diff options
Diffstat (limited to 'drivers/edac/i5000_edac.c')
-rw-r--r-- | drivers/edac/i5000_edac.c | 1593 |
1 files changed, 1593 insertions, 0 deletions
diff --git a/drivers/edac/i5000_edac.c b/drivers/edac/i5000_edac.c new file mode 100644 index 000000000..53f24b18c --- /dev/null +++ b/drivers/edac/i5000_edac.c @@ -0,0 +1,1593 @@ +/* + * Intel 5000(P/V/X) class Memory Controllers kernel module + * + * This file may be distributed under the terms of the + * GNU General Public License. + * + * Written by Douglas Thompson Linux Networx (http://lnxi.com) + * norsk5@xmission.com + * + * This module is based on the following document: + * + * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet + * http://developer.intel.com/design/chipsets/datashts/313070.htm + * + */ + +#include <linux/module.h> +#include <linux/init.h> +#include <linux/pci.h> +#include <linux/pci_ids.h> +#include <linux/slab.h> +#include <linux/edac.h> +#include <asm/mmzone.h> + +#include "edac_module.h" + +/* + * Alter this version for the I5000 module when modifications are made + */ +#define I5000_REVISION " Ver: 2.0.12" +#define EDAC_MOD_STR "i5000_edac" + +#define i5000_printk(level, fmt, arg...) \ + edac_printk(level, "i5000", fmt, ##arg) + +#define i5000_mc_printk(mci, level, fmt, arg...) \ + edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg) + +#ifndef PCI_DEVICE_ID_INTEL_FBD_0 +#define PCI_DEVICE_ID_INTEL_FBD_0 0x25F5 +#endif +#ifndef PCI_DEVICE_ID_INTEL_FBD_1 +#define PCI_DEVICE_ID_INTEL_FBD_1 0x25F6 +#endif + +/* Device 16, + * Function 0: System Address + * Function 1: Memory Branch Map, Control, Errors Register + * Function 2: FSB Error Registers + * + * All 3 functions of Device 16 (0,1,2) share the SAME DID + */ +#define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0 + +/* OFFSETS for Function 0 */ + +/* OFFSETS for Function 1 */ +#define AMBASE 0x48 +#define MAXCH 0x56 +#define MAXDIMMPERCH 0x57 +#define TOLM 0x6C +#define REDMEMB 0x7C +#define RED_ECC_LOCATOR(x) ((x) & 0x3FFFF) +#define REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF) +#define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3FE00) +#define MIR0 0x80 +#define MIR1 0x84 +#define MIR2 0x88 +#define AMIR0 0x8C +#define AMIR1 0x90 +#define AMIR2 0x94 + +#define FERR_FAT_FBD 0x98 +#define NERR_FAT_FBD 0x9C +#define EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3) +#define FERR_FAT_FBDCHAN 0x30000000 +#define FERR_FAT_M3ERR 0x00000004 +#define FERR_FAT_M2ERR 0x00000002 +#define FERR_FAT_M1ERR 0x00000001 +#define FERR_FAT_MASK (FERR_FAT_M1ERR | \ + FERR_FAT_M2ERR | \ + FERR_FAT_M3ERR) + +#define FERR_NF_FBD 0xA0 + +/* Thermal and SPD or BFD errors */ +#define FERR_NF_M28ERR 0x01000000 +#define FERR_NF_M27ERR 0x00800000 +#define FERR_NF_M26ERR 0x00400000 +#define FERR_NF_M25ERR 0x00200000 +#define FERR_NF_M24ERR 0x00100000 +#define FERR_NF_M23ERR 0x00080000 +#define FERR_NF_M22ERR 0x00040000 +#define FERR_NF_M21ERR 0x00020000 + +/* Correctable errors */ +#define FERR_NF_M20ERR 0x00010000 +#define FERR_NF_M19ERR 0x00008000 +#define FERR_NF_M18ERR 0x00004000 +#define FERR_NF_M17ERR 0x00002000 + +/* Non-Retry or redundant Retry errors */ +#define FERR_NF_M16ERR 0x00001000 +#define FERR_NF_M15ERR 0x00000800 +#define FERR_NF_M14ERR 0x00000400 +#define FERR_NF_M13ERR 0x00000200 + +/* Uncorrectable errors */ +#define FERR_NF_M12ERR 0x00000100 +#define FERR_NF_M11ERR 0x00000080 +#define FERR_NF_M10ERR 0x00000040 +#define FERR_NF_M9ERR 0x00000020 +#define FERR_NF_M8ERR 0x00000010 +#define FERR_NF_M7ERR 0x00000008 +#define FERR_NF_M6ERR 0x00000004 +#define FERR_NF_M5ERR 0x00000002 +#define FERR_NF_M4ERR 0x00000001 + +#define FERR_NF_UNCORRECTABLE (FERR_NF_M12ERR | \ + FERR_NF_M11ERR | \ + FERR_NF_M10ERR | \ + FERR_NF_M9ERR | \ + FERR_NF_M8ERR | \ + FERR_NF_M7ERR | \ + FERR_NF_M6ERR | \ + FERR_NF_M5ERR | \ + FERR_NF_M4ERR) +#define FERR_NF_CORRECTABLE (FERR_NF_M20ERR | \ + FERR_NF_M19ERR | \ + FERR_NF_M18ERR | \ + FERR_NF_M17ERR) +#define FERR_NF_DIMM_SPARE (FERR_NF_M27ERR | \ + FERR_NF_M28ERR) +#define FERR_NF_THERMAL (FERR_NF_M26ERR | \ + FERR_NF_M25ERR | \ + FERR_NF_M24ERR | \ + FERR_NF_M23ERR) +#define FERR_NF_SPD_PROTOCOL (FERR_NF_M22ERR) +#define FERR_NF_NORTH_CRC (FERR_NF_M21ERR) +#define FERR_NF_NON_RETRY (FERR_NF_M13ERR | \ + FERR_NF_M14ERR | \ + FERR_NF_M15ERR) + +#define NERR_NF_FBD 0xA4 +#define FERR_NF_MASK (FERR_NF_UNCORRECTABLE | \ + FERR_NF_CORRECTABLE | \ + FERR_NF_DIMM_SPARE | \ + FERR_NF_THERMAL | \ + FERR_NF_SPD_PROTOCOL | \ + FERR_NF_NORTH_CRC | \ + FERR_NF_NON_RETRY) + +#define EMASK_FBD 0xA8 +#define EMASK_FBD_M28ERR 0x08000000 +#define EMASK_FBD_M27ERR 0x04000000 +#define EMASK_FBD_M26ERR 0x02000000 +#define EMASK_FBD_M25ERR 0x01000000 +#define EMASK_FBD_M24ERR 0x00800000 +#define EMASK_FBD_M23ERR 0x00400000 +#define EMASK_FBD_M22ERR 0x00200000 +#define EMASK_FBD_M21ERR 0x00100000 +#define EMASK_FBD_M20ERR 0x00080000 +#define EMASK_FBD_M19ERR 0x00040000 +#define EMASK_FBD_M18ERR 0x00020000 +#define EMASK_FBD_M17ERR 0x00010000 + +#define EMASK_FBD_M15ERR 0x00004000 +#define EMASK_FBD_M14ERR 0x00002000 +#define EMASK_FBD_M13ERR 0x00001000 +#define EMASK_FBD_M12ERR 0x00000800 +#define EMASK_FBD_M11ERR 0x00000400 +#define EMASK_FBD_M10ERR 0x00000200 +#define EMASK_FBD_M9ERR 0x00000100 +#define EMASK_FBD_M8ERR 0x00000080 +#define EMASK_FBD_M7ERR 0x00000040 +#define EMASK_FBD_M6ERR 0x00000020 +#define EMASK_FBD_M5ERR 0x00000010 +#define EMASK_FBD_M4ERR 0x00000008 +#define EMASK_FBD_M3ERR 0x00000004 +#define EMASK_FBD_M2ERR 0x00000002 +#define EMASK_FBD_M1ERR 0x00000001 + +#define ENABLE_EMASK_FBD_FATAL_ERRORS (EMASK_FBD_M1ERR | \ + EMASK_FBD_M2ERR | \ + EMASK_FBD_M3ERR) + +#define ENABLE_EMASK_FBD_UNCORRECTABLE (EMASK_FBD_M4ERR | \ + EMASK_FBD_M5ERR | \ + EMASK_FBD_M6ERR | \ + EMASK_FBD_M7ERR | \ + EMASK_FBD_M8ERR | \ + EMASK_FBD_M9ERR | \ + EMASK_FBD_M10ERR | \ + EMASK_FBD_M11ERR | \ + EMASK_FBD_M12ERR) +#define ENABLE_EMASK_FBD_CORRECTABLE (EMASK_FBD_M17ERR | \ + EMASK_FBD_M18ERR | \ + EMASK_FBD_M19ERR | \ + EMASK_FBD_M20ERR) +#define ENABLE_EMASK_FBD_DIMM_SPARE (EMASK_FBD_M27ERR | \ + EMASK_FBD_M28ERR) +#define ENABLE_EMASK_FBD_THERMALS (EMASK_FBD_M26ERR | \ + EMASK_FBD_M25ERR | \ + EMASK_FBD_M24ERR | \ + EMASK_FBD_M23ERR) +#define ENABLE_EMASK_FBD_SPD_PROTOCOL (EMASK_FBD_M22ERR) +#define ENABLE_EMASK_FBD_NORTH_CRC (EMASK_FBD_M21ERR) +#define ENABLE_EMASK_FBD_NON_RETRY (EMASK_FBD_M15ERR | \ + EMASK_FBD_M14ERR | \ + EMASK_FBD_M13ERR) + +#define ENABLE_EMASK_ALL (ENABLE_EMASK_FBD_NON_RETRY | \ + ENABLE_EMASK_FBD_NORTH_CRC | \ + ENABLE_EMASK_FBD_SPD_PROTOCOL | \ + ENABLE_EMASK_FBD_THERMALS | \ + ENABLE_EMASK_FBD_DIMM_SPARE | \ + ENABLE_EMASK_FBD_FATAL_ERRORS | \ + ENABLE_EMASK_FBD_CORRECTABLE | \ + ENABLE_EMASK_FBD_UNCORRECTABLE) + +#define ERR0_FBD 0xAC +#define ERR1_FBD 0xB0 +#define ERR2_FBD 0xB4 +#define MCERR_FBD 0xB8 +#define NRECMEMA 0xBE +#define NREC_BANK(x) (((x)>>12) & 0x7) +#define NREC_RDWR(x) (((x)>>11) & 1) +#define NREC_RANK(x) (((x)>>8) & 0x7) +#define NRECMEMB 0xC0 +#define NREC_CAS(x) (((x)>>16) & 0xFFF) +#define NREC_RAS(x) ((x) & 0x7FFF) +#define NRECFGLOG 0xC4 +#define NREEECFBDA 0xC8 +#define NREEECFBDB 0xCC +#define NREEECFBDC 0xD0 +#define NREEECFBDD 0xD4 +#define NREEECFBDE 0xD8 +#define REDMEMA 0xDC +#define RECMEMA 0xE2 +#define REC_BANK(x) (((x)>>12) & 0x7) +#define REC_RDWR(x) (((x)>>11) & 1) +#define REC_RANK(x) (((x)>>8) & 0x7) +#define RECMEMB 0xE4 +#define REC_CAS(x) (((x)>>16) & 0xFFFFFF) +#define REC_RAS(x) ((x) & 0x7FFF) +#define RECFGLOG 0xE8 +#define RECFBDA 0xEC +#define RECFBDB 0xF0 +#define RECFBDC 0xF4 +#define RECFBDD 0xF8 +#define RECFBDE 0xFC + +/* OFFSETS for Function 2 */ + +/* + * Device 21, + * Function 0: Memory Map Branch 0 + * + * Device 22, + * Function 0: Memory Map Branch 1 + */ +#define PCI_DEVICE_ID_I5000_BRANCH_0 0x25F5 +#define PCI_DEVICE_ID_I5000_BRANCH_1 0x25F6 + +#define AMB_PRESENT_0 0x64 +#define AMB_PRESENT_1 0x66 +#define MTR0 0x80 +#define MTR1 0x84 +#define MTR2 0x88 +#define MTR3 0x8C + +#define NUM_MTRS 4 +#define CHANNELS_PER_BRANCH 2 +#define MAX_BRANCHES 2 + +/* Defines to extract the various fields from the + * MTRx - Memory Technology Registers + */ +#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (0x1 << 8)) +#define MTR_DRAM_WIDTH(mtr) ((((mtr) >> 6) & 0x1) ? 8 : 4) +#define MTR_DRAM_BANKS(mtr) ((((mtr) >> 5) & 0x1) ? 8 : 4) +#define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2) +#define MTR_DIMM_RANK(mtr) (((mtr) >> 4) & 0x1) +#define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1) +#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3) +#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13) +#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3) +#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10) + +/* enables the report of miscellaneous messages as CE errors - default off */ +static int misc_messages; + +/* Enumeration of supported devices */ +enum i5000_chips { + I5000P = 0, + I5000V = 1, /* future */ + I5000X = 2 /* future */ +}; + +/* Device name and register DID (Device ID) */ +struct i5000_dev_info { + const char *ctl_name; /* name for this device */ + u16 fsb_mapping_errors; /* DID for the branchmap,control */ +}; + +/* Table of devices attributes supported by this driver */ +static const struct i5000_dev_info i5000_devs[] = { + [I5000P] = { + .ctl_name = "I5000", + .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16, + }, +}; + +struct i5000_dimm_info { + int megabytes; /* size, 0 means not present */ + int dual_rank; +}; + +#define MAX_CHANNELS 6 /* max possible channels */ +#define MAX_CSROWS (8*2) /* max possible csrows per channel */ + +/* driver private data structure */ +struct i5000_pvt { + struct pci_dev *system_address; /* 16.0 */ + struct pci_dev *branchmap_werrors; /* 16.1 */ + struct pci_dev *fsb_error_regs; /* 16.2 */ + struct pci_dev *branch_0; /* 21.0 */ + struct pci_dev *branch_1; /* 22.0 */ + + u16 tolm; /* top of low memory */ + union { + u64 ambase; /* AMB BAR */ + struct { + u32 ambase_bottom; + u32 ambase_top; + } u __packed; + }; + + u16 mir0, mir1, mir2; + + u16 b0_mtr[NUM_MTRS]; /* Memory Technlogy Reg */ + u16 b0_ambpresent0; /* Branch 0, Channel 0 */ + u16 b0_ambpresent1; /* Brnach 0, Channel 1 */ + + u16 b1_mtr[NUM_MTRS]; /* Memory Technlogy Reg */ + u16 b1_ambpresent0; /* Branch 1, Channel 8 */ + u16 b1_ambpresent1; /* Branch 1, Channel 1 */ + + /* DIMM information matrix, allocating architecture maximums */ + struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS]; + + /* Actual values for this controller */ + int maxch; /* Max channels */ + int maxdimmperch; /* Max DIMMs per channel */ +}; + +/* I5000 MCH error information retrieved from Hardware */ +struct i5000_error_info { + + /* These registers are always read from the MC */ + u32 ferr_fat_fbd; /* First Errors Fatal */ + u32 nerr_fat_fbd; /* Next Errors Fatal */ + u32 ferr_nf_fbd; /* First Errors Non-Fatal */ + u32 nerr_nf_fbd; /* Next Errors Non-Fatal */ + + /* These registers are input ONLY if there was a Recoverable Error */ + u32 redmemb; /* Recoverable Mem Data Error log B */ + u16 recmema; /* Recoverable Mem Error log A */ + u32 recmemb; /* Recoverable Mem Error log B */ + + /* These registers are input ONLY if there was a + * Non-Recoverable Error */ + u16 nrecmema; /* Non-Recoverable Mem log A */ + u32 nrecmemb; /* Non-Recoverable Mem log B */ + +}; + +static struct edac_pci_ctl_info *i5000_pci; + +/* + * i5000_get_error_info Retrieve the hardware error information from + * the hardware and cache it in the 'info' + * structure + */ +static void i5000_get_error_info(struct mem_ctl_info *mci, + struct i5000_error_info *info) +{ + struct i5000_pvt *pvt; + u32 value; + + pvt = mci->pvt_info; + + /* read in the 1st FATAL error register */ + pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value); + + /* Mask only the bits that the doc says are valid + */ + value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK); + + /* If there is an error, then read in the */ + /* NEXT FATAL error register and the Memory Error Log Register A */ + if (value & FERR_FAT_MASK) { + info->ferr_fat_fbd = value; + + /* harvest the various error data we need */ + pci_read_config_dword(pvt->branchmap_werrors, + NERR_FAT_FBD, &info->nerr_fat_fbd); + pci_read_config_word(pvt->branchmap_werrors, + NRECMEMA, &info->nrecmema); + pci_read_config_dword(pvt->branchmap_werrors, + NRECMEMB, &info->nrecmemb); + + /* Clear the error bits, by writing them back */ + pci_write_config_dword(pvt->branchmap_werrors, + FERR_FAT_FBD, value); + } else { + info->ferr_fat_fbd = 0; + info->nerr_fat_fbd = 0; + info->nrecmema = 0; + info->nrecmemb = 0; + } + + /* read in the 1st NON-FATAL error register */ + pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value); + + /* If there is an error, then read in the 1st NON-FATAL error + * register as well */ + if (value & FERR_NF_MASK) { + info->ferr_nf_fbd = value; + + /* harvest the various error data we need */ + pci_read_config_dword(pvt->branchmap_werrors, + NERR_NF_FBD, &info->nerr_nf_fbd); + pci_read_config_word(pvt->branchmap_werrors, + RECMEMA, &info->recmema); + pci_read_config_dword(pvt->branchmap_werrors, + RECMEMB, &info->recmemb); + pci_read_config_dword(pvt->branchmap_werrors, + REDMEMB, &info->redmemb); + + /* Clear the error bits, by writing them back */ + pci_write_config_dword(pvt->branchmap_werrors, + FERR_NF_FBD, value); + } else { + info->ferr_nf_fbd = 0; + info->nerr_nf_fbd = 0; + info->recmema = 0; + info->recmemb = 0; + info->redmemb = 0; + } +} + +/* + * i5000_process_fatal_error_info(struct mem_ctl_info *mci, + * struct i5000_error_info *info, + * int handle_errors); + * + * handle the Intel FATAL errors, if any + */ +static void i5000_process_fatal_error_info(struct mem_ctl_info *mci, + struct i5000_error_info *info, + int handle_errors) +{ + char msg[EDAC_MC_LABEL_LEN + 1 + 160]; + char *specific = NULL; + u32 allErrors; + int channel; + int bank; + int rank; + int rdwr; + int ras, cas; + + /* mask off the Error bits that are possible */ + allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK); + if (!allErrors) + return; /* if no error, return now */ + + channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd); + + /* Use the NON-Recoverable macros to extract data */ + bank = NREC_BANK(info->nrecmema); + rank = NREC_RANK(info->nrecmema); + rdwr = NREC_RDWR(info->nrecmema); + ras = NREC_RAS(info->nrecmemb); + cas = NREC_CAS(info->nrecmemb); + + edac_dbg(0, "\t\tCSROW= %d Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", + rank, channel, bank, + rdwr ? "Write" : "Read", ras, cas); + + /* Only 1 bit will be on */ + switch (allErrors) { + case FERR_FAT_M1ERR: + specific = "Alert on non-redundant retry or fast " + "reset timeout"; + break; + case FERR_FAT_M2ERR: + specific = "Northbound CRC error on non-redundant " + "retry"; + break; + case FERR_FAT_M3ERR: + { + static int done; + + /* + * This error is generated to inform that the intelligent + * throttling is disabled and the temperature passed the + * specified middle point. Since this is something the BIOS + * should take care of, we'll warn only once to avoid + * worthlessly flooding the log. + */ + if (done) + return; + done++; + + specific = ">Tmid Thermal event with intelligent " + "throttling disabled"; + } + break; + } + + /* Form out message */ + snprintf(msg, sizeof(msg), + "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)", + bank, ras, cas, allErrors, specific); + + /* Call the helper to output message */ + edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0, + channel >> 1, channel & 1, rank, + rdwr ? "Write error" : "Read error", + msg); +} + +/* + * i5000_process_fatal_error_info(struct mem_ctl_info *mci, + * struct i5000_error_info *info, + * int handle_errors); + * + * handle the Intel NON-FATAL errors, if any + */ +static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci, + struct i5000_error_info *info, + int handle_errors) +{ + char msg[EDAC_MC_LABEL_LEN + 1 + 170]; + char *specific = NULL; + u32 allErrors; + u32 ue_errors; + u32 ce_errors; + u32 misc_errors; + int branch; + int channel; + int bank; + int rank; + int rdwr; + int ras, cas; + + /* mask off the Error bits that are possible */ + allErrors = (info->ferr_nf_fbd & FERR_NF_MASK); + if (!allErrors) + return; /* if no error, return now */ + + /* ONLY ONE of the possible error bits will be set, as per the docs */ + ue_errors = allErrors & FERR_NF_UNCORRECTABLE; + if (ue_errors) { + edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors); + + branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd); + + /* + * According with i5000 datasheet, bit 28 has no significance + * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD + */ + channel = branch & 2; + + bank = NREC_BANK(info->nrecmema); + rank = NREC_RANK(info->nrecmema); + rdwr = NREC_RDWR(info->nrecmema); + ras = NREC_RAS(info->nrecmemb); + cas = NREC_CAS(info->nrecmemb); + + edac_dbg(0, "\t\tCSROW= %d Channels= %d,%d (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", + rank, channel, channel + 1, branch >> 1, bank, + rdwr ? "Write" : "Read", ras, cas); + + switch (ue_errors) { + case FERR_NF_M12ERR: + specific = "Non-Aliased Uncorrectable Patrol Data ECC"; + break; + case FERR_NF_M11ERR: + specific = "Non-Aliased Uncorrectable Spare-Copy " + "Data ECC"; + break; + case FERR_NF_M10ERR: + specific = "Non-Aliased Uncorrectable Mirrored Demand " + "Data ECC"; + break; + case FERR_NF_M9ERR: + specific = "Non-Aliased Uncorrectable Non-Mirrored " + "Demand Data ECC"; + break; + case FERR_NF_M8ERR: + specific = "Aliased Uncorrectable Patrol Data ECC"; + break; + case FERR_NF_M7ERR: + specific = "Aliased Uncorrectable Spare-Copy Data ECC"; + break; + case FERR_NF_M6ERR: + specific = "Aliased Uncorrectable Mirrored Demand " + "Data ECC"; + break; + case FERR_NF_M5ERR: + specific = "Aliased Uncorrectable Non-Mirrored Demand " + "Data ECC"; + break; + case FERR_NF_M4ERR: + specific = "Uncorrectable Data ECC on Replay"; + break; + } + + /* Form out message */ + snprintf(msg, sizeof(msg), + "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)", + rank, bank, ras, cas, ue_errors, specific); + + /* Call the helper to output message */ + edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, + channel >> 1, -1, rank, + rdwr ? "Write error" : "Read error", + msg); + } + + /* Check correctable errors */ + ce_errors = allErrors & FERR_NF_CORRECTABLE; + if (ce_errors) { + edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors); + + branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd); + + channel = 0; + if (REC_ECC_LOCATOR_ODD(info->redmemb)) + channel = 1; + + /* Convert channel to be based from zero, instead of + * from branch base of 0 */ + channel += branch; + + bank = REC_BANK(info->recmema); + rank = REC_RANK(info->recmema); + rdwr = REC_RDWR(info->recmema); + ras = REC_RAS(info->recmemb); + cas = REC_CAS(info->recmemb); + + edac_dbg(0, "\t\tCSROW= %d Channel= %d (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", + rank, channel, branch >> 1, bank, + rdwr ? "Write" : "Read", ras, cas); + + switch (ce_errors) { + case FERR_NF_M17ERR: + specific = "Correctable Non-Mirrored Demand Data ECC"; + break; + case FERR_NF_M18ERR: + specific = "Correctable Mirrored Demand Data ECC"; + break; + case FERR_NF_M19ERR: + specific = "Correctable Spare-Copy Data ECC"; + break; + case FERR_NF_M20ERR: + specific = "Correctable Patrol Data ECC"; + break; + } + + /* Form out message */ + snprintf(msg, sizeof(msg), + "Rank=%d Bank=%d RDWR=%s RAS=%d " + "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank, + rdwr ? "Write" : "Read", ras, cas, ce_errors, + specific); + + /* Call the helper to output message */ + edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0, + channel >> 1, channel % 2, rank, + rdwr ? "Write error" : "Read error", + msg); + } + + if (!misc_messages) + return; + + misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC | + FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE); + if (misc_errors) { + switch (misc_errors) { + case FERR_NF_M13ERR: + specific = "Non-Retry or Redundant Retry FBD Memory " + "Alert or Redundant Fast Reset Timeout"; + break; + case FERR_NF_M14ERR: + specific = "Non-Retry or Redundant Retry FBD " + "Configuration Alert"; + break; + case FERR_NF_M15ERR: + specific = "Non-Retry or Redundant Retry FBD " + "Northbound CRC error on read data"; + break; + case FERR_NF_M21ERR: + specific = "FBD Northbound CRC error on " + "FBD Sync Status"; + break; + case FERR_NF_M22ERR: + specific = "SPD protocol error"; + break; + case FERR_NF_M27ERR: + specific = "DIMM-spare copy started"; + break; + case FERR_NF_M28ERR: + specific = "DIMM-spare copy completed"; + break; + } + branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd); + + /* Form out message */ + snprintf(msg, sizeof(msg), + "Err=%#x (%s)", misc_errors, specific); + + /* Call the helper to output message */ + edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0, + branch >> 1, -1, -1, + "Misc error", msg); + } +} + +/* + * i5000_process_error_info Process the error info that is + * in the 'info' structure, previously retrieved from hardware + */ +static void i5000_process_error_info(struct mem_ctl_info *mci, + struct i5000_error_info *info, + int handle_errors) +{ + /* First handle any fatal errors that occurred */ + i5000_process_fatal_error_info(mci, info, handle_errors); + + /* now handle any non-fatal errors that occurred */ + i5000_process_nonfatal_error_info(mci, info, handle_errors); +} + +/* + * i5000_clear_error Retrieve any error from the hardware + * but do NOT process that error. + * Used for 'clearing' out of previous errors + * Called by the Core module. + */ +static void i5000_clear_error(struct mem_ctl_info *mci) +{ + struct i5000_error_info info; + + i5000_get_error_info(mci, &info); +} + +/* + * i5000_check_error Retrieve and process errors reported by the + * hardware. Called by the Core module. + */ +static void i5000_check_error(struct mem_ctl_info *mci) +{ + struct i5000_error_info info; + edac_dbg(4, "MC%d\n", mci->mc_idx); + i5000_get_error_info(mci, &info); + i5000_process_error_info(mci, &info, 1); +} + +/* + * i5000_get_devices Find and perform 'get' operation on the MCH's + * device/functions we want to reference for this driver + * + * Need to 'get' device 16 func 1 and func 2 + */ +static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx) +{ + //const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx]; + struct i5000_pvt *pvt; + struct pci_dev *pdev; + + pvt = mci->pvt_info; + + /* Attempt to 'get' the MCH register we want */ + pdev = NULL; + while (1) { + pdev = pci_get_device(PCI_VENDOR_ID_INTEL, + PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev); + + /* End of list, leave */ + if (pdev == NULL) { + i5000_printk(KERN_ERR, + "'system address,Process Bus' " + "device not found:" + "vendor 0x%x device 0x%x FUNC 1 " + "(broken BIOS?)\n", + PCI_VENDOR_ID_INTEL, + PCI_DEVICE_ID_INTEL_I5000_DEV16); + + return 1; + } + + /* Scan for device 16 func 1 */ + if (PCI_FUNC(pdev->devfn) == 1) + break; + } + + pvt->branchmap_werrors = pdev; + + /* Attempt to 'get' the MCH register we want */ + pdev = NULL; + while (1) { + pdev = pci_get_device(PCI_VENDOR_ID_INTEL, + PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev); + + if (pdev == NULL) { + i5000_printk(KERN_ERR, + "MC: 'branchmap,control,errors' " + "device not found:" + "vendor 0x%x device 0x%x Func 2 " + "(broken BIOS?)\n", + PCI_VENDOR_ID_INTEL, + PCI_DEVICE_ID_INTEL_I5000_DEV16); + + pci_dev_put(pvt->branchmap_werrors); + return 1; + } + + /* Scan for device 16 func 1 */ + if (PCI_FUNC(pdev->devfn) == 2) + break; + } + + pvt->fsb_error_regs = pdev; + + edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n", + pci_name(pvt->system_address), + pvt->system_address->vendor, pvt->system_address->device); + edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n", + pci_name(pvt->branchmap_werrors), + pvt->branchmap_werrors->vendor, + pvt->branchmap_werrors->device); + edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n", + pci_name(pvt->fsb_error_regs), + pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device); + + pdev = NULL; + pdev = pci_get_device(PCI_VENDOR_ID_INTEL, + PCI_DEVICE_ID_I5000_BRANCH_0, pdev); + + if (pdev == NULL) { + i5000_printk(KERN_ERR, + "MC: 'BRANCH 0' device not found:" + "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n", + PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0); + + pci_dev_put(pvt->branchmap_werrors); + pci_dev_put(pvt->fsb_error_regs); + return 1; + } + + pvt->branch_0 = pdev; + + /* If this device claims to have more than 2 channels then + * fetch Branch 1's information + */ + if (pvt->maxch >= CHANNELS_PER_BRANCH) { + pdev = NULL; + pdev = pci_get_device(PCI_VENDOR_ID_INTEL, + PCI_DEVICE_ID_I5000_BRANCH_1, pdev); + + if (pdev == NULL) { + i5000_printk(KERN_ERR, + "MC: 'BRANCH 1' device not found:" + "vendor 0x%x device 0x%x Func 0 " + "(broken BIOS?)\n", + PCI_VENDOR_ID_INTEL, + PCI_DEVICE_ID_I5000_BRANCH_1); + + pci_dev_put(pvt->branchmap_werrors); + pci_dev_put(pvt->fsb_error_regs); + pci_dev_put(pvt->branch_0); + return 1; + } + + pvt->branch_1 = pdev; + } + + return 0; +} + +/* + * i5000_put_devices 'put' all the devices that we have + * reserved via 'get' + */ +static void i5000_put_devices(struct mem_ctl_info *mci) +{ + struct i5000_pvt *pvt; + + pvt = mci->pvt_info; + + pci_dev_put(pvt->branchmap_werrors); /* FUNC 1 */ + pci_dev_put(pvt->fsb_error_regs); /* FUNC 2 */ + pci_dev_put(pvt->branch_0); /* DEV 21 */ + + /* Only if more than 2 channels do we release the second branch */ + if (pvt->maxch >= CHANNELS_PER_BRANCH) + pci_dev_put(pvt->branch_1); /* DEV 22 */ +} + +/* + * determine_amb_resent + * + * the information is contained in NUM_MTRS different registers + * determineing which of the NUM_MTRS requires knowing + * which channel is in question + * + * 2 branches, each with 2 channels + * b0_ambpresent0 for channel '0' + * b0_ambpresent1 for channel '1' + * b1_ambpresent0 for channel '2' + * b1_ambpresent1 for channel '3' + */ +static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel) +{ + int amb_present; + + if (channel < CHANNELS_PER_BRANCH) { + if (channel & 0x1) + amb_present = pvt->b0_ambpresent1; + else + amb_present = pvt->b0_ambpresent0; + } else { + if (channel & 0x1) + amb_present = pvt->b1_ambpresent1; + else + amb_present = pvt->b1_ambpresent0; + } + + return amb_present; +} + +/* + * determine_mtr(pvt, csrow, channel) + * + * return the proper MTR register as determine by the csrow and channel desired + */ +static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel) +{ + int mtr; + + if (channel < CHANNELS_PER_BRANCH) + mtr = pvt->b0_mtr[slot]; + else + mtr = pvt->b1_mtr[slot]; + + return mtr; +} + +/* + */ +static void decode_mtr(int slot_row, u16 mtr) +{ + int ans; + + ans = MTR_DIMMS_PRESENT(mtr); + + edac_dbg(2, "\tMTR%d=0x%x: DIMMs are %sPresent\n", + slot_row, mtr, ans ? "" : "NOT "); + if (!ans) + return; + + edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr)); + edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr)); + edac_dbg(2, "\t\tNUMRANK: %s\n", + MTR_DIMM_RANK(mtr) ? "double" : "single"); + edac_dbg(2, "\t\tNUMROW: %s\n", + MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" : + MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" : + MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" : + "reserved"); + edac_dbg(2, "\t\tNUMCOL: %s\n", + MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" : + MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" : + MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" : + "reserved"); +} + +static void handle_channel(struct i5000_pvt *pvt, int slot, int channel, + struct i5000_dimm_info *dinfo) +{ + int mtr; + int amb_present_reg; + int addrBits; + + mtr = determine_mtr(pvt, slot, channel); + if (MTR_DIMMS_PRESENT(mtr)) { + amb_present_reg = determine_amb_present_reg(pvt, channel); + + /* Determine if there is a DIMM present in this DIMM slot */ + if (amb_present_reg) { + dinfo->dual_rank = MTR_DIMM_RANK(mtr); + + /* Start with the number of bits for a Bank + * on the DRAM */ + addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr); + /* Add the number of ROW bits */ + addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr); + /* add the number of COLUMN bits */ + addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr); + + /* Dual-rank memories have twice the size */ + if (dinfo->dual_rank) + addrBits++; + + addrBits += 6; /* add 64 bits per DIMM */ + addrBits -= 20; /* divide by 2^^20 */ + addrBits -= 3; /* 8 bits per bytes */ + + dinfo->megabytes = 1 << addrBits; + } + } +} + +/* + * calculate_dimm_size + * + * also will output a DIMM matrix map, if debug is enabled, for viewing + * how the DIMMs are populated + */ +static void calculate_dimm_size(struct i5000_pvt *pvt) +{ + struct i5000_dimm_info *dinfo; + int slot, channel, branch; + char *p, *mem_buffer; + int space, n; + + /* ================= Generate some debug output ================= */ + space = PAGE_SIZE; + mem_buffer = p = kmalloc(space, GFP_KERNEL); + if (p == NULL) { + i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n", + __FILE__, __func__); + return; + } + + /* Scan all the actual slots + * and calculate the information for each DIMM + * Start with the highest slot first, to display it first + * and work toward the 0th slot + */ + for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) { + + /* on an odd slot, first output a 'boundary' marker, + * then reset the message buffer */ + if (slot & 0x1) { + n = snprintf(p, space, "--------------------------" + "--------------------------------"); + p += n; + space -= n; + edac_dbg(2, "%s\n", mem_buffer); + p = mem_buffer; + space = PAGE_SIZE; + } + n = snprintf(p, space, "slot %2d ", slot); + p += n; + space -= n; + + for (channel = 0; channel < pvt->maxch; channel++) { + dinfo = &pvt->dimm_info[slot][channel]; + handle_channel(pvt, slot, channel, dinfo); + if (dinfo->megabytes) + n = snprintf(p, space, "%4d MB %dR| ", + dinfo->megabytes, dinfo->dual_rank + 1); + else + n = snprintf(p, space, "%4d MB | ", 0); + p += n; + space -= n; + } + p += n; + space -= n; + edac_dbg(2, "%s\n", mem_buffer); + p = mem_buffer; + space = PAGE_SIZE; + } + + /* Output the last bottom 'boundary' marker */ + n = snprintf(p, space, "--------------------------" + "--------------------------------"); + p += n; + space -= n; + edac_dbg(2, "%s\n", mem_buffer); + p = mem_buffer; + space = PAGE_SIZE; + + /* now output the 'channel' labels */ + n = snprintf(p, space, " "); + p += n; + space -= n; + for (channel = 0; channel < pvt->maxch; channel++) { + n = snprintf(p, space, "channel %d | ", channel); + p += n; + space -= n; + } + edac_dbg(2, "%s\n", mem_buffer); + p = mem_buffer; + space = PAGE_SIZE; + + n = snprintf(p, space, " "); + p += n; + for (branch = 0; branch < MAX_BRANCHES; branch++) { + n = snprintf(p, space, " branch %d | ", branch); + p += n; + space -= n; + } + + /* output the last message and free buffer */ + edac_dbg(2, "%s\n", mem_buffer); + kfree(mem_buffer); +} + +/* + * i5000_get_mc_regs read in the necessary registers and + * cache locally + * + * Fills in the private data members + */ +static void i5000_get_mc_regs(struct mem_ctl_info *mci) +{ + struct i5000_pvt *pvt; + u32 actual_tolm; + u16 limit; + int slot_row; + int maxch; + int maxdimmperch; + int way0, way1; + + pvt = mci->pvt_info; + + pci_read_config_dword(pvt->system_address, AMBASE, + &pvt->u.ambase_bottom); + pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32), + &pvt->u.ambase_top); + + maxdimmperch = pvt->maxdimmperch; + maxch = pvt->maxch; + + edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n", + (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch); + + /* Get the Branch Map regs */ + pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm); + pvt->tolm >>= 12; + edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n", + pvt->tolm, pvt->tolm); + + actual_tolm = pvt->tolm << 28; + edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n", + actual_tolm, actual_tolm); + + pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0); + pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1); + pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2); + + /* Get the MIR[0-2] regs */ + limit = (pvt->mir0 >> 4) & 0x0FFF; + way0 = pvt->mir0 & 0x1; + way1 = pvt->mir0 & 0x2; + edac_dbg(2, "MIR0: limit= 0x%x WAY1= %u WAY0= %x\n", + limit, way1, way0); + limit = (pvt->mir1 >> 4) & 0x0FFF; + way0 = pvt->mir1 & 0x1; + way1 = pvt->mir1 & 0x2; + edac_dbg(2, "MIR1: limit= 0x%x WAY1= %u WAY0= %x\n", + limit, way1, way0); + limit = (pvt->mir2 >> 4) & 0x0FFF; + way0 = pvt->mir2 & 0x1; + way1 = pvt->mir2 & 0x2; + edac_dbg(2, "MIR2: limit= 0x%x WAY1= %u WAY0= %x\n", + limit, way1, way0); + + /* Get the MTR[0-3] regs */ + for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) { + int where = MTR0 + (slot_row * sizeof(u32)); + + pci_read_config_word(pvt->branch_0, where, + &pvt->b0_mtr[slot_row]); + + edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n", + slot_row, where, pvt->b0_mtr[slot_row]); + + if (pvt->maxch >= CHANNELS_PER_BRANCH) { + pci_read_config_word(pvt->branch_1, where, + &pvt->b1_mtr[slot_row]); + edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n", + slot_row, where, pvt->b1_mtr[slot_row]); + } else { + pvt->b1_mtr[slot_row] = 0; + } + } + + /* Read and dump branch 0's MTRs */ + edac_dbg(2, "Memory Technology Registers:\n"); + edac_dbg(2, " Branch 0:\n"); + for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) { + decode_mtr(slot_row, pvt->b0_mtr[slot_row]); + } + pci_read_config_word(pvt->branch_0, AMB_PRESENT_0, + &pvt->b0_ambpresent0); + edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0); + pci_read_config_word(pvt->branch_0, AMB_PRESENT_1, + &pvt->b0_ambpresent1); + edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1); + + /* Only if we have 2 branchs (4 channels) */ + if (pvt->maxch < CHANNELS_PER_BRANCH) { + pvt->b1_ambpresent0 = 0; + pvt->b1_ambpresent1 = 0; + } else { + /* Read and dump branch 1's MTRs */ + edac_dbg(2, " Branch 1:\n"); + for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) { + decode_mtr(slot_row, pvt->b1_mtr[slot_row]); + } + pci_read_config_word(pvt->branch_1, AMB_PRESENT_0, + &pvt->b1_ambpresent0); + edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n", + pvt->b1_ambpresent0); + pci_read_config_word(pvt->branch_1, AMB_PRESENT_1, + &pvt->b1_ambpresent1); + edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n", + pvt->b1_ambpresent1); + } + + /* Go and determine the size of each DIMM and place in an + * orderly matrix */ + calculate_dimm_size(pvt); +} + +/* + * i5000_init_csrows Initialize the 'csrows' table within + * the mci control structure with the + * addressing of memory. + * + * return: + * 0 success + * 1 no actual memory found on this MC + */ +static int i5000_init_csrows(struct mem_ctl_info *mci) +{ + struct i5000_pvt *pvt; + struct dimm_info *dimm; + int empty, channel_count; + int max_csrows; + int mtr; + int csrow_megs; + int channel; + int slot; + + pvt = mci->pvt_info; + + channel_count = pvt->maxch; + max_csrows = pvt->maxdimmperch * 2; + + empty = 1; /* Assume NO memory */ + + /* + * FIXME: The memory layout used to map slot/channel into the + * real memory architecture is weird: branch+slot are "csrows" + * and channel is channel. That required an extra array (dimm_info) + * to map the dimms. A good cleanup would be to remove this array, + * and do a loop here with branch, channel, slot + */ + for (slot = 0; slot < max_csrows; slot++) { + for (channel = 0; channel < pvt->maxch; channel++) { + + mtr = determine_mtr(pvt, slot, channel); + + if (!MTR_DIMMS_PRESENT(mtr)) + continue; + + dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, + channel / MAX_BRANCHES, + channel % MAX_BRANCHES, slot); + + csrow_megs = pvt->dimm_info[slot][channel].megabytes; + dimm->grain = 8; + + /* Assume DDR2 for now */ + dimm->mtype = MEM_FB_DDR2; + + /* ask what device type on this row */ + if (MTR_DRAM_WIDTH(mtr) == 8) + dimm->dtype = DEV_X8; + else + dimm->dtype = DEV_X4; + + dimm->edac_mode = EDAC_S8ECD8ED; + dimm->nr_pages = csrow_megs << 8; + } + + empty = 0; + } + + return empty; +} + +/* + * i5000_enable_error_reporting + * Turn on the memory reporting features of the hardware + */ +static void i5000_enable_error_reporting(struct mem_ctl_info *mci) +{ + struct i5000_pvt *pvt; + u32 fbd_error_mask; + + pvt = mci->pvt_info; + + /* Read the FBD Error Mask Register */ + pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD, + &fbd_error_mask); + + /* Enable with a '0' */ + fbd_error_mask &= ~(ENABLE_EMASK_ALL); + + pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD, + fbd_error_mask); +} + +/* + * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels) + * + * ask the device how many channels are present and how many CSROWS + * as well + */ +static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev, + int *num_dimms_per_channel, + int *num_channels) +{ + u8 value; + + /* Need to retrieve just how many channels and dimms per channel are + * supported on this memory controller + */ + pci_read_config_byte(pdev, MAXDIMMPERCH, &value); + *num_dimms_per_channel = (int)value; + + pci_read_config_byte(pdev, MAXCH, &value); + *num_channels = (int)value; +} + +/* + * i5000_probe1 Probe for ONE instance of device to see if it is + * present. + * return: + * 0 for FOUND a device + * < 0 for error code + */ +static int i5000_probe1(struct pci_dev *pdev, int dev_idx) +{ + struct mem_ctl_info *mci; + struct edac_mc_layer layers[3]; + struct i5000_pvt *pvt; + int num_channels; + int num_dimms_per_channel; + + edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n", + pdev->bus->number, + PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); + + /* We only are looking for func 0 of the set */ + if (PCI_FUNC(pdev->devfn) != 0) + return -ENODEV; + + /* Ask the devices for the number of CSROWS and CHANNELS so + * that we can calculate the memory resources, etc + * + * The Chipset will report what it can handle which will be greater + * or equal to what the motherboard manufacturer will implement. + * + * As we don't have a motherboard identification routine to determine + * actual number of slots/dimms per channel, we thus utilize the + * resource as specified by the chipset. Thus, we might have + * have more DIMMs per channel than actually on the mobo, but this + * allows the driver to support up to the chipset max, without + * some fancy mobo determination. + */ + i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel, + &num_channels); + + edac_dbg(0, "MC: Number of Branches=2 Channels= %d DIMMS= %d\n", + num_channels, num_dimms_per_channel); + + /* allocate a new MC control structure */ + + layers[0].type = EDAC_MC_LAYER_BRANCH; + layers[0].size = MAX_BRANCHES; + layers[0].is_virt_csrow = false; + layers[1].type = EDAC_MC_LAYER_CHANNEL; + layers[1].size = num_channels / MAX_BRANCHES; + layers[1].is_virt_csrow = false; + layers[2].type = EDAC_MC_LAYER_SLOT; + layers[2].size = num_dimms_per_channel; + layers[2].is_virt_csrow = true; + mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); + if (mci == NULL) + return -ENOMEM; + + edac_dbg(0, "MC: mci = %p\n", mci); + + mci->pdev = &pdev->dev; /* record ptr to the generic device */ + + pvt = mci->pvt_info; + pvt->system_address = pdev; /* Record this device in our private */ + pvt->maxch = num_channels; + pvt->maxdimmperch = num_dimms_per_channel; + + /* 'get' the pci devices we want to reserve for our use */ + if (i5000_get_devices(mci, dev_idx)) + goto fail0; + + /* Time to get serious */ + i5000_get_mc_regs(mci); /* retrieve the hardware registers */ + + mci->mc_idx = 0; + mci->mtype_cap = MEM_FLAG_FB_DDR2; + mci->edac_ctl_cap = EDAC_FLAG_NONE; + mci->edac_cap = EDAC_FLAG_NONE; + mci->mod_name = "i5000_edac.c"; + mci->ctl_name = i5000_devs[dev_idx].ctl_name; + mci->dev_name = pci_name(pdev); + mci->ctl_page_to_phys = NULL; + + /* Set the function pointer to an actual operation function */ + mci->edac_check = i5000_check_error; + + /* initialize the MC control structure 'csrows' table + * with the mapping and control information */ + if (i5000_init_csrows(mci)) { + edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n"); + mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */ + } else { + edac_dbg(1, "MC: Enable error reporting now\n"); + i5000_enable_error_reporting(mci); + } + + /* add this new MC control structure to EDAC's list of MCs */ + if (edac_mc_add_mc(mci)) { + edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); + /* FIXME: perhaps some code should go here that disables error + * reporting if we just enabled it + */ + goto fail1; + } + + i5000_clear_error(mci); + + /* allocating generic PCI control info */ + i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); + if (!i5000_pci) { + printk(KERN_WARNING + "%s(): Unable to create PCI control\n", + __func__); + printk(KERN_WARNING + "%s(): PCI error report via EDAC not setup\n", + __func__); + } + + return 0; + + /* Error exit unwinding stack */ +fail1: + + i5000_put_devices(mci); + +fail0: + edac_mc_free(mci); + return -ENODEV; +} + +/* + * i5000_init_one constructor for one instance of device + * + * returns: + * negative on error + * count (>= 0) + */ +static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id) +{ + int rc; + + edac_dbg(0, "MC:\n"); + + /* wake up device */ + rc = pci_enable_device(pdev); + if (rc) + return rc; + + /* now probe and enable the device */ + return i5000_probe1(pdev, id->driver_data); +} + +/* + * i5000_remove_one destructor for one instance of device + * + */ +static void i5000_remove_one(struct pci_dev *pdev) +{ + struct mem_ctl_info *mci; + + edac_dbg(0, "\n"); + + if (i5000_pci) + edac_pci_release_generic_ctl(i5000_pci); + + if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL) + return; + + /* retrieve references to resources, and free those resources */ + i5000_put_devices(mci); + edac_mc_free(mci); +} + +/* + * pci_device_id table for which devices we are looking for + * + * The "E500P" device is the first device supported. + */ +static const struct pci_device_id i5000_pci_tbl[] = { + {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16), + .driver_data = I5000P}, + + {0,} /* 0 terminated list. */ +}; + +MODULE_DEVICE_TABLE(pci, i5000_pci_tbl); + +/* + * i5000_driver pci_driver structure for this module + * + */ +static struct pci_driver i5000_driver = { + .name = KBUILD_BASENAME, + .probe = i5000_init_one, + .remove = i5000_remove_one, + .id_table = i5000_pci_tbl, +}; + +/* + * i5000_init Module entry function + * Try to initialize this module for its devices + */ +static int __init i5000_init(void) +{ + int pci_rc; + + edac_dbg(2, "MC:\n"); + + /* Ensure that the OPSTATE is set correctly for POLL or NMI */ + opstate_init(); + + pci_rc = pci_register_driver(&i5000_driver); + + return (pci_rc < 0) ? pci_rc : 0; +} + +/* + * i5000_exit() Module exit function + * Unregister the driver + */ +static void __exit i5000_exit(void) +{ + edac_dbg(2, "MC:\n"); + pci_unregister_driver(&i5000_driver); +} + +module_init(i5000_init); +module_exit(i5000_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR + ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>"); +MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - " + I5000_REVISION); + +module_param(edac_op_state, int, 0444); +MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); +module_param(misc_messages, int, 0444); +MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages"); + |