summaryrefslogtreecommitdiffstats
path: root/arch/x86/mm/kaslr.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/mm/kaslr.c')
-rw-r--r--arch/x86/mm/kaslr.c228
1 files changed, 228 insertions, 0 deletions
diff --git a/arch/x86/mm/kaslr.c b/arch/x86/mm/kaslr.c
new file mode 100644
index 000000000..bfe769209
--- /dev/null
+++ b/arch/x86/mm/kaslr.c
@@ -0,0 +1,228 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * This file implements KASLR memory randomization for x86_64. It randomizes
+ * the virtual address space of kernel memory regions (physical memory
+ * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
+ * exploits relying on predictable kernel addresses.
+ *
+ * Entropy is generated using the KASLR early boot functions now shared in
+ * the lib directory (originally written by Kees Cook). Randomization is
+ * done on PGD & P4D/PUD page table levels to increase possible addresses.
+ * The physical memory mapping code was adapted to support P4D/PUD level
+ * virtual addresses. This implementation on the best configuration provides
+ * 30,000 possible virtual addresses in average for each memory region.
+ * An additional low memory page is used to ensure each CPU can start with
+ * a PGD aligned virtual address (for realmode).
+ *
+ * The order of each memory region is not changed. The feature looks at
+ * the available space for the regions based on different configuration
+ * options and randomizes the base and space between each. The size of the
+ * physical memory mapping is the available physical memory.
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/random.h>
+
+#include <asm/pgalloc.h>
+#include <asm/pgtable.h>
+#include <asm/setup.h>
+#include <asm/kaslr.h>
+
+#include "mm_internal.h"
+
+#define TB_SHIFT 40
+
+/*
+ * The end address could depend on more configuration options to make the
+ * highest amount of space for randomization available, but that's too hard
+ * to keep straight and caused issues already.
+ */
+static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE;
+
+/*
+ * Memory regions randomized by KASLR (except modules that use a separate logic
+ * earlier during boot). The list is ordered based on virtual addresses. This
+ * order is kept after randomization.
+ */
+static __initdata struct kaslr_memory_region {
+ unsigned long *base;
+ unsigned long size_tb;
+} kaslr_regions[] = {
+ { &page_offset_base, 0 },
+ { &vmalloc_base, 0 },
+ { &vmemmap_base, 0 },
+};
+
+/* Get size in bytes used by the memory region */
+static inline unsigned long get_padding(struct kaslr_memory_region *region)
+{
+ return (region->size_tb << TB_SHIFT);
+}
+
+/*
+ * Apply no randomization if KASLR was disabled at boot or if KASAN
+ * is enabled. KASAN shadow mappings rely on regions being PGD aligned.
+ */
+static inline bool kaslr_memory_enabled(void)
+{
+ return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN);
+}
+
+/* Initialize base and padding for each memory region randomized with KASLR */
+void __init kernel_randomize_memory(void)
+{
+ size_t i;
+ unsigned long vaddr_start, vaddr;
+ unsigned long rand, memory_tb;
+ struct rnd_state rand_state;
+ unsigned long remain_entropy;
+ unsigned long vmemmap_size;
+
+ vaddr_start = pgtable_l5_enabled() ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4;
+ vaddr = vaddr_start;
+
+ /*
+ * These BUILD_BUG_ON checks ensure the memory layout is consistent
+ * with the vaddr_start/vaddr_end variables. These checks are very
+ * limited....
+ */
+ BUILD_BUG_ON(vaddr_start >= vaddr_end);
+ BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE);
+ BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
+
+ if (!kaslr_memory_enabled())
+ return;
+
+ kaslr_regions[0].size_tb = 1 << (MAX_PHYSMEM_BITS - TB_SHIFT);
+ kaslr_regions[1].size_tb = VMALLOC_SIZE_TB;
+
+ /*
+ * Update Physical memory mapping to available and
+ * add padding if needed (especially for memory hotplug support).
+ */
+ BUG_ON(kaslr_regions[0].base != &page_offset_base);
+ memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
+ CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
+
+ /* Adapt phyiscal memory region size based on available memory */
+ if (memory_tb < kaslr_regions[0].size_tb)
+ kaslr_regions[0].size_tb = memory_tb;
+
+ /*
+ * Calculate the vmemmap region size in TBs, aligned to a TB
+ * boundary.
+ */
+ vmemmap_size = (kaslr_regions[0].size_tb << (TB_SHIFT - PAGE_SHIFT)) *
+ sizeof(struct page);
+ kaslr_regions[2].size_tb = DIV_ROUND_UP(vmemmap_size, 1UL << TB_SHIFT);
+
+ /* Calculate entropy available between regions */
+ remain_entropy = vaddr_end - vaddr_start;
+ for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
+ remain_entropy -= get_padding(&kaslr_regions[i]);
+
+ prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
+
+ for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
+ unsigned long entropy;
+
+ /*
+ * Select a random virtual address using the extra entropy
+ * available.
+ */
+ entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
+ prandom_bytes_state(&rand_state, &rand, sizeof(rand));
+ if (pgtable_l5_enabled())
+ entropy = (rand % (entropy + 1)) & P4D_MASK;
+ else
+ entropy = (rand % (entropy + 1)) & PUD_MASK;
+ vaddr += entropy;
+ *kaslr_regions[i].base = vaddr;
+
+ /*
+ * Jump the region and add a minimum padding based on
+ * randomization alignment.
+ */
+ vaddr += get_padding(&kaslr_regions[i]);
+ if (pgtable_l5_enabled())
+ vaddr = round_up(vaddr + 1, P4D_SIZE);
+ else
+ vaddr = round_up(vaddr + 1, PUD_SIZE);
+ remain_entropy -= entropy;
+ }
+}
+
+static void __meminit init_trampoline_pud(void)
+{
+ unsigned long paddr, paddr_next;
+ pgd_t *pgd;
+ pud_t *pud_page, *pud_page_tramp;
+ int i;
+
+ pud_page_tramp = alloc_low_page();
+
+ paddr = 0;
+ pgd = pgd_offset_k((unsigned long)__va(paddr));
+ pud_page = (pud_t *) pgd_page_vaddr(*pgd);
+
+ for (i = pud_index(paddr); i < PTRS_PER_PUD; i++, paddr = paddr_next) {
+ pud_t *pud, *pud_tramp;
+ unsigned long vaddr = (unsigned long)__va(paddr);
+
+ pud_tramp = pud_page_tramp + pud_index(paddr);
+ pud = pud_page + pud_index(vaddr);
+ paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
+
+ *pud_tramp = *pud;
+ }
+
+ set_pgd(&trampoline_pgd_entry,
+ __pgd(_KERNPG_TABLE | __pa(pud_page_tramp)));
+}
+
+static void __meminit init_trampoline_p4d(void)
+{
+ unsigned long paddr, paddr_next;
+ pgd_t *pgd;
+ p4d_t *p4d_page, *p4d_page_tramp;
+ int i;
+
+ p4d_page_tramp = alloc_low_page();
+
+ paddr = 0;
+ pgd = pgd_offset_k((unsigned long)__va(paddr));
+ p4d_page = (p4d_t *) pgd_page_vaddr(*pgd);
+
+ for (i = p4d_index(paddr); i < PTRS_PER_P4D; i++, paddr = paddr_next) {
+ p4d_t *p4d, *p4d_tramp;
+ unsigned long vaddr = (unsigned long)__va(paddr);
+
+ p4d_tramp = p4d_page_tramp + p4d_index(paddr);
+ p4d = p4d_page + p4d_index(vaddr);
+ paddr_next = (paddr & P4D_MASK) + P4D_SIZE;
+
+ *p4d_tramp = *p4d;
+ }
+
+ set_pgd(&trampoline_pgd_entry,
+ __pgd(_KERNPG_TABLE | __pa(p4d_page_tramp)));
+}
+
+/*
+ * Create PGD aligned trampoline table to allow real mode initialization
+ * of additional CPUs. Consume only 1 low memory page.
+ */
+void __meminit init_trampoline(void)
+{
+
+ if (!kaslr_memory_enabled()) {
+ init_trampoline_default();
+ return;
+ }
+
+ if (pgtable_l5_enabled())
+ init_trampoline_p4d();
+ else
+ init_trampoline_pud();
+}