diff options
Diffstat (limited to 'Documentation/virtual/kvm/api.txt')
-rw-r--r-- | Documentation/virtual/kvm/api.txt | 4782 |
1 files changed, 4782 insertions, 0 deletions
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt new file mode 100644 index 000000000..d2f265a9d --- /dev/null +++ b/Documentation/virtual/kvm/api.txt @@ -0,0 +1,4782 @@ +The Definitive KVM (Kernel-based Virtual Machine) API Documentation +=================================================================== + +1. General description +---------------------- + +The kvm API is a set of ioctls that are issued to control various aspects +of a virtual machine. The ioctls belong to three classes + + - System ioctls: These query and set global attributes which affect the + whole kvm subsystem. In addition a system ioctl is used to create + virtual machines + + - VM ioctls: These query and set attributes that affect an entire virtual + machine, for example memory layout. In addition a VM ioctl is used to + create virtual cpus (vcpus) and devices. + + Only run VM ioctls from the same process (address space) that was used + to create the VM. + + - vcpu ioctls: These query and set attributes that control the operation + of a single virtual cpu. + + Only run vcpu ioctls from the same thread that was used to create the + vcpu. + + - device ioctls: These query and set attributes that control the operation + of a single device. + + device ioctls must be issued from the same process (address space) that + was used to create the VM. + +2. File descriptors +------------------- + +The kvm API is centered around file descriptors. An initial +open("/dev/kvm") obtains a handle to the kvm subsystem; this handle +can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this +handle will create a VM file descriptor which can be used to issue VM +ioctls. A KVM_CREATE_VCPU or KVM_CREATE_DEVICE ioctl on a VM fd will +create a virtual cpu or device and return a file descriptor pointing to +the new resource. Finally, ioctls on a vcpu or device fd can be used +to control the vcpu or device. For vcpus, this includes the important +task of actually running guest code. + +In general file descriptors can be migrated among processes by means +of fork() and the SCM_RIGHTS facility of unix domain socket. These +kinds of tricks are explicitly not supported by kvm. While they will +not cause harm to the host, their actual behavior is not guaranteed by +the API. The only supported use is one virtual machine per process, +and one vcpu per thread. + + +3. Extensions +------------- + +As of Linux 2.6.22, the KVM ABI has been stabilized: no backward +incompatible change are allowed. However, there is an extension +facility that allows backward-compatible extensions to the API to be +queried and used. + +The extension mechanism is not based on the Linux version number. +Instead, kvm defines extension identifiers and a facility to query +whether a particular extension identifier is available. If it is, a +set of ioctls is available for application use. + + +4. API description +------------------ + +This section describes ioctls that can be used to control kvm guests. +For each ioctl, the following information is provided along with a +description: + + Capability: which KVM extension provides this ioctl. Can be 'basic', + which means that is will be provided by any kernel that supports + API version 12 (see section 4.1), a KVM_CAP_xyz constant, which + means availability needs to be checked with KVM_CHECK_EXTENSION + (see section 4.4), or 'none' which means that while not all kernels + support this ioctl, there's no capability bit to check its + availability: for kernels that don't support the ioctl, + the ioctl returns -ENOTTY. + + Architectures: which instruction set architectures provide this ioctl. + x86 includes both i386 and x86_64. + + Type: system, vm, or vcpu. + + Parameters: what parameters are accepted by the ioctl. + + Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL) + are not detailed, but errors with specific meanings are. + + +4.1 KVM_GET_API_VERSION + +Capability: basic +Architectures: all +Type: system ioctl +Parameters: none +Returns: the constant KVM_API_VERSION (=12) + +This identifies the API version as the stable kvm API. It is not +expected that this number will change. However, Linux 2.6.20 and +2.6.21 report earlier versions; these are not documented and not +supported. Applications should refuse to run if KVM_GET_API_VERSION +returns a value other than 12. If this check passes, all ioctls +described as 'basic' will be available. + + +4.2 KVM_CREATE_VM + +Capability: basic +Architectures: all +Type: system ioctl +Parameters: machine type identifier (KVM_VM_*) +Returns: a VM fd that can be used to control the new virtual machine. + +The new VM has no virtual cpus and no memory. +You probably want to use 0 as machine type. + +In order to create user controlled virtual machines on S390, check +KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as +privileged user (CAP_SYS_ADMIN). + +To use hardware assisted virtualization on MIPS (VZ ASE) rather than +the default trap & emulate implementation (which changes the virtual +memory layout to fit in user mode), check KVM_CAP_MIPS_VZ and use the +flag KVM_VM_MIPS_VZ. + + +4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATURE_INDEX_LIST + +Capability: basic, KVM_CAP_GET_MSR_FEATURES for KVM_GET_MSR_FEATURE_INDEX_LIST +Architectures: x86 +Type: system ioctl +Parameters: struct kvm_msr_list (in/out) +Returns: 0 on success; -1 on error +Errors: + EFAULT: the msr index list cannot be read from or written to + E2BIG: the msr index list is to be to fit in the array specified by + the user. + +struct kvm_msr_list { + __u32 nmsrs; /* number of msrs in entries */ + __u32 indices[0]; +}; + +The user fills in the size of the indices array in nmsrs, and in return +kvm adjusts nmsrs to reflect the actual number of msrs and fills in the +indices array with their numbers. + +KVM_GET_MSR_INDEX_LIST returns the guest msrs that are supported. The list +varies by kvm version and host processor, but does not change otherwise. + +Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are +not returned in the MSR list, as different vcpus can have a different number +of banks, as set via the KVM_X86_SETUP_MCE ioctl. + +KVM_GET_MSR_FEATURE_INDEX_LIST returns the list of MSRs that can be passed +to the KVM_GET_MSRS system ioctl. This lets userspace probe host capabilities +and processor features that are exposed via MSRs (e.g., VMX capabilities). +This list also varies by kvm version and host processor, but does not change +otherwise. + + +4.4 KVM_CHECK_EXTENSION + +Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl +Architectures: all +Type: system ioctl, vm ioctl +Parameters: extension identifier (KVM_CAP_*) +Returns: 0 if unsupported; 1 (or some other positive integer) if supported + +The API allows the application to query about extensions to the core +kvm API. Userspace passes an extension identifier (an integer) and +receives an integer that describes the extension availability. +Generally 0 means no and 1 means yes, but some extensions may report +additional information in the integer return value. + +Based on their initialization different VMs may have different capabilities. +It is thus encouraged to use the vm ioctl to query for capabilities (available +with KVM_CAP_CHECK_EXTENSION_VM on the vm fd) + +4.5 KVM_GET_VCPU_MMAP_SIZE + +Capability: basic +Architectures: all +Type: system ioctl +Parameters: none +Returns: size of vcpu mmap area, in bytes + +The KVM_RUN ioctl (cf.) communicates with userspace via a shared +memory region. This ioctl returns the size of that region. See the +KVM_RUN documentation for details. + + +4.6 KVM_SET_MEMORY_REGION + +Capability: basic +Architectures: all +Type: vm ioctl +Parameters: struct kvm_memory_region (in) +Returns: 0 on success, -1 on error + +This ioctl is obsolete and has been removed. + + +4.7 KVM_CREATE_VCPU + +Capability: basic +Architectures: all +Type: vm ioctl +Parameters: vcpu id (apic id on x86) +Returns: vcpu fd on success, -1 on error + +This API adds a vcpu to a virtual machine. No more than max_vcpus may be added. +The vcpu id is an integer in the range [0, max_vcpu_id). + +The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of +the KVM_CHECK_EXTENSION ioctl() at run-time. +The maximum possible value for max_vcpus can be retrieved using the +KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time. + +If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4 +cpus max. +If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is +same as the value returned from KVM_CAP_NR_VCPUS. + +The maximum possible value for max_vcpu_id can be retrieved using the +KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time. + +If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id +is the same as the value returned from KVM_CAP_MAX_VCPUS. + +On powerpc using book3s_hv mode, the vcpus are mapped onto virtual +threads in one or more virtual CPU cores. (This is because the +hardware requires all the hardware threads in a CPU core to be in the +same partition.) The KVM_CAP_PPC_SMT capability indicates the number +of vcpus per virtual core (vcore). The vcore id is obtained by +dividing the vcpu id by the number of vcpus per vcore. The vcpus in a +given vcore will always be in the same physical core as each other +(though that might be a different physical core from time to time). +Userspace can control the threading (SMT) mode of the guest by its +allocation of vcpu ids. For example, if userspace wants +single-threaded guest vcpus, it should make all vcpu ids be a multiple +of the number of vcpus per vcore. + +For virtual cpus that have been created with S390 user controlled virtual +machines, the resulting vcpu fd can be memory mapped at page offset +KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual +cpu's hardware control block. + + +4.8 KVM_GET_DIRTY_LOG (vm ioctl) + +Capability: basic +Architectures: x86 +Type: vm ioctl +Parameters: struct kvm_dirty_log (in/out) +Returns: 0 on success, -1 on error + +/* for KVM_GET_DIRTY_LOG */ +struct kvm_dirty_log { + __u32 slot; + __u32 padding; + union { + void __user *dirty_bitmap; /* one bit per page */ + __u64 padding; + }; +}; + +Given a memory slot, return a bitmap containing any pages dirtied +since the last call to this ioctl. Bit 0 is the first page in the +memory slot. Ensure the entire structure is cleared to avoid padding +issues. + +If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies +the address space for which you want to return the dirty bitmap. +They must be less than the value that KVM_CHECK_EXTENSION returns for +the KVM_CAP_MULTI_ADDRESS_SPACE capability. + + +4.9 KVM_SET_MEMORY_ALIAS + +Capability: basic +Architectures: x86 +Type: vm ioctl +Parameters: struct kvm_memory_alias (in) +Returns: 0 (success), -1 (error) + +This ioctl is obsolete and has been removed. + + +4.10 KVM_RUN + +Capability: basic +Architectures: all +Type: vcpu ioctl +Parameters: none +Returns: 0 on success, -1 on error +Errors: + EINTR: an unmasked signal is pending + +This ioctl is used to run a guest virtual cpu. While there are no +explicit parameters, there is an implicit parameter block that can be +obtained by mmap()ing the vcpu fd at offset 0, with the size given by +KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct +kvm_run' (see below). + + +4.11 KVM_GET_REGS + +Capability: basic +Architectures: all except ARM, arm64 +Type: vcpu ioctl +Parameters: struct kvm_regs (out) +Returns: 0 on success, -1 on error + +Reads the general purpose registers from the vcpu. + +/* x86 */ +struct kvm_regs { + /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ + __u64 rax, rbx, rcx, rdx; + __u64 rsi, rdi, rsp, rbp; + __u64 r8, r9, r10, r11; + __u64 r12, r13, r14, r15; + __u64 rip, rflags; +}; + +/* mips */ +struct kvm_regs { + /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */ + __u64 gpr[32]; + __u64 hi; + __u64 lo; + __u64 pc; +}; + + +4.12 KVM_SET_REGS + +Capability: basic +Architectures: all except ARM, arm64 +Type: vcpu ioctl +Parameters: struct kvm_regs (in) +Returns: 0 on success, -1 on error + +Writes the general purpose registers into the vcpu. + +See KVM_GET_REGS for the data structure. + + +4.13 KVM_GET_SREGS + +Capability: basic +Architectures: x86, ppc +Type: vcpu ioctl +Parameters: struct kvm_sregs (out) +Returns: 0 on success, -1 on error + +Reads special registers from the vcpu. + +/* x86 */ +struct kvm_sregs { + struct kvm_segment cs, ds, es, fs, gs, ss; + struct kvm_segment tr, ldt; + struct kvm_dtable gdt, idt; + __u64 cr0, cr2, cr3, cr4, cr8; + __u64 efer; + __u64 apic_base; + __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64]; +}; + +/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */ + +interrupt_bitmap is a bitmap of pending external interrupts. At most +one bit may be set. This interrupt has been acknowledged by the APIC +but not yet injected into the cpu core. + + +4.14 KVM_SET_SREGS + +Capability: basic +Architectures: x86, ppc +Type: vcpu ioctl +Parameters: struct kvm_sregs (in) +Returns: 0 on success, -1 on error + +Writes special registers into the vcpu. See KVM_GET_SREGS for the +data structures. + + +4.15 KVM_TRANSLATE + +Capability: basic +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_translation (in/out) +Returns: 0 on success, -1 on error + +Translates a virtual address according to the vcpu's current address +translation mode. + +struct kvm_translation { + /* in */ + __u64 linear_address; + + /* out */ + __u64 physical_address; + __u8 valid; + __u8 writeable; + __u8 usermode; + __u8 pad[5]; +}; + + +4.16 KVM_INTERRUPT + +Capability: basic +Architectures: x86, ppc, mips +Type: vcpu ioctl +Parameters: struct kvm_interrupt (in) +Returns: 0 on success, negative on failure. + +Queues a hardware interrupt vector to be injected. + +/* for KVM_INTERRUPT */ +struct kvm_interrupt { + /* in */ + __u32 irq; +}; + +X86: + +Returns: 0 on success, + -EEXIST if an interrupt is already enqueued + -EINVAL the the irq number is invalid + -ENXIO if the PIC is in the kernel + -EFAULT if the pointer is invalid + +Note 'irq' is an interrupt vector, not an interrupt pin or line. This +ioctl is useful if the in-kernel PIC is not used. + +PPC: + +Queues an external interrupt to be injected. This ioctl is overleaded +with 3 different irq values: + +a) KVM_INTERRUPT_SET + + This injects an edge type external interrupt into the guest once it's ready + to receive interrupts. When injected, the interrupt is done. + +b) KVM_INTERRUPT_UNSET + + This unsets any pending interrupt. + + Only available with KVM_CAP_PPC_UNSET_IRQ. + +c) KVM_INTERRUPT_SET_LEVEL + + This injects a level type external interrupt into the guest context. The + interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET + is triggered. + + Only available with KVM_CAP_PPC_IRQ_LEVEL. + +Note that any value for 'irq' other than the ones stated above is invalid +and incurs unexpected behavior. + +MIPS: + +Queues an external interrupt to be injected into the virtual CPU. A negative +interrupt number dequeues the interrupt. + + +4.17 KVM_DEBUG_GUEST + +Capability: basic +Architectures: none +Type: vcpu ioctl +Parameters: none) +Returns: -1 on error + +Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead. + + +4.18 KVM_GET_MSRS + +Capability: basic (vcpu), KVM_CAP_GET_MSR_FEATURES (system) +Architectures: x86 +Type: system ioctl, vcpu ioctl +Parameters: struct kvm_msrs (in/out) +Returns: number of msrs successfully returned; + -1 on error + +When used as a system ioctl: +Reads the values of MSR-based features that are available for the VM. This +is similar to KVM_GET_SUPPORTED_CPUID, but it returns MSR indices and values. +The list of msr-based features can be obtained using KVM_GET_MSR_FEATURE_INDEX_LIST +in a system ioctl. + +When used as a vcpu ioctl: +Reads model-specific registers from the vcpu. Supported msr indices can +be obtained using KVM_GET_MSR_INDEX_LIST in a system ioctl. + +struct kvm_msrs { + __u32 nmsrs; /* number of msrs in entries */ + __u32 pad; + + struct kvm_msr_entry entries[0]; +}; + +struct kvm_msr_entry { + __u32 index; + __u32 reserved; + __u64 data; +}; + +Application code should set the 'nmsrs' member (which indicates the +size of the entries array) and the 'index' member of each array entry. +kvm will fill in the 'data' member. + + +4.19 KVM_SET_MSRS + +Capability: basic +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_msrs (in) +Returns: 0 on success, -1 on error + +Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the +data structures. + +Application code should set the 'nmsrs' member (which indicates the +size of the entries array), and the 'index' and 'data' members of each +array entry. + + +4.20 KVM_SET_CPUID + +Capability: basic +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_cpuid (in) +Returns: 0 on success, -1 on error + +Defines the vcpu responses to the cpuid instruction. Applications +should use the KVM_SET_CPUID2 ioctl if available. + + +struct kvm_cpuid_entry { + __u32 function; + __u32 eax; + __u32 ebx; + __u32 ecx; + __u32 edx; + __u32 padding; +}; + +/* for KVM_SET_CPUID */ +struct kvm_cpuid { + __u32 nent; + __u32 padding; + struct kvm_cpuid_entry entries[0]; +}; + + +4.21 KVM_SET_SIGNAL_MASK + +Capability: basic +Architectures: all +Type: vcpu ioctl +Parameters: struct kvm_signal_mask (in) +Returns: 0 on success, -1 on error + +Defines which signals are blocked during execution of KVM_RUN. This +signal mask temporarily overrides the threads signal mask. Any +unblocked signal received (except SIGKILL and SIGSTOP, which retain +their traditional behaviour) will cause KVM_RUN to return with -EINTR. + +Note the signal will only be delivered if not blocked by the original +signal mask. + +/* for KVM_SET_SIGNAL_MASK */ +struct kvm_signal_mask { + __u32 len; + __u8 sigset[0]; +}; + + +4.22 KVM_GET_FPU + +Capability: basic +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_fpu (out) +Returns: 0 on success, -1 on error + +Reads the floating point state from the vcpu. + +/* for KVM_GET_FPU and KVM_SET_FPU */ +struct kvm_fpu { + __u8 fpr[8][16]; + __u16 fcw; + __u16 fsw; + __u8 ftwx; /* in fxsave format */ + __u8 pad1; + __u16 last_opcode; + __u64 last_ip; + __u64 last_dp; + __u8 xmm[16][16]; + __u32 mxcsr; + __u32 pad2; +}; + + +4.23 KVM_SET_FPU + +Capability: basic +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_fpu (in) +Returns: 0 on success, -1 on error + +Writes the floating point state to the vcpu. + +/* for KVM_GET_FPU and KVM_SET_FPU */ +struct kvm_fpu { + __u8 fpr[8][16]; + __u16 fcw; + __u16 fsw; + __u8 ftwx; /* in fxsave format */ + __u8 pad1; + __u16 last_opcode; + __u64 last_ip; + __u64 last_dp; + __u8 xmm[16][16]; + __u32 mxcsr; + __u32 pad2; +}; + + +4.24 KVM_CREATE_IRQCHIP + +Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390) +Architectures: x86, ARM, arm64, s390 +Type: vm ioctl +Parameters: none +Returns: 0 on success, -1 on error + +Creates an interrupt controller model in the kernel. +On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up +future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both +PIC and IOAPIC; GSI 16-23 only go to the IOAPIC. +On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of +KVM_CREATE_DEVICE, which also supports creating a GICv2. Using +KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2. +On s390, a dummy irq routing table is created. + +Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled +before KVM_CREATE_IRQCHIP can be used. + + +4.25 KVM_IRQ_LINE + +Capability: KVM_CAP_IRQCHIP +Architectures: x86, arm, arm64 +Type: vm ioctl +Parameters: struct kvm_irq_level +Returns: 0 on success, -1 on error + +Sets the level of a GSI input to the interrupt controller model in the kernel. +On some architectures it is required that an interrupt controller model has +been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered +interrupts require the level to be set to 1 and then back to 0. + +On real hardware, interrupt pins can be active-low or active-high. This +does not matter for the level field of struct kvm_irq_level: 1 always +means active (asserted), 0 means inactive (deasserted). + +x86 allows the operating system to program the interrupt polarity +(active-low/active-high) for level-triggered interrupts, and KVM used +to consider the polarity. However, due to bitrot in the handling of +active-low interrupts, the above convention is now valid on x86 too. +This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace +should not present interrupts to the guest as active-low unless this +capability is present (or unless it is not using the in-kernel irqchip, +of course). + + +ARM/arm64 can signal an interrupt either at the CPU level, or at the +in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to +use PPIs designated for specific cpus. The irq field is interpreted +like this: + + bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 | + field: | irq_type | vcpu_index | irq_id | + +The irq_type field has the following values: +- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ +- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.) + (the vcpu_index field is ignored) +- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.) + +(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs) + +In both cases, level is used to assert/deassert the line. + +struct kvm_irq_level { + union { + __u32 irq; /* GSI */ + __s32 status; /* not used for KVM_IRQ_LEVEL */ + }; + __u32 level; /* 0 or 1 */ +}; + + +4.26 KVM_GET_IRQCHIP + +Capability: KVM_CAP_IRQCHIP +Architectures: x86 +Type: vm ioctl +Parameters: struct kvm_irqchip (in/out) +Returns: 0 on success, -1 on error + +Reads the state of a kernel interrupt controller created with +KVM_CREATE_IRQCHIP into a buffer provided by the caller. + +struct kvm_irqchip { + __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ + __u32 pad; + union { + char dummy[512]; /* reserving space */ + struct kvm_pic_state pic; + struct kvm_ioapic_state ioapic; + } chip; +}; + + +4.27 KVM_SET_IRQCHIP + +Capability: KVM_CAP_IRQCHIP +Architectures: x86 +Type: vm ioctl +Parameters: struct kvm_irqchip (in) +Returns: 0 on success, -1 on error + +Sets the state of a kernel interrupt controller created with +KVM_CREATE_IRQCHIP from a buffer provided by the caller. + +struct kvm_irqchip { + __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */ + __u32 pad; + union { + char dummy[512]; /* reserving space */ + struct kvm_pic_state pic; + struct kvm_ioapic_state ioapic; + } chip; +}; + + +4.28 KVM_XEN_HVM_CONFIG + +Capability: KVM_CAP_XEN_HVM +Architectures: x86 +Type: vm ioctl +Parameters: struct kvm_xen_hvm_config (in) +Returns: 0 on success, -1 on error + +Sets the MSR that the Xen HVM guest uses to initialize its hypercall +page, and provides the starting address and size of the hypercall +blobs in userspace. When the guest writes the MSR, kvm copies one +page of a blob (32- or 64-bit, depending on the vcpu mode) to guest +memory. + +struct kvm_xen_hvm_config { + __u32 flags; + __u32 msr; + __u64 blob_addr_32; + __u64 blob_addr_64; + __u8 blob_size_32; + __u8 blob_size_64; + __u8 pad2[30]; +}; + + +4.29 KVM_GET_CLOCK + +Capability: KVM_CAP_ADJUST_CLOCK +Architectures: x86 +Type: vm ioctl +Parameters: struct kvm_clock_data (out) +Returns: 0 on success, -1 on error + +Gets the current timestamp of kvmclock as seen by the current guest. In +conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios +such as migration. + +When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the +set of bits that KVM can return in struct kvm_clock_data's flag member. + +The only flag defined now is KVM_CLOCK_TSC_STABLE. If set, the returned +value is the exact kvmclock value seen by all VCPUs at the instant +when KVM_GET_CLOCK was called. If clear, the returned value is simply +CLOCK_MONOTONIC plus a constant offset; the offset can be modified +with KVM_SET_CLOCK. KVM will try to make all VCPUs follow this clock, +but the exact value read by each VCPU could differ, because the host +TSC is not stable. + +struct kvm_clock_data { + __u64 clock; /* kvmclock current value */ + __u32 flags; + __u32 pad[9]; +}; + + +4.30 KVM_SET_CLOCK + +Capability: KVM_CAP_ADJUST_CLOCK +Architectures: x86 +Type: vm ioctl +Parameters: struct kvm_clock_data (in) +Returns: 0 on success, -1 on error + +Sets the current timestamp of kvmclock to the value specified in its parameter. +In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios +such as migration. + +struct kvm_clock_data { + __u64 clock; /* kvmclock current value */ + __u32 flags; + __u32 pad[9]; +}; + + +4.31 KVM_GET_VCPU_EVENTS + +Capability: KVM_CAP_VCPU_EVENTS +Extended by: KVM_CAP_INTR_SHADOW +Architectures: x86, arm, arm64 +Type: vcpu ioctl +Parameters: struct kvm_vcpu_event (out) +Returns: 0 on success, -1 on error + +X86: + +Gets currently pending exceptions, interrupts, and NMIs as well as related +states of the vcpu. + +struct kvm_vcpu_events { + struct { + __u8 injected; + __u8 nr; + __u8 has_error_code; + __u8 pad; + __u32 error_code; + } exception; + struct { + __u8 injected; + __u8 nr; + __u8 soft; + __u8 shadow; + } interrupt; + struct { + __u8 injected; + __u8 pending; + __u8 masked; + __u8 pad; + } nmi; + __u32 sipi_vector; + __u32 flags; + struct { + __u8 smm; + __u8 pending; + __u8 smm_inside_nmi; + __u8 latched_init; + } smi; +}; + +Only two fields are defined in the flags field: + +- KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that + interrupt.shadow contains a valid state. + +- KVM_VCPUEVENT_VALID_SMM may be set in the flags field to signal that + smi contains a valid state. + +ARM/ARM64: + +If the guest accesses a device that is being emulated by the host kernel in +such a way that a real device would generate a physical SError, KVM may make +a virtual SError pending for that VCPU. This system error interrupt remains +pending until the guest takes the exception by unmasking PSTATE.A. + +Running the VCPU may cause it to take a pending SError, or make an access that +causes an SError to become pending. The event's description is only valid while +the VPCU is not running. + +This API provides a way to read and write the pending 'event' state that is not +visible to the guest. To save, restore or migrate a VCPU the struct representing +the state can be read then written using this GET/SET API, along with the other +guest-visible registers. It is not possible to 'cancel' an SError that has been +made pending. + +A device being emulated in user-space may also wish to generate an SError. To do +this the events structure can be populated by user-space. The current state +should be read first, to ensure no existing SError is pending. If an existing +SError is pending, the architecture's 'Multiple SError interrupts' rules should +be followed. (2.5.3 of DDI0587.a "ARM Reliability, Availability, and +Serviceability (RAS) Specification"). + +SError exceptions always have an ESR value. Some CPUs have the ability to +specify what the virtual SError's ESR value should be. These systems will +advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In this case exception.has_esr will +always have a non-zero value when read, and the agent making an SError pending +should specify the ISS field in the lower 24 bits of exception.serror_esr. If +the system supports KVM_CAP_ARM_INJECT_SERROR_ESR, but user-space sets the events +with exception.has_esr as zero, KVM will choose an ESR. + +Specifying exception.has_esr on a system that does not support it will return +-EINVAL. Setting anything other than the lower 24bits of exception.serror_esr +will return -EINVAL. + +struct kvm_vcpu_events { + struct { + __u8 serror_pending; + __u8 serror_has_esr; + /* Align it to 8 bytes */ + __u8 pad[6]; + __u64 serror_esr; + } exception; + __u32 reserved[12]; +}; + +4.32 KVM_SET_VCPU_EVENTS + +Capability: KVM_CAP_VCPU_EVENTS +Extended by: KVM_CAP_INTR_SHADOW +Architectures: x86, arm, arm64 +Type: vcpu ioctl +Parameters: struct kvm_vcpu_event (in) +Returns: 0 on success, -1 on error + +X86: + +Set pending exceptions, interrupts, and NMIs as well as related states of the +vcpu. + +See KVM_GET_VCPU_EVENTS for the data structure. + +Fields that may be modified asynchronously by running VCPUs can be excluded +from the update. These fields are nmi.pending, sipi_vector, smi.smm, +smi.pending. Keep the corresponding bits in the flags field cleared to +suppress overwriting the current in-kernel state. The bits are: + +KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel +KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector +KVM_VCPUEVENT_VALID_SMM - transfer the smi sub-struct. + +If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in +the flags field to signal that interrupt.shadow contains a valid state and +shall be written into the VCPU. + +KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available. + +ARM/ARM64: + +Set the pending SError exception state for this VCPU. It is not possible to +'cancel' an Serror that has been made pending. + +See KVM_GET_VCPU_EVENTS for the data structure. + + +4.33 KVM_GET_DEBUGREGS + +Capability: KVM_CAP_DEBUGREGS +Architectures: x86 +Type: vm ioctl +Parameters: struct kvm_debugregs (out) +Returns: 0 on success, -1 on error + +Reads debug registers from the vcpu. + +struct kvm_debugregs { + __u64 db[4]; + __u64 dr6; + __u64 dr7; + __u64 flags; + __u64 reserved[9]; +}; + + +4.34 KVM_SET_DEBUGREGS + +Capability: KVM_CAP_DEBUGREGS +Architectures: x86 +Type: vm ioctl +Parameters: struct kvm_debugregs (in) +Returns: 0 on success, -1 on error + +Writes debug registers into the vcpu. + +See KVM_GET_DEBUGREGS for the data structure. The flags field is unused +yet and must be cleared on entry. + + +4.35 KVM_SET_USER_MEMORY_REGION + +Capability: KVM_CAP_USER_MEM +Architectures: all +Type: vm ioctl +Parameters: struct kvm_userspace_memory_region (in) +Returns: 0 on success, -1 on error + +struct kvm_userspace_memory_region { + __u32 slot; + __u32 flags; + __u64 guest_phys_addr; + __u64 memory_size; /* bytes */ + __u64 userspace_addr; /* start of the userspace allocated memory */ +}; + +/* for kvm_memory_region::flags */ +#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0) +#define KVM_MEM_READONLY (1UL << 1) + +This ioctl allows the user to create or modify a guest physical memory +slot. When changing an existing slot, it may be moved in the guest +physical memory space, or its flags may be modified. It may not be +resized. Slots may not overlap in guest physical address space. +Bits 0-15 of "slot" specifies the slot id and this value should be +less than the maximum number of user memory slots supported per VM. +The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS, +if this capability is supported by the architecture. + +If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot" +specifies the address space which is being modified. They must be +less than the value that KVM_CHECK_EXTENSION returns for the +KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces +are unrelated; the restriction on overlapping slots only applies within +each address space. + +Memory for the region is taken starting at the address denoted by the +field userspace_addr, which must point at user addressable memory for +the entire memory slot size. Any object may back this memory, including +anonymous memory, ordinary files, and hugetlbfs. + +It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr +be identical. This allows large pages in the guest to be backed by large +pages in the host. + +The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and +KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of +writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to +use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it, +to make a new slot read-only. In this case, writes to this memory will be +posted to userspace as KVM_EXIT_MMIO exits. + +When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of +the memory region are automatically reflected into the guest. For example, an +mmap() that affects the region will be made visible immediately. Another +example is madvise(MADV_DROP). + +It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl. +The KVM_SET_MEMORY_REGION does not allow fine grained control over memory +allocation and is deprecated. + + +4.36 KVM_SET_TSS_ADDR + +Capability: KVM_CAP_SET_TSS_ADDR +Architectures: x86 +Type: vm ioctl +Parameters: unsigned long tss_address (in) +Returns: 0 on success, -1 on error + +This ioctl defines the physical address of a three-page region in the guest +physical address space. The region must be within the first 4GB of the +guest physical address space and must not conflict with any memory slot +or any mmio address. The guest may malfunction if it accesses this memory +region. + +This ioctl is required on Intel-based hosts. This is needed on Intel hardware +because of a quirk in the virtualization implementation (see the internals +documentation when it pops into existence). + + +4.37 KVM_ENABLE_CAP + +Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM +Architectures: x86 (only KVM_CAP_ENABLE_CAP_VM), + mips (only KVM_CAP_ENABLE_CAP), ppc, s390 +Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM) +Parameters: struct kvm_enable_cap (in) +Returns: 0 on success; -1 on error + ++Not all extensions are enabled by default. Using this ioctl the application +can enable an extension, making it available to the guest. + +On systems that do not support this ioctl, it always fails. On systems that +do support it, it only works for extensions that are supported for enablement. + +To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should +be used. + +struct kvm_enable_cap { + /* in */ + __u32 cap; + +The capability that is supposed to get enabled. + + __u32 flags; + +A bitfield indicating future enhancements. Has to be 0 for now. + + __u64 args[4]; + +Arguments for enabling a feature. If a feature needs initial values to +function properly, this is the place to put them. + + __u8 pad[64]; +}; + +The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl +for vm-wide capabilities. + +4.38 KVM_GET_MP_STATE + +Capability: KVM_CAP_MP_STATE +Architectures: x86, s390, arm, arm64 +Type: vcpu ioctl +Parameters: struct kvm_mp_state (out) +Returns: 0 on success; -1 on error + +struct kvm_mp_state { + __u32 mp_state; +}; + +Returns the vcpu's current "multiprocessing state" (though also valid on +uniprocessor guests). + +Possible values are: + + - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86,arm/arm64] + - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP) + which has not yet received an INIT signal [x86] + - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is + now ready for a SIPI [x86] + - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and + is waiting for an interrupt [x86] + - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector + accessible via KVM_GET_VCPU_EVENTS) [x86] + - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390,arm/arm64] + - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390] + - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted) + [s390] + - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state + [s390] + +On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an +in-kernel irqchip, the multiprocessing state must be maintained by userspace on +these architectures. + +For arm/arm64: + +The only states that are valid are KVM_MP_STATE_STOPPED and +KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not. + +4.39 KVM_SET_MP_STATE + +Capability: KVM_CAP_MP_STATE +Architectures: x86, s390, arm, arm64 +Type: vcpu ioctl +Parameters: struct kvm_mp_state (in) +Returns: 0 on success; -1 on error + +Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for +arguments. + +On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an +in-kernel irqchip, the multiprocessing state must be maintained by userspace on +these architectures. + +For arm/arm64: + +The only states that are valid are KVM_MP_STATE_STOPPED and +KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not. + +4.40 KVM_SET_IDENTITY_MAP_ADDR + +Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR +Architectures: x86 +Type: vm ioctl +Parameters: unsigned long identity (in) +Returns: 0 on success, -1 on error + +This ioctl defines the physical address of a one-page region in the guest +physical address space. The region must be within the first 4GB of the +guest physical address space and must not conflict with any memory slot +or any mmio address. The guest may malfunction if it accesses this memory +region. + +Setting the address to 0 will result in resetting the address to its default +(0xfffbc000). + +This ioctl is required on Intel-based hosts. This is needed on Intel hardware +because of a quirk in the virtualization implementation (see the internals +documentation when it pops into existence). + +Fails if any VCPU has already been created. + +4.41 KVM_SET_BOOT_CPU_ID + +Capability: KVM_CAP_SET_BOOT_CPU_ID +Architectures: x86 +Type: vm ioctl +Parameters: unsigned long vcpu_id +Returns: 0 on success, -1 on error + +Define which vcpu is the Bootstrap Processor (BSP). Values are the same +as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default +is vcpu 0. + + +4.42 KVM_GET_XSAVE + +Capability: KVM_CAP_XSAVE +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_xsave (out) +Returns: 0 on success, -1 on error + +struct kvm_xsave { + __u32 region[1024]; +}; + +This ioctl would copy current vcpu's xsave struct to the userspace. + + +4.43 KVM_SET_XSAVE + +Capability: KVM_CAP_XSAVE +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_xsave (in) +Returns: 0 on success, -1 on error + +struct kvm_xsave { + __u32 region[1024]; +}; + +This ioctl would copy userspace's xsave struct to the kernel. + + +4.44 KVM_GET_XCRS + +Capability: KVM_CAP_XCRS +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_xcrs (out) +Returns: 0 on success, -1 on error + +struct kvm_xcr { + __u32 xcr; + __u32 reserved; + __u64 value; +}; + +struct kvm_xcrs { + __u32 nr_xcrs; + __u32 flags; + struct kvm_xcr xcrs[KVM_MAX_XCRS]; + __u64 padding[16]; +}; + +This ioctl would copy current vcpu's xcrs to the userspace. + + +4.45 KVM_SET_XCRS + +Capability: KVM_CAP_XCRS +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_xcrs (in) +Returns: 0 on success, -1 on error + +struct kvm_xcr { + __u32 xcr; + __u32 reserved; + __u64 value; +}; + +struct kvm_xcrs { + __u32 nr_xcrs; + __u32 flags; + struct kvm_xcr xcrs[KVM_MAX_XCRS]; + __u64 padding[16]; +}; + +This ioctl would set vcpu's xcr to the value userspace specified. + + +4.46 KVM_GET_SUPPORTED_CPUID + +Capability: KVM_CAP_EXT_CPUID +Architectures: x86 +Type: system ioctl +Parameters: struct kvm_cpuid2 (in/out) +Returns: 0 on success, -1 on error + +struct kvm_cpuid2 { + __u32 nent; + __u32 padding; + struct kvm_cpuid_entry2 entries[0]; +}; + +#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0) +#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) +#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) + +struct kvm_cpuid_entry2 { + __u32 function; + __u32 index; + __u32 flags; + __u32 eax; + __u32 ebx; + __u32 ecx; + __u32 edx; + __u32 padding[3]; +}; + +This ioctl returns x86 cpuid features which are supported by both the +hardware and kvm in its default configuration. Userspace can use the +information returned by this ioctl to construct cpuid information (for +KVM_SET_CPUID2) that is consistent with hardware, kernel, and +userspace capabilities, and with user requirements (for example, the +user may wish to constrain cpuid to emulate older hardware, or for +feature consistency across a cluster). + +Note that certain capabilities, such as KVM_CAP_X86_DISABLE_EXITS, may +expose cpuid features (e.g. MONITOR) which are not supported by kvm in +its default configuration. If userspace enables such capabilities, it +is responsible for modifying the results of this ioctl appropriately. + +Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure +with the 'nent' field indicating the number of entries in the variable-size +array 'entries'. If the number of entries is too low to describe the cpu +capabilities, an error (E2BIG) is returned. If the number is too high, +the 'nent' field is adjusted and an error (ENOMEM) is returned. If the +number is just right, the 'nent' field is adjusted to the number of valid +entries in the 'entries' array, which is then filled. + +The entries returned are the host cpuid as returned by the cpuid instruction, +with unknown or unsupported features masked out. Some features (for example, +x2apic), may not be present in the host cpu, but are exposed by kvm if it can +emulate them efficiently. The fields in each entry are defined as follows: + + function: the eax value used to obtain the entry + index: the ecx value used to obtain the entry (for entries that are + affected by ecx) + flags: an OR of zero or more of the following: + KVM_CPUID_FLAG_SIGNIFCANT_INDEX: + if the index field is valid + KVM_CPUID_FLAG_STATEFUL_FUNC: + if cpuid for this function returns different values for successive + invocations; there will be several entries with the same function, + all with this flag set + KVM_CPUID_FLAG_STATE_READ_NEXT: + for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is + the first entry to be read by a cpu + eax, ebx, ecx, edx: the values returned by the cpuid instruction for + this function/index combination + +The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned +as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC +support. Instead it is reported via + + ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER) + +if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the +feature in userspace, then you can enable the feature for KVM_SET_CPUID2. + + +4.47 KVM_PPC_GET_PVINFO + +Capability: KVM_CAP_PPC_GET_PVINFO +Architectures: ppc +Type: vm ioctl +Parameters: struct kvm_ppc_pvinfo (out) +Returns: 0 on success, !0 on error + +struct kvm_ppc_pvinfo { + __u32 flags; + __u32 hcall[4]; + __u8 pad[108]; +}; + +This ioctl fetches PV specific information that need to be passed to the guest +using the device tree or other means from vm context. + +The hcall array defines 4 instructions that make up a hypercall. + +If any additional field gets added to this structure later on, a bit for that +additional piece of information will be set in the flags bitmap. + +The flags bitmap is defined as: + + /* the host supports the ePAPR idle hcall + #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0) + +4.52 KVM_SET_GSI_ROUTING + +Capability: KVM_CAP_IRQ_ROUTING +Architectures: x86 s390 arm arm64 +Type: vm ioctl +Parameters: struct kvm_irq_routing (in) +Returns: 0 on success, -1 on error + +Sets the GSI routing table entries, overwriting any previously set entries. + +On arm/arm64, GSI routing has the following limitation: +- GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD. + +struct kvm_irq_routing { + __u32 nr; + __u32 flags; + struct kvm_irq_routing_entry entries[0]; +}; + +No flags are specified so far, the corresponding field must be set to zero. + +struct kvm_irq_routing_entry { + __u32 gsi; + __u32 type; + __u32 flags; + __u32 pad; + union { + struct kvm_irq_routing_irqchip irqchip; + struct kvm_irq_routing_msi msi; + struct kvm_irq_routing_s390_adapter adapter; + struct kvm_irq_routing_hv_sint hv_sint; + __u32 pad[8]; + } u; +}; + +/* gsi routing entry types */ +#define KVM_IRQ_ROUTING_IRQCHIP 1 +#define KVM_IRQ_ROUTING_MSI 2 +#define KVM_IRQ_ROUTING_S390_ADAPTER 3 +#define KVM_IRQ_ROUTING_HV_SINT 4 + +flags: +- KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry + type, specifies that the devid field contains a valid value. The per-VM + KVM_CAP_MSI_DEVID capability advertises the requirement to provide + the device ID. If this capability is not available, userspace should + never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail. +- zero otherwise + +struct kvm_irq_routing_irqchip { + __u32 irqchip; + __u32 pin; +}; + +struct kvm_irq_routing_msi { + __u32 address_lo; + __u32 address_hi; + __u32 data; + union { + __u32 pad; + __u32 devid; + }; +}; + +If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier +for the device that wrote the MSI message. For PCI, this is usually a +BFD identifier in the lower 16 bits. + +On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS +feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled, +address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of +address_hi must be zero. + +struct kvm_irq_routing_s390_adapter { + __u64 ind_addr; + __u64 summary_addr; + __u64 ind_offset; + __u32 summary_offset; + __u32 adapter_id; +}; + +struct kvm_irq_routing_hv_sint { + __u32 vcpu; + __u32 sint; +}; + + +4.55 KVM_SET_TSC_KHZ + +Capability: KVM_CAP_TSC_CONTROL +Architectures: x86 +Type: vcpu ioctl +Parameters: virtual tsc_khz +Returns: 0 on success, -1 on error + +Specifies the tsc frequency for the virtual machine. The unit of the +frequency is KHz. + + +4.56 KVM_GET_TSC_KHZ + +Capability: KVM_CAP_GET_TSC_KHZ +Architectures: x86 +Type: vcpu ioctl +Parameters: none +Returns: virtual tsc-khz on success, negative value on error + +Returns the tsc frequency of the guest. The unit of the return value is +KHz. If the host has unstable tsc this ioctl returns -EIO instead as an +error. + + +4.57 KVM_GET_LAPIC + +Capability: KVM_CAP_IRQCHIP +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_lapic_state (out) +Returns: 0 on success, -1 on error + +#define KVM_APIC_REG_SIZE 0x400 +struct kvm_lapic_state { + char regs[KVM_APIC_REG_SIZE]; +}; + +Reads the Local APIC registers and copies them into the input argument. The +data format and layout are the same as documented in the architecture manual. + +If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is +enabled, then the format of APIC_ID register depends on the APIC mode +(reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in +the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID +which is stored in bits 31-24 of the APIC register, or equivalently in +byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then +be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR. + +If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state +always uses xAPIC format. + + +4.58 KVM_SET_LAPIC + +Capability: KVM_CAP_IRQCHIP +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_lapic_state (in) +Returns: 0 on success, -1 on error + +#define KVM_APIC_REG_SIZE 0x400 +struct kvm_lapic_state { + char regs[KVM_APIC_REG_SIZE]; +}; + +Copies the input argument into the Local APIC registers. The data format +and layout are the same as documented in the architecture manual. + +The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's +regs field) depends on the state of the KVM_CAP_X2APIC_API capability. +See the note in KVM_GET_LAPIC. + + +4.59 KVM_IOEVENTFD + +Capability: KVM_CAP_IOEVENTFD +Architectures: all +Type: vm ioctl +Parameters: struct kvm_ioeventfd (in) +Returns: 0 on success, !0 on error + +This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address +within the guest. A guest write in the registered address will signal the +provided event instead of triggering an exit. + +struct kvm_ioeventfd { + __u64 datamatch; + __u64 addr; /* legal pio/mmio address */ + __u32 len; /* 0, 1, 2, 4, or 8 bytes */ + __s32 fd; + __u32 flags; + __u8 pad[36]; +}; + +For the special case of virtio-ccw devices on s390, the ioevent is matched +to a subchannel/virtqueue tuple instead. + +The following flags are defined: + +#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch) +#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio) +#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign) +#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \ + (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify) + +If datamatch flag is set, the event will be signaled only if the written value +to the registered address is equal to datamatch in struct kvm_ioeventfd. + +For virtio-ccw devices, addr contains the subchannel id and datamatch the +virtqueue index. + +With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and +the kernel will ignore the length of guest write and may get a faster vmexit. +The speedup may only apply to specific architectures, but the ioeventfd will +work anyway. + +4.60 KVM_DIRTY_TLB + +Capability: KVM_CAP_SW_TLB +Architectures: ppc +Type: vcpu ioctl +Parameters: struct kvm_dirty_tlb (in) +Returns: 0 on success, -1 on error + +struct kvm_dirty_tlb { + __u64 bitmap; + __u32 num_dirty; +}; + +This must be called whenever userspace has changed an entry in the shared +TLB, prior to calling KVM_RUN on the associated vcpu. + +The "bitmap" field is the userspace address of an array. This array +consists of a number of bits, equal to the total number of TLB entries as +determined by the last successful call to KVM_CONFIG_TLB, rounded up to the +nearest multiple of 64. + +Each bit corresponds to one TLB entry, ordered the same as in the shared TLB +array. + +The array is little-endian: the bit 0 is the least significant bit of the +first byte, bit 8 is the least significant bit of the second byte, etc. +This avoids any complications with differing word sizes. + +The "num_dirty" field is a performance hint for KVM to determine whether it +should skip processing the bitmap and just invalidate everything. It must +be set to the number of set bits in the bitmap. + + +4.62 KVM_CREATE_SPAPR_TCE + +Capability: KVM_CAP_SPAPR_TCE +Architectures: powerpc +Type: vm ioctl +Parameters: struct kvm_create_spapr_tce (in) +Returns: file descriptor for manipulating the created TCE table + +This creates a virtual TCE (translation control entry) table, which +is an IOMMU for PAPR-style virtual I/O. It is used to translate +logical addresses used in virtual I/O into guest physical addresses, +and provides a scatter/gather capability for PAPR virtual I/O. + +/* for KVM_CAP_SPAPR_TCE */ +struct kvm_create_spapr_tce { + __u64 liobn; + __u32 window_size; +}; + +The liobn field gives the logical IO bus number for which to create a +TCE table. The window_size field specifies the size of the DMA window +which this TCE table will translate - the table will contain one 64 +bit TCE entry for every 4kiB of the DMA window. + +When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE +table has been created using this ioctl(), the kernel will handle it +in real mode, updating the TCE table. H_PUT_TCE calls for other +liobns will cause a vm exit and must be handled by userspace. + +The return value is a file descriptor which can be passed to mmap(2) +to map the created TCE table into userspace. This lets userspace read +the entries written by kernel-handled H_PUT_TCE calls, and also lets +userspace update the TCE table directly which is useful in some +circumstances. + + +4.63 KVM_ALLOCATE_RMA + +Capability: KVM_CAP_PPC_RMA +Architectures: powerpc +Type: vm ioctl +Parameters: struct kvm_allocate_rma (out) +Returns: file descriptor for mapping the allocated RMA + +This allocates a Real Mode Area (RMA) from the pool allocated at boot +time by the kernel. An RMA is a physically-contiguous, aligned region +of memory used on older POWER processors to provide the memory which +will be accessed by real-mode (MMU off) accesses in a KVM guest. +POWER processors support a set of sizes for the RMA that usually +includes 64MB, 128MB, 256MB and some larger powers of two. + +/* for KVM_ALLOCATE_RMA */ +struct kvm_allocate_rma { + __u64 rma_size; +}; + +The return value is a file descriptor which can be passed to mmap(2) +to map the allocated RMA into userspace. The mapped area can then be +passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the +RMA for a virtual machine. The size of the RMA in bytes (which is +fixed at host kernel boot time) is returned in the rma_size field of +the argument structure. + +The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl +is supported; 2 if the processor requires all virtual machines to have +an RMA, or 1 if the processor can use an RMA but doesn't require it, +because it supports the Virtual RMA (VRMA) facility. + + +4.64 KVM_NMI + +Capability: KVM_CAP_USER_NMI +Architectures: x86 +Type: vcpu ioctl +Parameters: none +Returns: 0 on success, -1 on error + +Queues an NMI on the thread's vcpu. Note this is well defined only +when KVM_CREATE_IRQCHIP has not been called, since this is an interface +between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP +has been called, this interface is completely emulated within the kernel. + +To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the +following algorithm: + + - pause the vcpu + - read the local APIC's state (KVM_GET_LAPIC) + - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1) + - if so, issue KVM_NMI + - resume the vcpu + +Some guests configure the LINT1 NMI input to cause a panic, aiding in +debugging. + + +4.65 KVM_S390_UCAS_MAP + +Capability: KVM_CAP_S390_UCONTROL +Architectures: s390 +Type: vcpu ioctl +Parameters: struct kvm_s390_ucas_mapping (in) +Returns: 0 in case of success + +The parameter is defined like this: + struct kvm_s390_ucas_mapping { + __u64 user_addr; + __u64 vcpu_addr; + __u64 length; + }; + +This ioctl maps the memory at "user_addr" with the length "length" to +the vcpu's address space starting at "vcpu_addr". All parameters need to +be aligned by 1 megabyte. + + +4.66 KVM_S390_UCAS_UNMAP + +Capability: KVM_CAP_S390_UCONTROL +Architectures: s390 +Type: vcpu ioctl +Parameters: struct kvm_s390_ucas_mapping (in) +Returns: 0 in case of success + +The parameter is defined like this: + struct kvm_s390_ucas_mapping { + __u64 user_addr; + __u64 vcpu_addr; + __u64 length; + }; + +This ioctl unmaps the memory in the vcpu's address space starting at +"vcpu_addr" with the length "length". The field "user_addr" is ignored. +All parameters need to be aligned by 1 megabyte. + + +4.67 KVM_S390_VCPU_FAULT + +Capability: KVM_CAP_S390_UCONTROL +Architectures: s390 +Type: vcpu ioctl +Parameters: vcpu absolute address (in) +Returns: 0 in case of success + +This call creates a page table entry on the virtual cpu's address space +(for user controlled virtual machines) or the virtual machine's address +space (for regular virtual machines). This only works for minor faults, +thus it's recommended to access subject memory page via the user page +table upfront. This is useful to handle validity intercepts for user +controlled virtual machines to fault in the virtual cpu's lowcore pages +prior to calling the KVM_RUN ioctl. + + +4.68 KVM_SET_ONE_REG + +Capability: KVM_CAP_ONE_REG +Architectures: all +Type: vcpu ioctl +Parameters: struct kvm_one_reg (in) +Returns: 0 on success, negative value on failure + +struct kvm_one_reg { + __u64 id; + __u64 addr; +}; + +Using this ioctl, a single vcpu register can be set to a specific value +defined by user space with the passed in struct kvm_one_reg, where id +refers to the register identifier as described below and addr is a pointer +to a variable with the respective size. There can be architecture agnostic +and architecture specific registers. Each have their own range of operation +and their own constants and width. To keep track of the implemented +registers, find a list below: + + Arch | Register | Width (bits) + | | + PPC | KVM_REG_PPC_HIOR | 64 + PPC | KVM_REG_PPC_IAC1 | 64 + PPC | KVM_REG_PPC_IAC2 | 64 + PPC | KVM_REG_PPC_IAC3 | 64 + PPC | KVM_REG_PPC_IAC4 | 64 + PPC | KVM_REG_PPC_DAC1 | 64 + PPC | KVM_REG_PPC_DAC2 | 64 + PPC | KVM_REG_PPC_DABR | 64 + PPC | KVM_REG_PPC_DSCR | 64 + PPC | KVM_REG_PPC_PURR | 64 + PPC | KVM_REG_PPC_SPURR | 64 + PPC | KVM_REG_PPC_DAR | 64 + PPC | KVM_REG_PPC_DSISR | 32 + PPC | KVM_REG_PPC_AMR | 64 + PPC | KVM_REG_PPC_UAMOR | 64 + PPC | KVM_REG_PPC_MMCR0 | 64 + PPC | KVM_REG_PPC_MMCR1 | 64 + PPC | KVM_REG_PPC_MMCRA | 64 + PPC | KVM_REG_PPC_MMCR2 | 64 + PPC | KVM_REG_PPC_MMCRS | 64 + PPC | KVM_REG_PPC_SIAR | 64 + PPC | KVM_REG_PPC_SDAR | 64 + PPC | KVM_REG_PPC_SIER | 64 + PPC | KVM_REG_PPC_PMC1 | 32 + PPC | KVM_REG_PPC_PMC2 | 32 + PPC | KVM_REG_PPC_PMC3 | 32 + PPC | KVM_REG_PPC_PMC4 | 32 + PPC | KVM_REG_PPC_PMC5 | 32 + PPC | KVM_REG_PPC_PMC6 | 32 + PPC | KVM_REG_PPC_PMC7 | 32 + PPC | KVM_REG_PPC_PMC8 | 32 + PPC | KVM_REG_PPC_FPR0 | 64 + ... + PPC | KVM_REG_PPC_FPR31 | 64 + PPC | KVM_REG_PPC_VR0 | 128 + ... + PPC | KVM_REG_PPC_VR31 | 128 + PPC | KVM_REG_PPC_VSR0 | 128 + ... + PPC | KVM_REG_PPC_VSR31 | 128 + PPC | KVM_REG_PPC_FPSCR | 64 + PPC | KVM_REG_PPC_VSCR | 32 + PPC | KVM_REG_PPC_VPA_ADDR | 64 + PPC | KVM_REG_PPC_VPA_SLB | 128 + PPC | KVM_REG_PPC_VPA_DTL | 128 + PPC | KVM_REG_PPC_EPCR | 32 + PPC | KVM_REG_PPC_EPR | 32 + PPC | KVM_REG_PPC_TCR | 32 + PPC | KVM_REG_PPC_TSR | 32 + PPC | KVM_REG_PPC_OR_TSR | 32 + PPC | KVM_REG_PPC_CLEAR_TSR | 32 + PPC | KVM_REG_PPC_MAS0 | 32 + PPC | KVM_REG_PPC_MAS1 | 32 + PPC | KVM_REG_PPC_MAS2 | 64 + PPC | KVM_REG_PPC_MAS7_3 | 64 + PPC | KVM_REG_PPC_MAS4 | 32 + PPC | KVM_REG_PPC_MAS6 | 32 + PPC | KVM_REG_PPC_MMUCFG | 32 + PPC | KVM_REG_PPC_TLB0CFG | 32 + PPC | KVM_REG_PPC_TLB1CFG | 32 + PPC | KVM_REG_PPC_TLB2CFG | 32 + PPC | KVM_REG_PPC_TLB3CFG | 32 + PPC | KVM_REG_PPC_TLB0PS | 32 + PPC | KVM_REG_PPC_TLB1PS | 32 + PPC | KVM_REG_PPC_TLB2PS | 32 + PPC | KVM_REG_PPC_TLB3PS | 32 + PPC | KVM_REG_PPC_EPTCFG | 32 + PPC | KVM_REG_PPC_ICP_STATE | 64 + PPC | KVM_REG_PPC_TB_OFFSET | 64 + PPC | KVM_REG_PPC_SPMC1 | 32 + PPC | KVM_REG_PPC_SPMC2 | 32 + PPC | KVM_REG_PPC_IAMR | 64 + PPC | KVM_REG_PPC_TFHAR | 64 + PPC | KVM_REG_PPC_TFIAR | 64 + PPC | KVM_REG_PPC_TEXASR | 64 + PPC | KVM_REG_PPC_FSCR | 64 + PPC | KVM_REG_PPC_PSPB | 32 + PPC | KVM_REG_PPC_EBBHR | 64 + PPC | KVM_REG_PPC_EBBRR | 64 + PPC | KVM_REG_PPC_BESCR | 64 + PPC | KVM_REG_PPC_TAR | 64 + PPC | KVM_REG_PPC_DPDES | 64 + PPC | KVM_REG_PPC_DAWR | 64 + PPC | KVM_REG_PPC_DAWRX | 64 + PPC | KVM_REG_PPC_CIABR | 64 + PPC | KVM_REG_PPC_IC | 64 + PPC | KVM_REG_PPC_VTB | 64 + PPC | KVM_REG_PPC_CSIGR | 64 + PPC | KVM_REG_PPC_TACR | 64 + PPC | KVM_REG_PPC_TCSCR | 64 + PPC | KVM_REG_PPC_PID | 64 + PPC | KVM_REG_PPC_ACOP | 64 + PPC | KVM_REG_PPC_VRSAVE | 32 + PPC | KVM_REG_PPC_LPCR | 32 + PPC | KVM_REG_PPC_LPCR_64 | 64 + PPC | KVM_REG_PPC_PPR | 64 + PPC | KVM_REG_PPC_ARCH_COMPAT | 32 + PPC | KVM_REG_PPC_DABRX | 32 + PPC | KVM_REG_PPC_WORT | 64 + PPC | KVM_REG_PPC_SPRG9 | 64 + PPC | KVM_REG_PPC_DBSR | 32 + PPC | KVM_REG_PPC_TIDR | 64 + PPC | KVM_REG_PPC_PSSCR | 64 + PPC | KVM_REG_PPC_DEC_EXPIRY | 64 + PPC | KVM_REG_PPC_TM_GPR0 | 64 + ... + PPC | KVM_REG_PPC_TM_GPR31 | 64 + PPC | KVM_REG_PPC_TM_VSR0 | 128 + ... + PPC | KVM_REG_PPC_TM_VSR63 | 128 + PPC | KVM_REG_PPC_TM_CR | 64 + PPC | KVM_REG_PPC_TM_LR | 64 + PPC | KVM_REG_PPC_TM_CTR | 64 + PPC | KVM_REG_PPC_TM_FPSCR | 64 + PPC | KVM_REG_PPC_TM_AMR | 64 + PPC | KVM_REG_PPC_TM_PPR | 64 + PPC | KVM_REG_PPC_TM_VRSAVE | 64 + PPC | KVM_REG_PPC_TM_VSCR | 32 + PPC | KVM_REG_PPC_TM_DSCR | 64 + PPC | KVM_REG_PPC_TM_TAR | 64 + PPC | KVM_REG_PPC_TM_XER | 64 + | | + MIPS | KVM_REG_MIPS_R0 | 64 + ... + MIPS | KVM_REG_MIPS_R31 | 64 + MIPS | KVM_REG_MIPS_HI | 64 + MIPS | KVM_REG_MIPS_LO | 64 + MIPS | KVM_REG_MIPS_PC | 64 + MIPS | KVM_REG_MIPS_CP0_INDEX | 32 + MIPS | KVM_REG_MIPS_CP0_ENTRYLO0 | 64 + MIPS | KVM_REG_MIPS_CP0_ENTRYLO1 | 64 + MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64 + MIPS | KVM_REG_MIPS_CP0_CONTEXTCONFIG| 32 + MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64 + MIPS | KVM_REG_MIPS_CP0_XCONTEXTCONFIG| 64 + MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32 + MIPS | KVM_REG_MIPS_CP0_PAGEGRAIN | 32 + MIPS | KVM_REG_MIPS_CP0_SEGCTL0 | 64 + MIPS | KVM_REG_MIPS_CP0_SEGCTL1 | 64 + MIPS | KVM_REG_MIPS_CP0_SEGCTL2 | 64 + MIPS | KVM_REG_MIPS_CP0_PWBASE | 64 + MIPS | KVM_REG_MIPS_CP0_PWFIELD | 64 + MIPS | KVM_REG_MIPS_CP0_PWSIZE | 64 + MIPS | KVM_REG_MIPS_CP0_WIRED | 32 + MIPS | KVM_REG_MIPS_CP0_PWCTL | 32 + MIPS | KVM_REG_MIPS_CP0_HWRENA | 32 + MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64 + MIPS | KVM_REG_MIPS_CP0_BADINSTR | 32 + MIPS | KVM_REG_MIPS_CP0_BADINSTRP | 32 + MIPS | KVM_REG_MIPS_CP0_COUNT | 32 + MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64 + MIPS | KVM_REG_MIPS_CP0_COMPARE | 32 + MIPS | KVM_REG_MIPS_CP0_STATUS | 32 + MIPS | KVM_REG_MIPS_CP0_INTCTL | 32 + MIPS | KVM_REG_MIPS_CP0_CAUSE | 32 + MIPS | KVM_REG_MIPS_CP0_EPC | 64 + MIPS | KVM_REG_MIPS_CP0_PRID | 32 + MIPS | KVM_REG_MIPS_CP0_EBASE | 64 + MIPS | KVM_REG_MIPS_CP0_CONFIG | 32 + MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32 + MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32 + MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32 + MIPS | KVM_REG_MIPS_CP0_CONFIG4 | 32 + MIPS | KVM_REG_MIPS_CP0_CONFIG5 | 32 + MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32 + MIPS | KVM_REG_MIPS_CP0_XCONTEXT | 64 + MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64 + MIPS | KVM_REG_MIPS_CP0_KSCRATCH1 | 64 + MIPS | KVM_REG_MIPS_CP0_KSCRATCH2 | 64 + MIPS | KVM_REG_MIPS_CP0_KSCRATCH3 | 64 + MIPS | KVM_REG_MIPS_CP0_KSCRATCH4 | 64 + MIPS | KVM_REG_MIPS_CP0_KSCRATCH5 | 64 + MIPS | KVM_REG_MIPS_CP0_KSCRATCH6 | 64 + MIPS | KVM_REG_MIPS_CP0_MAAR(0..63) | 64 + MIPS | KVM_REG_MIPS_COUNT_CTL | 64 + MIPS | KVM_REG_MIPS_COUNT_RESUME | 64 + MIPS | KVM_REG_MIPS_COUNT_HZ | 64 + MIPS | KVM_REG_MIPS_FPR_32(0..31) | 32 + MIPS | KVM_REG_MIPS_FPR_64(0..31) | 64 + MIPS | KVM_REG_MIPS_VEC_128(0..31) | 128 + MIPS | KVM_REG_MIPS_FCR_IR | 32 + MIPS | KVM_REG_MIPS_FCR_CSR | 32 + MIPS | KVM_REG_MIPS_MSA_IR | 32 + MIPS | KVM_REG_MIPS_MSA_CSR | 32 + +ARM registers are mapped using the lower 32 bits. The upper 16 of that +is the register group type, or coprocessor number: + +ARM core registers have the following id bit patterns: + 0x4020 0000 0010 <index into the kvm_regs struct:16> + +ARM 32-bit CP15 registers have the following id bit patterns: + 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3> + +ARM 64-bit CP15 registers have the following id bit patterns: + 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3> + +ARM CCSIDR registers are demultiplexed by CSSELR value: + 0x4020 0000 0011 00 <csselr:8> + +ARM 32-bit VFP control registers have the following id bit patterns: + 0x4020 0000 0012 1 <regno:12> + +ARM 64-bit FP registers have the following id bit patterns: + 0x4030 0000 0012 0 <regno:12> + +ARM firmware pseudo-registers have the following bit pattern: + 0x4030 0000 0014 <regno:16> + + +arm64 registers are mapped using the lower 32 bits. The upper 16 of +that is the register group type, or coprocessor number: + +arm64 core/FP-SIMD registers have the following id bit patterns. Note +that the size of the access is variable, as the kvm_regs structure +contains elements ranging from 32 to 128 bits. The index is a 32bit +value in the kvm_regs structure seen as a 32bit array. + 0x60x0 0000 0010 <index into the kvm_regs struct:16> + +arm64 CCSIDR registers are demultiplexed by CSSELR value: + 0x6020 0000 0011 00 <csselr:8> + +arm64 system registers have the following id bit patterns: + 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3> + +arm64 firmware pseudo-registers have the following bit pattern: + 0x6030 0000 0014 <regno:16> + + +MIPS registers are mapped using the lower 32 bits. The upper 16 of that is +the register group type: + +MIPS core registers (see above) have the following id bit patterns: + 0x7030 0000 0000 <reg:16> + +MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit +patterns depending on whether they're 32-bit or 64-bit registers: + 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit) + 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit) + +Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64 +versions of the EntryLo registers regardless of the word size of the host +hardware, host kernel, guest, and whether XPA is present in the guest, i.e. +with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and +the PFNX field starting at bit 30. + +MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) above) have the following id bit +patterns: + 0x7030 0000 0001 01 <reg:8> + +MIPS KVM control registers (see above) have the following id bit patterns: + 0x7030 0000 0002 <reg:16> + +MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following +id bit patterns depending on the size of the register being accessed. They are +always accessed according to the current guest FPU mode (Status.FR and +Config5.FRE), i.e. as the guest would see them, and they become unpredictable +if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector +registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they +overlap the FPU registers: + 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers) + 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers) + 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers) + +MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the +following id bit patterns: + 0x7020 0000 0003 01 <0:3> <reg:5> + +MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the +following id bit patterns: + 0x7020 0000 0003 02 <0:3> <reg:5> + + +4.69 KVM_GET_ONE_REG + +Capability: KVM_CAP_ONE_REG +Architectures: all +Type: vcpu ioctl +Parameters: struct kvm_one_reg (in and out) +Returns: 0 on success, negative value on failure + +This ioctl allows to receive the value of a single register implemented +in a vcpu. The register to read is indicated by the "id" field of the +kvm_one_reg struct passed in. On success, the register value can be found +at the memory location pointed to by "addr". + +The list of registers accessible using this interface is identical to the +list in 4.68. + + +4.70 KVM_KVMCLOCK_CTRL + +Capability: KVM_CAP_KVMCLOCK_CTRL +Architectures: Any that implement pvclocks (currently x86 only) +Type: vcpu ioctl +Parameters: None +Returns: 0 on success, -1 on error + +This signals to the host kernel that the specified guest is being paused by +userspace. The host will set a flag in the pvclock structure that is checked +from the soft lockup watchdog. The flag is part of the pvclock structure that +is shared between guest and host, specifically the second bit of the flags +field of the pvclock_vcpu_time_info structure. It will be set exclusively by +the host and read/cleared exclusively by the guest. The guest operation of +checking and clearing the flag must an atomic operation so +load-link/store-conditional, or equivalent must be used. There are two cases +where the guest will clear the flag: when the soft lockup watchdog timer resets +itself or when a soft lockup is detected. This ioctl can be called any time +after pausing the vcpu, but before it is resumed. + + +4.71 KVM_SIGNAL_MSI + +Capability: KVM_CAP_SIGNAL_MSI +Architectures: x86 arm arm64 +Type: vm ioctl +Parameters: struct kvm_msi (in) +Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error + +Directly inject a MSI message. Only valid with in-kernel irqchip that handles +MSI messages. + +struct kvm_msi { + __u32 address_lo; + __u32 address_hi; + __u32 data; + __u32 flags; + __u32 devid; + __u8 pad[12]; +}; + +flags: KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM + KVM_CAP_MSI_DEVID capability advertises the requirement to provide + the device ID. If this capability is not available, userspace + should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail. + +If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier +for the device that wrote the MSI message. For PCI, this is usually a +BFD identifier in the lower 16 bits. + +On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS +feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled, +address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of +address_hi must be zero. + + +4.71 KVM_CREATE_PIT2 + +Capability: KVM_CAP_PIT2 +Architectures: x86 +Type: vm ioctl +Parameters: struct kvm_pit_config (in) +Returns: 0 on success, -1 on error + +Creates an in-kernel device model for the i8254 PIT. This call is only valid +after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following +parameters have to be passed: + +struct kvm_pit_config { + __u32 flags; + __u32 pad[15]; +}; + +Valid flags are: + +#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */ + +PIT timer interrupts may use a per-VM kernel thread for injection. If it +exists, this thread will have a name of the following pattern: + +kvm-pit/<owner-process-pid> + +When running a guest with elevated priorities, the scheduling parameters of +this thread may have to be adjusted accordingly. + +This IOCTL replaces the obsolete KVM_CREATE_PIT. + + +4.72 KVM_GET_PIT2 + +Capability: KVM_CAP_PIT_STATE2 +Architectures: x86 +Type: vm ioctl +Parameters: struct kvm_pit_state2 (out) +Returns: 0 on success, -1 on error + +Retrieves the state of the in-kernel PIT model. Only valid after +KVM_CREATE_PIT2. The state is returned in the following structure: + +struct kvm_pit_state2 { + struct kvm_pit_channel_state channels[3]; + __u32 flags; + __u32 reserved[9]; +}; + +Valid flags are: + +/* disable PIT in HPET legacy mode */ +#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001 + +This IOCTL replaces the obsolete KVM_GET_PIT. + + +4.73 KVM_SET_PIT2 + +Capability: KVM_CAP_PIT_STATE2 +Architectures: x86 +Type: vm ioctl +Parameters: struct kvm_pit_state2 (in) +Returns: 0 on success, -1 on error + +Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2. +See KVM_GET_PIT2 for details on struct kvm_pit_state2. + +This IOCTL replaces the obsolete KVM_SET_PIT. + + +4.74 KVM_PPC_GET_SMMU_INFO + +Capability: KVM_CAP_PPC_GET_SMMU_INFO +Architectures: powerpc +Type: vm ioctl +Parameters: None +Returns: 0 on success, -1 on error + +This populates and returns a structure describing the features of +the "Server" class MMU emulation supported by KVM. +This can in turn be used by userspace to generate the appropriate +device-tree properties for the guest operating system. + +The structure contains some global information, followed by an +array of supported segment page sizes: + + struct kvm_ppc_smmu_info { + __u64 flags; + __u32 slb_size; + __u32 pad; + struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ]; + }; + +The supported flags are: + + - KVM_PPC_PAGE_SIZES_REAL: + When that flag is set, guest page sizes must "fit" the backing + store page sizes. When not set, any page size in the list can + be used regardless of how they are backed by userspace. + + - KVM_PPC_1T_SEGMENTS + The emulated MMU supports 1T segments in addition to the + standard 256M ones. + +The "slb_size" field indicates how many SLB entries are supported + +The "sps" array contains 8 entries indicating the supported base +page sizes for a segment in increasing order. Each entry is defined +as follow: + + struct kvm_ppc_one_seg_page_size { + __u32 page_shift; /* Base page shift of segment (or 0) */ + __u32 slb_enc; /* SLB encoding for BookS */ + struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ]; + }; + +An entry with a "page_shift" of 0 is unused. Because the array is +organized in increasing order, a lookup can stop when encoutering +such an entry. + +The "slb_enc" field provides the encoding to use in the SLB for the +page size. The bits are in positions such as the value can directly +be OR'ed into the "vsid" argument of the slbmte instruction. + +The "enc" array is a list which for each of those segment base page +size provides the list of supported actual page sizes (which can be +only larger or equal to the base page size), along with the +corresponding encoding in the hash PTE. Similarly, the array is +8 entries sorted by increasing sizes and an entry with a "0" shift +is an empty entry and a terminator: + + struct kvm_ppc_one_page_size { + __u32 page_shift; /* Page shift (or 0) */ + __u32 pte_enc; /* Encoding in the HPTE (>>12) */ + }; + +The "pte_enc" field provides a value that can OR'ed into the hash +PTE's RPN field (ie, it needs to be shifted left by 12 to OR it +into the hash PTE second double word). + +4.75 KVM_IRQFD + +Capability: KVM_CAP_IRQFD +Architectures: x86 s390 arm arm64 +Type: vm ioctl +Parameters: struct kvm_irqfd (in) +Returns: 0 on success, -1 on error + +Allows setting an eventfd to directly trigger a guest interrupt. +kvm_irqfd.fd specifies the file descriptor to use as the eventfd and +kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When +an event is triggered on the eventfd, an interrupt is injected into +the guest using the specified gsi pin. The irqfd is removed using +the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd +and kvm_irqfd.gsi. + +With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify +mechanism allowing emulation of level-triggered, irqfd-based +interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an +additional eventfd in the kvm_irqfd.resamplefd field. When operating +in resample mode, posting of an interrupt through kvm_irq.fd asserts +the specified gsi in the irqchip. When the irqchip is resampled, such +as from an EOI, the gsi is de-asserted and the user is notified via +kvm_irqfd.resamplefd. It is the user's responsibility to re-queue +the interrupt if the device making use of it still requires service. +Note that closing the resamplefd is not sufficient to disable the +irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment +and need not be specified with KVM_IRQFD_FLAG_DEASSIGN. + +On arm/arm64, gsi routing being supported, the following can happen: +- in case no routing entry is associated to this gsi, injection fails +- in case the gsi is associated to an irqchip routing entry, + irqchip.pin + 32 corresponds to the injected SPI ID. +- in case the gsi is associated to an MSI routing entry, the MSI + message and device ID are translated into an LPI (support restricted + to GICv3 ITS in-kernel emulation). + +4.76 KVM_PPC_ALLOCATE_HTAB + +Capability: KVM_CAP_PPC_ALLOC_HTAB +Architectures: powerpc +Type: vm ioctl +Parameters: Pointer to u32 containing hash table order (in/out) +Returns: 0 on success, -1 on error + +This requests the host kernel to allocate an MMU hash table for a +guest using the PAPR paravirtualization interface. This only does +anything if the kernel is configured to use the Book 3S HV style of +virtualization. Otherwise the capability doesn't exist and the ioctl +returns an ENOTTY error. The rest of this description assumes Book 3S +HV. + +There must be no vcpus running when this ioctl is called; if there +are, it will do nothing and return an EBUSY error. + +The parameter is a pointer to a 32-bit unsigned integer variable +containing the order (log base 2) of the desired size of the hash +table, which must be between 18 and 46. On successful return from the +ioctl, the value will not be changed by the kernel. + +If no hash table has been allocated when any vcpu is asked to run +(with the KVM_RUN ioctl), the host kernel will allocate a +default-sized hash table (16 MB). + +If this ioctl is called when a hash table has already been allocated, +with a different order from the existing hash table, the existing hash +table will be freed and a new one allocated. If this is ioctl is +called when a hash table has already been allocated of the same order +as specified, the kernel will clear out the existing hash table (zero +all HPTEs). In either case, if the guest is using the virtualized +real-mode area (VRMA) facility, the kernel will re-create the VMRA +HPTEs on the next KVM_RUN of any vcpu. + +4.77 KVM_S390_INTERRUPT + +Capability: basic +Architectures: s390 +Type: vm ioctl, vcpu ioctl +Parameters: struct kvm_s390_interrupt (in) +Returns: 0 on success, -1 on error + +Allows to inject an interrupt to the guest. Interrupts can be floating +(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type. + +Interrupt parameters are passed via kvm_s390_interrupt: + +struct kvm_s390_interrupt { + __u32 type; + __u32 parm; + __u64 parm64; +}; + +type can be one of the following: + +KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm +KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm +KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm +KVM_S390_RESTART (vcpu) - restart +KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt +KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt +KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt + parameters in parm and parm64 +KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm +KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm +KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm +KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an + I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel); + I/O interruption parameters in parm (subchannel) and parm64 (intparm, + interruption subclass) +KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm, + machine check interrupt code in parm64 (note that + machine checks needing further payload are not + supported by this ioctl) + +Note that the vcpu ioctl is asynchronous to vcpu execution. + +4.78 KVM_PPC_GET_HTAB_FD + +Capability: KVM_CAP_PPC_HTAB_FD +Architectures: powerpc +Type: vm ioctl +Parameters: Pointer to struct kvm_get_htab_fd (in) +Returns: file descriptor number (>= 0) on success, -1 on error + +This returns a file descriptor that can be used either to read out the +entries in the guest's hashed page table (HPT), or to write entries to +initialize the HPT. The returned fd can only be written to if the +KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and +can only be read if that bit is clear. The argument struct looks like +this: + +/* For KVM_PPC_GET_HTAB_FD */ +struct kvm_get_htab_fd { + __u64 flags; + __u64 start_index; + __u64 reserved[2]; +}; + +/* Values for kvm_get_htab_fd.flags */ +#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1) +#define KVM_GET_HTAB_WRITE ((__u64)0x2) + +The `start_index' field gives the index in the HPT of the entry at +which to start reading. It is ignored when writing. + +Reads on the fd will initially supply information about all +"interesting" HPT entries. Interesting entries are those with the +bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise +all entries. When the end of the HPT is reached, the read() will +return. If read() is called again on the fd, it will start again from +the beginning of the HPT, but will only return HPT entries that have +changed since they were last read. + +Data read or written is structured as a header (8 bytes) followed by a +series of valid HPT entries (16 bytes) each. The header indicates how +many valid HPT entries there are and how many invalid entries follow +the valid entries. The invalid entries are not represented explicitly +in the stream. The header format is: + +struct kvm_get_htab_header { + __u32 index; + __u16 n_valid; + __u16 n_invalid; +}; + +Writes to the fd create HPT entries starting at the index given in the +header; first `n_valid' valid entries with contents from the data +written, then `n_invalid' invalid entries, invalidating any previously +valid entries found. + +4.79 KVM_CREATE_DEVICE + +Capability: KVM_CAP_DEVICE_CTRL +Type: vm ioctl +Parameters: struct kvm_create_device (in/out) +Returns: 0 on success, -1 on error +Errors: + ENODEV: The device type is unknown or unsupported + EEXIST: Device already created, and this type of device may not + be instantiated multiple times + + Other error conditions may be defined by individual device types or + have their standard meanings. + +Creates an emulated device in the kernel. The file descriptor returned +in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR. + +If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the +device type is supported (not necessarily whether it can be created +in the current vm). + +Individual devices should not define flags. Attributes should be used +for specifying any behavior that is not implied by the device type +number. + +struct kvm_create_device { + __u32 type; /* in: KVM_DEV_TYPE_xxx */ + __u32 fd; /* out: device handle */ + __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */ +}; + +4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR + +Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device, + KVM_CAP_VCPU_ATTRIBUTES for vcpu device +Type: device ioctl, vm ioctl, vcpu ioctl +Parameters: struct kvm_device_attr +Returns: 0 on success, -1 on error +Errors: + ENXIO: The group or attribute is unknown/unsupported for this device + or hardware support is missing. + EPERM: The attribute cannot (currently) be accessed this way + (e.g. read-only attribute, or attribute that only makes + sense when the device is in a different state) + + Other error conditions may be defined by individual device types. + +Gets/sets a specified piece of device configuration and/or state. The +semantics are device-specific. See individual device documentation in +the "devices" directory. As with ONE_REG, the size of the data +transferred is defined by the particular attribute. + +struct kvm_device_attr { + __u32 flags; /* no flags currently defined */ + __u32 group; /* device-defined */ + __u64 attr; /* group-defined */ + __u64 addr; /* userspace address of attr data */ +}; + +4.81 KVM_HAS_DEVICE_ATTR + +Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device, + KVM_CAP_VCPU_ATTRIBUTES for vcpu device +Type: device ioctl, vm ioctl, vcpu ioctl +Parameters: struct kvm_device_attr +Returns: 0 on success, -1 on error +Errors: + ENXIO: The group or attribute is unknown/unsupported for this device + or hardware support is missing. + +Tests whether a device supports a particular attribute. A successful +return indicates the attribute is implemented. It does not necessarily +indicate that the attribute can be read or written in the device's +current state. "addr" is ignored. + +4.82 KVM_ARM_VCPU_INIT + +Capability: basic +Architectures: arm, arm64 +Type: vcpu ioctl +Parameters: struct kvm_vcpu_init (in) +Returns: 0 on success; -1 on error +Errors: + EINVAL: the target is unknown, or the combination of features is invalid. + ENOENT: a features bit specified is unknown. + +This tells KVM what type of CPU to present to the guest, and what +optional features it should have. This will cause a reset of the cpu +registers to their initial values. If this is not called, KVM_RUN will +return ENOEXEC for that vcpu. + +Note that because some registers reflect machine topology, all vcpus +should be created before this ioctl is invoked. + +Userspace can call this function multiple times for a given vcpu, including +after the vcpu has been run. This will reset the vcpu to its initial +state. All calls to this function after the initial call must use the same +target and same set of feature flags, otherwise EINVAL will be returned. + +Possible features: + - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state. + Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on + and execute guest code when KVM_RUN is called. + - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode. + Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only). + - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 (or a future revision + backward compatible with v0.2) for the CPU. + Depends on KVM_CAP_ARM_PSCI_0_2. + - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU. + Depends on KVM_CAP_ARM_PMU_V3. + + +4.83 KVM_ARM_PREFERRED_TARGET + +Capability: basic +Architectures: arm, arm64 +Type: vm ioctl +Parameters: struct struct kvm_vcpu_init (out) +Returns: 0 on success; -1 on error +Errors: + ENODEV: no preferred target available for the host + +This queries KVM for preferred CPU target type which can be emulated +by KVM on underlying host. + +The ioctl returns struct kvm_vcpu_init instance containing information +about preferred CPU target type and recommended features for it. The +kvm_vcpu_init->features bitmap returned will have feature bits set if +the preferred target recommends setting these features, but this is +not mandatory. + +The information returned by this ioctl can be used to prepare an instance +of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in +in VCPU matching underlying host. + + +4.84 KVM_GET_REG_LIST + +Capability: basic +Architectures: arm, arm64, mips +Type: vcpu ioctl +Parameters: struct kvm_reg_list (in/out) +Returns: 0 on success; -1 on error +Errors: + E2BIG: the reg index list is too big to fit in the array specified by + the user (the number required will be written into n). + +struct kvm_reg_list { + __u64 n; /* number of registers in reg[] */ + __u64 reg[0]; +}; + +This ioctl returns the guest registers that are supported for the +KVM_GET_ONE_REG/KVM_SET_ONE_REG calls. + + +4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated) + +Capability: KVM_CAP_ARM_SET_DEVICE_ADDR +Architectures: arm, arm64 +Type: vm ioctl +Parameters: struct kvm_arm_device_address (in) +Returns: 0 on success, -1 on error +Errors: + ENODEV: The device id is unknown + ENXIO: Device not supported on current system + EEXIST: Address already set + E2BIG: Address outside guest physical address space + EBUSY: Address overlaps with other device range + +struct kvm_arm_device_addr { + __u64 id; + __u64 addr; +}; + +Specify a device address in the guest's physical address space where guests +can access emulated or directly exposed devices, which the host kernel needs +to know about. The id field is an architecture specific identifier for a +specific device. + +ARM/arm64 divides the id field into two parts, a device id and an +address type id specific to the individual device. + + bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 | + field: | 0x00000000 | device id | addr type id | + +ARM/arm64 currently only require this when using the in-kernel GIC +support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2 +as the device id. When setting the base address for the guest's +mapping of the VGIC virtual CPU and distributor interface, the ioctl +must be called after calling KVM_CREATE_IRQCHIP, but before calling +KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the +base addresses will return -EEXIST. + +Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API +should be used instead. + + +4.86 KVM_PPC_RTAS_DEFINE_TOKEN + +Capability: KVM_CAP_PPC_RTAS +Architectures: ppc +Type: vm ioctl +Parameters: struct kvm_rtas_token_args +Returns: 0 on success, -1 on error + +Defines a token value for a RTAS (Run Time Abstraction Services) +service in order to allow it to be handled in the kernel. The +argument struct gives the name of the service, which must be the name +of a service that has a kernel-side implementation. If the token +value is non-zero, it will be associated with that service, and +subsequent RTAS calls by the guest specifying that token will be +handled by the kernel. If the token value is 0, then any token +associated with the service will be forgotten, and subsequent RTAS +calls by the guest for that service will be passed to userspace to be +handled. + +4.87 KVM_SET_GUEST_DEBUG + +Capability: KVM_CAP_SET_GUEST_DEBUG +Architectures: x86, s390, ppc, arm64 +Type: vcpu ioctl +Parameters: struct kvm_guest_debug (in) +Returns: 0 on success; -1 on error + +struct kvm_guest_debug { + __u32 control; + __u32 pad; + struct kvm_guest_debug_arch arch; +}; + +Set up the processor specific debug registers and configure vcpu for +handling guest debug events. There are two parts to the structure, the +first a control bitfield indicates the type of debug events to handle +when running. Common control bits are: + + - KVM_GUESTDBG_ENABLE: guest debugging is enabled + - KVM_GUESTDBG_SINGLESTEP: the next run should single-step + +The top 16 bits of the control field are architecture specific control +flags which can include the following: + + - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64] + - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390, arm64] + - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86] + - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86] + - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390] + +For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints +are enabled in memory so we need to ensure breakpoint exceptions are +correctly trapped and the KVM run loop exits at the breakpoint and not +running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP +we need to ensure the guest vCPUs architecture specific registers are +updated to the correct (supplied) values. + +The second part of the structure is architecture specific and +typically contains a set of debug registers. + +For arm64 the number of debug registers is implementation defined and +can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and +KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number +indicating the number of supported registers. + +When debug events exit the main run loop with the reason +KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run +structure containing architecture specific debug information. + +4.88 KVM_GET_EMULATED_CPUID + +Capability: KVM_CAP_EXT_EMUL_CPUID +Architectures: x86 +Type: system ioctl +Parameters: struct kvm_cpuid2 (in/out) +Returns: 0 on success, -1 on error + +struct kvm_cpuid2 { + __u32 nent; + __u32 flags; + struct kvm_cpuid_entry2 entries[0]; +}; + +The member 'flags' is used for passing flags from userspace. + +#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0) +#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1) +#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2) + +struct kvm_cpuid_entry2 { + __u32 function; + __u32 index; + __u32 flags; + __u32 eax; + __u32 ebx; + __u32 ecx; + __u32 edx; + __u32 padding[3]; +}; + +This ioctl returns x86 cpuid features which are emulated by +kvm.Userspace can use the information returned by this ioctl to query +which features are emulated by kvm instead of being present natively. + +Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2 +structure with the 'nent' field indicating the number of entries in +the variable-size array 'entries'. If the number of entries is too low +to describe the cpu capabilities, an error (E2BIG) is returned. If the +number is too high, the 'nent' field is adjusted and an error (ENOMEM) +is returned. If the number is just right, the 'nent' field is adjusted +to the number of valid entries in the 'entries' array, which is then +filled. + +The entries returned are the set CPUID bits of the respective features +which kvm emulates, as returned by the CPUID instruction, with unknown +or unsupported feature bits cleared. + +Features like x2apic, for example, may not be present in the host cpu +but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be +emulated efficiently and thus not included here. + +The fields in each entry are defined as follows: + + function: the eax value used to obtain the entry + index: the ecx value used to obtain the entry (for entries that are + affected by ecx) + flags: an OR of zero or more of the following: + KVM_CPUID_FLAG_SIGNIFCANT_INDEX: + if the index field is valid + KVM_CPUID_FLAG_STATEFUL_FUNC: + if cpuid for this function returns different values for successive + invocations; there will be several entries with the same function, + all with this flag set + KVM_CPUID_FLAG_STATE_READ_NEXT: + for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is + the first entry to be read by a cpu + eax, ebx, ecx, edx: the values returned by the cpuid instruction for + this function/index combination + +4.89 KVM_S390_MEM_OP + +Capability: KVM_CAP_S390_MEM_OP +Architectures: s390 +Type: vcpu ioctl +Parameters: struct kvm_s390_mem_op (in) +Returns: = 0 on success, + < 0 on generic error (e.g. -EFAULT or -ENOMEM), + > 0 if an exception occurred while walking the page tables + +Read or write data from/to the logical (virtual) memory of a VCPU. + +Parameters are specified via the following structure: + +struct kvm_s390_mem_op { + __u64 gaddr; /* the guest address */ + __u64 flags; /* flags */ + __u32 size; /* amount of bytes */ + __u32 op; /* type of operation */ + __u64 buf; /* buffer in userspace */ + __u8 ar; /* the access register number */ + __u8 reserved[31]; /* should be set to 0 */ +}; + +The type of operation is specified in the "op" field. It is either +KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or +KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The +KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check +whether the corresponding memory access would create an access exception +(without touching the data in the memory at the destination). In case an +access exception occurred while walking the MMU tables of the guest, the +ioctl returns a positive error number to indicate the type of exception. +This exception is also raised directly at the corresponding VCPU if the +flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field. + +The start address of the memory region has to be specified in the "gaddr" +field, and the length of the region in the "size" field. "buf" is the buffer +supplied by the userspace application where the read data should be written +to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written +is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL +when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access +register number to be used. + +The "reserved" field is meant for future extensions. It is not used by +KVM with the currently defined set of flags. + +4.90 KVM_S390_GET_SKEYS + +Capability: KVM_CAP_S390_SKEYS +Architectures: s390 +Type: vm ioctl +Parameters: struct kvm_s390_skeys +Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage + keys, negative value on error + +This ioctl is used to get guest storage key values on the s390 +architecture. The ioctl takes parameters via the kvm_s390_skeys struct. + +struct kvm_s390_skeys { + __u64 start_gfn; + __u64 count; + __u64 skeydata_addr; + __u32 flags; + __u32 reserved[9]; +}; + +The start_gfn field is the number of the first guest frame whose storage keys +you want to get. + +The count field is the number of consecutive frames (starting from start_gfn) +whose storage keys to get. The count field must be at least 1 and the maximum +allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range +will cause the ioctl to return -EINVAL. + +The skeydata_addr field is the address to a buffer large enough to hold count +bytes. This buffer will be filled with storage key data by the ioctl. + +4.91 KVM_S390_SET_SKEYS + +Capability: KVM_CAP_S390_SKEYS +Architectures: s390 +Type: vm ioctl +Parameters: struct kvm_s390_skeys +Returns: 0 on success, negative value on error + +This ioctl is used to set guest storage key values on the s390 +architecture. The ioctl takes parameters via the kvm_s390_skeys struct. +See section on KVM_S390_GET_SKEYS for struct definition. + +The start_gfn field is the number of the first guest frame whose storage keys +you want to set. + +The count field is the number of consecutive frames (starting from start_gfn) +whose storage keys to get. The count field must be at least 1 and the maximum +allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range +will cause the ioctl to return -EINVAL. + +The skeydata_addr field is the address to a buffer containing count bytes of +storage keys. Each byte in the buffer will be set as the storage key for a +single frame starting at start_gfn for count frames. + +Note: If any architecturally invalid key value is found in the given data then +the ioctl will return -EINVAL. + +4.92 KVM_S390_IRQ + +Capability: KVM_CAP_S390_INJECT_IRQ +Architectures: s390 +Type: vcpu ioctl +Parameters: struct kvm_s390_irq (in) +Returns: 0 on success, -1 on error +Errors: + EINVAL: interrupt type is invalid + type is KVM_S390_SIGP_STOP and flag parameter is invalid value + type is KVM_S390_INT_EXTERNAL_CALL and code is bigger + than the maximum of VCPUs + EBUSY: type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped + type is KVM_S390_SIGP_STOP and a stop irq is already pending + type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt + is already pending + +Allows to inject an interrupt to the guest. + +Using struct kvm_s390_irq as a parameter allows +to inject additional payload which is not +possible via KVM_S390_INTERRUPT. + +Interrupt parameters are passed via kvm_s390_irq: + +struct kvm_s390_irq { + __u64 type; + union { + struct kvm_s390_io_info io; + struct kvm_s390_ext_info ext; + struct kvm_s390_pgm_info pgm; + struct kvm_s390_emerg_info emerg; + struct kvm_s390_extcall_info extcall; + struct kvm_s390_prefix_info prefix; + struct kvm_s390_stop_info stop; + struct kvm_s390_mchk_info mchk; + char reserved[64]; + } u; +}; + +type can be one of the following: + +KVM_S390_SIGP_STOP - sigp stop; parameter in .stop +KVM_S390_PROGRAM_INT - program check; parameters in .pgm +KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix +KVM_S390_RESTART - restart; no parameters +KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters +KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters +KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg +KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall +KVM_S390_MCHK - machine check interrupt; parameters in .mchk + + +Note that the vcpu ioctl is asynchronous to vcpu execution. + +4.94 KVM_S390_GET_IRQ_STATE + +Capability: KVM_CAP_S390_IRQ_STATE +Architectures: s390 +Type: vcpu ioctl +Parameters: struct kvm_s390_irq_state (out) +Returns: >= number of bytes copied into buffer, + -EINVAL if buffer size is 0, + -ENOBUFS if buffer size is too small to fit all pending interrupts, + -EFAULT if the buffer address was invalid + +This ioctl allows userspace to retrieve the complete state of all currently +pending interrupts in a single buffer. Use cases include migration +and introspection. The parameter structure contains the address of a +userspace buffer and its length: + +struct kvm_s390_irq_state { + __u64 buf; + __u32 flags; /* will stay unused for compatibility reasons */ + __u32 len; + __u32 reserved[4]; /* will stay unused for compatibility reasons */ +}; + +Userspace passes in the above struct and for each pending interrupt a +struct kvm_s390_irq is copied to the provided buffer. + +The structure contains a flags and a reserved field for future extensions. As +the kernel never checked for flags == 0 and QEMU never pre-zeroed flags and +reserved, these fields can not be used in the future without breaking +compatibility. + +If -ENOBUFS is returned the buffer provided was too small and userspace +may retry with a bigger buffer. + +4.95 KVM_S390_SET_IRQ_STATE + +Capability: KVM_CAP_S390_IRQ_STATE +Architectures: s390 +Type: vcpu ioctl +Parameters: struct kvm_s390_irq_state (in) +Returns: 0 on success, + -EFAULT if the buffer address was invalid, + -EINVAL for an invalid buffer length (see below), + -EBUSY if there were already interrupts pending, + errors occurring when actually injecting the + interrupt. See KVM_S390_IRQ. + +This ioctl allows userspace to set the complete state of all cpu-local +interrupts currently pending for the vcpu. It is intended for restoring +interrupt state after a migration. The input parameter is a userspace buffer +containing a struct kvm_s390_irq_state: + +struct kvm_s390_irq_state { + __u64 buf; + __u32 flags; /* will stay unused for compatibility reasons */ + __u32 len; + __u32 reserved[4]; /* will stay unused for compatibility reasons */ +}; + +The restrictions for flags and reserved apply as well. +(see KVM_S390_GET_IRQ_STATE) + +The userspace memory referenced by buf contains a struct kvm_s390_irq +for each interrupt to be injected into the guest. +If one of the interrupts could not be injected for some reason the +ioctl aborts. + +len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0 +and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq), +which is the maximum number of possibly pending cpu-local interrupts. + +4.96 KVM_SMI + +Capability: KVM_CAP_X86_SMM +Architectures: x86 +Type: vcpu ioctl +Parameters: none +Returns: 0 on success, -1 on error + +Queues an SMI on the thread's vcpu. + +4.97 KVM_CAP_PPC_MULTITCE + +Capability: KVM_CAP_PPC_MULTITCE +Architectures: ppc +Type: vm + +This capability means the kernel is capable of handling hypercalls +H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user +space. This significantly accelerates DMA operations for PPC KVM guests. +User space should expect that its handlers for these hypercalls +are not going to be called if user space previously registered LIOBN +in KVM (via KVM_CREATE_SPAPR_TCE or similar calls). + +In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest, +user space might have to advertise it for the guest. For example, +IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is +present in the "ibm,hypertas-functions" device-tree property. + +The hypercalls mentioned above may or may not be processed successfully +in the kernel based fast path. If they can not be handled by the kernel, +they will get passed on to user space. So user space still has to have +an implementation for these despite the in kernel acceleration. + +This capability is always enabled. + +4.98 KVM_CREATE_SPAPR_TCE_64 + +Capability: KVM_CAP_SPAPR_TCE_64 +Architectures: powerpc +Type: vm ioctl +Parameters: struct kvm_create_spapr_tce_64 (in) +Returns: file descriptor for manipulating the created TCE table + +This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit +windows, described in 4.62 KVM_CREATE_SPAPR_TCE + +This capability uses extended struct in ioctl interface: + +/* for KVM_CAP_SPAPR_TCE_64 */ +struct kvm_create_spapr_tce_64 { + __u64 liobn; + __u32 page_shift; + __u32 flags; + __u64 offset; /* in pages */ + __u64 size; /* in pages */ +}; + +The aim of extension is to support an additional bigger DMA window with +a variable page size. +KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and +a bus offset of the corresponding DMA window, @size and @offset are numbers +of IOMMU pages. + +@flags are not used at the moment. + +The rest of functionality is identical to KVM_CREATE_SPAPR_TCE. + +4.99 KVM_REINJECT_CONTROL + +Capability: KVM_CAP_REINJECT_CONTROL +Architectures: x86 +Type: vm ioctl +Parameters: struct kvm_reinject_control (in) +Returns: 0 on success, + -EFAULT if struct kvm_reinject_control cannot be read, + -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier. + +i8254 (PIT) has two modes, reinject and !reinject. The default is reinject, +where KVM queues elapsed i8254 ticks and monitors completion of interrupt from +vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its +interrupt whenever there isn't a pending interrupt from i8254. +!reinject mode injects an interrupt as soon as a tick arrives. + +struct kvm_reinject_control { + __u8 pit_reinject; + __u8 reserved[31]; +}; + +pit_reinject = 0 (!reinject mode) is recommended, unless running an old +operating system that uses the PIT for timing (e.g. Linux 2.4.x). + +4.100 KVM_PPC_CONFIGURE_V3_MMU + +Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3 +Architectures: ppc +Type: vm ioctl +Parameters: struct kvm_ppc_mmuv3_cfg (in) +Returns: 0 on success, + -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read, + -EINVAL if the configuration is invalid + +This ioctl controls whether the guest will use radix or HPT (hashed +page table) translation, and sets the pointer to the process table for +the guest. + +struct kvm_ppc_mmuv3_cfg { + __u64 flags; + __u64 process_table; +}; + +There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and +KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest +to use radix tree translation, and if clear, to use HPT translation. +KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest +to be able to use the global TLB and SLB invalidation instructions; +if clear, the guest may not use these instructions. + +The process_table field specifies the address and size of the guest +process table, which is in the guest's space. This field is formatted +as the second doubleword of the partition table entry, as defined in +the Power ISA V3.00, Book III section 5.7.6.1. + +4.101 KVM_PPC_GET_RMMU_INFO + +Capability: KVM_CAP_PPC_RADIX_MMU +Architectures: ppc +Type: vm ioctl +Parameters: struct kvm_ppc_rmmu_info (out) +Returns: 0 on success, + -EFAULT if struct kvm_ppc_rmmu_info cannot be written, + -EINVAL if no useful information can be returned + +This ioctl returns a structure containing two things: (a) a list +containing supported radix tree geometries, and (b) a list that maps +page sizes to put in the "AP" (actual page size) field for the tlbie +(TLB invalidate entry) instruction. + +struct kvm_ppc_rmmu_info { + struct kvm_ppc_radix_geom { + __u8 page_shift; + __u8 level_bits[4]; + __u8 pad[3]; + } geometries[8]; + __u32 ap_encodings[8]; +}; + +The geometries[] field gives up to 8 supported geometries for the +radix page table, in terms of the log base 2 of the smallest page +size, and the number of bits indexed at each level of the tree, from +the PTE level up to the PGD level in that order. Any unused entries +will have 0 in the page_shift field. + +The ap_encodings gives the supported page sizes and their AP field +encodings, encoded with the AP value in the top 3 bits and the log +base 2 of the page size in the bottom 6 bits. + +4.102 KVM_PPC_RESIZE_HPT_PREPARE + +Capability: KVM_CAP_SPAPR_RESIZE_HPT +Architectures: powerpc +Type: vm ioctl +Parameters: struct kvm_ppc_resize_hpt (in) +Returns: 0 on successful completion, + >0 if a new HPT is being prepared, the value is an estimated + number of milliseconds until preparation is complete + -EFAULT if struct kvm_reinject_control cannot be read, + -EINVAL if the supplied shift or flags are invalid + -ENOMEM if unable to allocate the new HPT + -ENOSPC if there was a hash collision when moving existing + HPT entries to the new HPT + -EIO on other error conditions + +Used to implement the PAPR extension for runtime resizing of a guest's +Hashed Page Table (HPT). Specifically this starts, stops or monitors +the preparation of a new potential HPT for the guest, essentially +implementing the H_RESIZE_HPT_PREPARE hypercall. + +If called with shift > 0 when there is no pending HPT for the guest, +this begins preparation of a new pending HPT of size 2^(shift) bytes. +It then returns a positive integer with the estimated number of +milliseconds until preparation is complete. + +If called when there is a pending HPT whose size does not match that +requested in the parameters, discards the existing pending HPT and +creates a new one as above. + +If called when there is a pending HPT of the size requested, will: + * If preparation of the pending HPT is already complete, return 0 + * If preparation of the pending HPT has failed, return an error + code, then discard the pending HPT. + * If preparation of the pending HPT is still in progress, return an + estimated number of milliseconds until preparation is complete. + +If called with shift == 0, discards any currently pending HPT and +returns 0 (i.e. cancels any in-progress preparation). + +flags is reserved for future expansion, currently setting any bits in +flags will result in an -EINVAL. + +Normally this will be called repeatedly with the same parameters until +it returns <= 0. The first call will initiate preparation, subsequent +ones will monitor preparation until it completes or fails. + +struct kvm_ppc_resize_hpt { + __u64 flags; + __u32 shift; + __u32 pad; +}; + +4.103 KVM_PPC_RESIZE_HPT_COMMIT + +Capability: KVM_CAP_SPAPR_RESIZE_HPT +Architectures: powerpc +Type: vm ioctl +Parameters: struct kvm_ppc_resize_hpt (in) +Returns: 0 on successful completion, + -EFAULT if struct kvm_reinject_control cannot be read, + -EINVAL if the supplied shift or flags are invalid + -ENXIO is there is no pending HPT, or the pending HPT doesn't + have the requested size + -EBUSY if the pending HPT is not fully prepared + -ENOSPC if there was a hash collision when moving existing + HPT entries to the new HPT + -EIO on other error conditions + +Used to implement the PAPR extension for runtime resizing of a guest's +Hashed Page Table (HPT). Specifically this requests that the guest be +transferred to working with the new HPT, essentially implementing the +H_RESIZE_HPT_COMMIT hypercall. + +This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has +returned 0 with the same parameters. In other cases +KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or +-EBUSY, though others may be possible if the preparation was started, +but failed). + +This will have undefined effects on the guest if it has not already +placed itself in a quiescent state where no vcpu will make MMU enabled +memory accesses. + +On succsful completion, the pending HPT will become the guest's active +HPT and the previous HPT will be discarded. + +On failure, the guest will still be operating on its previous HPT. + +struct kvm_ppc_resize_hpt { + __u64 flags; + __u32 shift; + __u32 pad; +}; + +4.104 KVM_X86_GET_MCE_CAP_SUPPORTED + +Capability: KVM_CAP_MCE +Architectures: x86 +Type: system ioctl +Parameters: u64 mce_cap (out) +Returns: 0 on success, -1 on error + +Returns supported MCE capabilities. The u64 mce_cap parameter +has the same format as the MSR_IA32_MCG_CAP register. Supported +capabilities will have the corresponding bits set. + +4.105 KVM_X86_SETUP_MCE + +Capability: KVM_CAP_MCE +Architectures: x86 +Type: vcpu ioctl +Parameters: u64 mcg_cap (in) +Returns: 0 on success, + -EFAULT if u64 mcg_cap cannot be read, + -EINVAL if the requested number of banks is invalid, + -EINVAL if requested MCE capability is not supported. + +Initializes MCE support for use. The u64 mcg_cap parameter +has the same format as the MSR_IA32_MCG_CAP register and +specifies which capabilities should be enabled. The maximum +supported number of error-reporting banks can be retrieved when +checking for KVM_CAP_MCE. The supported capabilities can be +retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED. + +4.106 KVM_X86_SET_MCE + +Capability: KVM_CAP_MCE +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_x86_mce (in) +Returns: 0 on success, + -EFAULT if struct kvm_x86_mce cannot be read, + -EINVAL if the bank number is invalid, + -EINVAL if VAL bit is not set in status field. + +Inject a machine check error (MCE) into the guest. The input +parameter is: + +struct kvm_x86_mce { + __u64 status; + __u64 addr; + __u64 misc; + __u64 mcg_status; + __u8 bank; + __u8 pad1[7]; + __u64 pad2[3]; +}; + +If the MCE being reported is an uncorrected error, KVM will +inject it as an MCE exception into the guest. If the guest +MCG_STATUS register reports that an MCE is in progress, KVM +causes an KVM_EXIT_SHUTDOWN vmexit. + +Otherwise, if the MCE is a corrected error, KVM will just +store it in the corresponding bank (provided this bank is +not holding a previously reported uncorrected error). + +4.107 KVM_S390_GET_CMMA_BITS + +Capability: KVM_CAP_S390_CMMA_MIGRATION +Architectures: s390 +Type: vm ioctl +Parameters: struct kvm_s390_cmma_log (in, out) +Returns: 0 on success, a negative value on error + +This ioctl is used to get the values of the CMMA bits on the s390 +architecture. It is meant to be used in two scenarios: +- During live migration to save the CMMA values. Live migration needs + to be enabled via the KVM_REQ_START_MIGRATION VM property. +- To non-destructively peek at the CMMA values, with the flag + KVM_S390_CMMA_PEEK set. + +The ioctl takes parameters via the kvm_s390_cmma_log struct. The desired +values are written to a buffer whose location is indicated via the "values" +member in the kvm_s390_cmma_log struct. The values in the input struct are +also updated as needed. +Each CMMA value takes up one byte. + +struct kvm_s390_cmma_log { + __u64 start_gfn; + __u32 count; + __u32 flags; + union { + __u64 remaining; + __u64 mask; + }; + __u64 values; +}; + +start_gfn is the number of the first guest frame whose CMMA values are +to be retrieved, + +count is the length of the buffer in bytes, + +values points to the buffer where the result will be written to. + +If count is greater than KVM_S390_SKEYS_MAX, then it is considered to be +KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re-used for consistency with +other ioctls. + +The result is written in the buffer pointed to by the field values, and +the values of the input parameter are updated as follows. + +Depending on the flags, different actions are performed. The only +supported flag so far is KVM_S390_CMMA_PEEK. + +The default behaviour if KVM_S390_CMMA_PEEK is not set is: +start_gfn will indicate the first page frame whose CMMA bits were dirty. +It is not necessarily the same as the one passed as input, as clean pages +are skipped. + +count will indicate the number of bytes actually written in the buffer. +It can (and very often will) be smaller than the input value, since the +buffer is only filled until 16 bytes of clean values are found (which +are then not copied in the buffer). Since a CMMA migration block needs +the base address and the length, for a total of 16 bytes, we will send +back some clean data if there is some dirty data afterwards, as long as +the size of the clean data does not exceed the size of the header. This +allows to minimize the amount of data to be saved or transferred over +the network at the expense of more roundtrips to userspace. The next +invocation of the ioctl will skip over all the clean values, saving +potentially more than just the 16 bytes we found. + +If KVM_S390_CMMA_PEEK is set: +the existing storage attributes are read even when not in migration +mode, and no other action is performed; + +the output start_gfn will be equal to the input start_gfn, + +the output count will be equal to the input count, except if the end of +memory has been reached. + +In both cases: +the field "remaining" will indicate the total number of dirty CMMA values +still remaining, or 0 if KVM_S390_CMMA_PEEK is set and migration mode is +not enabled. + +mask is unused. + +values points to the userspace buffer where the result will be stored. + +This ioctl can fail with -ENOMEM if not enough memory can be allocated to +complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if +KVM_S390_CMMA_PEEK is not set but migration mode was not enabled, with +-EFAULT if the userspace address is invalid or if no page table is +present for the addresses (e.g. when using hugepages). + +4.108 KVM_S390_SET_CMMA_BITS + +Capability: KVM_CAP_S390_CMMA_MIGRATION +Architectures: s390 +Type: vm ioctl +Parameters: struct kvm_s390_cmma_log (in) +Returns: 0 on success, a negative value on error + +This ioctl is used to set the values of the CMMA bits on the s390 +architecture. It is meant to be used during live migration to restore +the CMMA values, but there are no restrictions on its use. +The ioctl takes parameters via the kvm_s390_cmma_values struct. +Each CMMA value takes up one byte. + +struct kvm_s390_cmma_log { + __u64 start_gfn; + __u32 count; + __u32 flags; + union { + __u64 remaining; + __u64 mask; + }; + __u64 values; +}; + +start_gfn indicates the starting guest frame number, + +count indicates how many values are to be considered in the buffer, + +flags is not used and must be 0. + +mask indicates which PGSTE bits are to be considered. + +remaining is not used. + +values points to the buffer in userspace where to store the values. + +This ioctl can fail with -ENOMEM if not enough memory can be allocated to +complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if +the count field is too large (e.g. more than KVM_S390_CMMA_SIZE_MAX) or +if the flags field was not 0, with -EFAULT if the userspace address is +invalid, if invalid pages are written to (e.g. after the end of memory) +or if no page table is present for the addresses (e.g. when using +hugepages). + +4.109 KVM_PPC_GET_CPU_CHAR + +Capability: KVM_CAP_PPC_GET_CPU_CHAR +Architectures: powerpc +Type: vm ioctl +Parameters: struct kvm_ppc_cpu_char (out) +Returns: 0 on successful completion + -EFAULT if struct kvm_ppc_cpu_char cannot be written + +This ioctl gives userspace information about certain characteristics +of the CPU relating to speculative execution of instructions and +possible information leakage resulting from speculative execution (see +CVE-2017-5715, CVE-2017-5753 and CVE-2017-5754). The information is +returned in struct kvm_ppc_cpu_char, which looks like this: + +struct kvm_ppc_cpu_char { + __u64 character; /* characteristics of the CPU */ + __u64 behaviour; /* recommended software behaviour */ + __u64 character_mask; /* valid bits in character */ + __u64 behaviour_mask; /* valid bits in behaviour */ +}; + +For extensibility, the character_mask and behaviour_mask fields +indicate which bits of character and behaviour have been filled in by +the kernel. If the set of defined bits is extended in future then +userspace will be able to tell whether it is running on a kernel that +knows about the new bits. + +The character field describes attributes of the CPU which can help +with preventing inadvertent information disclosure - specifically, +whether there is an instruction to flash-invalidate the L1 data cache +(ori 30,30,0 or mtspr SPRN_TRIG2,rN), whether the L1 data cache is set +to a mode where entries can only be used by the thread that created +them, whether the bcctr[l] instruction prevents speculation, and +whether a speculation barrier instruction (ori 31,31,0) is provided. + +The behaviour field describes actions that software should take to +prevent inadvertent information disclosure, and thus describes which +vulnerabilities the hardware is subject to; specifically whether the +L1 data cache should be flushed when returning to user mode from the +kernel, and whether a speculation barrier should be placed between an +array bounds check and the array access. + +These fields use the same bit definitions as the new +H_GET_CPU_CHARACTERISTICS hypercall. + +4.110 KVM_MEMORY_ENCRYPT_OP + +Capability: basic +Architectures: x86 +Type: system +Parameters: an opaque platform specific structure (in/out) +Returns: 0 on success; -1 on error + +If the platform supports creating encrypted VMs then this ioctl can be used +for issuing platform-specific memory encryption commands to manage those +encrypted VMs. + +Currently, this ioctl is used for issuing Secure Encrypted Virtualization +(SEV) commands on AMD Processors. The SEV commands are defined in +Documentation/virtual/kvm/amd-memory-encryption.rst. + +4.111 KVM_MEMORY_ENCRYPT_REG_REGION + +Capability: basic +Architectures: x86 +Type: system +Parameters: struct kvm_enc_region (in) +Returns: 0 on success; -1 on error + +This ioctl can be used to register a guest memory region which may +contain encrypted data (e.g. guest RAM, SMRAM etc). + +It is used in the SEV-enabled guest. When encryption is enabled, a guest +memory region may contain encrypted data. The SEV memory encryption +engine uses a tweak such that two identical plaintext pages, each at +different locations will have differing ciphertexts. So swapping or +moving ciphertext of those pages will not result in plaintext being +swapped. So relocating (or migrating) physical backing pages for the SEV +guest will require some additional steps. + +Note: The current SEV key management spec does not provide commands to +swap or migrate (move) ciphertext pages. Hence, for now we pin the guest +memory region registered with the ioctl. + +4.112 KVM_MEMORY_ENCRYPT_UNREG_REGION + +Capability: basic +Architectures: x86 +Type: system +Parameters: struct kvm_enc_region (in) +Returns: 0 on success; -1 on error + +This ioctl can be used to unregister the guest memory region registered +with KVM_MEMORY_ENCRYPT_REG_REGION ioctl above. + +4.113 KVM_HYPERV_EVENTFD + +Capability: KVM_CAP_HYPERV_EVENTFD +Architectures: x86 +Type: vm ioctl +Parameters: struct kvm_hyperv_eventfd (in) + +This ioctl (un)registers an eventfd to receive notifications from the guest on +the specified Hyper-V connection id through the SIGNAL_EVENT hypercall, without +causing a user exit. SIGNAL_EVENT hypercall with non-zero event flag number +(bits 24-31) still triggers a KVM_EXIT_HYPERV_HCALL user exit. + +struct kvm_hyperv_eventfd { + __u32 conn_id; + __s32 fd; + __u32 flags; + __u32 padding[3]; +}; + +The conn_id field should fit within 24 bits: + +#define KVM_HYPERV_CONN_ID_MASK 0x00ffffff + +The acceptable values for the flags field are: + +#define KVM_HYPERV_EVENTFD_DEASSIGN (1 << 0) + +Returns: 0 on success, + -EINVAL if conn_id or flags is outside the allowed range + -ENOENT on deassign if the conn_id isn't registered + -EEXIST on assign if the conn_id is already registered + +4.114 KVM_GET_NESTED_STATE + +Capability: KVM_CAP_NESTED_STATE +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_nested_state (in/out) +Returns: 0 on success, -1 on error +Errors: + E2BIG: the total state size (including the fixed-size part of struct + kvm_nested_state) exceeds the value of 'size' specified by + the user; the size required will be written into size. + +struct kvm_nested_state { + __u16 flags; + __u16 format; + __u32 size; + union { + struct kvm_vmx_nested_state vmx; + struct kvm_svm_nested_state svm; + __u8 pad[120]; + }; + __u8 data[0]; +}; + +#define KVM_STATE_NESTED_GUEST_MODE 0x00000001 +#define KVM_STATE_NESTED_RUN_PENDING 0x00000002 + +#define KVM_STATE_NESTED_SMM_GUEST_MODE 0x00000001 +#define KVM_STATE_NESTED_SMM_VMXON 0x00000002 + +struct kvm_vmx_nested_state { + __u64 vmxon_pa; + __u64 vmcs_pa; + + struct { + __u16 flags; + } smm; +}; + +This ioctl copies the vcpu's nested virtualization state from the kernel to +userspace. + +The maximum size of the state, including the fixed-size part of struct +kvm_nested_state, can be retrieved by passing KVM_CAP_NESTED_STATE to +the KVM_CHECK_EXTENSION ioctl(). + +4.115 KVM_SET_NESTED_STATE + +Capability: KVM_CAP_NESTED_STATE +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_nested_state (in) +Returns: 0 on success, -1 on error + +This copies the vcpu's kvm_nested_state struct from userspace to the kernel. For +the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE. + +5. The kvm_run structure +------------------------ + +Application code obtains a pointer to the kvm_run structure by +mmap()ing a vcpu fd. From that point, application code can control +execution by changing fields in kvm_run prior to calling the KVM_RUN +ioctl, and obtain information about the reason KVM_RUN returned by +looking up structure members. + +struct kvm_run { + /* in */ + __u8 request_interrupt_window; + +Request that KVM_RUN return when it becomes possible to inject external +interrupts into the guest. Useful in conjunction with KVM_INTERRUPT. + + __u8 immediate_exit; + +This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN +exits immediately, returning -EINTR. In the common scenario where a +signal is used to "kick" a VCPU out of KVM_RUN, this field can be used +to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability. +Rather than blocking the signal outside KVM_RUN, userspace can set up +a signal handler that sets run->immediate_exit to a non-zero value. + +This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available. + + __u8 padding1[6]; + + /* out */ + __u32 exit_reason; + +When KVM_RUN has returned successfully (return value 0), this informs +application code why KVM_RUN has returned. Allowable values for this +field are detailed below. + + __u8 ready_for_interrupt_injection; + +If request_interrupt_window has been specified, this field indicates +an interrupt can be injected now with KVM_INTERRUPT. + + __u8 if_flag; + +The value of the current interrupt flag. Only valid if in-kernel +local APIC is not used. + + __u16 flags; + +More architecture-specific flags detailing state of the VCPU that may +affect the device's behavior. The only currently defined flag is +KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the +VCPU is in system management mode. + + /* in (pre_kvm_run), out (post_kvm_run) */ + __u64 cr8; + +The value of the cr8 register. Only valid if in-kernel local APIC is +not used. Both input and output. + + __u64 apic_base; + +The value of the APIC BASE msr. Only valid if in-kernel local +APIC is not used. Both input and output. + + union { + /* KVM_EXIT_UNKNOWN */ + struct { + __u64 hardware_exit_reason; + } hw; + +If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown +reasons. Further architecture-specific information is available in +hardware_exit_reason. + + /* KVM_EXIT_FAIL_ENTRY */ + struct { + __u64 hardware_entry_failure_reason; + } fail_entry; + +If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due +to unknown reasons. Further architecture-specific information is +available in hardware_entry_failure_reason. + + /* KVM_EXIT_EXCEPTION */ + struct { + __u32 exception; + __u32 error_code; + } ex; + +Unused. + + /* KVM_EXIT_IO */ + struct { +#define KVM_EXIT_IO_IN 0 +#define KVM_EXIT_IO_OUT 1 + __u8 direction; + __u8 size; /* bytes */ + __u16 port; + __u32 count; + __u64 data_offset; /* relative to kvm_run start */ + } io; + +If exit_reason is KVM_EXIT_IO, then the vcpu has +executed a port I/O instruction which could not be satisfied by kvm. +data_offset describes where the data is located (KVM_EXIT_IO_OUT) or +where kvm expects application code to place the data for the next +KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array. + + /* KVM_EXIT_DEBUG */ + struct { + struct kvm_debug_exit_arch arch; + } debug; + +If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event +for which architecture specific information is returned. + + /* KVM_EXIT_MMIO */ + struct { + __u64 phys_addr; + __u8 data[8]; + __u32 len; + __u8 is_write; + } mmio; + +If exit_reason is KVM_EXIT_MMIO, then the vcpu has +executed a memory-mapped I/O instruction which could not be satisfied +by kvm. The 'data' member contains the written data if 'is_write' is +true, and should be filled by application code otherwise. + +The 'data' member contains, in its first 'len' bytes, the value as it would +appear if the VCPU performed a load or store of the appropriate width directly +to the byte array. + +NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and + KVM_EXIT_EPR the corresponding +operations are complete (and guest state is consistent) only after userspace +has re-entered the kernel with KVM_RUN. The kernel side will first finish +incomplete operations and then check for pending signals. Userspace +can re-enter the guest with an unmasked signal pending to complete +pending operations. + + /* KVM_EXIT_HYPERCALL */ + struct { + __u64 nr; + __u64 args[6]; + __u64 ret; + __u32 longmode; + __u32 pad; + } hypercall; + +Unused. This was once used for 'hypercall to userspace'. To implement +such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390). +Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO. + + /* KVM_EXIT_TPR_ACCESS */ + struct { + __u64 rip; + __u32 is_write; + __u32 pad; + } tpr_access; + +To be documented (KVM_TPR_ACCESS_REPORTING). + + /* KVM_EXIT_S390_SIEIC */ + struct { + __u8 icptcode; + __u64 mask; /* psw upper half */ + __u64 addr; /* psw lower half */ + __u16 ipa; + __u32 ipb; + } s390_sieic; + +s390 specific. + + /* KVM_EXIT_S390_RESET */ +#define KVM_S390_RESET_POR 1 +#define KVM_S390_RESET_CLEAR 2 +#define KVM_S390_RESET_SUBSYSTEM 4 +#define KVM_S390_RESET_CPU_INIT 8 +#define KVM_S390_RESET_IPL 16 + __u64 s390_reset_flags; + +s390 specific. + + /* KVM_EXIT_S390_UCONTROL */ + struct { + __u64 trans_exc_code; + __u32 pgm_code; + } s390_ucontrol; + +s390 specific. A page fault has occurred for a user controlled virtual +machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be +resolved by the kernel. +The program code and the translation exception code that were placed +in the cpu's lowcore are presented here as defined by the z Architecture +Principles of Operation Book in the Chapter for Dynamic Address Translation +(DAT) + + /* KVM_EXIT_DCR */ + struct { + __u32 dcrn; + __u32 data; + __u8 is_write; + } dcr; + +Deprecated - was used for 440 KVM. + + /* KVM_EXIT_OSI */ + struct { + __u64 gprs[32]; + } osi; + +MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch +hypercalls and exit with this exit struct that contains all the guest gprs. + +If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall. +Userspace can now handle the hypercall and when it's done modify the gprs as +necessary. Upon guest entry all guest GPRs will then be replaced by the values +in this struct. + + /* KVM_EXIT_PAPR_HCALL */ + struct { + __u64 nr; + __u64 ret; + __u64 args[9]; + } papr_hcall; + +This is used on 64-bit PowerPC when emulating a pSeries partition, +e.g. with the 'pseries' machine type in qemu. It occurs when the +guest does a hypercall using the 'sc 1' instruction. The 'nr' field +contains the hypercall number (from the guest R3), and 'args' contains +the arguments (from the guest R4 - R12). Userspace should put the +return code in 'ret' and any extra returned values in args[]. +The possible hypercalls are defined in the Power Architecture Platform +Requirements (PAPR) document available from www.power.org (free +developer registration required to access it). + + /* KVM_EXIT_S390_TSCH */ + struct { + __u16 subchannel_id; + __u16 subchannel_nr; + __u32 io_int_parm; + __u32 io_int_word; + __u32 ipb; + __u8 dequeued; + } s390_tsch; + +s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled +and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O +interrupt for the target subchannel has been dequeued and subchannel_id, +subchannel_nr, io_int_parm and io_int_word contain the parameters for that +interrupt. ipb is needed for instruction parameter decoding. + + /* KVM_EXIT_EPR */ + struct { + __u32 epr; + } epr; + +On FSL BookE PowerPC chips, the interrupt controller has a fast patch +interrupt acknowledge path to the core. When the core successfully +delivers an interrupt, it automatically populates the EPR register with +the interrupt vector number and acknowledges the interrupt inside +the interrupt controller. + +In case the interrupt controller lives in user space, we need to do +the interrupt acknowledge cycle through it to fetch the next to be +delivered interrupt vector using this exit. + +It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an +external interrupt has just been delivered into the guest. User space +should put the acknowledged interrupt vector into the 'epr' field. + + /* KVM_EXIT_SYSTEM_EVENT */ + struct { +#define KVM_SYSTEM_EVENT_SHUTDOWN 1 +#define KVM_SYSTEM_EVENT_RESET 2 +#define KVM_SYSTEM_EVENT_CRASH 3 + __u32 type; + __u64 flags; + } system_event; + +If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered +a system-level event using some architecture specific mechanism (hypercall +or some special instruction). In case of ARM/ARM64, this is triggered using +HVC instruction based PSCI call from the vcpu. The 'type' field describes +the system-level event type. The 'flags' field describes architecture +specific flags for the system-level event. + +Valid values for 'type' are: + KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the + VM. Userspace is not obliged to honour this, and if it does honour + this does not need to destroy the VM synchronously (ie it may call + KVM_RUN again before shutdown finally occurs). + KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM. + As with SHUTDOWN, userspace can choose to ignore the request, or + to schedule the reset to occur in the future and may call KVM_RUN again. + KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest + has requested a crash condition maintenance. Userspace can choose + to ignore the request, or to gather VM memory core dump and/or + reset/shutdown of the VM. + + /* KVM_EXIT_IOAPIC_EOI */ + struct { + __u8 vector; + } eoi; + +Indicates that the VCPU's in-kernel local APIC received an EOI for a +level-triggered IOAPIC interrupt. This exit only triggers when the +IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled); +the userspace IOAPIC should process the EOI and retrigger the interrupt if +it is still asserted. Vector is the LAPIC interrupt vector for which the +EOI was received. + + struct kvm_hyperv_exit { +#define KVM_EXIT_HYPERV_SYNIC 1 +#define KVM_EXIT_HYPERV_HCALL 2 + __u32 type; + __u32 pad1; + union { + struct { + __u32 msr; + __u32 pad2; + __u64 control; + __u64 evt_page; + __u64 msg_page; + } synic; + struct { + __u64 input; + __u64 result; + __u64 params[2]; + } hcall; + } u; + }; + /* KVM_EXIT_HYPERV */ + struct kvm_hyperv_exit hyperv; +Indicates that the VCPU exits into userspace to process some tasks +related to Hyper-V emulation. +Valid values for 'type' are: + KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about +Hyper-V SynIC state change. Notification is used to remap SynIC +event/message pages and to enable/disable SynIC messages/events processing +in userspace. + + /* Fix the size of the union. */ + char padding[256]; + }; + + /* + * shared registers between kvm and userspace. + * kvm_valid_regs specifies the register classes set by the host + * kvm_dirty_regs specified the register classes dirtied by userspace + * struct kvm_sync_regs is architecture specific, as well as the + * bits for kvm_valid_regs and kvm_dirty_regs + */ + __u64 kvm_valid_regs; + __u64 kvm_dirty_regs; + union { + struct kvm_sync_regs regs; + char padding[SYNC_REGS_SIZE_BYTES]; + } s; + +If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access +certain guest registers without having to call SET/GET_*REGS. Thus we can +avoid some system call overhead if userspace has to handle the exit. +Userspace can query the validity of the structure by checking +kvm_valid_regs for specific bits. These bits are architecture specific +and usually define the validity of a groups of registers. (e.g. one bit + for general purpose registers) + +Please note that the kernel is allowed to use the kvm_run structure as the +primary storage for certain register types. Therefore, the kernel may use the +values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set. + +}; + + + +6. Capabilities that can be enabled on vCPUs +-------------------------------------------- + +There are certain capabilities that change the behavior of the virtual CPU or +the virtual machine when enabled. To enable them, please see section 4.37. +Below you can find a list of capabilities and what their effect on the vCPU or +the virtual machine is when enabling them. + +The following information is provided along with the description: + + Architectures: which instruction set architectures provide this ioctl. + x86 includes both i386 and x86_64. + + Target: whether this is a per-vcpu or per-vm capability. + + Parameters: what parameters are accepted by the capability. + + Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL) + are not detailed, but errors with specific meanings are. + + +6.1 KVM_CAP_PPC_OSI + +Architectures: ppc +Target: vcpu +Parameters: none +Returns: 0 on success; -1 on error + +This capability enables interception of OSI hypercalls that otherwise would +be treated as normal system calls to be injected into the guest. OSI hypercalls +were invented by Mac-on-Linux to have a standardized communication mechanism +between the guest and the host. + +When this capability is enabled, KVM_EXIT_OSI can occur. + + +6.2 KVM_CAP_PPC_PAPR + +Architectures: ppc +Target: vcpu +Parameters: none +Returns: 0 on success; -1 on error + +This capability enables interception of PAPR hypercalls. PAPR hypercalls are +done using the hypercall instruction "sc 1". + +It also sets the guest privilege level to "supervisor" mode. Usually the guest +runs in "hypervisor" privilege mode with a few missing features. + +In addition to the above, it changes the semantics of SDR1. In this mode, the +HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the +HTAB invisible to the guest. + +When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur. + + +6.3 KVM_CAP_SW_TLB + +Architectures: ppc +Target: vcpu +Parameters: args[0] is the address of a struct kvm_config_tlb +Returns: 0 on success; -1 on error + +struct kvm_config_tlb { + __u64 params; + __u64 array; + __u32 mmu_type; + __u32 array_len; +}; + +Configures the virtual CPU's TLB array, establishing a shared memory area +between userspace and KVM. The "params" and "array" fields are userspace +addresses of mmu-type-specific data structures. The "array_len" field is an +safety mechanism, and should be set to the size in bytes of the memory that +userspace has reserved for the array. It must be at least the size dictated +by "mmu_type" and "params". + +While KVM_RUN is active, the shared region is under control of KVM. Its +contents are undefined, and any modification by userspace results in +boundedly undefined behavior. + +On return from KVM_RUN, the shared region will reflect the current state of +the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB +to tell KVM which entries have been changed, prior to calling KVM_RUN again +on this vcpu. + +For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV: + - The "params" field is of type "struct kvm_book3e_206_tlb_params". + - The "array" field points to an array of type "struct + kvm_book3e_206_tlb_entry". + - The array consists of all entries in the first TLB, followed by all + entries in the second TLB. + - Within a TLB, entries are ordered first by increasing set number. Within a + set, entries are ordered by way (increasing ESEL). + - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1) + where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value. + - The tsize field of mas1 shall be set to 4K on TLB0, even though the + hardware ignores this value for TLB0. + +6.4 KVM_CAP_S390_CSS_SUPPORT + +Architectures: s390 +Target: vcpu +Parameters: none +Returns: 0 on success; -1 on error + +This capability enables support for handling of channel I/O instructions. + +TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are +handled in-kernel, while the other I/O instructions are passed to userspace. + +When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST +SUBCHANNEL intercepts. + +Note that even though this capability is enabled per-vcpu, the complete +virtual machine is affected. + +6.5 KVM_CAP_PPC_EPR + +Architectures: ppc +Target: vcpu +Parameters: args[0] defines whether the proxy facility is active +Returns: 0 on success; -1 on error + +This capability enables or disables the delivery of interrupts through the +external proxy facility. + +When enabled (args[0] != 0), every time the guest gets an external interrupt +delivered, it automatically exits into user space with a KVM_EXIT_EPR exit +to receive the topmost interrupt vector. + +When disabled (args[0] == 0), behavior is as if this facility is unsupported. + +When this capability is enabled, KVM_EXIT_EPR can occur. + +6.6 KVM_CAP_IRQ_MPIC + +Architectures: ppc +Parameters: args[0] is the MPIC device fd + args[1] is the MPIC CPU number for this vcpu + +This capability connects the vcpu to an in-kernel MPIC device. + +6.7 KVM_CAP_IRQ_XICS + +Architectures: ppc +Target: vcpu +Parameters: args[0] is the XICS device fd + args[1] is the XICS CPU number (server ID) for this vcpu + +This capability connects the vcpu to an in-kernel XICS device. + +6.8 KVM_CAP_S390_IRQCHIP + +Architectures: s390 +Target: vm +Parameters: none + +This capability enables the in-kernel irqchip for s390. Please refer to +"4.24 KVM_CREATE_IRQCHIP" for details. + +6.9 KVM_CAP_MIPS_FPU + +Architectures: mips +Target: vcpu +Parameters: args[0] is reserved for future use (should be 0). + +This capability allows the use of the host Floating Point Unit by the guest. It +allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is +done the KVM_REG_MIPS_FPR_* and KVM_REG_MIPS_FCR_* registers can be accessed +(depending on the current guest FPU register mode), and the Status.FR, +Config5.FRE bits are accessible via the KVM API and also from the guest, +depending on them being supported by the FPU. + +6.10 KVM_CAP_MIPS_MSA + +Architectures: mips +Target: vcpu +Parameters: args[0] is reserved for future use (should be 0). + +This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest. +It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest. +Once this is done the KVM_REG_MIPS_VEC_* and KVM_REG_MIPS_MSA_* registers can be +accessed, and the Config5.MSAEn bit is accessible via the KVM API and also from +the guest. + +6.74 KVM_CAP_SYNC_REGS +Architectures: s390, x86 +Target: s390: always enabled, x86: vcpu +Parameters: none +Returns: x86: KVM_CHECK_EXTENSION returns a bit-array indicating which register +sets are supported (bitfields defined in arch/x86/include/uapi/asm/kvm.h). + +As described above in the kvm_sync_regs struct info in section 5 (kvm_run): +KVM_CAP_SYNC_REGS "allow[s] userspace to access certain guest registers +without having to call SET/GET_*REGS". This reduces overhead by eliminating +repeated ioctl calls for setting and/or getting register values. This is +particularly important when userspace is making synchronous guest state +modifications, e.g. when emulating and/or intercepting instructions in +userspace. + +For s390 specifics, please refer to the source code. + +For x86: +- the register sets to be copied out to kvm_run are selectable + by userspace (rather that all sets being copied out for every exit). +- vcpu_events are available in addition to regs and sregs. + +For x86, the 'kvm_valid_regs' field of struct kvm_run is overloaded to +function as an input bit-array field set by userspace to indicate the +specific register sets to be copied out on the next exit. + +To indicate when userspace has modified values that should be copied into +the vCPU, the all architecture bitarray field, 'kvm_dirty_regs' must be set. +This is done using the same bitflags as for the 'kvm_valid_regs' field. +If the dirty bit is not set, then the register set values will not be copied +into the vCPU even if they've been modified. + +Unused bitfields in the bitarrays must be set to zero. + +struct kvm_sync_regs { + struct kvm_regs regs; + struct kvm_sregs sregs; + struct kvm_vcpu_events events; +}; + +7. Capabilities that can be enabled on VMs +------------------------------------------ + +There are certain capabilities that change the behavior of the virtual +machine when enabled. To enable them, please see section 4.37. Below +you can find a list of capabilities and what their effect on the VM +is when enabling them. + +The following information is provided along with the description: + + Architectures: which instruction set architectures provide this ioctl. + x86 includes both i386 and x86_64. + + Parameters: what parameters are accepted by the capability. + + Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL) + are not detailed, but errors with specific meanings are. + + +7.1 KVM_CAP_PPC_ENABLE_HCALL + +Architectures: ppc +Parameters: args[0] is the sPAPR hcall number + args[1] is 0 to disable, 1 to enable in-kernel handling + +This capability controls whether individual sPAPR hypercalls (hcalls) +get handled by the kernel or not. Enabling or disabling in-kernel +handling of an hcall is effective across the VM. On creation, an +initial set of hcalls are enabled for in-kernel handling, which +consists of those hcalls for which in-kernel handlers were implemented +before this capability was implemented. If disabled, the kernel will +not to attempt to handle the hcall, but will always exit to userspace +to handle it. Note that it may not make sense to enable some and +disable others of a group of related hcalls, but KVM does not prevent +userspace from doing that. + +If the hcall number specified is not one that has an in-kernel +implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL +error. + +7.2 KVM_CAP_S390_USER_SIGP + +Architectures: s390 +Parameters: none + +This capability controls which SIGP orders will be handled completely in user +space. With this capability enabled, all fast orders will be handled completely +in the kernel: +- SENSE +- SENSE RUNNING +- EXTERNAL CALL +- EMERGENCY SIGNAL +- CONDITIONAL EMERGENCY SIGNAL + +All other orders will be handled completely in user space. + +Only privileged operation exceptions will be checked for in the kernel (or even +in the hardware prior to interception). If this capability is not enabled, the +old way of handling SIGP orders is used (partially in kernel and user space). + +7.3 KVM_CAP_S390_VECTOR_REGISTERS + +Architectures: s390 +Parameters: none +Returns: 0 on success, negative value on error + +Allows use of the vector registers introduced with z13 processor, and +provides for the synchronization between host and user space. Will +return -EINVAL if the machine does not support vectors. + +7.4 KVM_CAP_S390_USER_STSI + +Architectures: s390 +Parameters: none + +This capability allows post-handlers for the STSI instruction. After +initial handling in the kernel, KVM exits to user space with +KVM_EXIT_S390_STSI to allow user space to insert further data. + +Before exiting to userspace, kvm handlers should fill in s390_stsi field of +vcpu->run: +struct { + __u64 addr; + __u8 ar; + __u8 reserved; + __u8 fc; + __u8 sel1; + __u16 sel2; +} s390_stsi; + +@addr - guest address of STSI SYSIB +@fc - function code +@sel1 - selector 1 +@sel2 - selector 2 +@ar - access register number + +KVM handlers should exit to userspace with rc = -EREMOTE. + +7.5 KVM_CAP_SPLIT_IRQCHIP + +Architectures: x86 +Parameters: args[0] - number of routes reserved for userspace IOAPICs +Returns: 0 on success, -1 on error + +Create a local apic for each processor in the kernel. This can be used +instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the +IOAPIC and PIC (and also the PIT, even though this has to be enabled +separately). + +This capability also enables in kernel routing of interrupt requests; +when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are +used in the IRQ routing table. The first args[0] MSI routes are reserved +for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes, +a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace. + +Fails if VCPU has already been created, or if the irqchip is already in the +kernel (i.e. KVM_CREATE_IRQCHIP has already been called). + +7.6 KVM_CAP_S390_RI + +Architectures: s390 +Parameters: none + +Allows use of runtime-instrumentation introduced with zEC12 processor. +Will return -EINVAL if the machine does not support runtime-instrumentation. +Will return -EBUSY if a VCPU has already been created. + +7.7 KVM_CAP_X2APIC_API + +Architectures: x86 +Parameters: args[0] - features that should be enabled +Returns: 0 on success, -EINVAL when args[0] contains invalid features + +Valid feature flags in args[0] are + +#define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0) +#define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1) + +Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of +KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC, +allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their +respective sections. + +KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work +in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff +as a broadcast even in x2APIC mode in order to support physical x2APIC +without interrupt remapping. This is undesirable in logical mode, +where 0xff represents CPUs 0-7 in cluster 0. + +7.8 KVM_CAP_S390_USER_INSTR0 + +Architectures: s390 +Parameters: none + +With this capability enabled, all illegal instructions 0x0000 (2 bytes) will +be intercepted and forwarded to user space. User space can use this +mechanism e.g. to realize 2-byte software breakpoints. The kernel will +not inject an operating exception for these instructions, user space has +to take care of that. + +This capability can be enabled dynamically even if VCPUs were already +created and are running. + +7.9 KVM_CAP_S390_GS + +Architectures: s390 +Parameters: none +Returns: 0 on success; -EINVAL if the machine does not support + guarded storage; -EBUSY if a VCPU has already been created. + +Allows use of guarded storage for the KVM guest. + +7.10 KVM_CAP_S390_AIS + +Architectures: s390 +Parameters: none + +Allow use of adapter-interruption suppression. +Returns: 0 on success; -EBUSY if a VCPU has already been created. + +7.11 KVM_CAP_PPC_SMT + +Architectures: ppc +Parameters: vsmt_mode, flags + +Enabling this capability on a VM provides userspace with a way to set +the desired virtual SMT mode (i.e. the number of virtual CPUs per +virtual core). The virtual SMT mode, vsmt_mode, must be a power of 2 +between 1 and 8. On POWER8, vsmt_mode must also be no greater than +the number of threads per subcore for the host. Currently flags must +be 0. A successful call to enable this capability will result in +vsmt_mode being returned when the KVM_CAP_PPC_SMT capability is +subsequently queried for the VM. This capability is only supported by +HV KVM, and can only be set before any VCPUs have been created. +The KVM_CAP_PPC_SMT_POSSIBLE capability indicates which virtual SMT +modes are available. + +7.12 KVM_CAP_PPC_FWNMI + +Architectures: ppc +Parameters: none + +With this capability a machine check exception in the guest address +space will cause KVM to exit the guest with NMI exit reason. This +enables QEMU to build error log and branch to guest kernel registered +machine check handling routine. Without this capability KVM will +branch to guests' 0x200 interrupt vector. + +7.13 KVM_CAP_X86_DISABLE_EXITS + +Architectures: x86 +Parameters: args[0] defines which exits are disabled +Returns: 0 on success, -EINVAL when args[0] contains invalid exits + +Valid bits in args[0] are + +#define KVM_X86_DISABLE_EXITS_MWAIT (1 << 0) +#define KVM_X86_DISABLE_EXITS_HLT (1 << 1) + +Enabling this capability on a VM provides userspace with a way to no +longer intercept some instructions for improved latency in some +workloads, and is suggested when vCPUs are associated to dedicated +physical CPUs. More bits can be added in the future; userspace can +just pass the KVM_CHECK_EXTENSION result to KVM_ENABLE_CAP to disable +all such vmexits. + +Do not enable KVM_FEATURE_PV_UNHALT if you disable HLT exits. + +7.14 KVM_CAP_S390_HPAGE_1M + +Architectures: s390 +Parameters: none +Returns: 0 on success, -EINVAL if hpage module parameter was not set + or cmma is enabled, or the VM has the KVM_VM_S390_UCONTROL + flag set + +With this capability the KVM support for memory backing with 1m pages +through hugetlbfs can be enabled for a VM. After the capability is +enabled, cmma can't be enabled anymore and pfmfi and the storage key +interpretation are disabled. If cmma has already been enabled or the +hpage module parameter is not set to 1, -EINVAL is returned. + +While it is generally possible to create a huge page backed VM without +this capability, the VM will not be able to run. + +7.14 KVM_CAP_MSR_PLATFORM_INFO + +Architectures: x86 +Parameters: args[0] whether feature should be enabled or not + +With this capability, a guest may read the MSR_PLATFORM_INFO MSR. Otherwise, +a #GP would be raised when the guest tries to access. Currently, this +capability does not enable write permissions of this MSR for the guest. + +8. Other capabilities. +---------------------- + +This section lists capabilities that give information about other +features of the KVM implementation. + +8.1 KVM_CAP_PPC_HWRNG + +Architectures: ppc + +This capability, if KVM_CHECK_EXTENSION indicates that it is +available, means that that the kernel has an implementation of the +H_RANDOM hypercall backed by a hardware random-number generator. +If present, the kernel H_RANDOM handler can be enabled for guest use +with the KVM_CAP_PPC_ENABLE_HCALL capability. + +8.2 KVM_CAP_HYPERV_SYNIC + +Architectures: x86 +This capability, if KVM_CHECK_EXTENSION indicates that it is +available, means that that the kernel has an implementation of the +Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is +used to support Windows Hyper-V based guest paravirt drivers(VMBus). + +In order to use SynIC, it has to be activated by setting this +capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this +will disable the use of APIC hardware virtualization even if supported +by the CPU, as it's incompatible with SynIC auto-EOI behavior. + +8.3 KVM_CAP_PPC_RADIX_MMU + +Architectures: ppc + +This capability, if KVM_CHECK_EXTENSION indicates that it is +available, means that that the kernel can support guests using the +radix MMU defined in Power ISA V3.00 (as implemented in the POWER9 +processor). + +8.4 KVM_CAP_PPC_HASH_MMU_V3 + +Architectures: ppc + +This capability, if KVM_CHECK_EXTENSION indicates that it is +available, means that that the kernel can support guests using the +hashed page table MMU defined in Power ISA V3.00 (as implemented in +the POWER9 processor), including in-memory segment tables. + +8.5 KVM_CAP_MIPS_VZ + +Architectures: mips + +This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that +it is available, means that full hardware assisted virtualization capabilities +of the hardware are available for use through KVM. An appropriate +KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which +utilises it. + +If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is +available, it means that the VM is using full hardware assisted virtualization +capabilities of the hardware. This is useful to check after creating a VM with +KVM_VM_MIPS_DEFAULT. + +The value returned by KVM_CHECK_EXTENSION should be compared against known +values (see below). All other values are reserved. This is to allow for the +possibility of other hardware assisted virtualization implementations which +may be incompatible with the MIPS VZ ASE. + + 0: The trap & emulate implementation is in use to run guest code in user + mode. Guest virtual memory segments are rearranged to fit the guest in the + user mode address space. + + 1: The MIPS VZ ASE is in use, providing full hardware assisted + virtualization, including standard guest virtual memory segments. + +8.6 KVM_CAP_MIPS_TE + +Architectures: mips + +This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that +it is available, means that the trap & emulate implementation is available to +run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware +assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed +to KVM_CREATE_VM to create a VM which utilises it. + +If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is +available, it means that the VM is using trap & emulate. + +8.7 KVM_CAP_MIPS_64BIT + +Architectures: mips + +This capability indicates the supported architecture type of the guest, i.e. the +supported register and address width. + +The values returned when this capability is checked by KVM_CHECK_EXTENSION on a +kvm VM handle correspond roughly to the CP0_Config.AT register field, and should +be checked specifically against known values (see below). All other values are +reserved. + + 0: MIPS32 or microMIPS32. + Both registers and addresses are 32-bits wide. + It will only be possible to run 32-bit guest code. + + 1: MIPS64 or microMIPS64 with access only to 32-bit compatibility segments. + Registers are 64-bits wide, but addresses are 32-bits wide. + 64-bit guest code may run but cannot access MIPS64 memory segments. + It will also be possible to run 32-bit guest code. + + 2: MIPS64 or microMIPS64 with access to all address segments. + Both registers and addresses are 64-bits wide. + It will be possible to run 64-bit or 32-bit guest code. + +8.9 KVM_CAP_ARM_USER_IRQ + +Architectures: arm, arm64 +This capability, if KVM_CHECK_EXTENSION indicates that it is available, means +that if userspace creates a VM without an in-kernel interrupt controller, it +will be notified of changes to the output level of in-kernel emulated devices, +which can generate virtual interrupts, presented to the VM. +For such VMs, on every return to userspace, the kernel +updates the vcpu's run->s.regs.device_irq_level field to represent the actual +output level of the device. + +Whenever kvm detects a change in the device output level, kvm guarantees at +least one return to userspace before running the VM. This exit could either +be a KVM_EXIT_INTR or any other exit event, like KVM_EXIT_MMIO. This way, +userspace can always sample the device output level and re-compute the state of +the userspace interrupt controller. Userspace should always check the state +of run->s.regs.device_irq_level on every kvm exit. +The value in run->s.regs.device_irq_level can represent both level and edge +triggered interrupt signals, depending on the device. Edge triggered interrupt +signals will exit to userspace with the bit in run->s.regs.device_irq_level +set exactly once per edge signal. + +The field run->s.regs.device_irq_level is available independent of +run->kvm_valid_regs or run->kvm_dirty_regs bits. + +If KVM_CAP_ARM_USER_IRQ is supported, the KVM_CHECK_EXTENSION ioctl returns a +number larger than 0 indicating the version of this capability is implemented +and thereby which bits in in run->s.regs.device_irq_level can signal values. + +Currently the following bits are defined for the device_irq_level bitmap: + + KVM_CAP_ARM_USER_IRQ >= 1: + + KVM_ARM_DEV_EL1_VTIMER - EL1 virtual timer + KVM_ARM_DEV_EL1_PTIMER - EL1 physical timer + KVM_ARM_DEV_PMU - ARM PMU overflow interrupt signal + +Future versions of kvm may implement additional events. These will get +indicated by returning a higher number from KVM_CHECK_EXTENSION and will be +listed above. + +8.10 KVM_CAP_PPC_SMT_POSSIBLE + +Architectures: ppc + +Querying this capability returns a bitmap indicating the possible +virtual SMT modes that can be set using KVM_CAP_PPC_SMT. If bit N +(counting from the right) is set, then a virtual SMT mode of 2^N is +available. + +8.11 KVM_CAP_HYPERV_SYNIC2 + +Architectures: x86 + +This capability enables a newer version of Hyper-V Synthetic interrupt +controller (SynIC). The only difference with KVM_CAP_HYPERV_SYNIC is that KVM +doesn't clear SynIC message and event flags pages when they are enabled by +writing to the respective MSRs. + +8.12 KVM_CAP_HYPERV_VP_INDEX + +Architectures: x86 + +This capability indicates that userspace can load HV_X64_MSR_VP_INDEX msr. Its +value is used to denote the target vcpu for a SynIC interrupt. For +compatibilty, KVM initializes this msr to KVM's internal vcpu index. When this +capability is absent, userspace can still query this msr's value. + +8.13 KVM_CAP_S390_AIS_MIGRATION + +Architectures: s390 +Parameters: none + +This capability indicates if the flic device will be able to get/set the +AIS states for migration via the KVM_DEV_FLIC_AISM_ALL attribute and allows +to discover this without having to create a flic device. + +8.14 KVM_CAP_S390_PSW + +Architectures: s390 + +This capability indicates that the PSW is exposed via the kvm_run structure. + +8.15 KVM_CAP_S390_GMAP + +Architectures: s390 + +This capability indicates that the user space memory used as guest mapping can +be anywhere in the user memory address space, as long as the memory slots are +aligned and sized to a segment (1MB) boundary. + +8.16 KVM_CAP_S390_COW + +Architectures: s390 + +This capability indicates that the user space memory used as guest mapping can +use copy-on-write semantics as well as dirty pages tracking via read-only page +tables. + +8.17 KVM_CAP_S390_BPB + +Architectures: s390 + +This capability indicates that kvm will implement the interfaces to handle +reset, migration and nested KVM for branch prediction blocking. The stfle +facility 82 should not be provided to the guest without this capability. + +8.18 KVM_CAP_HYPERV_TLBFLUSH + +Architectures: x86 + +This capability indicates that KVM supports paravirtualized Hyper-V TLB Flush +hypercalls: +HvFlushVirtualAddressSpace, HvFlushVirtualAddressSpaceEx, +HvFlushVirtualAddressList, HvFlushVirtualAddressListEx. + +8.19 KVM_CAP_ARM_INJECT_SERROR_ESR + +Architectures: arm, arm64 + +This capability indicates that userspace can specify (via the +KVM_SET_VCPU_EVENTS ioctl) the syndrome value reported to the guest when it +takes a virtual SError interrupt exception. +If KVM advertises this capability, userspace can only specify the ISS field for +the ESR syndrome. Other parts of the ESR, such as the EC are generated by the +CPU when the exception is taken. If this virtual SError is taken to EL1 using +AArch64, this value will be reported in the ISS field of ESR_ELx. + +See KVM_CAP_VCPU_EVENTS for more details. |