diff options
Diffstat (limited to 'arch/arm/mm/fault-armv.c')
-rw-r--r-- | arch/arm/mm/fault-armv.c | 269 |
1 files changed, 269 insertions, 0 deletions
diff --git a/arch/arm/mm/fault-armv.c b/arch/arm/mm/fault-armv.c new file mode 100644 index 000000000..4d75dae5a --- /dev/null +++ b/arch/arm/mm/fault-armv.c @@ -0,0 +1,269 @@ +/* + * linux/arch/arm/mm/fault-armv.c + * + * Copyright (C) 1995 Linus Torvalds + * Modifications for ARM processor (c) 1995-2002 Russell King + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ +#include <linux/sched.h> +#include <linux/kernel.h> +#include <linux/mm.h> +#include <linux/bitops.h> +#include <linux/vmalloc.h> +#include <linux/init.h> +#include <linux/pagemap.h> +#include <linux/gfp.h> + +#include <asm/bugs.h> +#include <asm/cacheflush.h> +#include <asm/cachetype.h> +#include <asm/pgtable.h> +#include <asm/tlbflush.h> + +#include "mm.h" + +static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE; + +#if __LINUX_ARM_ARCH__ < 6 +/* + * We take the easy way out of this problem - we make the + * PTE uncacheable. However, we leave the write buffer on. + * + * Note that the pte lock held when calling update_mmu_cache must also + * guard the pte (somewhere else in the same mm) that we modify here. + * Therefore those configurations which might call adjust_pte (those + * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock. + */ +static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address, + unsigned long pfn, pte_t *ptep) +{ + pte_t entry = *ptep; + int ret; + + /* + * If this page is present, it's actually being shared. + */ + ret = pte_present(entry); + + /* + * If this page isn't present, or is already setup to + * fault (ie, is old), we can safely ignore any issues. + */ + if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) { + flush_cache_page(vma, address, pfn); + outer_flush_range((pfn << PAGE_SHIFT), + (pfn << PAGE_SHIFT) + PAGE_SIZE); + pte_val(entry) &= ~L_PTE_MT_MASK; + pte_val(entry) |= shared_pte_mask; + set_pte_at(vma->vm_mm, address, ptep, entry); + flush_tlb_page(vma, address); + } + + return ret; +} + +#if USE_SPLIT_PTE_PTLOCKS +/* + * If we are using split PTE locks, then we need to take the page + * lock here. Otherwise we are using shared mm->page_table_lock + * which is already locked, thus cannot take it. + */ +static inline void do_pte_lock(spinlock_t *ptl) +{ + /* + * Use nested version here to indicate that we are already + * holding one similar spinlock. + */ + spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); +} + +static inline void do_pte_unlock(spinlock_t *ptl) +{ + spin_unlock(ptl); +} +#else /* !USE_SPLIT_PTE_PTLOCKS */ +static inline void do_pte_lock(spinlock_t *ptl) {} +static inline void do_pte_unlock(spinlock_t *ptl) {} +#endif /* USE_SPLIT_PTE_PTLOCKS */ + +static int adjust_pte(struct vm_area_struct *vma, unsigned long address, + unsigned long pfn) +{ + spinlock_t *ptl; + pgd_t *pgd; + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + int ret; + + pgd = pgd_offset(vma->vm_mm, address); + if (pgd_none_or_clear_bad(pgd)) + return 0; + + pud = pud_offset(pgd, address); + if (pud_none_or_clear_bad(pud)) + return 0; + + pmd = pmd_offset(pud, address); + if (pmd_none_or_clear_bad(pmd)) + return 0; + + /* + * This is called while another page table is mapped, so we + * must use the nested version. This also means we need to + * open-code the spin-locking. + */ + ptl = pte_lockptr(vma->vm_mm, pmd); + pte = pte_offset_map(pmd, address); + do_pte_lock(ptl); + + ret = do_adjust_pte(vma, address, pfn, pte); + + do_pte_unlock(ptl); + pte_unmap(pte); + + return ret; +} + +static void +make_coherent(struct address_space *mapping, struct vm_area_struct *vma, + unsigned long addr, pte_t *ptep, unsigned long pfn) +{ + struct mm_struct *mm = vma->vm_mm; + struct vm_area_struct *mpnt; + unsigned long offset; + pgoff_t pgoff; + int aliases = 0; + + pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT); + + /* + * If we have any shared mappings that are in the same mm + * space, then we need to handle them specially to maintain + * cache coherency. + */ + flush_dcache_mmap_lock(mapping); + vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) { + /* + * If this VMA is not in our MM, we can ignore it. + * Note that we intentionally mask out the VMA + * that we are fixing up. + */ + if (mpnt->vm_mm != mm || mpnt == vma) + continue; + if (!(mpnt->vm_flags & VM_MAYSHARE)) + continue; + offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT; + aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn); + } + flush_dcache_mmap_unlock(mapping); + if (aliases) + do_adjust_pte(vma, addr, pfn, ptep); +} + +/* + * Take care of architecture specific things when placing a new PTE into + * a page table, or changing an existing PTE. Basically, there are two + * things that we need to take care of: + * + * 1. If PG_dcache_clean is not set for the page, we need to ensure + * that any cache entries for the kernels virtual memory + * range are written back to the page. + * 2. If we have multiple shared mappings of the same space in + * an object, we need to deal with the cache aliasing issues. + * + * Note that the pte lock will be held. + */ +void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, + pte_t *ptep) +{ + unsigned long pfn = pte_pfn(*ptep); + struct address_space *mapping; + struct page *page; + + if (!pfn_valid(pfn)) + return; + + /* + * The zero page is never written to, so never has any dirty + * cache lines, and therefore never needs to be flushed. + */ + page = pfn_to_page(pfn); + if (page == ZERO_PAGE(0)) + return; + + mapping = page_mapping_file(page); + if (!test_and_set_bit(PG_dcache_clean, &page->flags)) + __flush_dcache_page(mapping, page); + if (mapping) { + if (cache_is_vivt()) + make_coherent(mapping, vma, addr, ptep, pfn); + else if (vma->vm_flags & VM_EXEC) + __flush_icache_all(); + } +} +#endif /* __LINUX_ARM_ARCH__ < 6 */ + +/* + * Check whether the write buffer has physical address aliasing + * issues. If it has, we need to avoid them for the case where + * we have several shared mappings of the same object in user + * space. + */ +static int __init check_writebuffer(unsigned long *p1, unsigned long *p2) +{ + register unsigned long zero = 0, one = 1, val; + + local_irq_disable(); + mb(); + *p1 = one; + mb(); + *p2 = zero; + mb(); + val = *p1; + mb(); + local_irq_enable(); + return val != zero; +} + +void __init check_writebuffer_bugs(void) +{ + struct page *page; + const char *reason; + unsigned long v = 1; + + pr_info("CPU: Testing write buffer coherency: "); + + page = alloc_page(GFP_KERNEL); + if (page) { + unsigned long *p1, *p2; + pgprot_t prot = __pgprot_modify(PAGE_KERNEL, + L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE); + + p1 = vmap(&page, 1, VM_IOREMAP, prot); + p2 = vmap(&page, 1, VM_IOREMAP, prot); + + if (p1 && p2) { + v = check_writebuffer(p1, p2); + reason = "enabling work-around"; + } else { + reason = "unable to map memory\n"; + } + + vunmap(p1); + vunmap(p2); + put_page(page); + } else { + reason = "unable to grab page\n"; + } + + if (v) { + pr_cont("failed, %s\n", reason); + shared_pte_mask = L_PTE_MT_UNCACHED; + } else { + pr_cont("ok\n"); + } +} |