summaryrefslogtreecommitdiffstats
path: root/arch/arm64/include/asm/kvm_mmu.h
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--arch/arm64/include/asm/kvm_mmu.h535
1 files changed, 535 insertions, 0 deletions
diff --git a/arch/arm64/include/asm/kvm_mmu.h b/arch/arm64/include/asm/kvm_mmu.h
new file mode 100644
index 000000000..0243b6d22
--- /dev/null
+++ b/arch/arm64/include/asm/kvm_mmu.h
@@ -0,0 +1,535 @@
+/*
+ * Copyright (C) 2012,2013 - ARM Ltd
+ * Author: Marc Zyngier <marc.zyngier@arm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef __ARM64_KVM_MMU_H__
+#define __ARM64_KVM_MMU_H__
+
+#include <asm/page.h>
+#include <asm/memory.h>
+#include <asm/cpufeature.h>
+
+/*
+ * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
+ * "negative" addresses. This makes it impossible to directly share
+ * mappings with the kernel.
+ *
+ * Instead, give the HYP mode its own VA region at a fixed offset from
+ * the kernel by just masking the top bits (which are all ones for a
+ * kernel address). We need to find out how many bits to mask.
+ *
+ * We want to build a set of page tables that cover both parts of the
+ * idmap (the trampoline page used to initialize EL2), and our normal
+ * runtime VA space, at the same time.
+ *
+ * Given that the kernel uses VA_BITS for its entire address space,
+ * and that half of that space (VA_BITS - 1) is used for the linear
+ * mapping, we can also limit the EL2 space to (VA_BITS - 1).
+ *
+ * The main question is "Within the VA_BITS space, does EL2 use the
+ * top or the bottom half of that space to shadow the kernel's linear
+ * mapping?". As we need to idmap the trampoline page, this is
+ * determined by the range in which this page lives.
+ *
+ * If the page is in the bottom half, we have to use the top half. If
+ * the page is in the top half, we have to use the bottom half:
+ *
+ * T = __pa_symbol(__hyp_idmap_text_start)
+ * if (T & BIT(VA_BITS - 1))
+ * HYP_VA_MIN = 0 //idmap in upper half
+ * else
+ * HYP_VA_MIN = 1 << (VA_BITS - 1)
+ * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
+ *
+ * This of course assumes that the trampoline page exists within the
+ * VA_BITS range. If it doesn't, then it means we're in the odd case
+ * where the kernel idmap (as well as HYP) uses more levels than the
+ * kernel runtime page tables (as seen when the kernel is configured
+ * for 4k pages, 39bits VA, and yet memory lives just above that
+ * limit, forcing the idmap to use 4 levels of page tables while the
+ * kernel itself only uses 3). In this particular case, it doesn't
+ * matter which side of VA_BITS we use, as we're guaranteed not to
+ * conflict with anything.
+ *
+ * When using VHE, there are no separate hyp mappings and all KVM
+ * functionality is already mapped as part of the main kernel
+ * mappings, and none of this applies in that case.
+ */
+
+#ifdef __ASSEMBLY__
+
+#include <asm/alternative.h>
+
+/*
+ * Convert a kernel VA into a HYP VA.
+ * reg: VA to be converted.
+ *
+ * The actual code generation takes place in kvm_update_va_mask, and
+ * the instructions below are only there to reserve the space and
+ * perform the register allocation (kvm_update_va_mask uses the
+ * specific registers encoded in the instructions).
+ */
+.macro kern_hyp_va reg
+alternative_cb kvm_update_va_mask
+ and \reg, \reg, #1 /* mask with va_mask */
+ ror \reg, \reg, #1 /* rotate to the first tag bit */
+ add \reg, \reg, #0 /* insert the low 12 bits of the tag */
+ add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */
+ ror \reg, \reg, #63 /* rotate back */
+alternative_cb_end
+.endm
+
+#else
+
+#include <asm/pgalloc.h>
+#include <asm/cache.h>
+#include <asm/cacheflush.h>
+#include <asm/mmu_context.h>
+#include <asm/pgtable.h>
+
+void kvm_update_va_mask(struct alt_instr *alt,
+ __le32 *origptr, __le32 *updptr, int nr_inst);
+
+static inline unsigned long __kern_hyp_va(unsigned long v)
+{
+ asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
+ "ror %0, %0, #1\n"
+ "add %0, %0, #0\n"
+ "add %0, %0, #0, lsl 12\n"
+ "ror %0, %0, #63\n",
+ kvm_update_va_mask)
+ : "+r" (v));
+ return v;
+}
+
+#define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
+
+/*
+ * Obtain the PC-relative address of a kernel symbol
+ * s: symbol
+ *
+ * The goal of this macro is to return a symbol's address based on a
+ * PC-relative computation, as opposed to a loading the VA from a
+ * constant pool or something similar. This works well for HYP, as an
+ * absolute VA is guaranteed to be wrong. Only use this if trying to
+ * obtain the address of a symbol (i.e. not something you obtained by
+ * following a pointer).
+ */
+#define hyp_symbol_addr(s) \
+ ({ \
+ typeof(s) *addr; \
+ asm("adrp %0, %1\n" \
+ "add %0, %0, :lo12:%1\n" \
+ : "=r" (addr) : "S" (&s)); \
+ addr; \
+ })
+
+/*
+ * We currently only support a 40bit IPA.
+ */
+#define KVM_PHYS_SHIFT (40)
+#define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT)
+#define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL)
+
+#include <asm/stage2_pgtable.h>
+
+int create_hyp_mappings(void *from, void *to, pgprot_t prot);
+int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
+ void __iomem **kaddr,
+ void __iomem **haddr);
+int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
+ void **haddr);
+void free_hyp_pgds(void);
+
+void stage2_unmap_vm(struct kvm *kvm);
+int kvm_alloc_stage2_pgd(struct kvm *kvm);
+void kvm_free_stage2_pgd(struct kvm *kvm);
+int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
+ phys_addr_t pa, unsigned long size, bool writable);
+
+int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
+
+void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
+
+phys_addr_t kvm_mmu_get_httbr(void);
+phys_addr_t kvm_get_idmap_vector(void);
+int kvm_mmu_init(void);
+void kvm_clear_hyp_idmap(void);
+
+#define kvm_mk_pmd(ptep) \
+ __pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
+#define kvm_mk_pud(pmdp) \
+ __pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
+#define kvm_mk_pgd(pudp) \
+ __pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE)
+
+static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
+{
+ pte_val(pte) |= PTE_S2_RDWR;
+ return pte;
+}
+
+static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
+{
+ pmd_val(pmd) |= PMD_S2_RDWR;
+ return pmd;
+}
+
+static inline pte_t kvm_s2pte_mkexec(pte_t pte)
+{
+ pte_val(pte) &= ~PTE_S2_XN;
+ return pte;
+}
+
+static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
+{
+ pmd_val(pmd) &= ~PMD_S2_XN;
+ return pmd;
+}
+
+static inline void kvm_set_s2pte_readonly(pte_t *ptep)
+{
+ pteval_t old_pteval, pteval;
+
+ pteval = READ_ONCE(pte_val(*ptep));
+ do {
+ old_pteval = pteval;
+ pteval &= ~PTE_S2_RDWR;
+ pteval |= PTE_S2_RDONLY;
+ pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
+ } while (pteval != old_pteval);
+}
+
+static inline bool kvm_s2pte_readonly(pte_t *ptep)
+{
+ return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
+}
+
+static inline bool kvm_s2pte_exec(pte_t *ptep)
+{
+ return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
+}
+
+static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
+{
+ kvm_set_s2pte_readonly((pte_t *)pmdp);
+}
+
+static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
+{
+ return kvm_s2pte_readonly((pte_t *)pmdp);
+}
+
+static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
+{
+ return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
+}
+
+static inline bool kvm_page_empty(void *ptr)
+{
+ struct page *ptr_page = virt_to_page(ptr);
+ return page_count(ptr_page) == 1;
+}
+
+#define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
+
+#ifdef __PAGETABLE_PMD_FOLDED
+#define hyp_pmd_table_empty(pmdp) (0)
+#else
+#define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
+#endif
+
+#ifdef __PAGETABLE_PUD_FOLDED
+#define hyp_pud_table_empty(pudp) (0)
+#else
+#define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
+#endif
+
+struct kvm;
+
+#define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
+
+static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
+{
+ return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
+}
+
+static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
+{
+ void *va = page_address(pfn_to_page(pfn));
+
+ /*
+ * With FWB, we ensure that the guest always accesses memory using
+ * cacheable attributes, and we don't have to clean to PoC when
+ * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
+ * PoU is not required either in this case.
+ */
+ if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
+ return;
+
+ kvm_flush_dcache_to_poc(va, size);
+}
+
+static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
+ unsigned long size)
+{
+ if (icache_is_aliasing()) {
+ /* any kind of VIPT cache */
+ __flush_icache_all();
+ } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
+ /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
+ void *va = page_address(pfn_to_page(pfn));
+
+ invalidate_icache_range((unsigned long)va,
+ (unsigned long)va + size);
+ }
+}
+
+static inline void __kvm_flush_dcache_pte(pte_t pte)
+{
+ if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
+ struct page *page = pte_page(pte);
+ kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
+ }
+}
+
+static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
+{
+ if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
+ struct page *page = pmd_page(pmd);
+ kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
+ }
+}
+
+static inline void __kvm_flush_dcache_pud(pud_t pud)
+{
+ if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
+ struct page *page = pud_page(pud);
+ kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
+ }
+}
+
+#define kvm_virt_to_phys(x) __pa_symbol(x)
+
+void kvm_set_way_flush(struct kvm_vcpu *vcpu);
+void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
+
+static inline bool __kvm_cpu_uses_extended_idmap(void)
+{
+ return __cpu_uses_extended_idmap_level();
+}
+
+static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
+{
+ return idmap_ptrs_per_pgd;
+}
+
+/*
+ * Can't use pgd_populate here, because the extended idmap adds an extra level
+ * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
+ * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
+ */
+static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
+ pgd_t *hyp_pgd,
+ pgd_t *merged_hyp_pgd,
+ unsigned long hyp_idmap_start)
+{
+ int idmap_idx;
+ u64 pgd_addr;
+
+ /*
+ * Use the first entry to access the HYP mappings. It is
+ * guaranteed to be free, otherwise we wouldn't use an
+ * extended idmap.
+ */
+ VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
+ pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
+ merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
+
+ /*
+ * Create another extended level entry that points to the boot HYP map,
+ * which contains an ID mapping of the HYP init code. We essentially
+ * merge the boot and runtime HYP maps by doing so, but they don't
+ * overlap anyway, so this is fine.
+ */
+ idmap_idx = hyp_idmap_start >> VA_BITS;
+ VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
+ pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
+ merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
+}
+
+static inline unsigned int kvm_get_vmid_bits(void)
+{
+ int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
+
+ return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
+}
+
+/*
+ * We are not in the kvm->srcu critical section most of the time, so we take
+ * the SRCU read lock here. Since we copy the data from the user page, we
+ * can immediately drop the lock again.
+ */
+static inline int kvm_read_guest_lock(struct kvm *kvm,
+ gpa_t gpa, void *data, unsigned long len)
+{
+ int srcu_idx = srcu_read_lock(&kvm->srcu);
+ int ret = kvm_read_guest(kvm, gpa, data, len);
+
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+
+ return ret;
+}
+
+static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
+ const void *data, unsigned long len)
+{
+ int srcu_idx = srcu_read_lock(&kvm->srcu);
+ int ret = kvm_write_guest(kvm, gpa, data, len);
+
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+
+ return ret;
+}
+
+#ifdef CONFIG_KVM_INDIRECT_VECTORS
+/*
+ * EL2 vectors can be mapped and rerouted in a number of ways,
+ * depending on the kernel configuration and CPU present:
+ *
+ * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
+ * hardening sequence is placed in one of the vector slots, which is
+ * executed before jumping to the real vectors.
+ *
+ * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
+ * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
+ * hardening sequence is mapped next to the idmap page, and executed
+ * before jumping to the real vectors.
+ *
+ * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
+ * empty slot is selected, mapped next to the idmap page, and
+ * executed before jumping to the real vectors.
+ *
+ * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
+ * VHE, as we don't have hypervisor-specific mappings. If the system
+ * is VHE and yet selects this capability, it will be ignored.
+ */
+#include <asm/mmu.h>
+
+extern void *__kvm_bp_vect_base;
+extern int __kvm_harden_el2_vector_slot;
+
+static inline void *kvm_get_hyp_vector(void)
+{
+ struct bp_hardening_data *data = arm64_get_bp_hardening_data();
+ void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
+ int slot = -1;
+
+ if ((cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) ||
+ cpus_have_const_cap(ARM64_SPECTRE_BHB)) &&
+ data && data->template_start) {
+ vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start));
+ slot = data->hyp_vectors_slot;
+ }
+
+ if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
+ vect = __kvm_bp_vect_base;
+ if (slot == -1)
+ slot = __kvm_harden_el2_vector_slot;
+ }
+
+ if (slot != -1)
+ vect += slot * SZ_2K;
+
+ return vect;
+}
+
+/* This is only called on a !VHE system */
+static inline int kvm_map_vectors(void)
+{
+ /*
+ * HBP = ARM64_HARDEN_BRANCH_PREDICTOR
+ * HEL2 = ARM64_HARDEN_EL2_VECTORS
+ *
+ * !HBP + !HEL2 -> use direct vectors
+ * HBP + !HEL2 -> use hardened vectors in place
+ * !HBP + HEL2 -> allocate one vector slot and use exec mapping
+ * HBP + HEL2 -> use hardened vertors and use exec mapping
+ */
+ if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) ||
+ cpus_have_const_cap(ARM64_SPECTRE_BHB)) {
+ __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start);
+ __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
+ }
+
+ if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
+ phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start);
+ unsigned long size = (__bp_harden_hyp_vecs_end -
+ __bp_harden_hyp_vecs_start);
+
+ /*
+ * Always allocate a spare vector slot, as we don't
+ * know yet which CPUs have a BP hardening slot that
+ * we can reuse.
+ */
+ __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
+ BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
+ return create_hyp_exec_mappings(vect_pa, size,
+ &__kvm_bp_vect_base);
+ }
+
+ return 0;
+}
+#else
+static inline void *kvm_get_hyp_vector(void)
+{
+ return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
+}
+
+static inline int kvm_map_vectors(void)
+{
+ return 0;
+}
+#endif
+
+#ifdef CONFIG_ARM64_SSBD
+DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
+
+static inline int hyp_map_aux_data(void)
+{
+ int cpu, err;
+
+ for_each_possible_cpu(cpu) {
+ u64 *ptr;
+
+ ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
+ err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
+ if (err)
+ return err;
+ }
+ return 0;
+}
+#else
+static inline int hyp_map_aux_data(void)
+{
+ return 0;
+}
+#endif
+
+#define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
+
+#endif /* __ASSEMBLY__ */
+#endif /* __ARM64_KVM_MMU_H__ */