgdat))
+ return true;
+ (*nr_initialised)++;
+ if ((*nr_initialised > pgdat->static_init_pgcnt) &&
+ (pfn & (PAGES_PER_SECTION - 1)) == 0) {
+ pgdat->first_deferred_pfn = pfn;
+ return false;
+ }
+
+ return true;
+}
+#else
+#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
+
+static inline bool early_page_uninitialised(unsigned long pfn)
+{
+ return false;
+}
+
+static inline bool update_defer_init(pg_data_t *pgdat,
+ unsigned long pfn, unsigned long zone_end,
+ unsigned long *nr_initialised)
+{
+ return true;
+}
+#endif
+
+/* Return a pointer to the bitmap storing bits affecting a block of pages */
+static inline unsigned long *get_pageblock_bitmap(struct page *page,
+ unsigned long pfn)
+{
+#ifdef CONFIG_SPARSEMEM
+ return __pfn_to_section(pfn)->pageblock_flags;
+#else
+ return page_zone(page)->pageblock_flags;
+#endif /* CONFIG_SPARSEMEM */
+}
+
+static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
+{
+#ifdef CONFIG_SPARSEMEM
+ pfn &= (PAGES_PER_SECTION-1);
+ return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
+#else
+ pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
+ return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
+#endif /* CONFIG_SPARSEMEM */
+}
+
+/**
+ * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
+ * @page: The page within the block of interest
+ * @pfn: The target page frame number
+ * @end_bitidx: The last bit of interest to retrieve
+ * @mask: mask of bits that the caller is interested in
+ *
+ * Return: pageblock_bits flags
+ */
+static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
+ unsigned long pfn,
+ unsigned long end_bitidx,
+ unsigned long mask)
+{
+ unsigned long *bitmap;
+ unsigned long bitidx, word_bitidx;
+ unsigned long word;
+
+ bitmap = get_pageblock_bitmap(page, pfn);
+ bitidx = pfn_to_bitidx(page, pfn);
+ word_bitidx = bitidx / BITS_PER_LONG;
+ bitidx &= (BITS_PER_LONG-1);
+
+ word = bitmap[word_bitidx];
+ bitidx += end_bitidx;
+ return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
+}
+
+unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
+ unsigned long end_bitidx,
+ unsigned long mask)
+{
+ return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
+}
+
+static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
+{
+ return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
+}
+
+/**
+ * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
+ * @page: The page within the block of interest
+ * @flags: The flags to set
+ * @pfn: The target page frame number
+ * @end_bitidx: The last bit of interest
+ * @mask: mask of bits that the caller is interested in
+ */
+void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
+ unsigned long pfn,
+ unsigned long end_bitidx,
+ unsigned long mask)
+{
+ unsigned long *bitmap;
+ unsigned long bitidx, word_bitidx;
+ unsigned long old_word, word;
+
+ BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
+
+ bitmap = get_pageblock_bitmap(page, pfn);
+ bitidx = pfn_to_bitidx(page, pfn);
+ word_bitidx = bitidx / BITS_PER_LONG;
+ bitidx &= (BITS_PER_LONG-1);
+
+ VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
+
+ bitidx += end_bitidx;
+ mask <<= (BITS_PER_LONG - bitidx - 1);
+ flags <<= (BITS_PER_LONG - bitidx - 1);
+
+ word = READ_ONCE(bitmap[word_bitidx]);
+ for (;;) {
+ old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
+ if (word == old_word)
+ break;
+ word = old_word;
+ }
+}
+
+void set_pageblock_migratetype(struct page *page, int migratetype)
+{
+ if (unlikely(page_group_by_mobility_disabled &&
+ migratetype < MIGRATE_PCPTYPES))
+ migratetype = MIGRATE_UNMOVABLE;
+
+ set_pageblock_flags_group(page, (unsigned long)migratetype,
+ PB_migrate, PB_migrate_end);
+}
+
+#ifdef CONFIG_DEBUG_VM
+static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
+{
+ int ret = 0;
+ unsigned seq;
+ unsigned long pfn = page_to_pfn(page);
+ unsigned long sp, start_pfn;
+
+ do {
+ seq = zone_span_seqbegin(zone);
+ start_pfn = zone->zone_start_pfn;
+ sp = zone->spanned_pages;
+ if (!zone_spans_pfn(zone, pfn))
+ ret = 1;
+ } while (zone_span_seqretry(zone, seq));
+
+ if (ret)
+ pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
+ pfn, zone_to_nid(zone), zone->name,
+ start_pfn, start_pfn + sp);
+
+ return ret;
+}
+
+static int page_is_consistent(struct zone *zone, struct page *page)
+{
+ if (!pfn_valid_within(page_to_pfn(page)))
+ return 0;
+ if (zone != page_zone(page))
+ return 0;
+
+ return 1;
+}
+/*
+ * Temporary debugging check for pages not lying within a given zone.
+ */
+static int __maybe_unused bad_range(struct zone *zone, struct page *page)
+{
+ if (page_outside_zone_boundaries(zone, page))
+ return 1;
+ if (!page_is_consistent(zone, page))
+ return 1;
+
+ return 0;
+}
+#else
+static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
+{
+ return 0;
+}
+#endif
+
+static void bad_page(struct page *page, const char *reason,
+ unsigned long bad_flags)
+{
+ static unsigned long resume;
+ static unsigned long nr_shown;
+ static unsigned long nr_unshown;
+
+ /*
+ * Allow a burst of 60 reports, then keep quiet for that minute;
+ * or allow a steady drip of one report per second.
+ */
+ if (nr_shown == 60) {
+ if (time_before(jiffies, resume)) {
+ nr_unshown++;
+ goto out;
+ }
+ if (nr_unshown) {
+ pr_alert(
+ "BUG: Bad page state: %lu messages suppressed\n",
+ nr_unshown);
+ nr_unshown = 0;
+ }
+ nr_shown = 0;
+ }
+ if (nr_shown++ == 0)
+ resume = jiffies + 60 * HZ;
+
+ pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
+ current->comm, page_to_pfn(page));
+ __dump_page(page, reason);
+ bad_flags &= page->flags;
+ if (bad_flags)
+ pr_alert("bad because of flags: %#lx(%pGp)\n",
+ bad_flags, &bad_flags);
+ dump_page_owner(page);
+
+ print_modules();
+ dump_stack();
+out:
+ /* Leave bad fields for debug, except PageBuddy could make trouble */
+ page_mapcount_reset(page); /* remove PageBuddy */
+ add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
+}
+
+/*
+ * Higher-order pages are called "compound pages". They are structured thusly:
+ *
+ * The first PAGE_SIZE page is called the "head page" and have PG_head set.
+ *
+ * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
+ * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
+ *
+ * The first tail page's ->compound_dtor holds the offset in array of compound
+ * page destructors. See compound_page_dtors.
+ *
+ * The first tail page's ->compound_order holds the order of allocation.
+ * This usage means that zero-order pages may not be compound.
+ */
+
+void free_compound_page(struct page *page)
+{
+ __free_pages_ok(page, compound_order(page));
+}
+
+void prep_compound_page(struct page *page, unsigned int order)
+{
+ int i;
+ int nr_pages = 1 << order;
+
+ set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
+ set_compound_order(page, order);
+ __SetPageHead(page);
+ for (i = 1; i < nr_pages; i++) {
+ struct page *p = page + i;
+ set_page_count(p, 0);
+ p->mapping = TAIL_MAPPING;
+ set_compound_head(p, page);
+ }
+ atomic_set(compound_mapcount_ptr(page), -1);
+}
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+unsigned int _debug_guardpage_minorder;
+bool _debug_pagealloc_enabled __read_mostly
+ = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
+EXPORT_SYMBOL(_debug_pagealloc_enabled);
+bool _debug_guardpage_enabled __read_mostly;
+
+static int __init early_debug_pagealloc(char *buf)
+{
+ if (!buf)
+ return -EINVAL;
+ return kstrtobool(buf, &_debug_pagealloc_enabled);
+}
+early_param("debug_pagealloc", early_debug_pagealloc);
+
+static bool need_debug_guardpage(void)
+{
+ /* If we don't use debug_pagealloc, we don't need guard page */
+ if (!debug_pagealloc_enabled())
+ return false;
+
+ if (!debug_guardpage_minorder())
+ return false;
+
+ return true;
+}
+
+static void init_debug_guardpage(void)
+{
+ if (!debug_pagealloc_enabled())
+ return;
+
+ if (!debug_guardpage_minorder())
+ return;
+
+ _debug_guardpage_enabled = true;
+}
+
+struct page_ext_operations debug_guardpage_ops = {
+ .need = need_debug_guardpage,
+ .init = init_debug_guardpage,
+};
+
+static int __init debug_guardpage_minorder_setup(char *buf)
+{
+ unsigned long res;
+
+ if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
+ pr_err("Bad debug_guardpage_minorder value\n");
+ return 0;
+ }
+ _debug_guardpage_minorder = res;
+ pr_info("Setting debug_guardpage_minorder to %lu\n", res);
+ return 0;
+}
+early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
+
+static inline bool set_page_guard(struct zone *zone, struct page *page,
+ unsigned int order, int migratetype)
+{
+ struct page_ext *page_ext;
+
+ if (!debug_guardpage_enabled())
+ return false;
+
+ if (order >= debug_guardpage_minorder())
+ return false;
+
+ page_ext = lookup_page_ext(page);
+ if (unlikely(!page_ext))
+ return false;
+
+ __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
+
+ INIT_LIST_HEAD(&page->lru);
+ set_page_private(page, order);
+ /* Guard pages are not available for any usage */
+ __mod_zone_freepage_state(zone, -(1 << order), migratetype);
+
+ return true;
+}
+
+static inline void clear_page_guard(struct zone *zone, struct page *page,
+ unsigned int order, int migratetype)
+{
+ struct page_ext *page_ext;
+
+ if (!debug_guardpage_enabled())
+ return;
+
+ page_ext = lookup_page_ext(page);
+ if (unlikely(!page_ext))
+ return;
+
+ __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
+
+ set_page_private(page, 0);
+ if (!is_migrate_isolate(migratetype))
+ __mod_zone_freepage_state(zone, (1 << order), migratetype);
+}
+#else
+struct page_ext_operations debug_guardpage_ops;
+static inline bool set_page_guard(struct zone *zone, struct page *page,
+ unsigned int order, int migratetype) { return false; }
+static inline void clear_page_guard(struct zone *zone, struct page *page,
+ unsigned int order, int migratetype) {}
+#endif
+
+static inline void set_page_order(struct page *page, unsigned int order)
+{
+ set_page_private(page, order);
+ __SetPageBuddy(page);
+}
+
+static inline void rmv_page_order(struct page *page)
+{
+ __ClearPageBuddy(page);
+ set_page_private(page, 0);
+}
+
+/*
+ * This function checks whether a page is free && is the buddy
+ * we can coalesce a page and its buddy if
+ * (a) the buddy is not in a hole (check before calling!) &&
+ * (b) the buddy is in the buddy system &&
+ * (c) a page and its buddy have the same order &&
+ * (d) a page and its buddy are in the same zone.
+ *
+ * For recording whether a page is in the buddy system, we set PageBuddy.
+ * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
+ *
+ * For recording page's order, we use page_private(page).
+ */
+static inline int page_is_buddy(struct page *page, struct page *buddy,
+ unsigned int order)
+{
+ if (page_is_guard(buddy) && page_order(buddy) == order) {
+ if (page_zone_id(page) != page_zone_id(buddy))
+ return 0;
+
+ VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
+
+ return 1;
+ }
+
+ if (PageBuddy(buddy) && page_order(buddy) == order) {
+ /*
+ * zone check is done late to avoid uselessly
+ * calculating zone/node ids for pages that could
+ * never merge.
+ */
+ if (page_zone_id(page) != page_zone_id(buddy))
+ return 0;
+
+ VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
+
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * Freeing function for a buddy system allocator.
+ *
+ * The concept of a buddy system is to maintain direct-mapped table
+ * (containing bit values) for memory blocks of various "orders".
+ * The bottom level table contains the map for the smallest allocatable
+ * units of memory (here, pages), and each level above it describes
+ * pairs of units from the levels below, hence, "buddies".
+ * At a high level, all that happens here is marking the table entry
+ * at the bottom level available, and propagating the changes upward
+ * as necessary, plus some accounting needed to play nicely with other
+ * parts of the VM system.
+ * At each level, we keep a list of pages, which are heads of continuous
+ * free pages of length of (1 << order) and marked with PageBuddy.
+ * Page's order is recorded in page_private(page) field.
+ * So when we are allocating or freeing one, we can derive the state of the
+ * other. That is, if we allocate a small block, and both were
+ * free, the remainder of the region must be split into blocks.
+ * If a block is freed, and its buddy is also free, then this
+ * triggers coalescing into a block of larger size.
+ *
+ * -- nyc
+ */
+
+static inline void __free_one_page(struct page *page,
+ unsigned long pfn,
+ struct zone *zone, unsigned int order,
+ int migratetype)
+{
+ unsigned long combined_pfn;
+ unsigned long uninitialized_var(buddy_pfn);
+ struct page *buddy;
+ unsigned int max_order;
+
+ max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
+
+ VM_BUG_ON(!zone_is_initialized(zone));
+ VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
+
+ VM_BUG_ON(migratetype == -1);
+ if (likely(!is_migrate_isolate(migratetype)))
+ __mod_zone_freepage_state(zone, 1 << order, migratetype);
+
+ VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
+ VM_BUG_ON_PAGE(bad_range(zone, page), page);
+
+continue_merging:
+ while (order < max_order) {
+ buddy_pfn = __find_buddy_pfn(pfn, order);
+ buddy = page + (buddy_pfn - pfn);
+
+ if (!pfn_valid_within(buddy_pfn))
+ goto done_merging;
+ if (!page_is_buddy(page, buddy, order))
+ goto done_merging;
+ /*
+ * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
+ * merge with it and move up one order.
+ */
+ if (page_is_guard(buddy)) {
+ clear_page_guard(zone, buddy, order, migratetype);
+ } else {
+ list_del(&buddy->lru);
+ zone->free_area[order].nr_free--;
+ rmv_page_order(buddy);
+ }
+ combined_pfn = buddy_pfn & pfn;
+ page = page + (combined_pfn - pfn);
+ pfn = combined_pfn;
+ order++;
+ }
+ if (order < MAX_ORDER - 1) {
+ /* If we are here, it means order is >= pageblock_order.
+ * We want to prevent merge between freepages on isolate
+ * pageblock and normal pageblock. Without this, pageblock
+ * isolation could cause incorrect freepage or CMA accounting.
+ *
+ * We don't want to hit this code for the more frequent
+ * low-order merging.
+ */
+ if (unlikely(has_isolate_pageblock(zone))) {
+ int buddy_mt;
+
+ buddy_pfn = __find_buddy_pfn(pfn, order);
+ buddy = page + (buddy_pfn - pfn);
+ buddy_mt = get_pageblock_migratetype(buddy);
+
+ if (migratetype != buddy_mt
+ && (is_migrate_isolate(migratetype) ||
+ is_migrate_isolate(buddy_mt)))
+ goto done_merging;
+ }
+ max_order = order + 1;
+ goto continue_merging;
+ }
+
+done_merging:
+ set_page_order(page, order);
+
+ /*
+ * If this is not the largest possible page, check if the buddy
+ * of the next-highest order is free. If it is, it's possible
+ * that pages are being freed that will coalesce soon. In case,
+ * that is happening, add the free page to the tail of the list
+ * so it's less likely to be used soon and more likely to be merged
+ * as a higher order page
+ */
+ if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
+ struct page *higher_page, *higher_buddy;
+ combined_pfn = buddy_pfn & pfn;
+ higher_page = page + (combined_pfn - pfn);
+ buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
+ higher_buddy = higher_page + (buddy_pfn - combined_pfn);
+ if (pfn_valid_within(buddy_pfn) &&
+ page_is_buddy(higher_page, higher_buddy, order + 1)) {
+ list_add_tail(&page->lru,
+ &zone->free_area[order].free_list[migratetype]);
+ goto out;
+ }
+ }
+
+ list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
+out:
+ zone->free_area[order].nr_free++;
+}
+
+/*
+ * A bad page could be due to a number of fields. Instead of multiple branches,
+ * try and check multiple fields with one check. The caller must do a detailed
+ * check if necessary.
+ */
+static inline bool page_expected_state(struct page *page,
+ unsigned long check_flags)
+{
+ if (unlikely(atomic_read(&page->_mapcount) != -1))
+ return false;
+
+ if (unlikely((unsigned long)page->mapping |
+ page_ref_count(page) |
+#ifdef CONFIG_MEMCG
+ (unsigned long)page->mem_cgroup |
+#endif
+ (page->flags & check_flags)))
+ return false;
+
+ return true;
+}
+
+static void free_pages_check_bad(struct page *page)
+{
+ const char *bad_reason;
+ unsigned long bad_flags;
+
+ bad_reason = NULL;
+ bad_flags = 0;
+
+ if (unlikely(atomic_read(&page->_mapcount) != -1))
+ bad_reason = "nonzero mapcount";
+ if (unlikely(page->mapping != NULL))
+ bad_reason = "non-NULL mapping";
+ if (unlikely(page_ref_count(page) != 0))
+ bad_reason = "nonzero _refcount";
+ if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
+ bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
+ bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
+ }
+#ifdef CONFIG_MEMCG
+ if (unlikely(page->mem_cgroup))
+ bad_reason = "page still charged to cgroup";
+#endif
+ bad_page(page, bad_reason, bad_flags);
+}
+
+static inline int free_pages_check(struct page *page)
+{
+ if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
+ return 0;
+
+ /* Something has gone sideways, find it */
+ free_pages_check_bad(page);
+ return 1;
+}
+
+static int free_tail_pages_check(struct page *head_page, struct page *page)
+{
+ int ret = 1;
+
+ /*
+ * We rely page->lru.next never has bit 0 set, unless the page
+ * is PageTail(). Let's make sure that's true even for poisoned ->lru.
+ */
+ BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
+
+ if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
+ ret = 0;
+ goto out;
+ }
+ switch (page - head_page) {
+ case 1:
+ /* the first tail page: ->mapping may be compound_mapcount() */
+ if (unlikely(compound_mapcount(page))) {
+ bad_page(page, "nonzero compound_mapcount", 0);
+ goto out;
+ }
+ break;
+ case 2:
+ /*
+ * the second tail page: ->mapping is
+ * deferred_list.next -- ignore value.
+ */
+ break;
+ default:
+ if (page->mapping != TAIL_MAPPING) {
+ bad_page(page, "corrupted mapping in tail page", 0);
+ goto out;
+ }
+ break;
+ }
+ if (unlikely(!PageTail(page))) {
+ bad_page(page, "PageTail not set", 0);
+ goto out;
+ }
+ if (unlikely(compound_head(page) != head_page)) {
+ bad_page(page, "compound_head not consistent", 0);
+ goto out;
+ }
+ ret = 0;
+out:
+ page->mapping = NULL;
+ clear_compound_head(page);
+ return ret;
+}
+
+static __always_inline bool free_pages_prepare(struct page *page,
+ unsigned int order, bool check_free)
+{
+ int bad = 0;
+
+ VM_BUG_ON_PAGE(PageTail(page), page);
+
+ trace_mm_page_free(page, order);
+
+ /*
+ * Check tail pages before head page information is cleared to
+ * avoid checking PageCompound for order-0 pages.
+ */
+ if (unlikely(order)) {
+ bool compound = PageCompound(page);
+ int i;
+
+ VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
+
+ if (compound)
+ ClearPageDoubleMap(page);
+ for (i = 1; i < (1 << order); i++) {
+ if (compound)
+ bad += free_tail_pages_check(page, page + i);
+ if (unlikely(free_pages_check(page + i))) {
+ bad++;
+ continue;
+ }
+ (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
+ }
+ }
+ if (PageMappingFlags(page))
+ page->mapping = NULL;
+ if (memcg_kmem_enabled() && PageKmemcg(page))
+ memcg_kmem_uncharge(page, order);
+ if (check_free)
+ bad += free_pages_check(page);
+ if (bad)
+ return false;
+
+ page_cpupid_reset_last(page);
+ page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
+ reset_page_owner(page, order);
+
+ if (!PageHighMem(page)) {
+ debug_check_no_locks_freed(page_address(page),
+ PAGE_SIZE << order);
+ debug_check_no_obj_freed(page_address(page),
+ PAGE_SIZE << order);
+ }
+ arch_free_page(page, order);
+ kernel_poison_pages(page, 1 << order, 0);
+ kernel_map_pages(page, 1 << order, 0);
+ kasan_free_nondeferred_pages(page, order);
+
+ return true;
+}
+
+#ifdef CONFIG_DEBUG_VM
+static inline bool free_pcp_prepare(struct page *page)
+{
+ return free_pages_prepare(page, 0, true);
+}
+
+static inline bool bulkfree_pcp_prepare(struct page *page)
+{
+ return false;
+}
+#else
+static bool free_pcp_prepare(struct page *page)
+{
+ return free_pages_prepare(page, 0, false);
+}
+
+static bool bulkfree_pcp_prepare(struct page *page)
+{
+ return free_pages_check(page);
+}
+#endif /* CONFIG_DEBUG_VM */
+
+static inline void prefetch_buddy(struct page *page)
+{
+ unsigned long pfn = page_to_pfn(page);
+ unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
+ struct page *buddy = page + (buddy_pfn - pfn);
+
+ prefetch(buddy);
+}
+
+/*
+ * Frees a number of pages from the PCP lists
+ * Assumes all pages on list are in same zone, and of same order.
+ * count is the number of pages to free.
+ *
+ * If the zone was previously in an "all pages pinned" state then look to
+ * see if this freeing clears that state.
+ *
+ * And clear the zone's pages_scanned counter, to hold off the "all pages are
+ * pinned" detection logic.
+ */
+static void free_pcppages_bulk(struct zone *zone, int count,
+ struct per_cpu_pages *pcp)
+{
+ int migratetype = 0;
+ int batch_free = 0;
+ int prefetch_nr = 0;
+ bool isolated_pageblocks;
+ struct page *page, *tmp;
+ LIST_HEAD(head);
+
+ /*
+ * Ensure proper count is passed which otherwise would stuck in the
+ * below while (list_empty(list)) loop.
+ */
+ count = min(pcp->count, count);
+ while (count) {
+ struct list_head *list;
+
+ /*
+ * Remove pages from lists in a round-robin fashion. A
+ * batch_free count is maintained that is incremented when an
+ * empty list is encountered. This is so more pages are freed
+ * off fuller lists instead of spinning excessively around empty
+ * lists
+ */
+ do {
+ batch_free++;
+ if (++migratetype == MIGRATE_PCPTYPES)
+ migratetype = 0;
+ list = &pcp->lists[migratetype];
+ } while (list_empty(list));
+
+ /* This is the only non-empty list. Free them all. */
+ if (batch_free == MIGRATE_PCPTYPES)
+ batch_free = count;
+
+ do {
+ page = list_last_entry(list, struct page, lru);
+ /* must delete to avoid corrupting pcp list */
+ list_del(&page->lru);
+ pcp->count--;
+
+ if (bulkfree_pcp_prepare(page))
+ continue;
+
+ list_add_tail(&page->lru, &head);
+
+ /*
+ * We are going to put the page back to the global
+ * pool, prefetch its buddy to speed up later access
+ * under zone->lock. It is believed the overhead of
+ * an additional test and calculating buddy_pfn here
+ * can be offset by reduced memory latency later. To
+ * avoid excessive prefetching due to large count, only
+ * prefetch buddy for the first pcp->batch nr of pages.
+ */
+ if (prefetch_nr++ < pcp->batch)
+ prefetch_buddy(page);
+ } while (--count && --batch_free && !list_empty(list));
+ }
+
+ spin_lock(&zone->lock);
+ isolated_pageblocks = has_isolate_pageblock(zone);
+
+ /*
+ * Use safe version since after __free_one_page(),
+ * page->lru.next will not point to original list.
+ */
+ list_for_each_entry_safe(page, tmp, &head, lru) {
+ int mt = get_pcppage_migratetype(page);
+ /* MIGRATE_ISOLATE page should not go to pcplists */
+ VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
+ /* Pageblock could have been isolated meanwhile */
+ if (unlikely(isolated_pageblocks))
+ mt = get_pageblock_migratetype(page);
+
+ __free_one_page(page, page_to_pfn(page), zone, 0, mt);
+ trace_mm_page_pcpu_drain(page, 0, mt);
+ }
+ spin_unlock(&zone->lock);
+}
+
+static void free_one_page(struct zone *zone,
+ struct page *page, unsigned long pfn,
+ unsigned int order,
+ int migratetype)
+{
+ spin_lock(&zone->lock);
+ if (unlikely(has_isolate_pageblock(zone) ||
+ is_migrate_isolate(migratetype))) {
+ migratetype = get_pfnblock_migratetype(page, pfn);
+ }
+ __free_one_page(page, pfn, zone, order, migratetype);
+ spin_unlock(&zone->lock);
+}
+
+static void __meminit __init_single_page(struct page *page, unsigned long pfn,
+ unsigned long zone, int nid)
+{
+ mm_zero_struct_page(page);
+ set_page_links(page, zone, nid, pfn);
+ init_page_count(page);
+ page_mapcount_reset(page);
+ page_cpupid_reset_last(page);
+
+ INIT_LIST_HEAD(&page->lru);
+#ifdef WANT_PAGE_VIRTUAL
+ /* The shift won't overflow because ZONE_NORMAL is below 4G. */
+ if (!is_highmem_idx(zone))
+ set_page_address(page, __va(pfn << PAGE_SHIFT));
+#endif
+}
+
+#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
+static void __meminit init_reserved_page(unsigned long pfn)
+{
+ pg_data_t *pgdat;
+ int nid, zid;
+
+ if (!early_page_uninitialised(pfn))
+ return;
+
+ nid = early_pfn_to_nid(pfn);
+ pgdat = NODE_DATA(nid);
+
+ for (zid = 0; zid < MAX_NR_ZONES; zid++) {
+ struct zone *zone = &pgdat->node_zones[zid];
+
+ if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
+ break;
+ }
+ __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
+}
+#else
+static inline void init_reserved_page(unsigned long pfn)
+{
+}
+#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
+
+/*
+ * Initialised pages do not have PageReserved set. This function is
+ * called for each range allocated by the bootmem allocator and
+ * marks the pages PageReserved. The remaining valid pages are later
+ * sent to the buddy page allocator.
+ */
+void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
+{
+ unsigned long start_pfn = PFN_DOWN(start);
+ unsigned long end_pfn = PFN_UP(end);
+
+ for (; start_pfn < end_pfn; start_pfn++) {
+ if (pfn_valid(start_pfn)) {
+ struct page *page = pfn_to_page(start_pfn);
+
+ init_reserved_page(start_pfn);
+
+ /* Avoid false-positive PageTail() */
+ INIT_LIST_HEAD(&page->lru);
+
+ SetPageReserved(page);
+ }
+ }
+}
+
+static void __free_pages_ok(struct page *page, unsigned int order)
+{
+ unsigned long flags;
+ int migratetype;
+ unsigned long pfn = page_to_pfn(page);
+
+ if (!free_pages_prepare(page, order, true))
+ return;
+
+ migratetype = get_pfnblock_migratetype(page, pfn);
+ local_irq_save(flags);
+ __count_vm_events(PGFREE, 1 << order);
+ free_one_page(page_zone(page), page, pfn, order, migratetype);
+ local_irq_restore(flags);
+}
+
+static void __init __free_pages_boot_core(struct page *page, unsigned int order)
+{
+ unsigned int nr_pages = 1 << order;
+ struct page *p = page;
+ unsigned int loop;
+
+ prefetchw(p);
+ for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
+ prefetchw(p + 1);
+ __ClearPageReserved(p);
+ set_page_count(p, 0);
+ }
+ __ClearPageReserved(p);
+ set_page_count(p, 0);
+
+ page_zone(page)->managed_pages += nr_pages;
+ set_page_refcounted(page);
+ __free_pages(page, order);
+}
+
+#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
+ defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
+
+static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
+
+int __meminit early_pfn_to_nid(unsigned long pfn)
+{
+ static DEFINE_SPINLOCK(early_pfn_lock);
+ int nid;
+
+ spin_lock(&early_pfn_lock);
+ nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
+ if (nid < 0)
+ nid = first_online_node;
+ spin_unlock(&early_pfn_lock);
+
+ return nid;
+}
+#endif
+
+#ifdef CONFIG_NODES_SPAN_OTHER_NODES
+static inline bool __meminit __maybe_unused
+meminit_pfn_in_nid(unsigned long pfn, int node,
+ struct mminit_pfnnid_cache *state)
+{
+ int nid;
+
+ nid = __early_pfn_to_nid(pfn, state);
+ if (nid >= 0 && nid != node)
+ return false;
+ return true;
+}
+
+/* Only safe to use early in boot when initialisation is single-threaded */
+static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
+{
+ return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
+}
+
+#else
+
+static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
+{
+ return true;
+}
+static inline bool __meminit __maybe_unused
+meminit_pfn_in_nid(unsigned long pfn, int node,
+ struct mminit_pfnnid_cache *state)
+{
+ return true;
+}
+#endif
+
+
+void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
+ unsigned int order)
+{
+ if (early_page_uninitialised(pfn))
+ return;
+ return __free_pages_boot_core(page, order);
+}
+
+/*
+ * Check that the whole (or subset of) a pageblock given by the interval of
+ * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
+ * with the migration of free compaction scanner. The scanners then need to
+ * use only pfn_valid_within() check for arches that allow holes within
+ * pageblocks.
+ *
+ * Return struct page pointer of start_pfn, or NULL if checks were not passed.
+ *
+ * It's possible on some configurations to have a setup like node0 node1 node0
+ * i.e. it's possible that all pages within a zones range of pages do not
+ * belong to a single zone. We assume that a border between node0 and node1
+ * can occur within a single pageblock, but not a node0 node1 node0
+ * interleaving within a single pageblock. It is therefore sufficient to check
+ * the first and last page of a pageblock and avoid checking each individual
+ * page in a pageblock.
+ */
+struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
+ unsigned long end_pfn, struct zone *zone)
+{
+ struct page *start_page;
+ struct page *end_page;
+
+ /* end_pfn is one past the range we are checking */
+ end_pfn--;
+
+ if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
+ return NULL;
+
+ start_page = pfn_to_online_page(start_pfn);
+ if (!start_page)
+ return NULL;
+
+ if (page_zone(start_page) != zone)
+ return NULL;
+
+ end_page = pfn_to_page(end_pfn);
+
+ /* This gives a shorter code than deriving page_zone(end_page) */
+ if (page_zone_id(start_page) != page_zone_id(end_page))
+ return NULL;
+
+ return start_page;
+}
+
+void set_zone_contiguous(struct zone *zone)
+{
+ unsigned long block_start_pfn = zone->zone_start_pfn;
+ unsigned long block_end_pfn;
+
+ block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
+ for (; block_start_pfn < zone_end_pfn(zone);
+ block_start_pfn = block_end_pfn,
+ block_end_pfn += pageblock_nr_pages) {
+
+ block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
+
+ if (!__pageblock_pfn_to_page(block_start_pfn,
+ block_end_pfn, zone))
+ return;
+ cond_resched();
+ }
+
+ /* We confirm that there is no hole */
+ zone->contiguous = true;
+}
+
+void clear_zone_contiguous(struct zone *zone)
+{
+ zone->contiguous = false;
+}
+
+#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
+static void __init deferred_free_range(unsigned long pfn,
+ unsigned long nr_pages)
+{
+ struct page *page;
+ unsigned long i;
+
+ if (!nr_pages)
+ return;
+
+ page = pfn_to_page(pfn);
+
+ /* Free a large naturally-aligned chunk if possible */
+ if (nr_pages == pageblock_nr_pages &&
+ (pfn & (pageblock_nr_pages - 1)) == 0) {
+ set_pageblock_migratetype(page, MIGRATE_MOVABLE);
+ __free_pages_boot_core(page, pageblock_order);
+ return;
+ }
+
+ for (i = 0; i < nr_pages; i++, page++, pfn++) {
+ if ((pfn & (pageblock_nr_pages - 1)) == 0)
+ set_pageblock_migratetype(page, MIGRATE_MOVABLE);
+ __free_pages_boot_core(page, 0);
+ }
+}
+
+/* Completion tracking for deferred_init_memmap() threads */
+static atomic_t pgdat_init_n_undone __initdata;
+static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
+
+static inline void __init pgdat_init_report_one_done(void)
+{
+ if (atomic_dec_and_test(&pgdat_init_n_undone))
+ complete(&pgdat_init_all_done_comp);
+}
+
+/*
+ * Returns true if page needs to be initialized or freed to buddy allocator.
+ *
+ * First we check if pfn is valid on architectures where it is possible to have
+ * holes within pageblock_nr_pages. On systems where it is not possible, this
+ * function is optimized out.
+ *
+ * Then, we check if a current large page is valid by only checking the validity
+ * of the head pfn.
+ *
+ * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
+ * within a node: a pfn is between start and end of a node, but does not belong
+ * to this memory node.
+ */
+static inline bool __init
+deferred_pfn_valid(int nid, unsigned long pfn,
+ struct mminit_pfnnid_cache *nid_init_state)
+{
+ if (!pfn_valid_within(pfn))
+ return false;
+ if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
+ return false;
+ if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
+ return false;
+ return true;
+}
+
+/*
+ * Free pages to buddy allocator. Try to free aligned pages in
+ * pageblock_nr_pages sizes.
+ */
+static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
+ unsigned long end_pfn)
+{
+ struct mminit_pfnnid_cache nid_init_state = { };
+ unsigned long nr_pgmask = pageblock_nr_pages - 1;
+ unsigned long nr_free = 0;
+
+ for (; pfn < end_pfn; pfn++) {
+ if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
+ deferred_free_range(pfn - nr_free, nr_free);
+ nr_free = 0;
+ } else if (!(pfn & nr_pgmask)) {
+ deferred_free_range(pfn - nr_free, nr_free);
+ nr_free = 1;
+ touch_nmi_watchdog();
+ } else {
+ nr_free++;
+ }
+ }
+ /* Free the last block of pages to allocator */
+ deferred_free_range(pfn - nr_free, nr_free);
+}
+
+/*
+ * Initialize struct pages. We minimize pfn page lookups and scheduler checks
+ * by performing it only once every pageblock_nr_pages.
+ * Return number of pages initialized.
+ */
+static unsigned long __init deferred_init_pages(int nid, int zid,
+ unsigned long pfn,
+ unsigned long end_pfn)
+{
+ struct mminit_pfnnid_cache nid_init_state = { };
+ unsigned long nr_pgmask = pageblock_nr_pages - 1;
+ unsigned long nr_pages = 0;
+ struct page *page = NULL;
+
+ for (; pfn < end_pfn; pfn++) {
+ if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
+ page = NULL;
+ continue;
+ } else if (!page || !(pfn & nr_pgmask)) {
+ page = pfn_to_page(pfn);
+ touch_nmi_watchdog();
+ } else {
+ page++;
+ }
+ __init_single_page(page, pfn, zid, nid);
+ nr_pages++;
+ }
+ return (nr_pages);
+}
+
+/* Initialise remaining memory on a node */
+static int __init deferred_init_memmap(void *data)
+{
+ pg_data_t *pgdat = data;
+ int nid = pgdat->node_id;
+ unsigned long start = jiffies;
+ unsigned long nr_pages = 0;
+ unsigned long spfn, epfn, first_init_pfn, flags;
+ phys_addr_t spa, epa;
+ int zid;
+ struct zone *zone;
+ const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
+ u64 i;
+
+ /* Bind memory initialisation thread to a local node if possible */
+ if (!cpumask_empty(cpumask))
+ set_cpus_allowed_ptr(current, cpumask);
+
+ pgdat_resize_lock(pgdat, &flags);
+ first_init_pfn = pgdat->first_deferred_pfn;
+ if (first_init_pfn == ULONG_MAX) {
+ pgdat_resize_unlock(pgdat, &flags);
+ pgdat_init_report_one_done();
+ return 0;
+ }
+
+ /* Sanity check boundaries */
+ BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
+ BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
+ pgdat->first_deferred_pfn = ULONG_MAX;
+
+ /*
+ * Once we unlock here, the zone cannot be grown anymore, thus if an
+ * interrupt thread must allocate this early in boot, zone must be
+ * pre-grown prior to start of deferred page initialization.
+ */
+ pgdat_resize_unlock(pgdat, &flags);
+
+ /* Only the highest zone is deferred so find it */
+ for (zid = 0; zid < MAX_NR_ZONES; zid++) {
+ zone = pgdat->node_zones + zid;
+ if (first_init_pfn < zone_end_pfn(zone))
+ break;
+ }
+ first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
+
+ /*
+ * Initialize and free pages. We do it in two loops: first we initialize
+ * struct page, than free to buddy allocator, because while we are
+ * freeing pages we can access pages that are ahead (computing buddy
+ * page in __free_one_page()).
+ */
+ for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
+ spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
+ epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
+ nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
+ }
+ for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
+ spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
+ epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
+ deferred_free_pages(nid, zid, spfn, epfn);
+ }
+
+ /* Sanity check that the next zone really is unpopulated */
+ WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
+
+ pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
+ jiffies_to_msecs(jiffies - start));
+
+ pgdat_init_report_one_done();
+ return 0;
+}
+
+/*
+ * If this zone has deferred pages, try to grow it by initializing enough
+ * deferred pages to satisfy the allocation specified by order, rounded up to
+ * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
+ * of SECTION_SIZE bytes by initializing struct pages in increments of
+ * PAGES_PER_SECTION * sizeof(struct page) bytes.
+ *
+ * Return true when zone was grown, otherwise return false. We return true even
+ * when we grow less than requested, to let the caller decide if there are
+ * enough pages to satisfy the allocation.
+ *
+ * Note: We use noinline because this function is needed only during boot, and
+ * it is called from a __ref function _deferred_grow_zone. This way we are
+ * making sure that it is not inlined into permanent text section.
+ */
+static noinline bool __init
+deferred_grow_zone(struct zone *zone, unsigned int order)
+{
+ int zid = zone_idx(zone);
+ int nid = zone_to_nid(zone);
+ pg_data_t *pgdat = NODE_DATA(nid);
+ unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
+ unsigned long nr_pages = 0;
+ unsigned long first_init_pfn, spfn, epfn, t, flags;
+ unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
+ phys_addr_t spa, epa;
+ u64 i;
+
+ /* Only the last zone may have deferred pages */
+ if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
+ return false;
+
+ pgdat_resize_lock(pgdat, &flags);
+
+ /*
+ * If someone grew this zone while we were waiting for spinlock, return
+ * true, as there might be enough pages already.
+ */
+ if (first_deferred_pfn != pgdat->first_deferred_pfn) {
+ pgdat_resize_unlock(pgdat, &flags);
+ return true;
+ }
+
+ first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
+
+ if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
+ pgdat_resize_unlock(pgdat, &flags);
+ return false;
+ }
+
+ for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
+ spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
+ epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
+
+ while (spfn < epfn && nr_pages < nr_pages_needed) {
+ t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
+ first_deferred_pfn = min(t, epfn);
+ nr_pages += deferred_init_pages(nid, zid, spfn,
+ first_deferred_pfn);
+ spfn = first_deferred_pfn;
+ }
+
+ if (nr_pages >= nr_pages_needed)
+ break;
+ }
+
+ for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
+ spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
+ epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
+ deferred_free_pages(nid, zid, spfn, epfn);
+
+ if (first_deferred_pfn == epfn)
+ break;
+ }
+ pgdat->first_deferred_pfn = first_deferred_pfn;
+ pgdat_resize_unlock(pgdat, &flags);
+
+ return nr_pages > 0;
+}
+
+/*
+ * deferred_grow_zone() is __init, but it is called from
+ * get_page_from_freelist() during early boot until deferred_pages permanently
+ * disables this call. This is why we have refdata wrapper to avoid warning,
+ * and to ensure that the function body gets unloaded.
+ */
+static bool __ref
+_deferred_grow_zone(struct zone *zone, unsigned int order)
+{
+ return deferred_grow_zone(zone, order);
+}
+
+#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
+
+void __init page_alloc_init_late(void)
+{
+ struct zone *zone;
+
+#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
+ int nid;
+
+ /* There will be num_node_state(N_MEMORY) threads */
+ atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
+ for_each_node_state(nid, N_MEMORY) {
+ kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
+ }
+
+ /* Block until all are initialised */
+ wait_for_completion(&pgdat_init_all_done_comp);
+
+ /*
+ * The number of managed pages has changed due to the initialisation
+ * so the pcpu batch and high limits needs to be updated or the limits
+ * will be artificially small.
+ */
+ for_each_populated_zone(zone)
+ zone_pcp_update(zone);
+
+ /*
+ * We initialized the rest of the deferred pages. Permanently disable
+ * on-demand struct page initialization.
+ */
+ static_branch_disable(&deferred_pages);
+
+ /* Reinit limits that are based on free pages after the kernel is up */
+ files_maxfiles_init();
+#endif
+#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
+ /* Discard memblock private memory */
+ memblock_discard();
+#endif
+
+ for_each_populated_zone(zone)
+ set_zone_contiguous(zone);
+}
+
+#ifdef CONFIG_CMA
+/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
+void __init init_cma_reserved_pageblock(struct page *page)
+{
+ unsigned i = pageblock_nr_pages;
+ struct page *p = page;
+
+ do {
+ __ClearPageReserved(p);
+ set_page_count(p, 0);
+ } while (++p, --i);
+
+ set_pageblock_migratetype(page, MIGRATE_CMA);
+
+ if (pageblock_order >= MAX_ORDER) {
+ i = pageblock_nr_pages;
+ p = page;
+ do {
+ set_page_refcounted(p);
+ __free_pages(p, MAX_ORDER - 1);
+ p += MAX_ORDER_NR_PAGES;
+ } while (i -= MAX_ORDER_NR_PAGES);
+ } else {
+ set_page_refcounted(page);
+ __free_pages(page, pageblock_order);
+ }
+
+ adjust_managed_page_count(page, pageblock_nr_pages);
+}
+#endif
+
+/*
+ * The order of subdivision here is critical for the IO subsystem.
+ * Please do not alter this order without good reasons and regression
+ * testing. Specifically, as large blocks of memory are subdivided,
+ * the order in which smaller blocks are delivered depends on the order
+ * they're subdivided in this function. This is the primary factor
+ * influencing the order in which pages are delivered to the IO
+ * subsystem according to empirical testing, and this is also justified
+ * by considering the behavior of a buddy system containing a single
+ * large block of memory acted on by a series of small allocations.
+ * This behavior is a critical factor in sglist merging's success.
+ *
+ * -- nyc
+ */
+static inline void expand(struct zone *zone, struct page *page,
+ int low, int high, struct free_area *area,
+ int migratetype)
+{
+ unsigned long size = 1 << high;
+
+ while (high > low) {
+ area--;
+ high--;
+ size >>= 1;
+ VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
+
+ /*
+ * Mark as guard pages (or page), that will allow to
+ * merge back to allocator when buddy will be freed.
+ * Corresponding page table entries will not be touched,
+ * pages will stay not present in virtual address space
+ */
+ if (set_page_guard(zone, &page[size], high, migratetype))
+ continue;
+
+ list_add(&page[size].lru, &area->free_list[migratetype]);
+ area->nr_free++;
+ set_page_order(&page[size], high);
+ }
+}
+
+static void check_new_page_bad(struct page *page)
+{
+ const char *bad_reason = NULL;
+ unsigned long bad_flags = 0;
+
+ if (unlikely(atomic_read(&page->_mapcount) != -1))
+ bad_reason = "nonzero mapcount";
+ if (unlikely(page->mapping != NULL))
+ bad_reason = "non-NULL mapping";
+ if (unlikely(page_ref_count(page) != 0))
+ bad_reason = "nonzero _count";
+ if (unlikely(page->flags & __PG_HWPOISON)) {
+ bad_reason = "HWPoisoned (hardware-corrupted)";
+ bad_flags = __PG_HWPOISON;
+ /* Don't complain about hwpoisoned pages */
+ page_mapcount_reset(page); /* remove PageBuddy */
+ return;
+ }
+ if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
+ bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
+ bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
+ }
+#ifdef CONFIG_MEMCG
+ if (unlikely(page->mem_cgroup))
+ bad_reason = "page still charged to cgroup";
+#endif
+ bad_page(page, bad_reason, bad_flags);
+}
+
+/*
+ * This page is about to be returned from the page allocator
+ */
+static inline int check_new_page(struct page *page)
+{
+ if (likely(page_expected_state(page,
+ PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
+ return 0;
+
+ check_new_page_bad(page);
+ return 1;
+}
+
+static inline bool free_pages_prezeroed(void)
+{
+ return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
+ page_poisoning_enabled();
+}
+
+#ifdef CONFIG_DEBUG_VM
+static bool check_pcp_refill(struct page *page)
+{
+ return false;
+}
+
+static bool check_new_pcp(struct page *page)
+{
+ return check_new_page(page);
+}
+#else
+static bool check_pcp_refill(struct page *page)
+{
+ return check_new_page(page);
+}
+static bool check_new_pcp(struct page *page)
+{
+ return false;
+}
+#endif /* CONFIG_DEBUG_VM */
+
+static bool check_new_pages(struct page *page, unsigned int order)
+{
+ int i;
+ for (i = 0; i < (1 << order); i++) {
+ struct page *p = page + i;
+
+ if (unlikely(check_new_page(p)))
+ return true;
+ }
+
+ return false;
+}
+
+inline void post_alloc_hook(struct page *page, unsigned int order,
+ gfp_t gfp_flags)
+{
+ set_page_private(page, 0);
+ set_page_refcounted(page);
+
+ arch_alloc_page(page, order);
+ kernel_map_pages(page, 1 << order, 1);
+ kasan_alloc_pages(page, order);
+ kernel_poison_pages(page, 1 << order, 1);
+ set_page_owner(page, order, gfp_flags);
+}
+
+static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
+ unsigned int alloc_flags)
+{
+ int i;
+
+ post_alloc_hook(page, order, gfp_flags);
+
+ if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
+ for (i = 0; i < (1 << order); i++)
+ clear_highpage(page + i);
+
+ if (order && (gfp_flags & __GFP_COMP))
+ prep_compound_page(page, order);
+
+ /*
+ * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
+ * allocate the page. The expectation is that the caller is taking
+ * steps that will free more memory. The caller should avoid the page
+ * being used for !PFMEMALLOC purposes.
+ */
+ if (alloc_flags & ALLOC_NO_WATERMARKS)
+ set_page_pfmemalloc(page);
+ else
+ clear_page_pfmemalloc(page);
+}
+
+/*
+ * Go through the free lists for the given migratetype and remove
+ * the smallest available page from the freelists
+ */
+static __always_inline
+struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
+ int migratetype)
+{
+ unsigned int current_order;
+ struct free_area *area;
+ struct page *page;
+
+ /* Find a page of the appropriate size in the preferred list */
+ for (current_order = order; current_order < MAX_ORDER; ++current_order) {
+ area = &(zone->free_area[current_order]);
+ page = list_first_entry_or_null(&area->free_list[migratetype],
+ struct page, lru);
+ if (!page)
+ continue;
+ list_del(&page->lru);
+ rmv_page_order(page);
+ area->nr_free--;
+ expand(zone, page, order, current_order, area, migratetype);
+ set_pcppage_migratetype(page, migratetype);
+ return page;
+ }
+
+ return NULL;
+}
+
+
+/*
+ * This array describes the order lists are fallen back to when
+ * the free lists for the desirable migrate type are depleted
+ */
+static int fallbacks[MIGRATE_TYPES][4] = {
+ [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
+ [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
+ [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
+#ifdef CONFIG_CMA
+ [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
+#endif
+#ifdef CONFIG_MEMORY_ISOLATION
+ [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
+#endif
+};
+
+#ifdef CONFIG_CMA
+static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
+ unsigned int order)
+{
+ return __rmqueue_smallest(zone, order, MIGRATE_CMA);
+}
+#else
+static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
+ unsigned int order) { return NULL; }
+#endif
+
+/*
+ * Move the free pages in a range to the free lists of the requested type.
+ * Note that start_page and end_pages are not aligned on a pageblock
+ * boundary. If alignment is required, use move_freepages_block()
+ */
+static int move_freepages(struct zone *zone,
+ struct page *start_page, struct page *end_page,
+ int migratetype, int *num_movable)
+{
+ struct page *page;
+ unsigned int order;
+ int pages_moved = 0;
+
+#ifndef CONFIG_HOLES_IN_ZONE
+ /*
+ * page_zone is not safe to call in this context when
+ * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
+ * anyway as we check zone boundaries in move_freepages_block().
+ * Remove at a later date when no bug reports exist related to
+ * grouping pages by mobility
+ */
+ VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
+ pfn_valid(page_to_pfn(end_page)) &&
+ page_zone(start_page) != page_zone(end_page));
+#endif
+
+ if (num_movable)
+ *num_movable = 0;
+
+ for (page = start_page; page <= end_page;) {
+ if (!pfn_valid_within(page_to_pfn(page))) {
+ page++;
+ continue;
+ }
+
+ /* Make sure we are not inadvertently changing nodes */
+ VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
+
+ if (!PageBuddy(page)) {
+ /*
+ * We assume that pages that could be isolated for
+ * migration are movable. But we don't actually try
+ * isolating, as that would be expensive.
+ */
+ if (num_movable &&
+ (PageLRU(page) || __PageMovable(page)))
+ (*num_movable)++;
+
+ page++;
+ continue;
+ }
+
+ order = page_order(page);
+ list_move(&page->lru,
+ &zone->free_area[order].free_list[migratetype]);
+ page += 1 << order;
+ pages_moved += 1 << order;
+ }
+
+ return pages_moved;
+}
+
+int move_freepages_block(struct zone *zone, struct page *page,
+ int migratetype, int *num_movable)
+{
+ unsigned long start_pfn, end_pfn;
+ struct page *start_page, *end_page;
+
+ start_pfn = page_to_pfn(page);
+ start_pfn = start_pfn & ~(pageblock_nr_pages-1);
+ start_page = pfn_to_page(start_pfn);
+ end_page = start_page + pageblock_nr_pages - 1;
+ end_pfn = start_pfn + pageblock_nr_pages - 1;
+
+ /* Do not cross zone boundaries */
+ if (!zone_spans_pfn(zone, start_pfn))
+ start_page = page;
+ if (!zone_spans_pfn(zone, end_pfn))
+ return 0;
+
+ return move_freepages(zone, start_page, end_page, migratetype,
+ num_movable);
+}
+
+static void change_pageblock_range(struct page *pageblock_page,
+ int start_order, int migratetype)
+{
+ int nr_pageblocks = 1 << (start_order - pageblock_order);
+
+ while (nr_pageblocks--) {
+ set_pageblock_migratetype(pageblock_page, migratetype);
+ pageblock_page += pageblock_nr_pages;
+ }
+}
+
+/*
+ * When we are falling back to another migratetype during allocation, try to
+ * steal extra free pages from the same pageblocks to satisfy further
+ * allocations, instead of polluting multiple pageblocks.
+ *
+ * If we are stealing a relatively large buddy page, it is likely there will
+ * be more free pages in the pageblock, so try to steal them all. For
+ * reclaimable and unmovable allocations, we steal regardless of page size,
+ * as fragmentation caused by those allocations polluting movable pageblocks
+ * is worse than movable allocations stealing from unmovable and reclaimable
+ * pageblocks.
+ */
+static bool can_steal_fallback(unsigned int order, int start_mt)
+{
+ /*
+ * Leaving this order check is intended, although there is
+ * relaxed order check in next check. The reason is that
+ * we can actually steal whole pageblock if this condition met,
+ * but, below check doesn't guarantee it and that is just heuristic
+ * so could be changed anytime.
+ */
+ if (order >= pageblock_order)
+ return true;
+
+ if (order >= pageblock_order / 2 ||
+ start_mt == MIGRATE_RECLAIMABLE ||
+ start_mt == MIGRATE_UNMOVABLE ||
+ page_group_by_mobility_disabled)
+ return true;
+
+ return false;
+}
+
+/*
+ * This function implements actual steal behaviour. If order is large enough,
+ * we can steal whole pageblock. If not, we first move freepages in this
+ * pageblock to our migratetype and determine how many already-allocated pages
+ * are there in the pageblock with a compatible migratetype. If at least half
+ * of pages are free or compatible, we can change migratetype of the pageblock
+ * itself, so pages freed in the future will be put on the correct free list.
+ */
+static void steal_suitable_fallback(struct zone *zone, struct page *page,
+ int start_type, bool whole_block)
+{
+ unsigned int current_order = page_order(page);
+ struct free_area *area;
+ int free_pages, movable_pages, alike_pages;
+ int old_block_type;
+
+ old_block_type = get_pageblock_migratetype(page);
+
+ /*
+ * This can happen due to races and we want to prevent broken
+ * highatomic accounting.
+ */
+ if (is_migrate_highatomic(old_block_type))
+ goto single_page;
+
+ /* Take ownership for orders >= pageblock_order */
+ if (current_order >= pageblock_order) {
+ change_pageblock_range(page, current_order, start_type);
+ goto single_page;
+ }
+
+ /* We are not allowed to try stealing from the whole block */
+ if (!whole_block)
+ goto single_page;
+
+ free_pages = move_freepages_block(zone, page, start_type,
+ &movable_pages);
+ /*
+ * Determine how many pages are compatible with our allocation.
+ * For movable allocation, it's the number of movable pages which
+ * we just obtained. For other types it's a bit more tricky.
+ */
+ if (start_type == MIGRATE_MOVABLE) {
+ alike_pages = movable_pages;
+ } else {
+ /*
+ * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
+ * to MOVABLE pageblock, consider all non-movable pages as
+ * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
+ * vice versa, be conservative since we can't distinguish the
+ * exact migratetype of non-movable pages.
+ */
+ if (old_block_type == MIGRATE_MOVABLE)
+ alike_pages = pageblock_nr_pages
+ - (free_pages + movable_pages);
+ else
+ alike_pages = 0;
+ }
+
+ /* moving whole block can fail due to zone boundary conditions */
+ if (!free_pages)
+ goto single_page;
+
+ /*
+ * If a sufficient number of pages in the block are either free or of
+ * comparable migratability as our allocation, claim the whole block.
+ */
+ if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
+ page_group_by_mobility_disabled)
+ set_pageblock_migratetype(page, start_type);
+
+ return;
+
+single_page:
+ area = &zone->free_area[current_order];
+ list_move(&page->lru, &area->free_list[start_type]);
+}
+
+/*
+ * Check whether there is a suitable fallback freepage with requested order.
+ * If only_stealable is true, this function returns fallback_mt only if
+ * we can steal other freepages all together. This would help to reduce
+ * fragmentation due to mixed migratetype pages in one pageblock.
+ */
+int find_suitable_fallback(struct free_area *area, unsigned int order,
+ int migratetype, bool only_stealable, bool *can_steal)
+{
+ int i;
+ int fallback_mt;
+
+ if (area->nr_free == 0)
+ return -1;
+
+ *can_steal = false;
+ for (i = 0;; i++) {
+ fallback_mt = fallbacks[migratetype][i];
+ if (fallback_mt == MIGRATE_TYPES)
+ break;
+
+ if (list_empty(&area->free_list[fallback_mt]))
+ continue;
+
+ if (can_steal_fallback(order, migratetype))
+ *can_steal = true;
+
+ if (!only_stealable)
+ return fallback_mt;
+
+ if (*can_steal)
+ return fallback_mt;
+ }
+
+ return -1;
+}
+
+/*
+ * Reserve a pageblock for exclusive use of high-order atomic allocations if
+ * there are no empty page blocks that contain a page with a suitable order
+ */
+static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
+ unsigned int alloc_order)
+{
+ int mt;
+ unsigned long max_managed, flags;
+
+ /*
+ * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
+ * Check is race-prone but harmless.
+ */
+ max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
+ if (zone->nr_reserved_highatomic >= max_managed)
+ return;
+
+ spin_lock_irqsave(&zone->lock, flags);
+
+ /* Recheck the nr_reserved_highatomic limit under the lock */
+ if (zone->nr_reserved_highatomic >= max_managed)
+ goto out_unlock;
+
+ /* Yoink! */
+ mt = get_pageblock_migratetype(page);
+ if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
+ && !is_migrate_cma(mt)) {
+ zone->nr_reserved_highatomic += pageblock_nr_pages;
+ set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
+ move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
+ }
+
+out_unlock:
+ spin_unlock_irqrestore(&zone->lock, flags);
+}
+
+/*
+ * Used when an allocation is about to fail under memory pressure. This
+ * potentially hurts the reliability of high-order allocations when under
+ * intense memory pressure but failed atomic allocations should be easier
+ * to recover from than an OOM.
+ *
+ * If @force is true, try to unreserve a pageblock even though highatomic
+ * pageblock is exhausted.
+ */
+static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
+ bool force)
+{
+ struct zonelist *zonelist = ac->zonelist;
+ unsigned long flags;
+ struct zoneref *z;
+ struct zone *zone;
+ struct page *page;
+ int order;
+ bool ret;
+
+ for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
+ ac->nodemask) {
+ /*
+ * Preserve at least one pageblock unless memory pressure
+ * is really high.
+ */
+ if (!force && zone->nr_reserved_highatomic <=
+ pageblock_nr_pages)
+ continue;
+
+ spin_lock_irqsave(&zone->lock, flags);
+ for (order = 0; order < MAX_ORDER; order++) {
+ struct free_area *area = &(zone->free_area[order]);
+
+ page = list_first_entry_or_null(
+ &area->free_list[MIGRATE_HIGHATOMIC],
+ struct page, lru);
+ if (!page)
+ continue;
+
+ /*
+ * In page freeing path, migratetype change is racy so
+ * we can counter several free pages in a pageblock
+ * in this loop althoug we changed the pageblock type
+ * from highatomic to ac->migratetype. So we should
+ * adjust the count once.
+ */
+ if (is_migrate_highatomic_page(page)) {
+ /*
+ * It should never happen but changes to
+ * locking could inadvertently allow a per-cpu
+ * drain to add pages to MIGRATE_HIGHATOMIC
+ * while unreserving so be safe and watch for
+ * underflows.
+ */
+ zone->nr_reserved_highatomic -= min(
+ pageblock_nr_pages,
+ zone->nr_reserved_highatomic);
+ }
+
+ /*
+ * Convert to ac->migratetype and avoid the normal
+ * pageblock stealing heuristics. Minimally, the caller
+ * is doing the work and needs the pages. More
+ * importantly, if the block was always converted to
+ * MIGRATE_UNMOVABLE or another type then the number
+ * of pageblocks that cannot be completely freed
+ * may increase.
+ */
+ set_pageblock_migratetype(page, ac->migratetype);
+ ret = move_freepages_block(zone, page, ac->migratetype,
+ NULL);
+ if (ret) {
+ spin_unlock_irqrestore(&zone->lock, flags);
+ return ret;
+ }
+ }
+ spin_unlock_irqrestore(&zone->lock, flags);
+ }
+
+ return false;
+}
+
+/*
+ * Try finding a free buddy page on the fallback list and put it on the free
+ * list of requested migratetype, possibly along with other pages from the same
+ * block, depending on fragmentation avoidance heuristics. Returns true if
+ * fallback was found so that __rmqueue_smallest() can grab it.
+ *
+ * The use of signed ints for order and current_order is a deliberate
+ * deviation from the rest of this file, to make the for loop
+ * condition simpler.
+ */
+static __always_inline bool
+__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
+{
+ struct free_area *area;
+ int current_order;
+ struct page *page;
+ int fallback_mt;
+ bool can_steal;
+
+ /*
+ * Find the largest available free page in the other list. This roughly
+ * approximates finding the pageblock with the most free pages, which
+ * would be too costly to do exactly.
+ */
+ for (current_order = MAX_ORDER - 1; current_order >= order;
+ --current_order) {
+ area = &(zone->free_area[current_order]);
+ fallback_mt = find_suitable_fallback(area, current_order,
+ start_migratetype, false, &can_steal);
+ if (fallback_mt == -1)
+ continue;
+
+ /*
+ * We cannot steal all free pages from the pageblock and the
+ * requested migratetype is movable. In that case it's better to
+ * steal and split the smallest available page instead of the
+ * largest available page, because even if the next movable
+ * allocation falls back into a different pageblock than this
+ * one, it won't cause permanent fragmentation.
+ */
+ if (!can_steal && start_migratetype == MIGRATE_MOVABLE
+ && current_order > order)
+ goto find_smallest;
+
+ goto do_steal;
+ }
+
+ return false;
+
+find_smallest:
+ for (current_order = order; current_order < MAX_ORDER;
+ current_order++) {
+ area = &(zone->free_area[current_order]);
+ fallback_mt = find_suitable_fallback(area, current_order,
+ start_migratetype, false, &can_steal);
+ if (fallback_mt != -1)
+ break;
+ }
+
+ /*
+ * This should not happen - we already found a suitable fallback
+ * when looking for the largest page.
+ */
+ VM_BUG_ON(current_order == MAX_ORDER);
+
+do_steal:
+ page = list_first_entry(&area->free_list[fallback_mt],
+ struct page, lru);
+
+ steal_suitable_fallback(zone, page, start_migratetype, can_steal);
+
+ trace_mm_page_alloc_extfrag(page, order, current_order,
+ start_migratetype, fallback_mt);
+
+ return true;
+
+}
+
+/*
+ * Do the hard work of removing an element from the buddy allocator.
+ * Call me with the zone->lock already held.
+ */
+static __always_inline struct page *
+__rmqueue(struct zone *zone, unsigned int order, int migratetype)
+{
+ struct page *page;
+
+retry:
+ page = __rmqueue_smallest(zone, order, migratetype);
+ if (unlikely(!page)) {
+ if (migratetype == MIGRATE_MOVABLE)
+ page = __rmqueue_cma_fallback(zone, order);
+
+ if (!page && __rmqueue_fallback(zone, order, migratetype))
+ goto retry;
+ }
+
+ trace_mm_page_alloc_zone_locked(page, order, migratetype);
+ return page;
+}
+
+/*
+ * Obtain a specified number of elements from the buddy allocator, all under
+ * a single hold of the lock, for efficiency. Add them to the supplied list.
+ * Returns the number of new pages which were placed at *list.
+ */
+static int rmqueue_bulk(struct zone *zone, unsigned int order,
+ unsigned long count, struct list_head *list,
+ int migratetype)
+{
+ int i, alloced = 0;
+
+ spin_lock(&zone->lock);
+ for (i = 0; i < count; ++i) {
+ struct page *page = __rmqueue(zone, order, migratetype);
+ if (unlikely(page == NULL))
+ break;
+
+ if (unlikely(check_pcp_refill(page)))
+ continue;
+
+ /*
+ * Split buddy pages returned by expand() are received here in
+ * physical page order. The page is added to the tail of
+ * caller's list. From the callers perspective, the linked list
+ * is ordered by page number under some conditions. This is
+ * useful for IO devices that can forward direction from the
+ * head, thus also in the physical page order. This is useful
+ * for IO devices that can merge IO requests if the physical
+ * pages are ordered properly.
+ */
+ list_add_tail(&page->lru, list);
+ alloced++;
+ if (is_migrate_cma(get_pcppage_migratetype(page)))
+ __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
+ -(1 << order));
+ }
+
+ /*
+ * i pages were removed from the buddy list even if some leak due
+ * to check_pcp_refill failing so adjust NR_FREE_PAGES based
+ * on i. Do not confuse with 'alloced' which is the number of
+ * pages added to the pcp list.
+ */
+ __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
+ spin_unlock(&zone->lock);
+ return alloced;
+}
+
+#ifdef CONFIG_NUMA
+/*
+ * Called from the vmstat counter updater to drain pagesets of this
+ * currently executing processor on remote nodes after they have
+ * expired.
+ *
+ * Note that this function must be called with the thread pinned to
+ * a single processor.
+ */
+void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
+{
+ unsigned long flags;
+ int to_drain, batch;
+
+ local_irq_save(flags);
+ batch = READ_ONCE(pcp->batch);
+ to_drain = min(pcp->count, batch);
+ if (to_drain > 0)
+ free_pcppages_bulk(zone, to_drain, pcp);
+ local_irq_restore(flags);
+}
+#endif
+
+/*
+ * Drain pcplists of the indicated processor and zone.
+ *
+ * The processor must either be the current processor and the
+ * thread pinned to the current processor or a processor that
+ * is not online.
+ */
+static void drain_pages_zone(unsigned int cpu, struct zone *zone)
+{
+ unsigned long flags;
+ struct per_cpu_pageset *pset;
+ struct per_cpu_pages *pcp;
+
+ local_irq_save(flags);
+ pset = per_cpu_ptr(zone->pageset, cpu);
+
+ pcp = &pset->pcp;
+ if (pcp->count)
+ free_pcppages_bulk(zone, pcp->count, pcp);
+ local_irq_restore(flags);
+}
+
+/*
+ * Drain pcplists of all zones on the indicated processor.
+ *
+ * The processor must either be the current processor and the
+ * thread pinned to the current processor or a processor that
+ * is not online.
+ */
+static void drain_pages(unsigned int cpu)
+{
+ struct zone *zone;
+
+ for_each_populated_zone(zone) {
+ drain_pages_zone(cpu, zone);
+ }
+}
+
+/*
+ * Spill all of this CPU's per-cpu pages back into the buddy allocator.
+ *
+ * The CPU has to be pinned. When zone parameter is non-NULL, spill just
+ * the single zone's pages.
+ */
+void drain_local_pages(struct zone *zone)
+{
+ int cpu = smp_processor_id();
+
+ if (zone)
+ drain_pages_zone(cpu, zone);
+ else
+ drain_pages(cpu);
+}
+
+static void drain_local_pages_wq(struct work_struct *work)
+{
+ /*
+ * drain_all_pages doesn't use proper cpu hotplug protection so
+ * we can race with cpu offline when the WQ can move this from
+ * a cpu pinned worker to an unbound one. We can operate on a different
+ * cpu which is allright but we also have to make sure to not move to
+ * a different one.
+ */
+ preempt_disable();
+ drain_local_pages(NULL);
+ preempt_enable();
+}
+
+/*
+ * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
+ *
+ * When zone parameter is non-NULL, spill just the single zone's pages.
+ *
+ * Note that this can be extremely slow as the draining happens in a workqueue.
+ */
+void drain_all_pages(struct zone *zone)
+{
+ int cpu;
+
+ /*
+ * Allocate in the BSS so we wont require allocation in
+ * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
+ */
+ static cpumask_t cpus_with_pcps;
+
+ /*
+ * Make sure nobody triggers this path before mm_percpu_wq is fully
+ * initialized.
+ */
+ if (WARN_ON_ONCE(!mm_percpu_wq))
+ return;
+
+ /*
+ * Do not drain if one is already in progress unless it's specific to
+ * a zone. Such callers are primarily CMA and memory hotplug and need
+ * the drain to be complete when the call returns.
+ */
+ if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
+ if (!zone)
+ return;
+ mutex_lock(&pcpu_drain_mutex);
+ }
+
+ /*
+ * We don't care about racing with CPU hotplug event
+ * as offline notification will cause the notified
+ * cpu to drain that CPU pcps and on_each_cpu_mask
+ * disables preemption as part of its processing
+ */
+ for_each_online_cpu(cpu) {
+ struct per_cpu_pageset *pcp;
+ struct zone *z;
+ bool has_pcps = false;
+
+ if (zone) {
+ pcp = per_cpu_ptr(zone->pageset, cpu);
+ if (pcp->pcp.count)
+ has_pcps = true;
+ } else {
+ for_each_populated_zone(z) {
+ pcp = per_cpu_ptr(z->pageset, cpu);
+ if (pcp->pcp.count) {
+ has_pcps = true;
+ break;
+ }
+ }
+ }
+
+ if (has_pcps)
+ cpumask_set_cpu(cpu, &cpus_with_pcps);
+ else
+ cpumask_clear_cpu(cpu, &cpus_with_pcps);
+ }
+
+ for_each_cpu(cpu, &cpus_with_pcps) {
+ struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
+ INIT_WORK(work, drain_local_pages_wq);
+ queue_work_on(cpu, mm_percpu_wq, work);
+ }
+ for_each_cpu(cpu, &cpus_with_pcps)
+ flush_work(per_cpu_ptr(&pcpu_drain, cpu));
+
+ mutex_unlock(&pcpu_drain_mutex);
+}
+
+#ifdef CONFIG_HIBERNATION
+
+/*
+ * Touch the watchdog for every WD_PAGE_COUNT pages.
+ */
+#define WD_PAGE_COUNT (128*1024)
+
+void mark_free_pages(struct zone *zone)
+{
+ unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
+ unsigned long flags;
+ unsigned int order, t;
+ struct page *page;
+
+ if (zone_is_empty(zone))
+ return;
+
+ spin_lock_irqsave(&zone->lock, flags);
+
+ max_zone_pfn = zone_end_pfn(zone);
+ for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
+ if (pfn_valid(pfn)) {
+ page = pfn_to_page(pfn);
+
+ if (!--page_count) {
+ touch_nmi_watchdog();
+ page_count = WD_PAGE_COUNT;
+ }
+
+ if (page_zone(page) != zone)
+ continue;
+
+ if (!swsusp_page_is_forbidden(page))
+ swsusp_unset_page_free(page);
+ }
+
+ for_each_migratetype_order(order, t) {
+ list_for_each_entry(page,
+ &zone->free_area[order].free_list[t], lru) {
+ unsigned long i;
+
+ pfn = page_to_pfn(page);
+ for (i = 0; i < (1UL << order); i++) {
+ if (!--page_count) {
+ touch_nmi_watchdog();
+ page_count = WD_PAGE_COUNT;
+ }
+ swsusp_set_page_free(pfn_to_page(pfn + i));
+ }
+ }
+ }
+ spin_unlock_irqrestore(&zone->lock, flags);
+}
+#endif /* CONFIG_PM */
+
+static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
+{
+ int migratetype;
+
+ if (!free_pcp_prepare(page))
+ return false;
+
+ migratetype = get_pfnblock_migratetype(page, pfn);
+ set_pcppage_migratetype(page, migratetype);
+ return true;
+}
+
+static void free_unref_page_commit(struct page *page, unsigned long pfn)
+{
+ struct zone *zone = page_zone(page);
+ struct per_cpu_pages *pcp;
+ int migratetype;
+
+ migratetype = get_pcppage_migratetype(page);
+ __count_vm_event(PGFREE);
+
+ /*
+ * We only track unmovable, reclaimable and movable on pcp lists.
+ * Free ISOLATE pages back to the allocator because they are being
+ * offlined but treat HIGHATOMIC as movable pages so we can get those
+ * areas back if necessary. Otherwise, we may have to free
+ * excessively into the page allocator
+ */
+ if (migratetype >= MIGRATE_PCPTYPES) {
+ if (unlikely(is_migrate_isolate(migratetype))) {
+ free_one_page(zone, page, pfn, 0, migratetype);
+ return;
+ }
+ migratetype = MIGRATE_MOVABLE;
+ }
+
+ pcp = &this_cpu_ptr(zone->pageset)->pcp;
+ list_add(&page->lru, &pcp->lists[migratetype]);
+ pcp->count++;
+ if (pcp->count >= pcp->high) {
+ unsigned long batch = READ_ONCE(pcp->batch);
+ free_pcppages_bulk(zone, batch, pcp);
+ }
+}
+
+/*
+ * Free a 0-order page
+ */
+void free_unref_page(struct page *page)
+{
+ unsigned long flags;
+ unsigned long pfn = page_to_pfn(page);
+
+ if (!free_unref_page_prepare(page, pfn))
+ return;
+
+ local_irq_save(flags);
+ free_unref_page_commit(page, pfn);
+ local_irq_restore(flags);
+}
+
+/*
+ * Free a list of 0-order pages
+ */
+void free_unref_page_list(struct list_head *list)
+{
+ struct page *page, *next;
+ unsigned long flags, pfn;
+ int batch_count = 0;
+
+ /* Prepare pages for freeing */
+ list_for_each_entry_safe(page, next, list, lru) {
+ pfn = page_to_pfn(page);
+ if (!free_unref_page_prepare(page, pfn))
+ list_del(&page->lru);
+ set_page_private(page, pfn);
+ }
+
+ local_irq_save(flags);
+ list_for_each_entry_safe(page, next, list, lru) {
+ unsigned long pfn = page_private(page);
+
+ set_page_private(page, 0);
+ trace_mm_page_free_batched(page);
+ free_unref_page_commit(page, pfn);
+
+ /*
+ * Guard against excessive IRQ disabled times when we get
+ * a large list of pages to free.
+ */
+ if (++batch_count == SWAP_CLUSTER_MAX) {
+ local_irq_restore(flags);
+ batch_count = 0;
+ local_irq_save(flags);
+ }
+ }
+ local_irq_restore(flags);
+}
+
+/*
+ * split_page takes a non-compound higher-order page, and splits it into
+ * n (1<<order) sub-pages: page[0..n]
+ * Each sub-page must be freed individually.
+ *
+ * Note: this is probably too low level an operation for use in drivers.
+ * Please consult with lkml before using this in your driver.
+ */
+void split_page(struct page *page, unsigned int order)
+{
+ int i;
+
+ VM_BUG_ON_PAGE(PageCompound(page), page);
+ VM_BUG_ON_PAGE(!page_count(page), page);
+
+ for (i = 1; i < (1 << order); i++)
+ set_page_refcounted(page + i);
+ split_page_owner(page, order);
+}
+EXPORT_SYMBOL_GPL(split_page);
+
+int __isolate_free_page(struct page *page, unsigned int order)
+{
+ unsigned long watermark;
+ struct zone *zone;
+ int mt;
+
+ BUG_ON(!PageBuddy(page));
+
+ zone = page_zone(page);
+ mt = get_pageblock_migratetype(page);
+
+ if (!is_migrate_isolate(mt)) {
+ /*
+ * Obey watermarks as if the page was being allocated. We can
+ * emulate a high-order watermark check with a raised order-0
+ * watermark, because we already know our high-order page
+ * exists.
+ */
+ watermark = min_wmark_pages(zone) + (1UL << order);
+ if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
+ return 0;
+
+ __mod_zone_freepage_state(zone, -(1UL << order), mt);
+ }
+
+ /* Remove page from free list */
+ list_del(&page->lru);
+ zone->free_area[order].nr_free--;
+ rmv_page_order(page);
+
+ /*
+ * Set the pageblock if the isolated page is at least half of a
+ * pageblock
+ */
+ if (order >= pageblock_order - 1) {
+ struct page *endpage = page + (1 << order) - 1;
+ for (; page < endpage; page += pageblock_nr_pages) {
+ int mt = get_pageblock_migratetype(page);
+ if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
+ && !is_migrate_highatomic(mt))
+ set_pageblock_migratetype(page,
+ MIGRATE_MOVABLE);
+ }
+ }
+
+
+ return 1UL << order;
+}
+
+/*
+ * Update NUMA hit/miss statistics
+ *
+ * Must be called with interrupts disabled.
+ */
+static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
+{
+#ifdef CONFIG_NUMA
+ enum numa_stat_item local_stat = NUMA_LOCAL;
+
+ /* skip numa counters update if numa stats is disabled */
+ if (!static_branch_likely(&vm_numa_stat_key))
+ return;
+
+ if (zone_to_nid(z) != numa_node_id())
+ local_stat = NUMA_OTHER;
+
+ if (zone_to_nid(z) == zone_to_nid(preferred_zone))
+ __inc_numa_state(z, NUMA_HIT);
+ else {
+ __inc_numa_state(z, NUMA_MISS);
+ __inc_numa_state(preferred_zone, NUMA_FOREIGN);
+ }
+ __inc_numa_state(z, local_stat);
+#endif
+}
+
+/* Remove page from the per-cpu list, caller must protect the list */
+static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
+ struct per_cpu_pages *pcp,
+ struct list_head *list)
+{
+ struct page *page;
+
+ do {
+ if (list_empty(list)) {
+ pcp->count += rmqueue_bulk(zone, 0,
+ pcp->batch, list,
+ migratetype);
+ if (unlikely(list_empty(list)))
+ return NULL;
+ }
+
+ page = list_first_entry(list, struct page, lru);
+ list_del(&page->lru);
+ pcp->count--;
+ } while (check_new_pcp(page));
+
+ return page;
+}
+
+/* Lock and remove page from the per-cpu list */
+static struct page *rmqueue_pcplist(struct zone *preferred_zone,
+ struct zone *zone, unsigned int order,
+ gfp_t gfp_flags, int migratetype)
+{
+ struct per_cpu_pages *pcp;
+ struct list_head *list;
+ struct page *page;
+ unsigned long flags;
+
+ local_irq_save(flags);
+ pcp = &this_cpu_ptr(zone->pageset)->pcp;
+ list = &pcp->lists[migratetype];
+ page = __rmqueue_pcplist(zone, migratetype, pcp, list);
+ if (page) {
+ __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
+ zone_statistics(preferred_zone, zone);
+ }
+ local_irq_restore(flags);
+ return page;
+}
+
+/*
+ * Allocate a page from the given zone. Use pcplists for order-0 allocations.
+ */
+static inline
+struct page *rmqueue(struct zone *preferred_zone,
+ struct zone *zone, unsigned int order,
+ gfp_t gfp_flags, unsigned int alloc_flags,
+ int migratetype)
+{
+ unsigned long flags;
+ struct page *page;
+
+ if (likely(order == 0)) {
+ page = rmqueue_pcplist(preferred_zone, zone, order,
+ gfp_flags, migratetype);
+ goto out;
+ }
+
+ /*
+ * We most definitely don't want callers attempting to
+ * allocate greater than order-1 page units with __GFP_NOFAIL.
+ */
+ WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
+ spin_lock_irqsave(&zone->lock, flags);
+
+ do {
+ page = NULL;
+ if (alloc_flags & ALLOC_HARDER) {
+ page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
+ if (page)
+ trace_mm_page_alloc_zone_locked(page, order, migratetype);
+ }
+ if (!page)
+ page = __rmqueue(zone, order, migratetype);
+ } while (page && check_new_pages(page, order));
+ spin_unlock(&zone->lock);
+ if (!page)
+ goto failed;
+ __mod_zone_freepage_state(zone, -(1 << order),
+ get_pcppage_migratetype(page));
+
+ __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
+ zone_statistics(preferred_zone, zone);
+ local_irq_restore(flags);
+
+out:
+ VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
+ return page;
+
+failed:
+ local_irq_restore(flags);
+ return NULL;
+}
+
+#ifdef CONFIG_FAIL_PAGE_ALLOC
+
+static struct {
+ struct fault_attr attr;
+
+ bool ignore_gfp_highmem;
+ bool ignore_gfp_reclaim;
+ u32 min_order;
+} fail_page_alloc = {
+ .attr = FAULT_ATTR_INITIALIZER,
+ .ignore_gfp_reclaim = true,
+ .ignore_gfp_highmem = true,
+ .min_order = 1,
+};
+
+static int __init setup_fail_page_alloc(char *str)
+{
+ return setup_fault_attr(&fail_page_alloc.attr, str);
+}
+__setup("fail_page_alloc=", setup_fail_page_alloc);
+
+static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
+{
+ if (order < fail_page_alloc.min_order)
+ return false;
+ if (gfp_mask & __GFP_NOFAIL)
+ return false;
+ if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
+ return false;
+ if (fail_page_alloc.ignore_gfp_reclaim &&
+ (gfp_mask & __GFP_DIRECT_RECLAIM))
+ return false;
+
+ return should_fail(&fail_page_alloc.attr, 1 << order);
+}
+
+#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
+
+static int __init fail_page_alloc_debugfs(void)
+{
+ umode_t mode = S_IFREG | 0600;
+ struct dentry *dir;
+
+ dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
+ &fail_page_alloc.attr);
+ if (IS_ERR(dir))
+ return PTR_ERR(dir);
+
+ if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
+ &fail_page_alloc.ignore_gfp_reclaim))
+ goto fail;
+ if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
+ &fail_page_alloc.ignore_gfp_highmem))
+ goto fail;
+ if (!debugfs_create_u32("min-order", mode, dir,
+ &fail_page_alloc.min_order))
+ goto fail;
+
+ return 0;
+fail:
+ debugfs_remove_recursive(dir);
+
+ return -ENOMEM;
+}
+
+late_initcall(fail_page_alloc_debugfs);
+
+#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
+
+#else /* CONFIG_FAIL_PAGE_ALLOC */
+
+static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
+{
+ return false;
+}
+
+#endif /* CONFIG_FAIL_PAGE_ALLOC */
+
+/*
+ * Return true if free base pages are above 'mark'. For high-order checks it
+ * will return true of the order-0 watermark is reached and there is at least
+ * one free page of a suitable size. Checking now avoids taking the zone lock
+ * to check in the allocation paths if no pages are free.
+ */
+bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
+ int classzone_idx, unsigned int alloc_flags,
+ long free_pages)
+{
+ long min = mark;
+ int o;
+ const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
+
+ /* free_pages may go negative - that's OK */
+ free_pages -= (1 << order) - 1;
+
+ if (alloc_flags & ALLOC_HIGH)
+ min -= min / 2;
+
+ /*
+ * If the caller does not have rights to ALLOC_HARDER then subtract
+ * the high-atomic reserves. This will over-estimate the size of the
+ * atomic reserve but it avoids a search.
+ */
+ if (likely(!alloc_harder)) {
+ free_pages -= z->nr_reserved_highatomic;
+ } else {
+ /*
+ * OOM victims can try even harder than normal ALLOC_HARDER
+ * users on the grounds that it's definitely going to be in
+ * the exit path shortly and free memory. Any allocation it
+ * makes during the free path will be small and short-lived.
+ */
+ if (alloc_flags & ALLOC_OOM)
+ min -= min / 2;
+ else
+ min -= min / 4;
+ }
+
+
+#ifdef CONFIG_CMA
+ /* If allocation can't use CMA areas don't use free CMA pages */
+ if (!(alloc_flags & ALLOC_CMA))
+ free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
+#endif
+
+ /*
+ * Check watermarks for an order-0 allocation request. If these
+ * are not met, then a high-order request also cannot go ahead
+ * even if a suitable page happened to be free.
+ */
+ if (free_pages <= min + z->lowmem_reserve[classzone_idx])
+ return false;
+
+ /* If this is an order-0 request then the watermark is fine */
+ if (!order)
+ return true;
+
+ /* For a high-order request, check at least one suitable page is free */
+ for (o = order; o < MAX_ORDER; o++) {
+ struct free_area *area = &z->free_area[o];
+ int mt;
+
+ if (!area->nr_free)
+ continue;
+
+ for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
+ if (!list_empty(&area->free_list[mt]))
+ return true;
+ }
+
+#ifdef CONFIG_CMA
+ if ((alloc_flags & ALLOC_CMA) &&
+ !list_empty(&area->free_list[MIGRATE_CMA])) {
+ return true;
+ }
+#endif
+ if (alloc_harder &&
+ !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
+ return true;
+ }
+ return false;
+}
+
+bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
+ int classzone_idx, unsigned int alloc_flags)
+{
+ return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
+ zone_page_state(z, NR_FREE_PAGES));
+}
+
+static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
+ unsigned long mark, int classzone_idx, unsigned int alloc_flags)
+{
+ long free_pages = zone_page_state(z, NR_FREE_PAGES);
+ long cma_pages = 0;
+
+#ifdef CONFIG_CMA
+ /* If allocation can't use CMA areas don't use free CMA pages */
+ if (!(alloc_flags & ALLOC_CMA))
+ cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
+#endif
+
+ /*
+ * Fast check for order-0 only. If this fails then the reserves
+ * need to be calculated. There is a corner case where the check
+ * passes but only the high-order atomic reserve are free. If
+ * the caller is !atomic then it'll uselessly search the free
+ * list. That corner case is then slower but it is harmless.
+ */
+ if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
+ return true;
+
+ return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
+ free_pages);
+}
+
+bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
+ unsigned long mark, int classzone_idx)
+{
+ long free_pages = zone_page_state(z, NR_FREE_PAGES);
+
+ if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
+ free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
+
+ return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
+ free_pages);
+}
+
+#ifdef CONFIG_NUMA
+static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
+{
+ return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
+ RECLAIM_DISTANCE;
+}
+#else /* CONFIG_NUMA */
+static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
+{
+ return true;
+}
+#endif /* CONFIG_NUMA */
+
+/*
+ * get_page_from_freelist goes through the zonelist trying to allocate
+ * a page.
+ */
+static struct page *
+get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
+ const struct alloc_context *ac)
+{
+ struct zoneref *z = ac->preferred_zoneref;
+ struct zone *zone;
+ struct pglist_data *last_pgdat_dirty_limit = NULL;
+
+ /*
+ * Scan zonelist, looking for a zone with enough free.
+ * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
+ */
+ for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
+ ac->nodemask) {
+ struct page *page;
+ unsigned long mark;
+
+ if (cpusets_enabled() &&
+ (alloc_flags & ALLOC_CPUSET) &&
+ !__cpuset_zone_allowed(zone, gfp_mask))
+ continue;
+ /*
+ * When allocating a page cache page for writing, we
+ * want to get it from a node that is within its dirty
+ * limit, such that no single node holds more than its
+ * proportional share of globally allowed dirty pages.
+ * The dirty limits take into account the node's
+ * lowmem reserves and high watermark so that kswapd
+ * should be able to balance it without having to
+ * write pages from its LRU list.
+ *
+ * XXX: For now, allow allocations to potentially
+ * exceed the per-node dirty limit in the slowpath
+ * (spread_dirty_pages unset) before going into reclaim,
+ * which is important when on a NUMA setup the allowed
+ * nodes are together not big enough to reach the
+ * global limit. The proper fix for these situations
+ * will require awareness of nodes in the
+ * dirty-throttling and the flusher threads.
+ */
+ if (ac->spread_dirty_pages) {
+ if (last_pgdat_dirty_limit == zone->zone_pgdat)
+ continue;
+
+ if (!node_dirty_ok(zone->zone_pgdat)) {
+ last_pgdat_dirty_limit = zone->zone_pgdat;
+ continue;
+ }
+ }
+
+ mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
+ if (!zone_watermark_fast(zone, order, mark,
+ ac_classzone_idx(ac), alloc_flags)) {
+ int ret;
+
+#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
+ /*
+ * Watermark failed for this zone, but see if we can
+ * grow this zone if it contains deferred pages.
+ */
+ if (static_branch_unlikely(&deferred_pages)) {
+ if (_deferred_grow_zone(zone, order))
+ goto try_this_zone;
+ }
+#endif
+ /* Checked here to keep the fast path fast */
+ BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
+ if (alloc_flags & ALLOC_NO_WATERMARKS)
+ goto try_this_zone;
+
+ if (node_reclaim_mode == 0 ||
+ !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
+ continue;
+
+ ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
+ switch (ret) {
+ case NODE_RECLAIM_NOSCAN:
+ /* did not scan */
+ continue;
+ case NODE_RECLAIM_FULL:
+ /* scanned but unreclaimable */
+ continue;
+ default:
+ /* did we reclaim enough */
+ if (zone_watermark_ok(zone, order, mark,
+ ac_classzone_idx(ac), alloc_flags))
+ goto try_this_zone;
+
+ continue;
+ }
+ }
+
+try_this_zone:
+ page = rmqueue(ac->preferred_zoneref->zone, zone, order,
+ gfp_mask, alloc_flags, ac->migratetype);
+ if (page) {
+ prep_new_page(page, order, gfp_mask, alloc_flags);
+
+ /*
+ * If this is a high-order atomic allocation then check
+ * if the pageblock should be reserved for the future
+ */
+ if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
+ reserve_highatomic_pageblock(page, zone, order);
+
+ return page;
+ } else {
+#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
+ /* Try again if zone has deferred pages */
+ if (static_branch_unlikely(&deferred_pages)) {
+ if (_deferred_grow_zone(zone, order))
+ goto try_this_zone;
+ }
+#endif
+ }
+ }
+
+ return NULL;
+}
+
+/*
+ * Large machines with many possible nodes should not always dump per-node
+ * meminfo in irq context.
+ */
+static inline bool should_suppress_show_mem(void)
+{
+ bool ret = false;
+
+#if NODES_SHIFT > 8
+ ret = in_interrupt();
+#endif
+ return ret;
+}
+
+static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
+{
+ unsigned int filter = SHOW_MEM_FILTER_NODES;
+ static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
+
+ if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
+ return;
+
+ /*
+ * This documents exceptions given to allocations in certain
+ * contexts that are allowed to allocate outside current's set
+ * of allowed nodes.
+ */
+ if (!(gfp_mask & __GFP_NOMEMALLOC))
+ if (tsk_is_oom_victim(current) ||
+ (current->flags & (PF_MEMALLOC | PF_EXITING)))
+ filter &= ~SHOW_MEM_FILTER_NODES;
+ if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
+ filter &= ~SHOW_MEM_FILTER_NODES;
+
+ show_mem(filter, nodemask);
+}
+
+void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
+{
+ struct va_format vaf;
+ va_list args;
+ static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
+ DEFAULT_RATELIMIT_BURST);
+
+ if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
+ return;
+
+ va_start(args, fmt);
+ vaf.fmt = fmt;
+ vaf.va = &args;
+ pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
+ current->comm, &vaf, gfp_mask, &gfp_mask,
+ nodemask_pr_args(nodemask));
+ va_end(args);
+
+ cpuset_print_current_mems_allowed();
+
+ dump_stack();
+ warn_alloc_show_mem(gfp_mask, nodemask);
+}
+
+static inline struct page *
+__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
+ unsigned int alloc_flags,
+ const struct alloc_context *ac)
+{
+ struct page *page;
+
+ page = get_page_from_freelist(gfp_mask, order,
+ alloc_flags|ALLOC_CPUSET, ac);
+ /*
+ * fallback to ignore cpuset restriction if our nodes
+ * are depleted
+ */
+ if (!page)
+ page = get_page_from_freelist(gfp_mask, order,
+ alloc_flags, ac);
+
+ return page;
+}
+
+static inline struct page *
+__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
+ const struct alloc_context *ac, unsigned long *did_some_progress)
+{
+ struct oom_control oc = {
+ .zonelist = ac->zonelist,
+ .nodemask = ac->nodemask,
+ .memcg = NULL,
+ .gfp_mask = gfp_mask,
+ .order = order,
+ };
+ struct page *page;
+
+ *did_some_progress = 0;
+
+ /*
+ * Acquire the oom lock. If that fails, somebody else is
+ * making progress for us.
+ */
+ if (!mutex_trylock(&oom_lock)) {
+ *did_some_progress = 1;
+ schedule_timeout_uninterruptible(1);
+ return NULL;
+ }
+
+ /*
+ * Go through the zonelist yet one more time, keep very high watermark
+ * here, this is only to catch a parallel oom killing, we must fail if
+ * we're still under heavy pressure. But make sure that this reclaim
+ * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
+ * allocation which will never fail due to oom_lock already held.
+ */
+ page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
+ ~__GFP_DIRECT_RECLAIM, order,
+ ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
+ if (page)
+ goto out;
+
+ /* Coredumps can quickly deplete all memory reserves */
+ if (current->flags & PF_DUMPCORE)
+ goto out;
+ /* The OOM killer will not help higher order allocs */
+ if (order > PAGE_ALLOC_COSTLY_ORDER)
+ goto out;
+ /*
+ * We have already exhausted all our reclaim opportunities without any
+ * success so it is time to admit defeat. We will skip the OOM killer
+ * because it is very likely that the caller has a more reasonable
+ * fallback than shooting a random task.
+ */
+ if (gfp_mask & __GFP_RETRY_MAYFAIL)
+ goto out;
+ /* The OOM killer does not needlessly kill tasks for lowmem */
+ if (ac->high_zoneidx < ZONE_NORMAL)
+ goto out;
+ if (pm_suspended_storage())
+ goto out;
+ /*
+ * XXX: GFP_NOFS allocations should rather fail than rely on
+ * other request to make a forward progress.
+ * We are in an unfortunate situation where out_of_memory cannot
+ * do much for this context but let's try it to at least get
+ * access to memory reserved if the current task is killed (see
+ * out_of_memory). Once filesystems are ready to handle allocation
+ * failures more gracefully we should just bail out here.
+ */
+
+ /* The OOM killer may not free memory on a specific node */
+ if (gfp_mask & __GFP_THISNODE)
+ goto out;
+
+ /* Exhausted what can be done so it's blame time */
+ if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
+ *did_some_progress = 1;
+
+ /*
+ * Help non-failing allocations by giving them access to memory
+ * reserves
+ */
+ if (gfp_mask & __GFP_NOFAIL)
+ page = __alloc_pages_cpuset_fallback(gfp_mask, order,
+ ALLOC_NO_WATERMARKS, ac);
+ }
+out:
+ mutex_unlock(&oom_lock);
+ return page;
+}
+
+/*
+ * Maximum number of compaction retries wit a progress before OOM
+ * killer is consider as the only way to move forward.
+ */
+#define MAX_COMPACT_RETRIES 16
+
+#ifdef CONFIG_COMPACTION
+/* Try memory compaction for high-order allocations before reclaim */
+static struct page *
+__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
+ unsigned int alloc_flags, const struct alloc_context *ac,
+ enum compact_priority prio, enum compact_result *compact_result)
+{
+ struct page *page;
+ unsigned int noreclaim_flag;
+
+ if (!order)
+ return NULL;
+
+ noreclaim_flag = memalloc_noreclaim_save();
+ *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
+ prio);
+ memalloc_noreclaim_restore(noreclaim_flag);
+
+ if (*compact_result <= COMPACT_INACTIVE)
+ return NULL;
+
+ /*
+ * At least in one zone compaction wasn't deferred or skipped, so let's
+ * count a compaction stall
+ */
+ count_vm_event(COMPACTSTALL);
+
+ page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
+
+ if (page) {
+ struct zone *zone = page_zone(page);
+
+ zone->compact_blockskip_flush = false;
+ compaction_defer_reset(zone, order, true);
+ count_vm_event(COMPACTSUCCESS);
+ return page;
+ }
+
+ /*
+ * It's bad if compaction run occurs and fails. The most likely reason
+ * is that pages exist, but not enough to satisfy watermarks.
+ */
+ count_vm_event(COMPACTFAIL);
+
+ cond_resched();
+
+ return NULL;
+}
+
+static inline bool
+should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
+ enum compact_result compact_result,
+ enum compact_priority *compact_priority,
+ int *compaction_retries)
+{
+ int max_retries = MAX_COMPACT_RETRIES;
+ int min_priority;
+ bool ret = false;
+ int retries = *compaction_retries;
+ enum compact_priority priority = *compact_priority;
+
+ if (!order)
+ return false;
+
+ if (compaction_made_progress(compact_result))
+ (*compaction_retries)++;
+
+ /*
+ * compaction considers all the zone as desperately out of memory
+ * so it doesn't really make much sense to retry except when the
+ * failure could be caused by insufficient priority
+ */
+ if (compaction_failed(compact_result))
+ goto check_priority;
+
+ /*
+ * make sure the compaction wasn't deferred or didn't bail out early
+ * due to locks contention before we declare that we should give up.
+ * But do not retry if the given zonelist is not suitable for
+ * compaction.
+ */
+ if (compaction_withdrawn(compact_result)) {
+ ret = compaction_zonelist_suitable(ac, order, alloc_flags);
+ goto out;
+ }
+
+ /*
+ * !costly requests are much more important than __GFP_RETRY_MAYFAIL
+ * costly ones because they are de facto nofail and invoke OOM
+ * killer to move on while costly can fail and users are ready
+ * to cope with that. 1/4 retries is rather arbitrary but we
+ * would need much more detailed feedback from compaction to
+ * make a better decision.
+ */
+ if (order > PAGE_ALLOC_COSTLY_ORDER)
+ max_retries /= 4;
+ if (*compaction_retries <= max_retries) {
+ ret = true;
+ goto out;
+ }
+
+ /*
+ * Make sure there are attempts at the highest priority if we exhausted
+ * all retries or failed at the lower priorities.
+ */
+check_priority:
+ min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
+ MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
+
+ if (*compact_priority > min_priority) {
+ (*compact_priority)--;
+ *compaction_retries = 0;
+ ret = true;
+ }
+out:
+ trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
+ return ret;
+}
+#else
+static inline struct page *
+__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
+ unsigned int alloc_flags, const struct alloc_context *ac,
+ enum compact_priority prio, enum compact_result *compact_result)
+{
+ *compact_result = COMPACT_SKIPPED;
+ return NULL;
+}
+
+static inline bool
+should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
+ enum compact_result compact_result,
+ enum compact_priority *compact_priority,
+ int *compaction_retries)
+{
+ struct zone *zone;
+ struct zoneref *z;
+
+ if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
+ return false;
+
+ /*
+ * There are setups with compaction disabled which would prefer to loop
+ * inside the allocator rather than hit the oom killer prematurely.
+ * Let's give them a good hope and keep retrying while the order-0
+ * watermarks are OK.
+ */
+ for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
+ ac->nodemask) {
+ if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
+ ac_classzone_idx(ac), alloc_flags))
+ return true;
+ }
+ return false;
+}
+#endif /* CONFIG_COMPACTION */
+
+#ifdef CONFIG_LOCKDEP
+static struct lockdep_map __fs_reclaim_map =
+ STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
+
+static bool __need_fs_reclaim(gfp_t gfp_mask)
+{
+ gfp_mask = current_gfp_context(gfp_mask);
+
+ /* no reclaim without waiting on it */
+ if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
+ return false;
+
+ /* this guy won't enter reclaim */
+ if (current->flags & PF_MEMALLOC)
+ return false;
+
+ /* We're only interested __GFP_FS allocations for now */
+ if (!(gfp_mask & __GFP_FS))
+ return false;
+
+ if (gfp_mask & __GFP_NOLOCKDEP)
+ return false;
+
+ return true;
+}
+
+void __fs_reclaim_acquire(void)
+{
+ lock_map_acquire(&__fs_reclaim_map);
+}
+
+void __fs_reclaim_release(void)
+{
+ lock_map_release(&__fs_reclaim_map);
+}
+
+void fs_reclaim_acquire(gfp_t gfp_mask)
+{
+ if (__need_fs_reclaim(gfp_mask))
+ __fs_reclaim_acquire();
+}
+EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
+
+void fs_reclaim_release(gfp_t gfp_mask)
+{
+ if (__need_fs_reclaim(gfp_mask))
+ __fs_reclaim_release();
+}
+EXPORT_SYMBOL_GPL(fs_reclaim_release);
+#endif
+
+/* Perform direct synchronous page reclaim */
+static int
+__perform_reclaim(gfp_t gfp_mask, unsigned int order,
+ const struct alloc_context *ac)
+{
+ struct reclaim_state reclaim_state;
+ int progress;
+ unsigned int noreclaim_flag;
+
+ cond_resched();
+
+ /* We now go into synchronous reclaim */
+ cpuset_memory_pressure_bump();
+ fs_reclaim_acquire(gfp_mask);
+ noreclaim_flag = memalloc_noreclaim_save();
+ reclaim_state.reclaimed_slab = 0;
+ current->reclaim_state = &reclaim_state;
+
+ progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
+ ac->nodemask);
+
+ current->reclaim_state = NULL;
+ memalloc_noreclaim_restore(noreclaim_flag);
+ fs_reclaim_release(gfp_mask);
+
+ cond_resched();
+
+ return progress;
+}
+
+/* The really slow allocator path where we enter direct reclaim */
+static inline struct page *
+__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
+ unsigned int alloc_flags, const struct alloc_context *ac,
+ unsigned long *did_some_progress)
+{
+ struct page *page = NULL;
+ bool drained = false;
+
+ *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
+ if (unlikely(!(*did_some_progress)))
+ return NULL;
+
+retry:
+ page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
+
+ /*
+ * If an allocation failed after direct reclaim, it could be because
+ * pages are pinned on the per-cpu lists or in high alloc reserves.
+ * Shrink them them and try again
+ */
+ if (!page && !drained) {
+ unreserve_highatomic_pageblock(ac, false);
+ drain_all_pages(NULL);
+ drained = true;
+ goto retry;
+ }
+
+ return page;
+}
+
+static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
+ const struct alloc_context *ac)
+{
+ struct zoneref *z;
+ struct zone *zone;
+ pg_data_t *last_pgdat = NULL;
+ enum zone_type high_zoneidx = ac->high_zoneidx;
+
+ for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
+ ac->nodemask) {
+ if (last_pgdat != zone->zone_pgdat)
+ wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
+ last_pgdat = zone->zone_pgdat;
+ }
+}
+
+static inline unsigned int
+gfp_to_alloc_flags(gfp_t gfp_mask)
+{
+ unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
+
+ /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
+ BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
+
+ /*
+ * The caller may dip into page reserves a bit more if the caller
+ * cannot run direct reclaim, or if the caller has realtime scheduling
+ * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
+ * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
+ */
+ alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
+
+ if (gfp_mask & __GFP_ATOMIC) {
+ /*
+ * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
+ * if it can't schedule.
+ */
+ if (!(gfp_mask & __GFP_NOMEMALLOC))
+ alloc_flags |= ALLOC_HARDER;
+ /*
+ * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
+ * comment for __cpuset_node_allowed().
+ */
+ alloc_flags &= ~ALLOC_CPUSET;
+ } else if (unlikely(rt_task(current)) && !in_interrupt())
+ alloc_flags |= ALLOC_HARDER;
+
+#ifdef CONFIG_CMA
+ if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
+ alloc_flags |= ALLOC_CMA;
+#endif
+ return alloc_flags;
+}
+
+static bool oom_reserves_allowed(struct task_struct *tsk)
+{
+ if (!tsk_is_oom_victim(tsk))
+ return false;
+
+ /*
+ * !MMU doesn't have oom reaper so give access to memory reserves
+ * only to the thread with TIF_MEMDIE set
+ */
+ if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
+ return false;
+
+ return true;
+}
+
+/*
+ * Distinguish requests which really need access to full memory
+ * reserves from oom victims which can live with a portion of it
+ */
+static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
+{
+ if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
+ return 0;
+ if (gfp_mask & __GFP_MEMALLOC)
+ return ALLOC_NO_WATERMARKS;
+ if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
+ return ALLOC_NO_WATERMARKS;
+ if (!in_interrupt()) {
+ if (current->flags & PF_MEMALLOC)
+ return ALLOC_NO_WATERMARKS;
+ else if (oom_reserves_allowed(current))
+ return ALLOC_OOM;
+ }
+
+ return 0;
+}
+
+bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
+{
+ return !!__gfp_pfmemalloc_flags(gfp_mask);
+}
+
+/*
+ * Checks whether it makes sense to retry the reclaim to make a forward progress
+ * for the given allocation request.
+ *
+ * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
+ * without success, or when we couldn't even meet the watermark if we
+ * reclaimed all remaining pages on the LRU lists.
+ *
+ * Returns true if a retry is viable or false to enter the oom path.
+ */
+static inline bool
+should_reclaim_retry(gfp_t gfp_mask, unsigned order,
+ struct alloc_context *ac, int alloc_flags,
+ bool did_some_progress, int *no_progress_loops)
+{
+ struct zone *zone;
+ struct zoneref *z;
+
+ /*
+ * Costly allocations might have made a progress but this doesn't mean
+ * their order will become available due to high fragmentation so
+ * always increment the no progress counter for them
+ */
+ if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
+ *no_progress_loops = 0;
+ else
+ (*no_progress_loops)++;
+
+ /*
+ * Make sure we converge to OOM if we cannot make any progress
+ * several times in the row.
+ */
+ if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
+ /* Before OOM, exhaust highatomic_reserve */
+ return unreserve_highatomic_pageblock(ac, true);
+ }
+
+ /*
+ * Keep reclaiming pages while there is a chance this will lead
+ * somewhere. If none of the target zones can satisfy our allocation
+ * request even if all reclaimable pages are considered then we are
+ * screwed and have to go OOM.
+ */
+ for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
+ ac->nodemask) {
+ unsigned long available;
+ unsigned long reclaimable;
+ unsigned long min_wmark = min_wmark_pages(zone);
+ bool wmark;
+
+ available = reclaimable = zone_reclaimable_pages(zone);
+ available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
+
+ /*
+ * Would the allocation succeed if we reclaimed all
+ * reclaimable pages?
+ */
+ wmark = __zone_watermark_ok(zone, order, min_wmark,
+ ac_classzone_idx(ac), alloc_flags, available);
+ trace_reclaim_retry_zone(z, order, reclaimable,
+ available, min_wmark, *no_progress_loops, wmark);
+ if (wmark) {
+ /*
+ * If we didn't make any progress and have a lot of
+ * dirty + writeback pages then we should wait for
+ * an IO to complete to slow down the reclaim and
+ * prevent from pre mature OOM
+ */
+ if (!did_some_progress) {
+ unsigned long write_pending;
+
+ write_pending = zone_page_state_snapshot(zone,
+ NR_ZONE_WRITE_PENDING);
+
+ if (2 * write_pending > reclaimable) {
+ congestion_wait(BLK_RW_ASYNC, HZ/10);
+ return true;
+ }
+ }
+
+ /*
+ * Memory allocation/reclaim might be called from a WQ
+ * context and the current implementation of the WQ
+ * concurrency control doesn't recognize that
+ * a particular WQ is congested if the worker thread is
+ * looping without ever sleeping. Therefore we have to
+ * do a short sleep here rather than calling
+ * cond_resched().
+ */
+ if (current->flags & PF_WQ_WORKER)
+ schedule_timeout_uninterruptible(1);
+ else
+ cond_resched();
+
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static inline bool
+check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
+{
+ /*
+ * It's possible that cpuset's mems_allowed and the nodemask from
+ * mempolicy don't intersect. This should be normally dealt with by
+ * policy_nodemask(), but it's possible to race with cpuset update in
+ * such a way the check therein was true, and then it became false
+ * before we got our cpuset_mems_cookie here.
+ * This assumes that for all allocations, ac->nodemask can come only
+ * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
+ * when it does not intersect with the cpuset restrictions) or the
+ * caller can deal with a violated nodemask.
+ */
+ if (cpusets_enabled() && ac->nodemask &&
+ !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
+ ac->nodemask = NULL;
+ return true;
+ }
+
+ /*
+ * When updating a task's mems_allowed or mempolicy nodemask, it is
+ * possible to race with parallel threads in such a way that our
+ * allocation can fail while the mask is being updated. If we are about
+ * to fail, check if the cpuset changed during allocation and if so,
+ * retry.
+ */
+ if (read_mems_allowed_retry(cpuset_mems_cookie))
+ return true;
+
+ return false;
+}
+
+static inline struct page *
+__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
+ struct alloc_context *ac)
+{
+ bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
+ const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
+ struct page *page = NULL;
+ unsigned int alloc_flags;
+ unsigned long did_some_progress;
+ enum compact_priority compact_priority;
+ enum compact_result compact_result;
+ int compaction_retries;
+ int no_progress_loops;
+ unsigned int cpuset_mems_cookie;
+ int reserve_flags;
+
+ /*
+ * We also sanity check to catch abuse of atomic reserves being used by
+ * callers that are not in atomic context.
+ */
+ if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
+ (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
+ gfp_mask &= ~__GFP_ATOMIC;
+
+retry_cpuset:
+ compaction_retries = 0;
+ no_progress_loops = 0;
+ compact_priority = DEF_COMPACT_PRIORITY;
+ cpuset_mems_cookie = read_mems_allowed_begin();
+
+ /*
+ * The fast path uses conservative alloc_flags to succeed only until
+ * kswapd needs to be woken up, and to avoid the cost of setting up
+ * alloc_flags precisely. So we do that now.
+ */
+ alloc_flags = gfp_to_alloc_flags(gfp_mask);
+
+ /*
+ * We need to recalculate the starting point for the zonelist iterator
+ * because we might have used different nodemask in the fast path, or
+ * there was a cpuset modification and we are retrying - otherwise we
+ * could end up iterating over non-eligible zones endlessly.
+ */
+ ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
+ ac->high_zoneidx, ac->nodemask);
+ if (!ac->preferred_zoneref->zone)
+ goto nopage;
+
+ if (gfp_mask & __GFP_KSWAPD_RECLAIM)
+ wake_all_kswapds(order, gfp_mask, ac);
+
+ /*
+ * The adjusted alloc_flags might result in immediate success, so try
+ * that first
+ */
+ page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
+ if (page)
+ goto got_pg;
+
+ /*
+ * For costly allocations, try direct compaction first, as it's likely
+ * that we have enough base pages and don't need to reclaim. For non-
+ * movable high-order allocations, do that as well, as compaction will
+ * try prevent permanent fragmentation by migrating from blocks of the
+ * same migratetype.
+ * Don't try this for allocations that are allowed to ignore
+ * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
+ */
+ if (can_direct_reclaim &&
+ (costly_order ||
+ (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
+ && !gfp_pfmemalloc_allowed(gfp_mask)) {
+ page = __alloc_pages_direct_compact(gfp_mask, order,
+ alloc_flags, ac,
+ INIT_COMPACT_PRIORITY,
+ &compact_result);
+ if (page)
+ goto got_pg;
+
+ /*
+ * Checks for costly allocations with __GFP_NORETRY, which
+ * includes THP page fault allocations
+ */
+ if (costly_order && (gfp_mask & __GFP_NORETRY)) {
+ /*
+ * If compaction is deferred for high-order allocations,
+ * it is because sync compaction recently failed. If
+ * this is the case and the caller requested a THP
+ * allocation, we do not want to heavily disrupt the
+ * system, so we fail the allocation instead of entering
+ * direct reclaim.
+ */
+ if (compact_result == COMPACT_DEFERRED)
+ goto nopage;
+
+ /*
+ * Looks like reclaim/compaction is worth trying, but
+ * sync compaction could be very expensive, so keep
+ * using async compaction.
+ */
+ compact_priority = INIT_COMPACT_PRIORITY;
+ }
+ }
+
+retry:
+ /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
+ if (gfp_mask & __GFP_KSWAPD_RECLAIM)
+ wake_all_kswapds(order, gfp_mask, ac);
+
+ reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
+ if (reserve_flags)
+ alloc_flags = reserve_flags;
+
+ /*
+ * Reset the nodemask and zonelist iterators if memory policies can be
+ * ignored. These allocations are high priority and system rather than
+ * user oriented.
+ */
+ if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
+ ac->nodemask = NULL;
+ ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
+ ac->high_zoneidx, ac->nodemask);
+ }
+
+ /* Attempt with potentially adjusted zonelist and alloc_flags */
+ page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
+ if (page)
+ goto got_pg;
+
+ /* Caller is not willing to reclaim, we can't balance anything */
+ if (!can_direct_reclaim)
+ goto nopage;
+
+ /* Avoid recursion of direct reclaim */
+ if (current->flags & PF_MEMALLOC)
+ goto nopage;
+
+ /* Try direct reclaim and then allocating */
+ page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
+ &did_some_progress);
+ if (page)
+ goto got_pg;
+
+ /* Try direct compaction and then allocating */
+ page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
+ compact_priority, &compact_result);
+ if (page)
+ goto got_pg;
+
+ /* Do not loop if specifically requested */
+ if (gfp_mask & __GFP_NORETRY)
+ goto nopage;
+
+ /*
+ * Do not retry costly high order allocations unless they are
+ * __GFP_RETRY_MAYFAIL
+ */
+ if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
+ goto nopage;
+
+ if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
+ did_some_progress > 0, &no_progress_loops))
+ goto retry;
+
+ /*
+ * It doesn't make any sense to retry for the compaction if the order-0
+ * reclaim is not able to make any progress because the current
+ * implementation of the compaction depends on the sufficient amount
+ * of free memory (see __compaction_suitable)
+ */
+ if (did_some_progress > 0 &&
+ should_compact_retry(ac, order, alloc_flags,
+ compact_result, &compact_priority,
+ &compaction_retries))
+ goto retry;
+
+
+ /* Deal with possible cpuset update races before we start OOM killing */
+ if (check_retry_cpuset(cpuset_mems_cookie, ac))
+ goto retry_cpuset;
+
+ /* Reclaim has failed us, start killing things */
+ page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
+ if (page)
+ goto got_pg;
+
+ /* Avoid allocations with no watermarks from looping endlessly */
+ if (tsk_is_oom_victim(current) &&
+ (alloc_flags == ALLOC_OOM ||
+ (gfp_mask & __GFP_NOMEMALLOC)))
+ goto nopage;
+
+ /* Retry as long as the OOM killer is making progress */
+ if (did_some_progress) {
+ no_progress_loops = 0;
+ goto retry;
+ }
+
+nopage:
+ /* Deal with possible cpuset update races before we fail */
+ if (check_retry_cpuset(cpuset_mems_cookie, ac))
+ goto retry_cpuset;
+
+ /*
+ * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
+ * we always retry
+ */
+ if (gfp_mask & __GFP_NOFAIL) {
+ /*
+ * All existing users of the __GFP_NOFAIL are blockable, so warn
+ * of any new users that actually require GFP_NOWAIT
+ */
+ if (WARN_ON_ONCE(!can_direct_reclaim))
+ goto fail;
+
+ /*
+ * PF_MEMALLOC request from this context is rather bizarre
+ * because we cannot reclaim anything and only can loop waiting
+ * for somebody to do a work for us
+ */
+ WARN_ON_ONCE(current->flags & PF_MEMALLOC);
+
+ /*
+ * non failing costly orders are a hard requirement which we
+ * are not prepared for much so let's warn about these users
+ * so that we can identify them and convert them to something
+ * else.
+ */
+ WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
+
+ /*
+ * Help non-failing allocations by giving them access to memory
+ * reserves but do not use ALLOC_NO_WATERMARKS because this
+ * could deplete whole memory reserves which would just make
+ * the situation worse
+ */
+ page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
+ if (page)
+ goto got_pg;
+
+ cond_resched();
+ goto retry;
+ }
+fail:
+ warn_alloc(gfp_mask, ac->nodemask,
+ "page allocation failure: order:%u", order);
+got_pg:
+ return page;
+}
+
+static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
+ int preferred_nid, nodemask_t *nodemask,
+ struct alloc_context *ac, gfp_t *alloc_mask,
+ unsigned int *alloc_flags)
+{
+ ac->high_zoneidx = gfp_zone(gfp_mask);
+ ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
+ ac->nodemask = nodemask;
+ ac->migratetype = gfpflags_to_migratetype(gfp_mask);
+
+ if (cpusets_enabled()) {
+ *alloc_mask |= __GFP_HARDWALL;
+ if (!ac->nodemask)
+ ac->nodemask = &cpuset_current_mems_allowed;
+ else
+ *alloc_flags |= ALLOC_CPUSET;
+ }
+
+ fs_reclaim_acquire(gfp_mask);
+ fs_reclaim_release(gfp_mask);
+
+ might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
+
+ if (should_fail_alloc_page(gfp_mask, order))
+ return false;
+
+ if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
+ *alloc_flags |= ALLOC_CMA;
+
+ return true;
+}
+
+/* Determine whether to spread dirty pages and what the first usable zone */
+static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
+{
+ /* Dirty zone balancing only done in the fast path */
+ ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
+
+ /*
+ * The preferred zone is used for statistics but crucially it is
+ * also used as the starting point for the zonelist iterator. It
+ * may get reset for allocations that ignore memory policies.
+ */
+ ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
+ ac->high_zoneidx, ac->nodemask);
+}
+
+/*
+ * This is the 'heart' of the zoned buddy allocator.
+ */
+struct page *
+__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
+ nodemask_t *nodemask)
+{
+ struct page *page;
+ unsigned int alloc_flags = ALLOC_WMARK_LOW;
+ gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
+ struct alloc_context ac = { };
+
+ /*
+ * There are several places where we assume that the order value is sane
+ * so bail out early if the request is out of bound.
+ */
+ if (unlikely(order >= MAX_ORDER)) {
+ WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
+ return NULL;
+ }
+
+ gfp_mask &= gfp_allowed_mask;
+ alloc_mask = gfp_mask;
+ if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
+ return NULL;
+
+ finalise_ac(gfp_mask, &ac);
+
+ /* First allocation attempt */
+ page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
+ if (likely(page))
+ goto out;
+
+ /*
+ * Apply scoped allocation constraints. This is mainly about GFP_NOFS
+ * resp. GFP_NOIO which has to be inherited for all allocation requests
+ * from a particular context which has been marked by
+ * memalloc_no{fs,io}_{save,restore}.
+ */
+ alloc_mask = current_gfp_context(gfp_mask);
+ ac.spread_dirty_pages = false;
+
+ /*
+ * Restore the original nodemask if it was potentially replaced with
+ * &cpuset_current_mems_allowed to optimize the fast-path attempt.
+ */
+ if (unlikely(ac.nodemask != nodemask))
+ ac.nodemask = nodemask;
+
+ page = __alloc_pages_slowpath(alloc_mask, order, &ac);
+
+out:
+ if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
+ unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
+ __free_pages(page, order);
+ page = NULL;
+ }
+
+ trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
+
+ return page;
+}
+EXPORT_SYMBOL(__alloc_pages_nodemask);
+
+/*
+ * Common helper functions. Never use with __GFP_HIGHMEM because the returned
+ * address cannot represent highmem pages. Use alloc_pages and then kmap if
+ * you need to access high mem.
+ */
+unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
+{
+ struct page *page;
+
+ page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
+ if (!page)
+ return 0;
+ return (unsigned long) page_address(page);
+}
+EXPORT_SYMBOL(__get_free_pages);
+
+unsigned long get_zeroed_page(gfp_t gfp_mask)
+{
+ return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
+}
+EXPORT_SYMBOL(get_zeroed_page);
+
+static inline void free_the_page(struct page *page, unsigned int order)
+{
+ if (order == 0) /* Via pcp? */
+ free_unref_page(page);
+ else
+ __free_pages_ok(page, order);
+}
+
+void __free_pages(struct page *page, unsigned int order)
+{
+ if (put_page_testzero(page))
+ free_the_page(page, order);
+}
+EXPORT_SYMBOL(__free_pages);
+
+void free_pages(unsigned long addr, unsigned int order)
+{
+ if (addr != 0) {
+ VM_BUG_ON(!virt_addr_valid((void *)addr));
+ __free_pages(virt_to_page((void *)addr), order);
+ }
+}
+
+EXPORT_SYMBOL(free_pages);
+
+/*
+ * Page Fragment:
+ * An arbitrary-length arbitrary-offset area of memory which resides
+ * within a 0 or higher order page. Multiple fragments within that page
+ * are individually refcounted, in the page's reference counter.
+ *
+ * The page_frag functions below provide a simple allocation framework for
+ * page fragments. This is used by the network stack and network device
+ * drivers to provide a backing region of memory for use as either an
+ * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
+ */
+static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
+ gfp_t gfp_mask)
+{
+ struct page *page = NULL;
+ gfp_t gfp = gfp_mask;
+
+#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
+ gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
+ __GFP_NOMEMALLOC;
+ page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
+ PAGE_FRAG_CACHE_MAX_ORDER);
+ nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
+#endif
+ if (unlikely(!page))
+ page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
+
+ nc->va = page ? page_address(page) : NULL;
+
+ return page;
+}
+
+void __page_frag_cache_drain(struct page *page, unsigned int count)
+{
+ VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
+
+ if (page_ref_sub_and_test(page, count))
+ free_the_page(page, compound_order(page));
+}
+EXPORT_SYMBOL(__page_frag_cache_drain);
+
+void *page_frag_alloc(struct page_frag_cache *nc,
+ unsigned int fragsz, gfp_t gfp_mask)
+{
+ unsigned int size = PAGE_SIZE;
+ struct page *page;
+ int offset;
+
+ if (unlikely(!nc->va)) {
+refill:
+ page = __page_frag_cache_refill(nc, gfp_mask);
+ if (!page)
+ return NULL;
+
+#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
+ /* if size can vary use size else just use PAGE_SIZE */
+ size = nc->size;
+#endif
+ /* Even if we own the page, we do not use atomic_set().
+ * This would break get_page_unless_zero() users.
+ */
+ page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
+
+ /* reset page count bias and offset to start of new frag */
+ nc->pfmemalloc = page_is_pfmemalloc(page);
+ nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
+ nc->offset = size;
+ }
+
+ offset = nc->offset - fragsz;
+ if (unlikely(offset < 0)) {
+ page = virt_to_page(nc->va);
+
+ if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
+ goto refill;
+
+ if (unlikely(nc->pfmemalloc)) {
+ free_the_page(page, compound_order(page));
+ goto refill;
+ }
+
+#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
+ /* if size can vary use size else just use PAGE_SIZE */
+ size = nc->size;
+#endif
+ /* OK, page count is 0, we can safely set it */
+ set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
+
+ /* reset page count bias and offset to start of new frag */
+ nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
+ offset = size - fragsz;
+ }
+
+ nc->pagecnt_bias--;
+ nc->offset = offset;
+
+ return nc->va + offset;
+}
+EXPORT_SYMBOL(page_frag_alloc);
+
+/*
+ * Frees a page fragment allocated out of either a compound or order 0 page.
+ */
+void page_frag_free(void *addr)
+{
+ struct page *page = virt_to_head_page(addr);
+
+ if (unlikely(put_page_testzero(page)))
+ free_the_page(page, compound_order(page));
+}
+EXPORT_SYMBOL(page_frag_free);
+
+static void *make_alloc_exact(unsigned long addr, unsigned int order,
+ size_t size)
+{
+ if (addr) {
+ unsigned long alloc_end = addr + (PAGE_SIZE << order);
+ unsigned long used = addr + PAGE_ALIGN(size);
+
+ split_page(virt_to_page((void *)addr), order);
+ while (used < alloc_end) {
+ free_page(used);
+ used += PAGE_SIZE;
+ }
+ }
+ return (void *)addr;
+}
+
+/**
+ * alloc_pages_exact - allocate an exact number physically-contiguous pages.
+ * @size: the number of bytes to allocate
+ * @gfp_mask: GFP flags for the allocation
+ *
+ * This function is similar to alloc_pages(), except that it allocates the
+ * minimum number of pages to satisfy the request. alloc_pages() can only
+ * allocate memory in power-of-two pages.
+ *
+ * This function is also limited by MAX_ORDER.
+ *
+ * Memory allocated by this function must be released by free_pages_exact().
+ */
+void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
+{
+ unsigned int order = get_order(size);
+ unsigned long addr;
+
+ addr = __get_free_pages(gfp_mask, order);
+ return make_alloc_exact(addr, order, size);
+}
+EXPORT_SYMBOL(alloc_pages_exact);
+
+/**
+ * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
+ * pages on a node.
+ * @nid: the preferred node ID where memory should be allocated
+ * @size: the number of bytes to allocate
+ * @gfp_mask: GFP flags for the allocation
+ *
+ * Like alloc_pages_exact(), but try to allocate on node nid first before falling
+ * back.
+ */
+void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
+{
+ unsigned int order = get_order(size);
+ struct page *p = alloc_pages_node(nid, gfp_mask, order);
+ if (!p)
+ return NULL;
+ return make_alloc_exact((unsigned long)page_address(p), order, size);
+}
+
+/**
+ * free_pages_exact - release memory allocated via alloc_pages_exact()
+ * @virt: the value returned by alloc_pages_exact.
+ * @size: size of allocation, same value as passed to alloc_pages_exact().
+ *
+ * Release the memory allocated by a previous call to alloc_pages_exact.
+ */
+void free_pages_exact(void *virt, size_t size)
+{
+ unsigned long addr = (unsigned long)virt;
+ unsigned long end = addr + PAGE_ALIGN(size);
+
+ while (addr < end) {
+ free_page(addr);
+ addr += PAGE_SIZE;
+ }
+}
+EXPORT_SYMBOL(free_pages_exact);
+
+/**
+ * nr_free_zone_pages - count number of pages beyond high watermark
+ * @offset: The zone index of the highest zone
+ *
+ * nr_free_zone_pages() counts the number of counts pages which are beyond the
+ * high watermark within all zones at or below a given zone index. For each
+ * zone, the number of pages is calculated as:
+ *
+ * nr_free_zone_pages = managed_pages - high_pages
+ */
+static unsigned long nr_free_zone_pages(int offset)
+{
+ struct zoneref *z;
+ struct zone *zone;
+
+ /* Just pick one node, since fallback list is circular */
+ unsigned long sum = 0;
+
+ struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
+
+ for_each_zone_zonelist(zone, z, zonelist, offset) {
+ unsigned long size = zone->managed_pages;
+ unsigned long high = high_wmark_pages(zone);
+ if (size > high)
+ sum += size - high;
+ }
+
+ return sum;
+}
+
+/**
+ * nr_free_buffer_pages - count number of pages beyond high watermark
+ *
+ * nr_free_buffer_pages() counts the number of pages which are beyond the high
+ * watermark within ZONE_DMA and ZONE_NORMAL.
+ */
+unsigned long nr_free_buffer_pages(void)
+{
+ return nr_free_zone_pages(gfp_zone(GFP_USER));
+}
+EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
+
+/**
+ * nr_free_pagecache_pages - count number of pages beyond high watermark
+ *
+ * nr_free_pagecache_pages() counts the number of pages which are beyond the
+ * high watermark within all zones.
+ */
+unsigned long nr_free_pagecache_pages(void)
+{
+ return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
+}
+
+static inline void show_node(struct zone *zone)
+{
+ if (IS_ENABLED(CONFIG_NUMA))
+ printk("Node %d ", zone_to_nid(zone));
+}
+
+long si_mem_available(void)
+{
+ long available;
+ unsigned long pagecache;
+ unsigned long wmark_low = 0;
+ unsigned long pages[NR_LRU_LISTS];
+ struct zone *zone;
+ int lru;
+
+ for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
+ pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
+
+ for_each_zone(zone)
+ wmark_low += zone->watermark[WMARK_LOW];
+
+ /*
+ * Estimate the amount of memory available for userspace allocations,
+ * without causing swapping.
+ */
+ available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
+
+ /*
+ * Not all the page cache can be freed, otherwise the system will
+ * start swapping. Assume at least half of the page cache, or the
+ * low watermark worth of cache, needs to stay.
+ */
+ pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
+ pagecache -= min(pagecache / 2, wmark_low);
+ available += pagecache;
+
+ /*
+ * Part of the reclaimable slab consists of items that are in use,
+ * and cannot be freed. Cap this estimate at the low watermark.
+ */
+ available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
+ min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
+ wmark_low);
+
+ /*
+ * Part of the kernel memory, which can be released under memory
+ * pressure.
+ */
+ available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
+ PAGE_SHIFT;
+
+ if (available < 0)
+ available = 0;
+ return available;
+}
+EXPORT_SYMBOL_GPL(si_mem_available);
+
+void si_meminfo(struct sysinfo *val)
+{
+ val->totalram = totalram_pages;
+ val->sharedram = global_node_page_state(NR_SHMEM);
+ val->freeram = global_zone_page_state(NR_FREE_PAGES);
+ val->bufferram = nr_blockdev_pages();
+ val->totalhigh = totalhigh_pages;
+ val->freehigh = nr_free_highpages();
+ val->mem_unit = PAGE_SIZE;
+}
+
+EXPORT_SYMBOL(si_meminfo);
+
+#ifdef CONFIG_NUMA
+void si_meminfo_node(struct sysinfo *val, int nid)
+{
+ int zone_type; /* needs to be signed */
+ unsigned long managed_pages = 0;
+ unsigned long managed_highpages = 0;
+ unsigned long free_highpages = 0;
+ pg_data_t *pgdat = NODE_DATA(nid);
+
+ for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
+ managed_pages += pgdat->node_zones[zone_type].managed_pages;
+ val->totalram = managed_pages;
+ val->sharedram = node_page_state(pgdat, NR_SHMEM);
+ val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
+#ifdef CONFIG_HIGHMEM
+ for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
+ struct zone *zone = &pgdat->node_zones[zone_type];
+
+ if (is_highmem(zone)) {
+ managed_highpages += zone->managed_pages;
+ free_highpages += zone_page_state(zone, NR_FREE_PAGES);
+ }
+ }
+ val->totalhigh = managed_highpages;
+ val->freehigh = free_highpages;
+#else
+ val->totalhigh = managed_highpages;
+ val->freehigh = free_highpages;
+#endif
+ val->mem_unit = PAGE_SIZE;
+}
+#endif
+
+/*
+ * Determine whether the node should be displayed or not, depending on whether
+ * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
+ */
+static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
+{
+ if (!(flags & SHOW_MEM_FILTER_NODES))
+ return false;
+
+ /*
+ * no node mask - aka implicit memory numa policy. Do not bother with
+ * the synchronization - read_mems_allowed_begin - because we do not
+ * have to be precise here.
+ */
+ if (!nodemask)
+ nodemask = &cpuset_current_mems_allowed;
+
+ return !node_isset(nid, *nodemask);
+}
+
+#define K(x) ((x) << (PAGE_SHIFT-10))
+
+static void show_migration_types(unsigned char type)
+{
+ static const char types[MIGRATE_TYPES] = {
+ [MIGRATE_UNMOVABLE] = 'U',
+ [MIGRATE_MOVABLE] = 'M',
+ [MIGRATE_RECLAIMABLE] = 'E',
+ [MIGRATE_HIGHATOMIC] = 'H',
+#ifdef CONFIG_CMA
+ [MIGRATE_CMA] = 'C',
+#endif
+#ifdef CONFIG_MEMORY_ISOLATION
+ [MIGRATE_ISOLATE] = 'I',
+#endif
+ };
+ char tmp[MIGRATE_TYPES + 1];
+ char *p = tmp;
+ int i;
+
+ for (i = 0; i < MIGRATE_TYPES; i++) {
+ if (type & (1 << i))
+ *p++ = types[i];
+ }
+
+ *p = '\0';
+ printk(KERN_CONT "(%s) ", tmp);
+}
+
+/*
+ * Show free area list (used inside shift_scroll-lock stuff)
+ * We also calculate the percentage fragmentation. We do this by counting the
+ * memory on each free list with the exception of the first item on the list.
+ *
+ * Bits in @filter:
+ * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
+ * cpuset.
+ */
+void show_free_areas(unsigned int filter, nodemask_t *nodemask)
+{
+ unsigned long free_pcp = 0;
+ int cpu;
+ struct zone *zone;
+ pg_data_t *pgdat;
+
+ for_each_populated_zone(zone) {
+ if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
+ continue;
+
+ for_each_online_cpu(cpu)
+ free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
+ }
+
+ printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
+ " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
+ " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
+ " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
+ " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
+ " free:%lu free_pcp:%lu free_cma:%lu\n",
+ global_node_page_state(NR_ACTIVE_ANON),
+ global_node_page_state(NR_INACTIVE_ANON),
+ global_node_page_state(NR_ISOLATED_ANON),
+ global_node_page_state(NR_ACTIVE_FILE),
+ global_node_page_state(NR_INACTIVE_FILE),
+ global_node_page_state(NR_ISOLATED_FILE),
+ global_node_page_state(NR_UNEVICTABLE),
+ global_node_page_state(NR_FILE_DIRTY),
+ global_node_page_state(NR_WRITEBACK),
+ global_node_page_state(NR_UNSTABLE_NFS),
+ global_node_page_state(NR_SLAB_RECLAIMABLE),
+ global_node_page_state(NR_SLAB_UNRECLAIMABLE),
+ global_node_page_state(NR_FILE_MAPPED),
+ global_node_page_state(NR_SHMEM),
+ global_zone_page_state(NR_PAGETABLE),
+ global_zone_page_state(NR_BOUNCE),
+ global_zone_page_state(NR_FREE_PAGES),
+ free_pcp,
+ global_zone_page_state(NR_FREE_CMA_PAGES));
+
+ for_each_online_pgdat(pgdat) {
+ if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
+ continue;
+
+ printk("Node %d"
+ " active_anon:%lukB"
+ " inactive_anon:%lukB"
+ " active_file:%lukB"
+ " inactive_file:%lukB"
+ " unevictable:%lukB"
+ " isolated(anon):%lukB"
+ " isolated(file):%lukB"
+ " mapped:%lukB"
+ " dirty:%lukB"
+ " writeback:%lukB"
+ " shmem:%lukB"
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ " shmem_thp: %lukB"
+ " shmem_pmdmapped: %lukB"
+ " anon_thp: %lukB"
+#endif
+ " writeback_tmp:%lukB"
+ " unstable:%lukB"
+ " all_unreclaimable? %s"
+ "\n",
+ pgdat->node_id,
+ K(node_page_state(pgdat, NR_ACTIVE_ANON)),
+ K(node_page_state(pgdat, NR_INACTIVE_ANON)),
+ K(node_page_state(pgdat, NR_ACTIVE_FILE)),
+ K(node_page_state(pgdat, NR_INACTIVE_FILE)),
+ K(node_page_state(pgdat, NR_UNEVICTABLE)),
+ K(node_page_state(pgdat, NR_ISOLATED_ANON)),
+ K(node_page_state(pgdat, NR_ISOLATED_FILE)),
+ K(node_page_state(pgdat, NR_FILE_MAPPED)),
+ K(node_page_state(pgdat, NR_FILE_DIRTY)),
+ K(node_page_state(pgdat, NR_WRITEBACK)),
+ K(node_page_state(pgdat, NR_SHMEM)),
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
+ K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
+ * HPAGE_PMD_NR),
+ K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
+#endif
+ K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
+ K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
+ pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
+ "yes" : "no");
+ }
+
+ for_each_populated_zone(zone) {
+ int i;
+
+ if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
+ continue;
+
+ free_pcp = 0;
+ for_each_online_cpu(cpu)
+ free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
+
+ show_node(zone);
+ printk(KERN_CONT
+ "%s"
+ " free:%lukB"
+ " min:%lukB"
+ " low:%lukB"
+ " high:%lukB"
+ " active_anon:%lukB"
+ " inactive_anon:%lukB"
+ " active_file:%lukB"
+ " inactive_file:%lukB"
+ " unevictable:%lukB"
+ " writepending:%lukB"
+ " present:%lukB"
+ " managed:%lukB"
+ " mlocked:%lukB"
+ " kernel_stack:%lukB"
+ " pagetables:%lukB"
+ " bounce:%lukB"
+ " free_pcp:%lukB"
+ " local_pcp:%ukB"
+ " free_cma:%lukB"
+ "\n",
+ zone->name,
+ K(zone_page_state(zone, NR_FREE_PAGES)),
+ K(min_wmark_pages(zone)),
+ K(low_wmark_pages(zone)),
+ K(high_wmark_pages(zone)),
+ K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
+ K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
+ K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
+ K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
+ K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
+ K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
+ K(zone->present_pages),
+ K(zone->managed_pages),
+ K(zone_page_state(zone, NR_MLOCK)),
+ zone_page_state(zone, NR_KERNEL_STACK_KB),
+ K(zone_page_state(zone, NR_PAGETABLE)),
+ K(zone_page_state(zone, NR_BOUNCE)),
+ K(free_pcp),
+ K(this_cpu_read(zone->pageset->pcp.count)),
+ K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
+ printk("lowmem_reserve[]:");
+ for (i = 0; i < MAX_NR_ZONES; i++)
+ printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
+ printk(KERN_CONT "\n");
+ }
+
+ for_each_populated_zone(zone) {
+ unsigned int order;
+ unsigned long nr[MAX_ORDER], flags, total = 0;
+ unsigned char types[MAX_ORDER];
+
+ if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
+ continue;
+ show_node(zone);
+ printk(KERN_CONT "%s: ", zone->name);
+
+ spin_lock_irqsave(&zone->lock, flags);
+ for (order = 0; order < MAX_ORDER; order++) {
+ struct free_area *area = &zone->free_area[order];
+ int type;
+
+ nr[order] = area->nr_free;
+ total += nr[order] << order;
+
+ types[order] = 0;
+ for (type = 0; type < MIGRATE_TYPES; type++) {
+ if (!list_empty(&area->free_list[type]))
+ types[order] |= 1 << type;
+ }
+ }
+ spin_unlock_irqrestore(&zone->lock, flags);
+ for (order = 0; order < MAX_ORDER; order++) {
+ printk(KERN_CONT "%lu*%lukB ",
+ nr[order], K(1UL) << order);
+ if (nr[order])
+ show_migration_types(types[order]);
+ }
+ printk(KERN_CONT "= %lukB\n", K(total));
+ }
+
+ hugetlb_show_meminfo();
+
+ printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
+
+ show_swap_cache_info();
+}
+
+static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
+{
+ zoneref->zone = zone;
+ zoneref->zone_idx = zone_idx(zone);
+}
+
+/*
+ * Builds allocation fallback zone lists.
+ *
+ * Add all populated zones of a node to the zonelist.
+ */
+static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
+{
+ struct zone *zone;
+ enum zone_type zone_type = MAX_NR_ZONES;
+ int nr_zones = 0;
+
+ do {
+ zone_type--;
+ zone = pgdat->node_zones + zone_type;
+ if (populated_zone(zone)) {
+ zoneref_set_zone(zone, &zonerefs[nr_zones++]);
+ check_highest_zone(zone_type);
+ }
+ } while (zone_type);
+
+ return nr_zones;
+}
+
+#ifdef CONFIG_NUMA
+
+static int __parse_numa_zonelist_order(char *s)
+{
+ /*
+ * We used to support different zonlists modes but they turned
+ * out to be just not useful. Let's keep the warning in place
+ * if somebody still use the cmd line parameter so that we do
+ * not fail it silently
+ */
+ if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
+ pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
+ return -EINVAL;
+ }
+ return 0;
+}
+
+static __init int setup_numa_zonelist_order(char *s)
+{
+ if (!s)
+ return 0;
+
+ return __parse_numa_zonelist_order(s);
+}
+early_param("numa_zonelist_order", setup_numa_zonelist_order);
+
+char numa_zonelist_order[] = "Node";
+
+/*
+ * sysctl handler for numa_zonelist_order
+ */
+int numa_zonelist_order_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *length,
+ loff_t *ppos)
+{
+ char *str;
+ int ret;
+
+ if (!write)
+ return proc_dostring(table, write, buffer, length, ppos);
+ str = memdup_user_nul(buffer, 16);
+ if (IS_ERR(str))
+ return PTR_ERR(str);
+
+ ret = __parse_numa_zonelist_order(str);
+ kfree(str);
+ return ret;
+}
+
+
+#define MAX_NODE_LOAD (nr_online_nodes)
+static int node_load[MAX_NUMNODES];
+
+/**
+ * find_next_best_node - find the next node that should appear in a given node's fallback list
+ * @node: node whose fallback list we're appending
+ * @used_node_mask: nodemask_t of already used nodes
+ *
+ * We use a number of factors to determine which is the next node that should
+ * appear on a given node's fallback list. The node should not have appeared
+ * already in @node's fallback list, and it should be the next closest node
+ * according to the distance array (which contains arbitrary distance values
+ * from each node to each node in the system), and should also prefer nodes
+ * with no CPUs, since presumably they'll have very little allocation pressure
+ * on them otherwise.
+ * It returns -1 if no node is found.
+ */
+static int find_next_best_node(int node, nodemask_t *used_node_mask)
+{
+ int n, val;
+ int min_val = INT_MAX;
+ int best_node = NUMA_NO_NODE;
+ const struct cpumask *tmp = cpumask_of_node(0);
+
+ /* Use the local node if we haven't already */
+ if (!node_isset(node, *used_node_mask)) {
+ node_set(node, *used_node_mask);
+ return node;
+ }
+
+ for_each_node_state(n, N_MEMORY) {
+
+ /* Don't want a node to appear more than once */
+ if (node_isset(n, *used_node_mask))
+ continue;
+
+ /* Use the distance array to find the distance */
+ val = node_distance(node, n);
+
+ /* Penalize nodes under us ("prefer the next node") */
+ val += (n < node);
+
+ /* Give preference to headless and unused nodes */
+ tmp = cpumask_of_node(n);
+ if (!cpumask_empty(tmp))
+ val += PENALTY_FOR_NODE_WITH_CPUS;
+
+ /* Slight preference for less loaded node */
+ val *= (MAX_NODE_LOAD*MAX_NUMNODES);
+ val += node_load[n];
+
+ if (val < min_val) {
+ min_val = val;
+ best_node = n;
+ }
+ }
+
+ if (best_node >= 0)
+ node_set(best_node, *used_node_mask);
+
+ return best_node;
+}
+
+
+/*
+ * Build zonelists ordered by node and zones within node.
+ * This results in maximum locality--normal zone overflows into local
+ * DMA zone, if any--but risks exhausting DMA zone.
+ */
+static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
+ unsigned nr_nodes)
+{
+ struct zoneref *zonerefs;
+ int i;
+
+ zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
+
+ for (i = 0; i < nr_nodes; i++) {
+ int nr_zones;
+
+ pg_data_t *node = NODE_DATA(node_order[i]);
+
+ nr_zones = build_zonerefs_node(node, zonerefs);
+ zonerefs += nr_zones;
+ }
+ zonerefs->zone = NULL;
+ zonerefs->zone_idx = 0;
+}
+
+/*
+ * Build gfp_thisnode zonelists
+ */
+static void build_thisnode_zonelists(pg_data_t *pgdat)
+{
+ struct zoneref *zonerefs;
+ int nr_zones;
+
+ zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
+ nr_zones = build_zonerefs_node(pgdat, zonerefs);
+ zonerefs += nr_zones;
+ zonerefs->zone = NULL;
+ zonerefs->zone_idx = 0;
+}
+
+/*
+ * Build zonelists ordered by zone and nodes within zones.
+ * This results in conserving DMA zone[s] until all Normal memory is
+ * exhausted, but results in overflowing to remote node while memory
+ * may still exist in local DMA zone.
+ */
+
+static void build_zonelists(pg_data_t *pgdat)
+{
+ static int node_order[MAX_NUMNODES];
+ int node, load, nr_nodes = 0;
+ nodemask_t used_mask;
+ int local_node, prev_node;
+
+ /* NUMA-aware ordering of nodes */
+ local_node = pgdat->node_id;
+ load = nr_online_nodes;
+ prev_node = local_node;
+ nodes_clear(used_mask);
+
+ memset(node_order, 0, sizeof(node_order));
+ while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
+ /*
+ * We don't want to pressure a particular node.
+ * So adding penalty to the first node in same
+ * distance group to make it round-robin.
+ */
+ if (node_distance(local_node, node) !=
+ node_distance(local_node, prev_node))
+ node_load[node] = load;
+
+ node_order[nr_nodes++] = node;
+ prev_node = node;
+ load--;
+ }
+
+ build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
+ build_thisnode_zonelists(pgdat);
+}
+
+#ifdef CONFIG_HAVE_MEMORYLESS_NODES
+/*
+ * Return node id of node used for "local" allocations.
+ * I.e., first node id of first zone in arg node's generic zonelist.
+ * Used for initializing percpu 'numa_mem', which is used primarily
+ * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
+ */
+int local_memory_node(int node)
+{
+ struct zoneref *z;
+
+ z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
+ gfp_zone(GFP_KERNEL),
+ NULL);
+ return zone_to_nid(z->zone);
+}
+#endif
+
+static void setup_min_unmapped_ratio(void);
+static void setup_min_slab_ratio(void);
+#else /* CONFIG_NUMA */
+
+static void build_zonelists(pg_data_t *pgdat)
+{
+ int node, local_node;
+ struct zoneref *zonerefs;
+ int nr_zones;
+
+ local_node = pgdat->node_id;
+
+ zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
+ nr_zones = build_zonerefs_node(pgdat, zonerefs);
+ zonerefs += nr_zones;
+
+ /*
+ * Now we build the zonelist so that it contains the zones
+ * of all the other nodes.
+ * We don't want to pressure a particular node, so when
+ * building the zones for node N, we make sure that the
+ * zones coming right after the local ones are those from
+ * node N+1 (modulo N)
+ */
+ for (node = local_node + 1; node < MAX_NUMNODES; node++) {
+ if (!node_online(node))
+ continue;
+ nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
+ zonerefs += nr_zones;
+ }
+ for (node = 0; node < local_node; node++) {
+ if (!node_online(node))
+ continue;
+ nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
+ zonerefs += nr_zones;
+ }
+
+ zonerefs->zone = NULL;
+ zonerefs->zone_idx = 0;
+}
+
+#endif /* CONFIG_NUMA */
+
+/*
+ * Boot pageset table. One per cpu which is going to be used for all
+ * zones and all nodes. The parameters will be set in such a way
+ * that an item put on a list will immediately be handed over to
+ * the buddy list. This is safe since pageset manipulation is done
+ * with interrupts disabled.
+ *
+ * The boot_pagesets must be kept even after bootup is complete for
+ * unused processors and/or zones. They do play a role for bootstrapping
+ * hotplugged processors.
+ *
+ * zoneinfo_show() and maybe other functions do
+ * not check if the processor is online before following the pageset pointer.
+ * Other parts of the kernel may not check if the zone is available.
+ */
+static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
+static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
+static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
+
+static void __build_all_zonelists(void *data)
+{
+ int nid;
+ int __maybe_unused cpu;
+ pg_data_t *self = data;
+ static DEFINE_SPINLOCK(lock);
+
+ spin_lock(&lock);
+
+#ifdef CONFIG_NUMA
+ memset(node_load, 0, sizeof(node_load));
+#endif
+
+ /*
+ * This node is hotadded and no memory is yet present. So just
+ * building zonelists is fine - no need to touch other nodes.
+ */
+ if (self && !node_online(self->node_id)) {
+ build_zonelists(self);
+ } else {
+ for_each_online_node(nid) {
+ pg_data_t *pgdat = NODE_DATA(nid);
+
+ build_zonelists(pgdat);
+ }
+
+#ifdef CONFIG_HAVE_MEMORYLESS_NODES
+ /*
+ * We now know the "local memory node" for each node--
+ * i.e., the node of the first zone in the generic zonelist.
+ * Set up numa_mem percpu variable for on-line cpus. During
+ * boot, only the boot cpu should be on-line; we'll init the
+ * secondary cpus' numa_mem as they come on-line. During
+ * node/memory hotplug, we'll fixup all on-line cpus.
+ */
+ for_each_online_cpu(cpu)
+ set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
+#endif
+ }
+
+ spin_unlock(&lock);
+}
+
+static noinline void __init
+build_all_zonelists_init(void)
+{
+ int cpu;
+
+ __build_all_zonelists(NULL);
+
+ /*
+ * Initialize the boot_pagesets that are going to be used
+ * for bootstrapping processors. The real pagesets for
+ * each zone will be allocated later when the per cpu
+ * allocator is available.
+ *
+ * boot_pagesets are used also for bootstrapping offline
+ * cpus if the system is already booted because the pagesets
+ * are needed to initialize allocators on a specific cpu too.
+ * F.e. the percpu allocator needs the page allocator which
+ * needs the percpu allocator in order to allocate its pagesets
+ * (a chicken-egg dilemma).
+ */
+ for_each_possible_cpu(cpu)
+ setup_pageset(&per_cpu(boot_pageset, cpu), 0);
+
+ mminit_verify_zonelist();
+ cpuset_init_current_mems_allowed();
+}
+
+/*
+ * unless system_state == SYSTEM_BOOTING.
+ *
+ * __ref due to call of __init annotated helper build_all_zonelists_init
+ * [protected by SYSTEM_BOOTING].
+ */
+void __ref build_all_zonelists(pg_data_t *pgdat)
+{
+ if (system_state == SYSTEM_BOOTING) {
+ build_all_zonelists_init();
+ } else {
+ __build_all_zonelists(pgdat);
+ /* cpuset refresh routine should be here */
+ }
+ vm_total_pages = nr_free_pagecache_pages();
+ /*
+ * Disable grouping by mobility if the number of pages in the
+ * system is too low to allow the mechanism to work. It would be
+ * more accurate, but expensive to check per-zone. This check is
+ * made on memory-hotadd so a system can start with mobility
+ * disabled and enable it later
+ */
+ if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
+ page_group_by_mobility_disabled = 1;
+ else
+ page_group_by_mobility_disabled = 0;
+
+ pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
+ nr_online_nodes,
+ page_group_by_mobility_disabled ? "off" : "on",
+ vm_total_pages);
+#ifdef CONFIG_NUMA
+ pr_info("Policy zone: %s\n", zone_names[policy_zone]);
+#endif
+}
+
+/*
+ * Initially all pages are reserved - free ones are freed
+ * up by free_all_bootmem() once the early boot process is
+ * done. Non-atomic initialization, single-pass.
+ */
+void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
+ unsigned long start_pfn, enum meminit_context context,
+ struct vmem_altmap *altmap)
+{
+ unsigned long end_pfn = start_pfn + size;
+ pg_data_t *pgdat = NODE_DATA(nid);
+ unsigned long pfn;
+ unsigned long nr_initialised = 0;
+ struct page *page;
+#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
+ struct memblock_region *r = NULL, *tmp;
+#endif
+
+ if (highest_memmap_pfn < end_pfn - 1)
+ highest_memmap_pfn = end_pfn - 1;
+
+ /*
+ * Honor reservation requested by the driver for this ZONE_DEVICE
+ * memory
+ */
+ if (altmap && start_pfn == altmap->base_pfn)
+ start_pfn += altmap->reserve;
+
+ for (pfn = start_pfn; pfn < end_pfn; pfn++) {
+ /*
+ * There can be holes in boot-time mem_map[]s handed to this
+ * function. They do not exist on hotplugged memory.
+ */
+ if (context != MEMINIT_EARLY)
+ goto not_early;
+
+ if (!early_pfn_valid(pfn))
+ continue;
+ if (!early_pfn_in_nid(pfn, nid))
+ continue;
+ if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
+ break;
+
+#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
+ /*
+ * Check given memblock attribute by firmware which can affect
+ * kernel memory layout. If zone==ZONE_MOVABLE but memory is
+ * mirrored, it's an overlapped memmap init. skip it.
+ */
+ if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
+ if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
+ for_each_memblock(memory, tmp)
+ if (pfn < memblock_region_memory_end_pfn(tmp))
+ break;
+ r = tmp;
+ }
+ if (pfn >= memblock_region_memory_base_pfn(r) &&
+ memblock_is_mirror(r)) {
+ /* already initialized as NORMAL */
+ pfn = memblock_region_memory_end_pfn(r);
+ continue;
+ }
+ }
+#endif
+
+not_early:
+ page = pfn_to_page(pfn);
+ __init_single_page(page, pfn, zone, nid);
+ if (context == MEMINIT_HOTPLUG)
+ SetPageReserved(page);
+
+ /*
+ * Mark the block movable so that blocks are reserved for
+ * movable at startup. This will force kernel allocations
+ * to reserve their blocks rather than leaking throughout
+ * the address space during boot when many long-lived
+ * kernel allocations are made.
+ *
+ * bitmap is created for zone's valid pfn range. but memmap
+ * can be created for invalid pages (for alignment)
+ * check here not to call set_pageblock_migratetype() against
+ * pfn out of zone.
+ *
+ * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
+ * because this is done early in sparse_add_one_section
+ */
+ if (!(pfn & (pageblock_nr_pages - 1))) {
+ set_pageblock_migratetype(page, MIGRATE_MOVABLE);
+ cond_resched();
+ }
+ }
+}
+
+static void __meminit zone_init_free_lists(struct zone *zone)
+{
+ unsigned int order, t;
+ for_each_migratetype_order(order, t) {
+ INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
+ zone->free_area[order].nr_free = 0;
+ }
+}
+
+#ifndef __HAVE_ARCH_MEMMAP_INIT
+#define memmap_init(size, nid, zone, start_pfn) \
+ memmap_init_zone((size), (nid), (zone), (start_pfn), \
+ MEMINIT_EARLY, NULL)
+#endif
+
+static int zone_batchsize(struct zone *zone)
+{
+#ifdef CONFIG_MMU
+ int batch;
+
+ /*
+ * The per-cpu-pages pools are set to around 1000th of the
+ * size of the zone.
+ */
+ batch = zone->managed_pages / 1024;
+ /* But no more than a meg. */
+ if (batch * PAGE_SIZE > 1024 * 1024)
+ batch = (1024 * 1024) / PAGE_SIZE;
+ batch /= 4; /* We effectively *= 4 below */
+ if (batch < 1)
+ batch = 1;
+
+ /*
+ * Clamp the batch to a 2^n - 1 value. Having a power
+ * of 2 value was found to be more likely to have
+ * suboptimal cache aliasing properties in some cases.
+ *
+ * For example if 2 tasks are alternately allocating
+ * batches of pages, one task can end up with a lot
+ * of pages of one half of the possible page colors
+ * and the other with pages of the other colors.
+ */
+ batch = rounddown_pow_of_two(batch + batch/2) - 1;
+
+ return batch;
+
+#else
+ /* The deferral and batching of frees should be suppressed under NOMMU
+ * conditions.
+ *
+ * The problem is that NOMMU needs to be able to allocate large chunks
+ * of contiguous memory as there's no hardware page translation to
+ * assemble apparent contiguous memory from discontiguous pages.
+ *
+ * Queueing large contiguous runs of pages for batching, however,
+ * causes the pages to actually be freed in smaller chunks. As there
+ * can be a significant delay between the individual batches being
+ * recycled, this leads to the once large chunks of space being
+ * fragmented and becoming unavailable for high-order allocations.
+ */
+ return 0;
+#endif
+}
+
+/*
+ * pcp->high and pcp->batch values are related and dependent on one another:
+ * ->batch must never be higher then ->high.
+ * The following function updates them in a safe manner without read side
+ * locking.
+ *
+ * Any new users of pcp->batch and pcp->high should ensure they can cope with
+ * those fields changing asynchronously (acording the the above rule).
+ *
+ * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
+ * outside of boot time (or some other assurance that no concurrent updaters
+ * exist).
+ */
+static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
+ unsigned long batch)
+{
+ /* start with a fail safe value for batch */
+ pcp->batch = 1;
+ smp_wmb();
+
+ /* Update high, then batch, in order */
+ pcp->high = high;
+ smp_wmb();
+
+ pcp->batch = batch;
+}
+
+/* a companion to pageset_set_high() */
+static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
+{
+ pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
+}
+
+static void pageset_init(struct per_cpu_pageset *p)
+{
+ struct per_cpu_pages *pcp;
+ int migratetype;
+
+ memset(p, 0, sizeof(*p));
+
+ pcp = &p->pcp;
+ pcp->count = 0;
+ for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
+ INIT_LIST_HEAD(&pcp->lists[migratetype]);
+}
+
+static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
+{
+ pageset_init(p);
+ pageset_set_batch(p, batch);
+}
+
+/*
+ * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
+ * to the value high for the pageset p.
+ */
+static void pageset_set_high(struct per_cpu_pageset *p,
+ unsigned long high)
+{
+ unsigned long batch = max(1UL, high / 4);
+ if ((high / 4) > (PAGE_SHIFT * 8))
+ batch = PAGE_SHIFT * 8;
+
+ pageset_update(&p->pcp, high, batch);
+}
+
+static void pageset_set_high_and_batch(struct zone *zone,
+ struct per_cpu_pageset *pcp)
+{
+ if (percpu_pagelist_fraction)
+ pageset_set_high(pcp,
+ (zone->managed_pages /
+ percpu_pagelist_fraction));
+ else
+ pageset_set_batch(pcp, zone_batchsize(zone));
+}
+
+static void __meminit zone_pageset_init(struct zone *zone, int cpu)
+{
+ struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
+
+ pageset_init(pcp);
+ pageset_set_high_and_batch(zone, pcp);
+}
+
+void __meminit setup_zone_pageset(struct zone *zone)
+{
+ int cpu;
+ zone->pageset = alloc_percpu(struct per_cpu_pageset);
+ for_each_possible_cpu(cpu)
+ zone_pageset_init(zone, cpu);
+}
+
+/*
+ * Allocate per cpu pagesets and initialize them.
+ * Before this call only boot pagesets were available.
+ */
+void __init setup_per_cpu_pageset(void)
+{
+ struct pglist_data *pgdat;
+ struct zone *zone;
+
+ for_each_populated_zone(zone)
+ setup_zone_pageset(zone);
+
+ for_each_online_pgdat(pgdat)
+ pgdat->per_cpu_nodestats =
+ alloc_percpu(struct per_cpu_nodestat);
+}
+
+static __meminit void zone_pcp_init(struct zone *zone)
+{
+ /*
+ * per cpu subsystem is not up at this point. The following code
+ * relies on the ability of the linker to provide the
+ * offset of a (static) per cpu variable into the per cpu area.
+ */
+ zone->pageset = &boot_pageset;
+
+ if (populated_zone(zone))
+ printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
+ zone->name, zone->present_pages,
+ zone_batchsize(zone));
+}
+
+void __meminit init_currently_empty_zone(struct zone *zone,
+ unsigned long zone_start_pfn,
+ unsigned long size)
+{
+ struct pglist_data *pgdat = zone->zone_pgdat;
+ int zone_idx = zone_idx(zone) + 1;
+
+ if (zone_idx > pgdat->nr_zones)
+ pgdat->nr_zones = zone_idx;
+
+ zone->zone_start_pfn = zone_start_pfn;
+
+ mminit_dprintk(MMINIT_TRACE, "memmap_init",
+ "Initialising map node %d zone %lu pfns %lu -> %lu\n",
+ pgdat->node_id,
+ (unsigned long)zone_idx(zone),
+ zone_start_pfn, (zone_start_pfn + size));
+
+ zone_init_free_lists(zone);
+ zone->initialized = 1;
+}
+
+#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
+#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
+
+/*
+ * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
+ */
+int __meminit __early_pfn_to_nid(unsigned long pfn,
+ struct mminit_pfnnid_cache *state)
+{
+ unsigned long start_pfn, end_pfn;
+ int nid;
+
+ if (state->last_start <= pfn && pfn < state->last_end)
+ return state->last_nid;
+
+ nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
+ if (nid != -1) {
+ state->last_start = start_pfn;
+ state->last_end = end_pfn;
+ state->last_nid = nid;
+ }
+
+ return nid;
+}
+#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
+
+/**
+ * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
+ * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
+ * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
+ *
+ * If an architecture guarantees that all ranges registered contain no holes
+ * and may be freed, this this function may be used instead of calling
+ * memblock_free_early_nid() manually.
+ */
+void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
+{
+ unsigned long start_pfn, end_pfn;
+ int i, this_nid;
+
+ for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
+ start_pfn = min(start_pfn, max_low_pfn);
+ end_pfn = min(end_pfn, max_low_pfn);
+
+ if (start_pfn < end_pfn)
+ memblock_free_early_nid(PFN_PHYS(start_pfn),
+ (end_pfn - start_pfn) << PAGE_SHIFT,
+ this_nid);
+ }
+}
+
+/**
+ * sparse_memory_present_with_active_regions - Call memory_present for each active range
+ * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
+ *
+ * If an architecture guarantees that all ranges registered contain no holes and may
+ * be freed, this function may be used instead of calling memory_present() manually.
+ */
+void __init sparse_memory_present_with_active_regions(int nid)
+{
+ unsigned long start_pfn, end_pfn;
+ int i, this_nid;
+
+ for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
+ memory_present(this_nid, start_pfn, end_pfn);
+}
+
+/**
+ * get_pfn_range_for_nid - Return the start and end page frames for a node
+ * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
+ * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
+ * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
+ *
+ * It returns the start and end page frame of a node based on information
+ * provided by memblock_set_node(). If called for a node
+ * with no available memory, a warning is printed and the start and end
+ * PFNs will be 0.
+ */
+void __meminit get_pfn_range_for_nid(unsigned int nid,
+ unsigned long *start_pfn, unsigned long *end_pfn)
+{
+ unsigned long this_start_pfn, this_end_pfn;
+ int i;
+
+ *start_pfn = -1UL;
+ *end_pfn = 0;
+
+ for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
+ *start_pfn = min(*start_pfn, this_start_pfn);
+ *end_pfn = max(*end_pfn, this_end_pfn);
+ }
+
+ if (*start_pfn == -1UL)
+ *start_pfn = 0;
+}
+
+/*
+ * This finds a zone that can be used for ZONE_MOVABLE pages. The
+ * assumption is made that zones within a node are ordered in monotonic
+ * increasing memory addresses so that the "highest" populated zone is used
+ */
+static void __init find_usable_zone_for_movable(void)
+{
+ int zone_index;
+ for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
+ if (zone_index == ZONE_MOVABLE)
+ continue;
+
+ if (arch_zone_highest_possible_pfn[zone_index] >
+ arch_zone_lowest_possible_pfn[zone_index])
+ break;
+ }
+
+ VM_BUG_ON(zone_index == -1);
+ movable_zone = zone_index;
+}
+
+/*
+ * The zone ranges provided by the architecture do not include ZONE_MOVABLE
+ * because it is sized independent of architecture. Unlike the other zones,
+ * the starting point for ZONE_MOVABLE is not fixed. It may be different
+ * in each node depending on the size of each node and how evenly kernelcore
+ * is distributed. This helper function adjusts the zone ranges
+ * provided by the architecture for a given node by using the end of the
+ * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
+ * zones within a node are in order of monotonic increases memory addresses
+ */
+static void __meminit adjust_zone_range_for_zone_movable(int nid,
+ unsigned long zone_type,
+ unsigned long node_start_pfn,
+ unsigned long node_end_pfn,
+ unsigned long *zone_start_pfn,
+ unsigned long *zone_end_pfn)
+{
+ /* Only adjust if ZONE_MOVABLE is on this node */
+ if (zone_movable_pfn[nid]) {
+ /* Size ZONE_MOVABLE */
+ if (zone_type == ZONE_MOVABLE) {
+ *zone_start_pfn = zone_movable_pfn[nid];
+ *zone_end_pfn = min(node_end_pfn,
+ arch_zone_highest_possible_pfn[movable_zone]);
+
+ /* Adjust for ZONE_MOVABLE starting within this range */
+ } else if (!mirrored_kernelcore &&
+ *zone_start_pfn < zone_movable_pfn[nid] &&
+ *zone_end_pfn > zone_movable_pfn[nid]) {
+ *zone_end_pfn = zone_movable_pfn[nid];
+
+ /* Check if this whole range is within ZONE_MOVABLE */
+ } else if (*zone_start_pfn >= zone_movable_pfn[nid])
+ *zone_start_pfn = *zone_end_pfn;
+ }
+}
+
+/*
+ * Return the number of pages a zone spans in a node, including holes
+ * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
+ */
+static unsigned long __meminit zone_spanned_pages_in_node(int nid,
+ unsigned long zone_type,
+ unsigned long node_start_pfn,
+ unsigned long node_end_pfn,
+ unsigned long *zone_start_pfn,
+ unsigned long *zone_end_pfn,
+ unsigned long *ignored)
+{
+ unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
+ unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
+ /* When hotadd a new node from cpu_up(), the node should be empty */
+ if (!node_start_pfn && !node_end_pfn)
+ return 0;
+
+ /* Get the start and end of the zone */
+ *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
+ *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
+ adjust_zone_range_for_zone_movable(nid, zone_type,
+ node_start_pfn, node_end_pfn,
+ zone_start_pfn, zone_end_pfn);
+
+ /* Check that this node has pages within the zone's required range */
+ if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
+ return 0;
+
+ /* Move the zone boundaries inside the node if necessary */
+ *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
+ *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
+
+ /* Return the spanned pages */
+ return *zone_end_pfn - *zone_start_pfn;
+}
+
+/*
+ * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
+ * then all holes in the requested range will be accounted for.
+ */
+unsigned long __meminit __absent_pages_in_range(int nid,
+ unsigned long range_start_pfn,
+ unsigned long range_end_pfn)
+{
+ unsigned long nr_absent = range_end_pfn - range_start_pfn;
+ unsigned long start_pfn, end_pfn;
+ int i;
+
+ for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
+ start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
+ end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
+ nr_absent -= end_pfn - start_pfn;
+ }
+ return nr_absent;
+}
+
+/**
+ * absent_pages_in_range - Return number of page frames in holes within a range
+ * @start_pfn: The start PFN to start searching for holes
+ * @end_pfn: The end PFN to stop searching for holes
+ *
+ * It returns the number of pages frames in memory holes within a range.
+ */
+unsigned long __init absent_pages_in_range(unsigned long start_pfn,
+ unsigned long end_pfn)
+{
+ return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
+}
+
+/* Return the number of page frames in holes in a zone on a node */
+static unsigned long __meminit zone_absent_pages_in_node(int nid,
+ unsigned long zone_type,
+ unsigned long node_start_pfn,
+ unsigned long node_end_pfn,
+ unsigned long *ignored)
+{
+ unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
+ unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
+ unsigned long zone_start_pfn, zone_end_pfn;
+ unsigned long nr_absent;
+
+ /* When hotadd a new node from cpu_up(), the node should be empty */
+ if (!node_start_pfn && !node_end_pfn)
+ return 0;
+
+ zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
+ zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
+
+ adjust_zone_range_for_zone_movable(nid, zone_type,
+ node_start_pfn, node_end_pfn,
+ &zone_start_pfn, &zone_end_pfn);
+ nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
+
+ /*
+ * ZONE_MOVABLE handling.
+ * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
+ * and vice versa.
+ */
+ if (mirrored_kernelcore && zone_movable_pfn[nid]) {
+ unsigned long start_pfn, end_pfn;
+ struct memblock_region *r;
+
+ for_each_memblock(memory, r) {
+ start_pfn = clamp(memblock_region_memory_base_pfn(r),
+ zone_start_pfn, zone_end_pfn);
+ end_pfn = clamp(memblock_region_memory_end_pfn(r),
+ zone_start_pfn, zone_end_pfn);
+
+ if (zone_type == ZONE_MOVABLE &&
+ memblock_is_mirror(r))
+ nr_absent += end_pfn - start_pfn;
+
+ if (zone_type == ZONE_NORMAL &&
+ !memblock_is_mirror(r))
+ nr_absent += end_pfn - start_pfn;
+ }
+ }
+
+ return nr_absent;
+}
+
+#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
+static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
+ unsigned long zone_type,
+ unsigned long node_start_pfn,
+ unsigned long node_end_pfn,
+ unsigned long *zone_start_pfn,
+ unsigned long *zone_end_pfn,
+ unsigned long *zones_size)
+{
+ unsigned int zone;
+
+ *zone_start_pfn = node_start_pfn;
+ for (zone = 0; zone < zone_type; zone++)
+ *zone_start_pfn += zones_size[zone];
+
+ *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
+
+ return zones_size[zone_type];
+}
+
+static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
+ unsigned long zone_type,
+ unsigned long node_start_pfn,
+ unsigned long node_end_pfn,
+ unsigned long *zholes_size)
+{
+ if (!zholes_size)
+ return 0;
+
+ return zholes_size[zone_type];
+}
+
+#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
+
+static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
+ unsigned long node_start_pfn,
+ unsigned long node_end_pfn,
+ unsigned long *zones_size,
+ unsigned long *zholes_size)
+{
+ unsigned long realtotalpages = 0, totalpages = 0;
+ enum zone_type i;
+
+ for (i = 0; i < MAX_NR_ZONES; i++) {
+ struct zone *zone = pgdat->node_zones + i;
+ unsigned long zone_start_pfn, zone_end_pfn;
+ unsigned long size, real_size;
+
+ size = zone_spanned_pages_in_node(pgdat->node_id, i,
+ node_start_pfn,
+ node_end_pfn,
+ &zone_start_pfn,
+ &zone_end_pfn,
+ zones_size);
+ real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
+ node_start_pfn, node_end_pfn,
+ zholes_size);
+ if (size)
+ zone->zone_start_pfn = zone_start_pfn;
+ else
+ zone->zone_start_pfn = 0;
+ zone->spanned_pages = size;
+ zone->present_pages = real_size;
+
+ totalpages += size;
+ realtotalpages += real_size;
+ }
+
+ pgdat->node_spanned_pages = totalpages;
+ pgdat->node_present_pages = realtotalpages;
+ printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
+ realtotalpages);
+}
+
+#ifndef CONFIG_SPARSEMEM
+/*
+ * Calculate the size of the zone->blockflags rounded to an unsigned long
+ * Start by making sure zonesize is a multiple of pageblock_order by rounding
+ * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
+ * round what is now in bits to nearest long in bits, then return it in
+ * bytes.
+ */
+static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
+{
+ unsigned long usemapsize;
+
+ zonesize += zone_start_pfn & (pageblock_nr_pages-1);
+ usemapsize = roundup(zonesize, pageblock_nr_pages);
+ usemapsize = usemapsize >> pageblock_order;
+ usemapsize *= NR_PAGEBLOCK_BITS;
+ usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
+
+ return usemapsize / 8;
+}
+
+static void __ref setup_usemap(struct pglist_data *pgdat,
+ struct zone *zone,
+ unsigned long zone_start_pfn,
+ unsigned long zonesize)
+{
+ unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
+ zone->pageblock_flags = NULL;
+ if (usemapsize)
+ zone->pageblock_flags =
+ memblock_virt_alloc_node_nopanic(usemapsize,
+ pgdat->node_id);
+}
+#else
+static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
+ unsigned long zone_start_pfn, unsigned long zonesize) {}
+#endif /* CONFIG_SPARSEMEM */
+
+#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
+
+/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
+void __init set_pageblock_order(void)
+{
+ unsigned int order;
+
+ /* Check that pageblock_nr_pages has not already been setup */
+ if (pageblock_order)
+ return;
+
+ if (HPAGE_SHIFT > PAGE_SHIFT)
+ order = HUGETLB_PAGE_ORDER;
+ else
+ order = MAX_ORDER - 1;
+
+ /*
+ * Assume the largest contiguous order of interest is a huge page.
+ * This value may be variable depending on boot parameters on IA64 and
+ * powerpc.
+ */
+ pageblock_order = order;
+}
+#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
+
+/*
+ * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
+ * is unused as pageblock_order is set at compile-time. See
+ * include/linux/pageblock-flags.h for the values of pageblock_order based on
+ * the kernel config
+ */
+void __init set_pageblock_order(void)
+{
+}
+
+#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
+
+static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
+ unsigned long present_pages)
+{
+ unsigned long pages = spanned_pages;
+
+ /*
+ * Provide a more accurate estimation if there are holes within
+ * the zone and SPARSEMEM is in use. If there are holes within the
+ * zone, each populated memory region may cost us one or two extra
+ * memmap pages due to alignment because memmap pages for each
+ * populated regions may not be naturally aligned on page boundary.
+ * So the (present_pages >> 4) heuristic is a tradeoff for that.
+ */
+ if (spanned_pages > present_pages + (present_pages >> 4) &&
+ IS_ENABLED(CONFIG_SPARSEMEM))
+ pages = present_pages;
+
+ return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+static void pgdat_init_split_queue(struct pglist_data *pgdat)
+{
+ spin_lock_init(&pgdat->split_queue_lock);
+ INIT_LIST_HEAD(&pgdat->split_queue);
+ pgdat->split_queue_len = 0;
+}
+#else
+static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
+#endif
+
+#ifdef CONFIG_COMPACTION
+static void pgdat_init_kcompactd(struct pglist_data *pgdat)
+{
+ init_waitqueue_head(&pgdat->kcompactd_wait);
+}
+#else
+static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
+#endif
+
+static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
+{
+ pgdat_resize_init(pgdat);
+
+ pgdat_init_split_queue(pgdat);
+ pgdat_init_kcompactd(pgdat);
+
+ init_waitqueue_head(&pgdat->kswapd_wait);
+ init_waitqueue_head(&pgdat->pfmemalloc_wait);
+
+ pgdat_page_ext_init(pgdat);
+ spin_lock_init(&pgdat->lru_lock);
+ lruvec_init(node_lruvec(pgdat));
+}
+
+static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
+ unsigned long remaining_pages)
+{
+ zone->managed_pages = remaining_pages;
+ zone_set_nid(zone, nid);
+ zone->name = zone_names[idx];
+ zone->zone_pgdat = NODE_DATA(nid);
+ spin_lock_init(&zone->lock);
+ zone_seqlock_init(zone);
+ zone_pcp_init(zone);
+}
+
+/*
+ * Set up the zone data structures
+ * - init pgdat internals
+ * - init all zones belonging to this node
+ *
+ * NOTE: this function is only called during memory hotplug
+ */
+#ifdef CONFIG_MEMORY_HOTPLUG
+void __ref free_area_init_core_hotplug(int nid)
+{
+ enum zone_type z;
+ pg_data_t *pgdat = NODE_DATA(nid);
+
+ pgdat_init_internals(pgdat);
+ for (z = 0; z < MAX_NR_ZONES; z++)
+ zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
+}
+#endif
+
+/*
+ * Set up the zone data structures:
+ * - mark all pages reserved
+ * - mark all memory queues empty
+ * - clear the memory bitmaps
+ *
+ * NOTE: pgdat should get zeroed by caller.
+ * NOTE: this function is only called during early init.
+ */
+static void __init free_area_init_core(struct pglist_data *pgdat)
+{
+ enum zone_type j;
+ int nid = pgdat->node_id;
+
+ pgdat_init_internals(pgdat);
+ pgdat->per_cpu_nodestats = &boot_nodestats;
+
+ for (j = 0; j < MAX_NR_ZONES; j++) {
+ struct zone *zone = pgdat->node_zones + j;
+ unsigned long size, freesize, memmap_pages;
+ unsigned long zone_start_pfn = zone->zone_start_pfn;
+
+ size = zone->spanned_pages;
+ freesize = zone->present_pages;
+
+ /*
+ * Adjust freesize so that it accounts for how much memory
+ * is used by this zone for memmap. This affects the watermark
+ * and per-cpu initialisations
+ */
+ memmap_pages = calc_memmap_size(size, freesize);
+ if (!is_highmem_idx(j)) {
+ if (freesize >= memmap_pages) {
+ freesize -= memmap_pages;
+ if (memmap_pages)
+ printk(KERN_DEBUG
+ " %s zone: %lu pages used for memmap\n",
+ zone_names[j], memmap_pages);
+ } else
+ pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
+ zone_names[j], memmap_pages, freesize);
+ }
+
+ /* Account for reserved pages */
+ if (j == 0 && freesize > dma_reserve) {
+ freesize -= dma_reserve;
+ printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
+ zone_names[0], dma_reserve);
+ }
+
+ if (!is_highmem_idx(j))
+ nr_kernel_pages += freesize;
+ /* Charge for highmem memmap if there are enough kernel pages */
+ else if (nr_kernel_pages > memmap_pages * 2)
+ nr_kernel_pages -= memmap_pages;
+ nr_all_pages += freesize;
+
+ /*
+ * Set an approximate value for lowmem here, it will be adjusted
+ * when the bootmem allocator frees pages into the buddy system.
+ * And all highmem pages will be managed by the buddy system.
+ */
+ zone_init_internals(zone, j, nid, freesize);
+
+ if (!size)
+ continue;
+
+ set_pageblock_order();
+ setup_usemap(pgdat, zone, zone_start_pfn, size);
+ init_currently_empty_zone(zone, zone_start_pfn, size);
+ memmap_init(size, nid, j, zone_start_pfn);
+ }
+}
+
+#ifdef CONFIG_FLAT_NODE_MEM_MAP
+static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
+{
+ unsigned long __maybe_unused start = 0;
+ unsigned long __maybe_unused offset = 0;
+
+ /* Skip empty nodes */
+ if (!pgdat->node_spanned_pages)
+ return;
+
+ start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
+ offset = pgdat->node_start_pfn - start;
+ /* ia64 gets its own node_mem_map, before this, without bootmem */
+ if (!pgdat->node_mem_map) {
+ unsigned long size, end;
+ struct page *map;
+
+ /*
+ * The zone's endpoints aren't required to be MAX_ORDER
+ * aligned but the node_mem_map endpoints must be in order
+ * for the buddy allocator to function correctly.
+ */
+ end = pgdat_end_pfn(pgdat);
+ end = ALIGN(end, MAX_ORDER_NR_PAGES);
+ size = (end - start) * sizeof(struct page);
+ map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
+ pgdat->node_mem_map = map + offset;
+ }
+ pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
+ __func__, pgdat->node_id, (unsigned long)pgdat,
+ (unsigned long)pgdat->node_mem_map);
+#ifndef CONFIG_NEED_MULTIPLE_NODES
+ /*
+ * With no DISCONTIG, the global mem_map is just set as node 0's
+ */
+ if (pgdat == NODE_DATA(0)) {
+ mem_map = NODE_DATA(0)->node_mem_map;
+#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
+ if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
+ mem_map -= offset;
+#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
+ }
+#endif
+}
+#else
+static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
+#endif /* CONFIG_FLAT_NODE_MEM_MAP */
+
+#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
+static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
+{
+ /*
+ * We start only with one section of pages, more pages are added as
+ * needed until the rest of deferred pages are initialized.
+ */
+ pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
+ pgdat->node_spanned_pages);
+ pgdat->first_deferred_pfn = ULONG_MAX;
+}
+#else
+static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
+#endif
+
+void __init free_area_init_node(int nid, unsigned long *zones_size,
+ unsigned long node_start_pfn,
+ unsigned long *zholes_size)
+{
+ pg_data_t *pgdat = NODE_DATA(nid);
+ unsigned long start_pfn = 0;
+ unsigned long end_pfn = 0;
+
+ /* pg_data_t should be reset to zero when it's allocated */
+ WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
+
+ pgdat->node_id = nid;
+ pgdat->node_start_pfn = node_start_pfn;
+ pgdat->per_cpu_nodestats = NULL;
+#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
+ get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
+ pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
+ (u64)start_pfn << PAGE_SHIFT,
+ end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
+#else
+ start_pfn = node_start_pfn;
+#endif
+ calculate_node_totalpages(pgdat, start_pfn, end_pfn,
+ zones_size, zholes_size);
+
+ alloc_node_mem_map(pgdat);
+ pgdat_set_deferred_range(pgdat);
+
+ free_area_init_core(pgdat);
+}
+
+#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
+
+/*
+ * Zero all valid struct pages in range [spfn, epfn), return number of struct
+ * pages zeroed
+ */
+static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
+{
+ unsigned long pfn;
+ u64 pgcnt = 0;
+
+ for (pfn = spfn; pfn < epfn; pfn++) {
+ if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
+ pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
+ + pageblock_nr_pages - 1;
+ continue;
+ }
+ mm_zero_struct_page(pfn_to_page(pfn));
+ pgcnt++;
+ }
+
+ return pgcnt;
+}
+
+/*
+ * Only struct pages that are backed by physical memory are zeroed and
+ * initialized by going through __init_single_page(). But, there are some
+ * struct pages which are reserved in memblock allocator and their fields
+ * may be accessed (for example page_to_pfn() on some configuration accesses
+ * flags). We must explicitly zero those struct pages.
+ *
+ * This function also addresses a similar issue where struct pages are left
+ * uninitialized because the physical address range is not covered by
+ * memblock.memory or memblock.reserved. That could happen when memblock
+ * layout is manually configured via memmap=, or when the highest physical
+ * address (max_pfn) does not end on a section boundary.
+ */
+void __init zero_resv_unavail(void)
+{
+ phys_addr_t start, end;
+ u64 i, pgcnt;
+ phys_addr_t next = 0;
+
+ /*
+ * Loop through unavailable ranges not covered by memblock.memory.
+ */
+ pgcnt = 0;
+ for_each_mem_range(i, &memblock.memory, NULL,
+ NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
+ if (next < start)
+ pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
+ next = end;
+ }
+
+ /*
+ * Early sections always have a fully populated memmap for the whole
+ * section - see pfn_valid(). If the last section has holes at the
+ * end and that section is marked "online", the memmap will be
+ * considered initialized. Make sure that memmap has a well defined
+ * state.
+ */
+ pgcnt += zero_pfn_range(PFN_DOWN(next),
+ round_up(max_pfn, PAGES_PER_SECTION));
+
+ /*
+ * Struct pages that do not have backing memory. This could be because
+ * firmware is using some of this memory, or for some other reasons.
+ */
+ if (pgcnt)
+ pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
+}
+#endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
+
+#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
+
+#if MAX_NUMNODES > 1
+/*
+ * Figure out the number of possible node ids.
+ */
+void __init setup_nr_node_ids(void)
+{
+ unsigned int highest;
+
+ highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
+ nr_node_ids = highest + 1;
+}
+#endif
+
+/**
+ * node_map_pfn_alignment - determine the maximum internode alignment
+ *
+ * This function should be called after node map is populated and sorted.
+ * It calculates the maximum power of two alignment which can distinguish
+ * all the nodes.
+ *
+ * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
+ * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
+ * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
+ * shifted, 1GiB is enough and this function will indicate so.
+ *
+ * This is used to test whether pfn -> nid mapping of the chosen memory
+ * model has fine enough granularity to avoid incorrect mapping for the
+ * populated node map.
+ *
+ * Returns the determined alignment in pfn's. 0 if there is no alignment
+ * requirement (single node).
+ */
+unsigned long __init node_map_pfn_alignment(void)
+{
+ unsigned long accl_mask = 0, last_end = 0;
+ unsigned long start, end, mask;
+ int last_nid = -1;
+ int i, nid;
+
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
+ if (!start || last_nid < 0 || last_nid == nid) {
+ last_nid = nid;
+ last_end = end;
+ continue;
+ }
+
+ /*
+ * Start with a mask granular enough to pin-point to the
+ * start pfn and tick off bits one-by-one until it becomes
+ * too coarse to separate the current node from the last.
+ */
+ mask = ~((1 << __ffs(start)) - 1);
+ while (mask && last_end <= (start & (mask << 1)))
+ mask <<= 1;
+
+ /* accumulate all internode masks */
+ accl_mask |= mask;
+ }
+
+ /* convert mask to number of pages */
+ return ~accl_mask + 1;
+}
+
+/* Find the lowest pfn for a node */
+static unsigned long __init find_min_pfn_for_node(int nid)
+{
+ unsigned long min_pfn = ULONG_MAX;
+ unsigned long start_pfn;
+ int i;
+
+ for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
+ min_pfn = min(min_pfn, start_pfn);
+
+ if (min_pfn == ULONG_MAX) {
+ pr_warn("Could not find start_pfn for node %d\n", nid);
+ return 0;
+ }
+
+ return min_pfn;
+}
+
+/**
+ * find_min_pfn_with_active_regions - Find the minimum PFN registered
+ *
+ * It returns the minimum PFN based on information provided via
+ * memblock_set_node().
+ */
+unsigned long __init find_min_pfn_with_active_regions(void)
+{
+ return find_min_pfn_for_node(MAX_NUMNODES);
+}
+
+/*
+ * early_calculate_totalpages()
+ * Sum pages in active regions for movable zone.
+ * Populate N_MEMORY for calculating usable_nodes.
+ */
+static unsigned long __init early_calculate_totalpages(void)
+{
+ unsigned long totalpages = 0;
+ unsigned long start_pfn, end_pfn;
+ int i, nid;
+
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
+ unsigned long pages = end_pfn - start_pfn;
+
+ totalpages += pages;
+ if (pages)
+ node_set_state(nid, N_MEMORY);
+ }
+ return totalpages;
+}
+
+/*
+ * Find the PFN the Movable zone begins in each node. Kernel memory
+ * is spread evenly between nodes as long as the nodes have enough
+ * memory. When they don't, some nodes will have more kernelcore than
+ * others
+ */
+static void __init find_zone_movable_pfns_for_nodes(void)
+{
+ int i, nid;
+ unsigned long usable_startpfn;
+ unsigned long kernelcore_node, kernelcore_remaining;
+ /* save the state before borrow the nodemask */
+ nodemask_t saved_node_state = node_states[N_MEMORY];
+ unsigned long totalpages = early_calculate_totalpages();
+ int usable_nodes = nodes_weight(node_states[N_MEMORY]);
+ struct memblock_region *r;
+
+ /* Need to find movable_zone earlier when movable_node is specified. */
+ find_usable_zone_for_movable();
+
+ /*
+ * If movable_node is specified, ignore kernelcore and movablecore
+ * options.
+ */
+ if (movable_node_is_enabled()) {
+ for_each_memblock(memory, r) {
+ if (!memblock_is_hotpluggable(r))
+ continue;
+
+ nid = r->nid;
+
+ usable_startpfn = PFN_DOWN(r->base);
+ zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
+ min(usable_startpfn, zone_movable_pfn[nid]) :
+ usable_startpfn;
+ }
+
+ goto out2;
+ }
+
+ /*
+ * If kernelcore=mirror is specified, ignore movablecore option
+ */
+ if (mirrored_kernelcore) {
+ bool mem_below_4gb_not_mirrored = false;
+
+ for_each_memblock(memory, r) {
+ if (memblock_is_mirror(r))
+ continue;
+
+ nid = r->nid;
+
+ usable_startpfn = memblock_region_memory_base_pfn(r);
+
+ if (usable_startpfn < 0x100000) {
+ mem_below_4gb_not_mirrored = true;
+ continue;
+ }
+
+ zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
+ min(usable_startpfn, zone_movable_pfn[nid]) :
+ usable_startpfn;
+ }
+
+ if (mem_below_4gb_not_mirrored)
+ pr_warn("This configuration results in unmirrored kernel memory.");
+
+ goto out2;
+ }
+
+ /*
+ * If kernelcore=nn% or movablecore=nn% was specified, calculate the
+ * amount of necessary memory.
+ */
+ if (required_kernelcore_percent)
+ required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
+ 10000UL;
+ if (required_movablecore_percent)
+ required_movablecore = (totalpages * 100 * required_movablecore_percent) /
+ 10000UL;
+
+ /*
+ * If movablecore= was specified, calculate what size of
+ * kernelcore that corresponds so that memory usable for
+ * any allocation type is evenly spread. If both kernelcore
+ * and movablecore are specified, then the value of kernelcore
+ * will be used for required_kernelcore if it's greater than
+ * what movablecore would have allowed.
+ */
+ if (required_movablecore) {
+ unsigned long corepages;
+
+ /*
+ * Round-up so that ZONE_MOVABLE is at least as large as what
+ * was requested by the user
+ */
+ required_movablecore =
+ roundup(required_movablecore, MAX_ORDER_NR_PAGES);
+ required_movablecore = min(totalpages, required_movablecore);
+ corepages = totalpages - required_movablecore;
+
+ required_kernelcore = max(required_kernelcore, corepages);
+ }
+
+ /*
+ * If kernelcore was not specified or kernelcore size is larger
+ * than totalpages, there is no ZONE_MOVABLE.
+ */
+ if (!required_kernelcore || required_kernelcore >= totalpages)
+ goto out;
+
+ /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
+ usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
+
+restart:
+ /* Spread kernelcore memory as evenly as possible throughout nodes */
+ kernelcore_node = required_kernelcore / usable_nodes;
+ for_each_node_state(nid, N_MEMORY) {
+ unsigned long start_pfn, end_pfn;
+
+ /*
+ * Recalculate kernelcore_node if the division per node
+ * now exceeds what is necessary to satisfy the requested
+ * amount of memory for the kernel
+ */
+ if (required_kernelcore < kernelcore_node)
+ kernelcore_node = required_kernelcore / usable_nodes;
+
+ /*
+ * As the map is walked, we track how much memory is usable
+ * by the kernel using kernelcore_remaining. When it is
+ * 0, the rest of the node is usable by ZONE_MOVABLE
+ */
+ kernelcore_remaining = kernelcore_node;
+
+ /* Go through each range of PFNs within this node */
+ for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
+ unsigned long size_pages;
+
+ start_pfn = max(start_pfn, zone_movable_pfn[nid]);
+ if (start_pfn >= end_pfn)
+ continue;
+
+ /* Account for what is only usable for kernelcore */
+ if (start_pfn < usable_startpfn) {
+ unsigned long kernel_pages;
+ kernel_pages = min(end_pfn, usable_startpfn)
+ - start_pfn;
+
+ kernelcore_remaining -= min(kernel_pages,
+ kernelcore_remaining);
+ required_kernelcore -= min(kernel_pages,
+ required_kernelcore);
+
+ /* Continue if range is now fully accounted */
+ if (end_pfn <= usable_startpfn) {
+
+ /*
+ * Push zone_movable_pfn to the end so
+ * that if we have to rebalance
+ * kernelcore across nodes, we will
+ * not double account here
+ */
+ zone_movable_pfn[nid] = end_pfn;
+ continue;
+ }
+ start_pfn = usable_startpfn;
+ }
+
+ /*
+ * The usable PFN range for ZONE_MOVABLE is from
+ * start_pfn->end_pfn. Calculate size_pages as the
+ * number of pages used as kernelcore
+ */
+ size_pages = end_pfn - start_pfn;
+ if (size_pages > kernelcore_remaining)
+ size_pages = kernelcore_remaining;
+ zone_movable_pfn[nid] = start_pfn + size_pages;
+
+ /*
+ * Some kernelcore has been met, update counts and
+ * break if the kernelcore for this node has been
+ * satisfied
+ */
+ required_kernelcore -= min(required_kernelcore,
+ size_pages);
+ kernelcore_remaining -= size_pages;
+ if (!kernelcore_remaining)
+ break;
+ }
+ }
+
+ /*
+ * If there is still required_kernelcore, we do another pass with one
+ * less node in the count. This will push zone_movable_pfn[nid] further
+ * along on the nodes that still have memory until kernelcore is
+ * satisfied
+ */
+ usable_nodes--;
+ if (usable_nodes && required_kernelcore > usable_nodes)
+ goto restart;
+
+out2:
+ /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
+ for (nid = 0; nid < MAX_NUMNODES; nid++) {
+ unsigned long start_pfn, end_pfn;
+
+ zone_movable_pfn[nid] =
+ roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
+
+ get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
+ if (zone_movable_pfn[nid] >= end_pfn)
+ zone_movable_pfn[nid] = 0;
+ }
+
+out:
+ /* restore the node_state */
+ node_states[N_MEMORY] = saved_node_state;
+}
+
+/* Any regular or high memory on that node ? */
+static void check_for_memory(pg_data_t *pgdat, int nid)
+{
+ enum zone_type zone_type;
+
+ if (N_MEMORY == N_NORMAL_MEMORY)
+ return;
+
+ for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
+ struct zone *zone = &pgdat->node_zones[zone_type];
+ if (populated_zone(zone)) {
+ node_set_state(nid, N_HIGH_MEMORY);
+ if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
+ zone_type <= ZONE_NORMAL)
+ node_set_state(nid, N_NORMAL_MEMORY);
+ break;
+ }
+ }
+}
+
+/**
+ * free_area_init_nodes - Initialise all pg_data_t and zone data
+ * @max_zone_pfn: an array of max PFNs for each zone
+ *
+ * This will call free_area_init_node() for each active node in the system.
+ * Using the page ranges provided by memblock_set_node(), the size of each
+ * zone in each node and their holes is calculated. If the maximum PFN
+ * between two adjacent zones match, it is assumed that the zone is empty.
+ * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
+ * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
+ * starts where the previous one ended. For example, ZONE_DMA32 starts
+ * at arch_max_dma_pfn.
+ */
+void __init free_area_init_nodes(unsigned long *max_zone_pfn)
+{
+ unsigned long start_pfn, end_pfn;
+ int i, nid;
+
+ /* Record where the zone boundaries are */
+ memset(arch_zone_lowest_possible_pfn, 0,
+ sizeof(arch_zone_lowest_possible_pfn));
+ memset(arch_zone_highest_possible_pfn, 0,
+ sizeof(arch_zone_highest_possible_pfn));
+
+ start_pfn = find_min_pfn_with_active_regions();
+
+ for (i = 0; i < MAX_NR_ZONES; i++) {
+ if (i == ZONE_MOVABLE)
+ continue;
+
+ end_pfn = max(max_zone_pfn[i], start_pfn);
+ arch_zone_lowest_possible_pfn[i] = start_pfn;
+ arch_zone_highest_possible_pfn[i] = end_pfn;
+
+ start_pfn = end_pfn;
+ }
+
+ /* Find the PFNs that ZONE_MOVABLE begins at in each node */
+ memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
+ find_zone_movable_pfns_for_nodes();
+
+ /* Print out the zone ranges */
+ pr_info("Zone ranges:\n");
+ for (i = 0; i < MAX_NR_ZONES; i++) {
+ if (i == ZONE_MOVABLE)
+ continue;
+ pr_info(" %-8s ", zone_names[i]);
+ if (arch_zone_lowest_possible_pfn[i] ==
+ arch_zone_highest_possible_pfn[i])
+ pr_cont("empty\n");
+ else
+ pr_cont("[mem %#018Lx-%#018Lx]\n",
+ (u64)arch_zone_lowest_possible_pfn[i]
+ << PAGE_SHIFT,
+ ((u64)arch_zone_highest_possible_pfn[i]
+ << PAGE_SHIFT) - 1);
+ }
+
+ /* Print out the PFNs ZONE_MOVABLE begins at in each node */
+ pr_info("Movable zone start for each node\n");
+ for (i = 0; i < MAX_NUMNODES; i++) {
+ if (zone_movable_pfn[i])
+ pr_info(" Node %d: %#018Lx\n", i,
+ (u64)zone_movable_pfn[i] << PAGE_SHIFT);
+ }
+
+ /* Print out the early node map */
+ pr_info("Early memory node ranges\n");
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
+ pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
+ (u64)start_pfn << PAGE_SHIFT,
+ ((u64)end_pfn << PAGE_SHIFT) - 1);
+
+ /* Initialise every node */
+ mminit_verify_pageflags_layout();
+ setup_nr_node_ids();
+ zero_resv_unavail();
+ for_each_online_node(nid) {
+ pg_data_t *pgdat = NODE_DATA(nid);
+ free_area_init_node(nid, NULL,
+ find_min_pfn_for_node(nid), NULL);
+
+ /* Any memory on that node */
+ if (pgdat->node_present_pages)
+ node_set_state(nid, N_MEMORY);
+ check_for_memory(pgdat, nid);
+ }
+}
+
+static int __init cmdline_parse_core(char *p, unsigned long *core,
+ unsigned long *percent)
+{
+ unsigned long long coremem;
+ char *endptr;
+
+ if (!p)
+ return -EINVAL;
+
+ /* Value may be a percentage of total memory, otherwise bytes */
+ coremem = simple_strtoull(p, &endptr, 0);
+ if (*endptr == '%') {
+ /* Paranoid check for percent values greater than 100 */
+ WARN_ON(coremem > 100);
+
+ *percent = coremem;
+ } else {
+ coremem = memparse(p, &p);
+ /* Paranoid check that UL is enough for the coremem value */
+ WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
+
+ *core = coremem >> PAGE_SHIFT;
+ *percent = 0UL;
+ }
+ return 0;
+}
+
+/*
+ * kernelcore=size sets the amount of memory for use for allocations that
+ * cannot be reclaimed or migrated.
+ */
+static int __init cmdline_parse_kernelcore(char *p)
+{
+ /* parse kernelcore=mirror */
+ if (parse_option_str(p, "mirror")) {
+ mirrored_kernelcore = true;
+ return 0;
+ }
+
+ return cmdline_parse_core(p, &required_kernelcore,
+ &required_kernelcore_percent);
+}
+
+/*
+ * movablecore=size sets the amount of memory for use for allocations that
+ * can be reclaimed or migrated.
+ */
+static int __init cmdline_parse_movablecore(char *p)
+{
+ return cmdline_parse_core(p, &required_movablecore,
+ &required_movablecore_percent);
+}
+
+early_param("kernelcore", cmdline_parse_kernelcore);
+early_param("movablecore", cmdline_parse_movablecore);
+
+#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
+
+void adjust_managed_page_count(struct page *page, long count)
+{
+ spin_lock(&managed_page_count_lock);
+ page_zone(page)->managed_pages += count;
+ totalram_pages += count;
+#ifdef CONFIG_HIGHMEM
+ if (PageHighMem(page))
+ totalhigh_pages += count;
+#endif
+ spin_unlock(&managed_page_count_lock);
+}
+EXPORT_SYMBOL(adjust_managed_page_count);
+
+unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
+{
+ void *pos;
+ unsigned long pages = 0;
+
+ start = (void *)PAGE_ALIGN((unsigned long)start);
+ end = (void *)((unsigned long)end & PAGE_MASK);
+ for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
+ struct page *page = virt_to_page(pos);
+ void *direct_map_addr;
+
+ /*
+ * 'direct_map_addr' might be different from 'pos'
+ * because some architectures' virt_to_page()
+ * work with aliases. Getting the direct map
+ * address ensures that we get a _writeable_
+ * alias for the memset().
+ */
+ direct_map_addr = page_address(page);
+ if ((unsigned int)poison <= 0xFF)
+ memset(direct_map_addr, poison, PAGE_SIZE);
+
+ free_reserved_page(page);
+ }
+
+ if (pages && s)
+ pr_info("Freeing %s memory: %ldK\n",
+ s, pages << (PAGE_SHIFT - 10));
+
+ return pages;
+}
+EXPORT_SYMBOL(free_reserved_area);
+
+#ifdef CONFIG_HIGHMEM
+void free_highmem_page(struct page *page)
+{
+ __free_reserved_page(page);
+ totalram_pages++;
+ page_zone(page)->managed_pages++;
+ totalhigh_pages++;
+}
+#endif
+
+
+void __init mem_init_print_info(const char *str)
+{
+ unsigned long physpages, codesize, datasize, rosize, bss_size;
+ unsigned long init_code_size, init_data_size;
+
+ physpages = get_num_physpages();
+ codesize = _etext - _stext;
+ datasize = _edata - _sdata;
+ rosize = __end_rodata - __start_rodata;
+ bss_size = __bss_stop - __bss_start;
+ init_data_size = __init_end - __init_begin;
+ init_code_size = _einittext - _sinittext;
+
+ /*
+ * Detect special cases and adjust section sizes accordingly:
+ * 1) .init.* may be embedded into .data sections
+ * 2) .init.text.* may be out of [__init_begin, __init_end],
+ * please refer to arch/tile/kernel/vmlinux.lds.S.
+ * 3) .rodata.* may be embedded into .text or .data sections.
+ */
+#define adj_init_size(start, end, size, pos, adj) \
+ do { \
+ if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
+ size -= adj; \
+ } while (0)
+
+ adj_init_size(__init_begin, __init_end, init_data_size,
+ _sinittext, init_code_size);
+ adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
+ adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
+ adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
+ adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
+
+#undef adj_init_size
+
+ pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
+#ifdef CONFIG_HIGHMEM
+ ", %luK highmem"
+#endif
+ "%s%s)\n",
+ nr_free_pages() << (PAGE_SHIFT - 10),
+ physpages << (PAGE_SHIFT - 10),
+ codesize >> 10, datasize >> 10, rosize >> 10,
+ (init_data_size + init_code_size) >> 10, bss_size >> 10,
+ (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
+ totalcma_pages << (PAGE_SHIFT - 10),
+#ifdef CONFIG_HIGHMEM
+ totalhigh_pages << (PAGE_SHIFT - 10),
+#endif
+ str ? ", " : "", str ? str : "");
+}
+
+/**
+ * set_dma_reserve - set the specified number of pages reserved in the first zone
+ * @new_dma_reserve: The number of pages to mark reserved
+ *
+ * The per-cpu batchsize and zone watermarks are determined by managed_pages.
+ * In the DMA zone, a significant percentage may be consumed by kernel image
+ * and other unfreeable allocations which can skew the watermarks badly. This
+ * function may optionally be used to account for unfreeable pages in the
+ * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
+ * smaller per-cpu batchsize.
+ */
+void __init set_dma_reserve(unsigned long new_dma_reserve)
+{
+ dma_reserve = new_dma_reserve;
+}
+
+void __init free_area_init(unsigned long *zones_size)
+{
+ zero_resv_unavail();
+ free_area_init_node(0, zones_size,
+ __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
+}
+
+static int page_alloc_cpu_dead(unsigned int cpu)
+{
+
+ lru_add_drain_cpu(cpu);
+ drain_pages(cpu);
+
+ /*
+ * Spill the event counters of the dead processor
+ * into the current processors event counters.
+ * This artificially elevates the count of the current
+ * processor.
+ */
+ vm_events_fold_cpu(cpu);
+
+ /*
+ * Zero the differential counters of the dead processor
+ * so that the vm statistics are consistent.
+ *
+ * This is only okay since the processor is dead and cannot
+ * race with what we are doing.
+ */
+ cpu_vm_stats_fold(cpu);
+ return 0;
+}
+
+void __init page_alloc_init(void)
+{
+ int ret;
+
+ ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
+ "mm/page_alloc:dead", NULL,
+ page_alloc_cpu_dead);
+ WARN_ON(ret < 0);
+}
+
+/*
+ * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
+ * or min_free_kbytes changes.
+ */
+static void calculate_totalreserve_pages(void)
+{
+ struct pglist_data *pgdat;
+ unsigned long reserve_pages = 0;
+ enum zone_type i, j;
+
+ for_each_online_pgdat(pgdat) {
+
+ pgdat->totalreserve_pages = 0;
+
+ for (i = 0; i < MAX_NR_ZONES; i++) {
+ struct zone *zone = pgdat->node_zones + i;
+ long max = 0;
+
+ /* Find valid and maximum lowmem_reserve in the zone */
+ for (j = i; j < MAX_NR_ZONES; j++) {
+ if (zone->lowmem_reserve[j] > max)
+ max = zone->lowmem_reserve[j];
+ }
+
+ /* we treat the high watermark as reserved pages. */
+ max += high_wmark_pages(zone);
+
+ if (max > zone->managed_pages)
+ max = zone->managed_pages;
+
+ pgdat->totalreserve_pages += max;
+
+ reserve_pages += max;
+ }
+ }
+ totalreserve_pages = reserve_pages;
+}
+
+/*
+ * setup_per_zone_lowmem_reserve - called whenever
+ * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
+ * has a correct pages reserved value, so an adequate number of
+ * pages are left in the zone after a successful __alloc_pages().
+ */
+static void setup_per_zone_lowmem_reserve(void)
+{
+ struct pglist_data *pgdat;
+ enum zone_type j, idx;
+
+ for_each_online_pgdat(pgdat) {
+ for (j = 0; j < MAX_NR_ZONES; j++) {
+ struct zone *zone = pgdat->node_zones + j;
+ unsigned long managed_pages = zone->managed_pages;
+
+ zone->lowmem_reserve[j] = 0;
+
+ idx = j;
+ while (idx) {
+ struct zone *lower_zone;
+
+ idx--;
+ lower_zone = pgdat->node_zones + idx;
+
+ if (sysctl_lowmem_reserve_ratio[idx] < 1) {
+ sysctl_lowmem_reserve_ratio[idx] = 0;
+ lower_zone->lowmem_reserve[j] = 0;
+ } else {
+ lower_zone->lowmem_reserve[j] =
+ managed_pages / sysctl_lowmem_reserve_ratio[idx];
+ }
+ managed_pages += lower_zone->managed_pages;
+ }
+ }
+ }
+
+ /* update totalreserve_pages */
+ calculate_totalreserve_pages();
+}
+
+static void __setup_per_zone_wmarks(void)
+{
+ unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
+ unsigned long lowmem_pages = 0;
+ struct zone *zone;
+ unsigned long flags;
+
+ /* Calculate total number of !ZONE_HIGHMEM pages */
+ for_each_zone(zone) {
+ if (!is_highmem(zone))
+ lowmem_pages += zone->managed_pages;
+ }
+
+ for_each_zone(zone) {
+ u64 tmp;
+
+ spin_lock_irqsave(&zone->lock, flags);
+ tmp = (u64)pages_min * zone->managed_pages;
+ do_div(tmp, lowmem_pages);
+ if (is_highmem(zone)) {
+ /*
+ * __GFP_HIGH and PF_MEMALLOC allocations usually don't
+ * need highmem pages, so cap pages_min to a small
+ * value here.
+ *
+ * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
+ * deltas control asynch page reclaim, and so should
+ * not be capped for highmem.
+ */
+ unsigned long min_pages;
+
+ min_pages = zone->managed_pages / 1024;
+ min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
+ zone->watermark[WMARK_MIN] = min_pages;
+ } else {
+ /*
+ * If it's a lowmem zone, reserve a number of pages
+ * proportionate to the zone's size.
+ */
+ zone->watermark[WMARK_MIN] = tmp;
+ }
+
+ /*
+ * Set the kswapd watermarks distance according to the
+ * scale factor in proportion to available memory, but
+ * ensure a minimum size on small systems.
+ */
+ tmp = max_t(u64, tmp >> 2,
+ mult_frac(zone->managed_pages,
+ watermark_scale_factor, 10000));
+
+ zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
+ zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
+
+ spin_unlock_irqrestore(&zone->lock, flags);
+ }
+
+ /* update totalreserve_pages */
+ calculate_totalreserve_pages();
+}
+
+/**
+ * setup_per_zone_wmarks - called when min_free_kbytes changes
+ * or when memory is hot-{added|removed}
+ *
+ * Ensures that the watermark[min,low,high] values for each zone are set
+ * correctly with respect to min_free_kbytes.
+ */
+void setup_per_zone_wmarks(void)
+{
+ static DEFINE_SPINLOCK(lock);
+
+ spin_lock(&lock);
+ __setup_per_zone_wmarks();
+ spin_unlock(&lock);
+}
+
+/*
+ * Initialise min_free_kbytes.
+ *
+ * For small machines we want it small (128k min). For large machines
+ * we want it large (64MB max). But it is not linear, because network
+ * bandwidth does not increase linearly with machine size. We use
+ *
+ * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
+ * min_free_kbytes = sqrt(lowmem_kbytes * 16)
+ *
+ * which yields
+ *
+ * 16MB: 512k
+ * 32MB: 724k
+ * 64MB: 1024k
+ * 128MB: 1448k
+ * 256MB: 2048k
+ * 512MB: 2896k
+ * 1024MB: 4096k
+ * 2048MB: 5792k
+ * 4096MB: 8192k
+ * 8192MB: 11584k
+ * 16384MB: 16384k
+ */
+int __meminit init_per_zone_wmark_min(void)
+{
+ unsigned long lowmem_kbytes;
+ int new_min_free_kbytes;
+
+ lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
+ new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
+
+ if (new_min_free_kbytes > user_min_free_kbytes) {
+ min_free_kbytes = new_min_free_kbytes;
+ if (min_free_kbytes < 128)
+ min_free_kbytes = 128;
+ if (min_free_kbytes > 65536)
+ min_free_kbytes = 65536;
+ } else {
+ pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
+ new_min_free_kbytes, user_min_free_kbytes);
+ }
+ setup_per_zone_wmarks();
+ refresh_zone_stat_thresholds();
+ setup_per_zone_lowmem_reserve();
+
+#ifdef CONFIG_NUMA
+ setup_min_unmapped_ratio();
+ setup_min_slab_ratio();
+#endif
+
+ khugepaged_min_free_kbytes_update();
+
+ return 0;
+}
+postcore_initcall(init_per_zone_wmark_min)
+
+/*
+ * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
+ * that we can call two helper functions whenever min_free_kbytes
+ * changes.
+ */
+int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *length, loff_t *ppos)
+{
+ int rc;
+
+ rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
+ if (rc)
+ return rc;
+
+ if (write) {
+ user_min_free_kbytes = min_free_kbytes;
+ setup_per_zone_wmarks();
+ }
+ return 0;
+}
+
+int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *length, loff_t *ppos)
+{
+ int rc;
+
+ rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
+ if (rc)
+ return rc;
+
+ if (write)
+ setup_per_zone_wmarks();
+
+ return 0;
+}
+
+#ifdef CONFIG_NUMA
+static void setup_min_unmapped_ratio(void)
+{
+ pg_data_t *pgdat;
+ struct zone *zone;
+
+ for_each_online_pgdat(pgdat)
+ pgdat->min_unmapped_pages = 0;
+
+ for_each_zone(zone)
+ zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
+ sysctl_min_unmapped_ratio) / 100;
+}
+
+
+int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *length, loff_t *ppos)
+{
+ int rc;
+
+ rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
+ if (rc)
+ return rc;
+
+ setup_min_unmapped_ratio();
+
+ return 0;
+}
+
+static void setup_min_slab_ratio(void)
+{
+ pg_data_t *pgdat;
+ struct zone *zone;
+
+ for_each_online_pgdat(pgdat)
+ pgdat->min_slab_pages = 0;
+
+ for_each_zone(zone)
+ zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
+ sysctl_min_slab_ratio) / 100;
+}
+
+int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *length, loff_t *ppos)
+{
+ int rc;
+
+ rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
+ if (rc)
+ return rc;
+
+ setup_min_slab_ratio();
+
+ return 0;
+}
+#endif
+
+/*
+ * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
+ * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
+ * whenever sysctl_lowmem_reserve_ratio changes.
+ *
+ * The reserve ratio obviously has absolutely no relation with the
+ * minimum watermarks. The lowmem reserve ratio can only make sense
+ * if in function of the boot time zone sizes.
+ */
+int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *length, loff_t *ppos)
+{
+ proc_dointvec_minmax(table, write, buffer, length, ppos);
+ setup_per_zone_lowmem_reserve();
+ return 0;
+}
+
+/*
+ * percpu_pagelist_fraction - changes the pcp->high for each zone on each
+ * cpu. It is the fraction of total pages in each zone that a hot per cpu
+ * pagelist can have before it gets flushed back to buddy allocator.
+ */
+int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *length, loff_t *ppos)
+{
+ struct zone *zone;
+ int old_percpu_pagelist_fraction;
+ int ret;
+
+ mutex_lock(&pcp_batch_high_lock);
+ old_percpu_pagelist_fraction = percpu_pagelist_fraction;
+
+ ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
+ if (!write || ret < 0)
+ goto out;
+
+ /* Sanity checking to avoid pcp imbalance */
+ if (percpu_pagelist_fraction &&
+ percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
+ percpu_pagelist_fraction = old_percpu_pagelist_fraction;
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /* No change? */
+ if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
+ goto out;
+
+ for_each_populated_zone(zone) {
+ unsigned int cpu;
+
+ for_each_possible_cpu(cpu)
+ pageset_set_high_and_batch(zone,
+ per_cpu_ptr(zone->pageset, cpu));
+ }
+out:
+ mutex_unlock(&pcp_batch_high_lock);
+ return ret;
+}
+
+#ifdef CONFIG_NUMA
+int hashdist = HASHDIST_DEFAULT;
+
+static int __init set_hashdist(char *str)
+{
+ if (!str)
+ return 0;
+ hashdist = simple_strtoul(str, &str, 0);
+ return 1;
+}
+__setup("hashdist=", set_hashdist);
+#endif
+
+#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
+/*
+ * Returns the number of pages that arch has reserved but
+ * is not known to alloc_large_system_hash().
+ */
+static unsigned long __init arch_reserved_kernel_pages(void)
+{
+ return 0;
+}
+#endif
+
+/*
+ * Adaptive scale is meant to reduce sizes of hash tables on large memory
+ * machines. As memory size is increased the scale is also increased but at
+ * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
+ * quadruples the scale is increased by one, which means the size of hash table
+ * only doubles, instead of quadrupling as well.
+ * Because 32-bit systems cannot have large physical memory, where this scaling
+ * makes sense, it is disabled on such platforms.
+ */
+#if __BITS_PER_LONG > 32
+#define ADAPT_SCALE_BASE (64ul << 30)
+#define ADAPT_SCALE_SHIFT 2
+#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
+#endif
+
+/*
+ * allocate a large system hash table from bootmem
+ * - it is assumed that the hash table must contain an exact power-of-2
+ * quantity of entries
+ * - limit is the number of hash buckets, not the total allocation size
+ */
+void *__init alloc_large_system_hash(const char *tablename,
+ unsigned long bucketsize,
+ unsigned long numentries,
+ int scale,
+ int flags,
+ unsigned int *_hash_shift,
+ unsigned int *_hash_mask,
+ unsigned long low_limit,
+ unsigned long high_limit)
+{
+ unsigned long long max = high_limit;
+ unsigned long log2qty, size;
+ void *table = NULL;
+ gfp_t gfp_flags;
+
+ /* allow the kernel cmdline to have a say */
+ if (!numentries) {
+ /* round applicable memory size up to nearest megabyte */
+ numentries = nr_kernel_pages;
+ numentries -= arch_reserved_kernel_pages();
+
+ /* It isn't necessary when PAGE_SIZE >= 1MB */
+ if (PAGE_SHIFT < 20)
+ numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
+
+#if __BITS_PER_LONG > 32
+ if (!high_limit) {
+ unsigned long adapt;
+
+ for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
+ adapt <<= ADAPT_SCALE_SHIFT)
+ scale++;
+ }
+#endif
+
+ /* limit to 1 bucket per 2^scale bytes of low memory */
+ if (scale > PAGE_SHIFT)
+ numentries >>= (scale - PAGE_SHIFT);
+ else
+ numentries <<= (PAGE_SHIFT - scale);
+
+ /* Make sure we've got at least a 0-order allocation.. */
+ if (unlikely(flags & HASH_SMALL)) {
+ /* Makes no sense without HASH_EARLY */
+ WARN_ON(!(flags & HASH_EARLY));
+ if (!(numentries >> *_hash_shift)) {
+ numentries = 1UL << *_hash_shift;
+ BUG_ON(!numentries);
+ }
+ } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
+ numentries = PAGE_SIZE / bucketsize;
+ }
+ numentries = roundup_pow_of_two(numentries);
+
+ /* limit allocation size to 1/16 total memory by default */
+ if (max == 0) {
+ max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
+ do_div(max, bucketsize);
+ }
+ max = min(max, 0x80000000ULL);
+
+ if (numentries < low_limit)
+ numentries = low_limit;
+ if (numentries > max)
+ numentries = max;
+
+ log2qty = ilog2(numentries);
+
+ gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
+ do {
+ size = bucketsize << log2qty;
+ if (flags & HASH_EARLY) {
+ if (flags & HASH_ZERO)
+ table = memblock_virt_alloc_nopanic(size, 0);
+ else
+ table = memblock_virt_alloc_raw(size, 0);
+ } else if (hashdist) {
+ table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
+ } else {
+ /*
+ * If bucketsize is not a power-of-two, we may free
+ * some pages at the end of hash table which
+ * alloc_pages_exact() automatically does
+ */
+ if (get_order(size) < MAX_ORDER) {
+ table = alloc_pages_exact(size, gfp_flags);
+ kmemleak_alloc(table, size, 1, gfp_flags);
+ }
+ }
+ } while (!table && size > PAGE_SIZE && --log2qty);
+
+ if (!table)
+ panic("Failed to allocate %s hash table\n", tablename);
+
+ pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
+ tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
+
+ if (_hash_shift)
+ *_hash_shift = log2qty;
+ if (_hash_mask)
+ *_hash_mask = (1 << log2qty) - 1;
+
+ return table;
+}
+
+/*
+ * This function checks whether pageblock includes unmovable pages or not.
+ * If @count is not zero, it is okay to include less @count unmovable pages
+ *
+ * PageLRU check without isolation or lru_lock could race so that
+ * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
+ * check without lock_page also may miss some movable non-lru pages at
+ * race condition. So you can't expect this function should be exact.
+ */
+bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
+ int migratetype,
+ bool skip_hwpoisoned_pages)
+{
+ unsigned long pfn, iter, found;
+
+ /*
+ * TODO we could make this much more efficient by not checking every
+ * page in the range if we know all of them are in MOVABLE_ZONE and
+ * that the movable zone guarantees that pages are migratable but
+ * the later is not the case right now unfortunatelly. E.g. movablecore
+ * can still lead to having bootmem allocations in zone_movable.
+ */
+
+ /*
+ * CMA allocations (alloc_contig_range) really need to mark isolate
+ * CMA pageblocks even when they are not movable in fact so consider
+ * them movable here.
+ */
+ if (is_migrate_cma(migratetype) &&
+ is_migrate_cma(get_pageblock_migratetype(page)))
+ return false;
+
+ pfn = page_to_pfn(page);
+ for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
+ unsigned long check = pfn + iter;
+
+ if (!pfn_valid_within(check))
+ continue;
+
+ page = pfn_to_page(check);
+
+ if (PageReserved(page))
+ goto unmovable;
+
+ /*
+ * If the zone is movable and we have ruled out all reserved
+ * pages then it should be reasonably safe to assume the rest
+ * is movable.
+ */
+ if (zone_idx(zone) == ZONE_MOVABLE)
+ continue;
+
+ /*
+ * Hugepages are not in LRU lists, but they're movable.
+ * We need not scan over tail pages bacause we don't
+ * handle each tail page individually in migration.
+ */
+ if (PageHuge(page)) {
+ struct page *head = compound_head(page);
+ unsigned int skip_pages;
+
+ if (!hugepage_migration_supported(page_hstate(head)))
+ goto unmovable;
+
+ skip_pages = (1 << compound_order(head)) - (page - head);
+ iter += skip_pages - 1;
+ continue;
+ }
+
+ /*
+ * We can't use page_count without pin a page
+ * because another CPU can free compound page.
+ * This check already skips compound tails of THP
+ * because their page->_refcount is zero at all time.
+ */
+ if (!page_ref_count(page)) {
+ if (PageBuddy(page))
+ iter += (1 << page_order(page)) - 1;
+ continue;
+ }
+
+ /*
+ * The HWPoisoned page may be not in buddy system, and
+ * page_count() is not 0.
+ */
+ if (skip_hwpoisoned_pages && PageHWPoison(page))
+ continue;
+
+ if (__PageMovable(page))
+ continue;
+
+ if (!PageLRU(page))
+ found++;
+ /*
+ * If there are RECLAIMABLE pages, we need to check
+ * it. But now, memory offline itself doesn't call
+ * shrink_node_slabs() and it still to be fixed.
+ */
+ /*
+ * If the page is not RAM, page_count()should be 0.
+ * we don't need more check. This is an _used_ not-movable page.
+ *
+ * The problematic thing here is PG_reserved pages. PG_reserved
+ * is set to both of a memory hole page and a _used_ kernel
+ * page at boot.
+ */
+ if (found > count)
+ goto unmovable;
+ }
+ return false;
+unmovable:
+ WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
+ return true;
+}
+
+#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
+
+static unsigned long pfn_max_align_down(unsigned long pfn)
+{
+ return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
+ pageblock_nr_pages) - 1);
+}
+
+static unsigned long pfn_max_align_up(unsigned long pfn)
+{
+ return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
+ pageblock_nr_pages));
+}
+
+/* [start, end) must belong to a single zone. */
+static int __alloc_contig_migrate_range(struct compact_control *cc,
+ unsigned long start, unsigned long end)
+{
+ /* This function is based on compact_zone() from compaction.c. */
+ unsigned long nr_reclaimed;
+ unsigned long pfn = start;
+ unsigned int tries = 0;
+ int ret = 0;
+
+ migrate_prep();
+
+ while (pfn < end || !list_empty(&cc->migratepages)) {
+ if (fatal_signal_pending(current)) {
+ ret = -EINTR;
+ break;
+ }
+
+ if (list_empty(&cc->migratepages)) {
+ cc->nr_migratepages = 0;
+ pfn = isolate_migratepages_range(cc, pfn, end);
+ if (!pfn) {
+ ret = -EINTR;
+ break;
+ }
+ tries = 0;
+ } else if (++tries == 5) {
+ ret = ret < 0 ? ret : -EBUSY;
+ break;
+ }
+
+ nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
+ &cc->migratepages);
+ cc->nr_migratepages -= nr_reclaimed;
+
+ ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
+ NULL, 0, cc->mode, MR_CONTIG_RANGE);
+ }
+ if (ret < 0) {
+ putback_movable_pages(&cc->migratepages);
+ return ret;
+ }
+ return 0;
+}
+
+/**
+ * alloc_contig_range() -- tries to allocate given range of pages
+ * @start: start PFN to allocate
+ * @end: one-past-the-last PFN to allocate
+ * @migratetype: migratetype of the underlaying pageblocks (either
+ * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
+ * in range must have the same migratetype and it must
+ * be either of the two.
+ * @gfp_mask: GFP mask to use during compaction
+ *
+ * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
+ * aligned. The PFN range must belong to a single zone.
+ *
+ * The first thing this routine does is attempt to MIGRATE_ISOLATE all
+ * pageblocks in the range. Once isolated, the pageblocks should not
+ * be modified by others.
+ *
+ * Returns zero on success or negative error code. On success all
+ * pages which PFN is in [start, end) are allocated for the caller and
+ * need to be freed with free_contig_range().
+ */
+int alloc_contig_range(unsigned long start, unsigned long end,
+ unsigned migratetype, gfp_t gfp_mask)
+{
+ unsigned long outer_start, outer_end;
+ unsigned int order;
+ int ret = 0;
+
+ struct compact_control cc = {
+ .nr_migratepages = 0,
+ .order = -1,
+ .zone = page_zone(pfn_to_page(start)),
+ .mode = MIGRATE_SYNC,
+ .ignore_skip_hint = true,
+ .no_set_skip_hint = true,
+ .gfp_mask = current_gfp_context(gfp_mask),
+ };
+ INIT_LIST_HEAD(&cc.migratepages);
+
+ /*
+ * What we do here is we mark all pageblocks in range as
+ * MIGRATE_ISOLATE. Because pageblock and max order pages may
+ * have different sizes, and due to the way page allocator
+ * work, we align the range to biggest of the two pages so
+ * that page allocator won't try to merge buddies from
+ * different pageblocks and change MIGRATE_ISOLATE to some
+ * other migration type.
+ *
+ * Once the pageblocks are marked as MIGRATE_ISOLATE, we
+ * migrate the pages from an unaligned range (ie. pages that
+ * we are interested in). This will put all the pages in
+ * range back to page allocator as MIGRATE_ISOLATE.
+ *
+ * When this is done, we take the pages in range from page
+ * allocator removing them from the buddy system. This way
+ * page allocator will never consider using them.
+ *
+ * This lets us mark the pageblocks back as
+ * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
+ * aligned range but not in the unaligned, original range are
+ * put back to page allocator so that buddy can use them.
+ */
+
+ ret = start_isolate_page_range(pfn_max_align_down(start),
+ pfn_max_align_up(end), migratetype,
+ false);
+ if (ret)
+ return ret;
+
+ /*
+ * In case of -EBUSY, we'd like to know which page causes problem.
+ * So, just fall through. test_pages_isolated() has a tracepoint
+ * which will report the busy page.
+ *
+ * It is possible that busy pages could become available before
+ * the call to test_pages_isolated, and the range will actually be
+ * allocated. So, if we fall through be sure to clear ret so that
+ * -EBUSY is not accidentally used or returned to caller.
+ */
+ ret = __alloc_contig_migrate_range(&cc, start, end);
+ if (ret && ret != -EBUSY)
+ goto done;
+ ret =0;
+
+ /*
+ * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
+ * aligned blocks that are marked as MIGRATE_ISOLATE. What's
+ * more, all pages in [start, end) are free in page allocator.
+ * What we are going to do is to allocate all pages from
+ * [start, end) (that is remove them from page allocator).
+ *
+ * The only problem is that pages at the beginning and at the
+ * end of interesting range may be not aligned with pages that
+ * page allocator holds, ie. they can be part of higher order
+ * pages. Because of this, we reserve the bigger range and
+ * once this is done free the pages we are not interested in.
+ *
+ * We don't have to hold zone->lock here because the pages are
+ * isolated thus they won't get removed from buddy.
+ */
+
+ lru_add_drain_all();
+ drain_all_pages(cc.zone);
+
+ order = 0;
+ outer_start = start;
+ while (!PageBuddy(pfn_to_page(outer_start))) {
+ if (++order >= MAX_ORDER) {
+ outer_start = start;
+ break;
+ }
+ outer_start &= ~0UL << order;
+ }
+
+ if (outer_start != start) {
+ order = page_order(pfn_to_page(outer_start));
+
+ /*
+ * outer_start page could be small order buddy page and
+ * it doesn't include start page. Adjust outer_start
+ * in this case to report failed page properly
+ * on tracepoint in test_pages_isolated()
+ */
+ if (outer_start + (1UL << order) <= start)
+ outer_start = start;
+ }
+
+ /* Make sure the range is really isolated. */
+ if (test_pages_isolated(outer_start, end, false)) {
+ pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
+ __func__, outer_start, end);
+ ret = -EBUSY;
+ goto done;
+ }
+
+ /* Grab isolated pages from freelists. */
+ outer_end = isolate_freepages_range(&cc, outer_start, end);
+ if (!outer_end) {
+ ret = -EBUSY;
+ goto done;
+ }
+
+ /* Free head and tail (if any) */
+ if (start != outer_start)
+ free_contig_range(outer_start, start - outer_start);
+ if (end != outer_end)
+ free_contig_range(end, outer_end - end);
+
+done:
+ undo_isolate_page_range(pfn_max_align_down(start),
+ pfn_max_align_up(end), migratetype);
+ return ret;
+}
+
+void free_contig_range(unsigned long pfn, unsigned nr_pages)
+{
+ unsigned int count = 0;
+
+ for (; nr_pages--; pfn++) {
+ struct page *page = pfn_to_page(pfn);
+
+ count += page_count(page) != 1;
+ __free_page(page);
+ }
+ WARN(count != 0, "%d pages are still in use!\n", count);
+}
+#endif
+
+/*
+ * The zone indicated has a new number of managed_pages; batch sizes and percpu
+ * page high values need to be recalulated.
+ */
+void __meminit zone_pcp_update(struct zone *zone)
+{
+ unsigned cpu;
+ mutex_lock(&pcp_batch_high_lock);
+ for_each_possible_cpu(cpu)
+ pageset_set_high_and_batch(zone,
+ per_cpu_ptr(zone->pageset, cpu));
+ mutex_unlock(&pcp_batch_high_lock);
+}
+
+void zone_pcp_reset(struct zone *zone)
+{
+ unsigned long flags;
+ int cpu;
+ struct per_cpu_pageset *pset;
+
+ /* avoid races with drain_pages() */
+ local_irq_save(flags);
+ if (zone->pageset != &boot_pageset) {
+ for_each_online_cpu(cpu) {
+ pset = per_cpu_ptr(zone->pageset, cpu);
+ drain_zonestat(zone, pset);
+ }
+ free_percpu(zone->pageset);
+ zone->pageset = &boot_pageset;
+ }
+ local_irq_restore(flags);
+}
+
+#ifdef CONFIG_MEMORY_HOTREMOVE
+/*
+ * All pages in the range must be in a single zone and isolated
+ * before calling this.
+ */
+void
+__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
+{
+ struct page *page;
+ struct zone *zone;
+ unsigned int order, i;
+ unsigned long pfn;
+ unsigned long flags;
+ /* find the first valid pfn */
+ for (pfn = start_pfn; pfn < end_pfn; pfn++)
+ if (pfn_valid(pfn))
+ break;
+ if (pfn == end_pfn)
+ return;
+ offline_mem_sections(pfn, end_pfn);
+ zone = page_zone(pfn_to_page(pfn));
+ spin_lock_irqsave(&zone->lock, flags);
+ pfn = start_pfn;
+ while (pfn < end_pfn) {
+ if (!pfn_valid(pfn)) {
+ pfn++;
+ continue;
+ }
+ page = pfn_to_page(pfn);
+ /*
+ * The HWPoisoned page may be not in buddy system, and
+ * page_count() is not 0.
+ */
+ if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
+ pfn++;
+ SetPageReserved(page);
+ continue;
+ }
+
+ BUG_ON(page_count(page));
+ BUG_ON(!PageBuddy(page));
+ order = page_order(page);
+#ifdef CONFIG_DEBUG_VM
+ pr_info("remove from free list %lx %d %lx\n",
+ pfn, 1 << order, end_pfn);
+#endif
+ list_del(&page->lru);
+ rmv_page_order(page);
+ zone->free_area[order].nr_free--;
+ for (i = 0; i < (1 << order); i++)
+ SetPageReserved((page+i));
+ pfn += (1 << order);
+ }
+ spin_unlock_irqrestore(&zone->lock, flags);
+}
+#endif
+
+bool is_free_buddy_page(struct page *page)
+{
+ struct zone *zone = page_zone(page);
+ unsigned long pfn = page_to_pfn(page);
+ unsigned long flags;
+ unsigned int order;
+
+ spin_lock_irqsave(&zone->lock, flags);
+ for (order = 0; order < MAX_ORDER; order++) {
+ struct page *page_head = page - (pfn & ((1 << order) - 1));
+
+ if (PageBuddy(page_head) && page_order(page_head) >= order)
+ break;
+ }
+ spin_unlock_irqrestore(&zone->lock, flags);
+
+ return order < MAX_ORDER;
+}
+
+#ifdef CONFIG_MEMORY_FAILURE
+/*
+ * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
+ * test is performed under the zone lock to prevent a race against page
+ * allocation.
+ */
+bool set_hwpoison_free_buddy_page(struct page *page)
+{
+ struct zone *zone = page_zone(page);
+ unsigned long pfn = page_to_pfn(page);
+ unsigned long flags;
+ unsigned int order;
+ bool hwpoisoned = false;
+
+ spin_lock_irqsave(&zone->lock, flags);
+ for (order = 0; order < MAX_ORDER; order++) {
+ struct page *page_head = page - (pfn & ((1 << order) - 1));
+
+ if (PageBuddy(page_head) && page_order(page_head) >= order) {
+ if (!TestSetPageHWPoison(page))
+ hwpoisoned = true;
+ break;
+ }
+ }
+ spin_unlock_irqrestore(&zone->lock, flags);
+
+ return hwpoisoned;
+}
+#endif