diff options
Diffstat (limited to 'drivers/firmware/dmi_scan.c')
-rw-r--r-- | drivers/firmware/dmi_scan.c | 1127 |
1 files changed, 1127 insertions, 0 deletions
diff --git a/drivers/firmware/dmi_scan.c b/drivers/firmware/dmi_scan.c new file mode 100644 index 000000000..0dc0c78f1 --- /dev/null +++ b/drivers/firmware/dmi_scan.c @@ -0,0 +1,1127 @@ +#include <linux/types.h> +#include <linux/string.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/ctype.h> +#include <linux/dmi.h> +#include <linux/efi.h> +#include <linux/bootmem.h> +#include <linux/random.h> +#include <asm/dmi.h> +#include <asm/unaligned.h> + +struct kobject *dmi_kobj; +EXPORT_SYMBOL_GPL(dmi_kobj); + +/* + * DMI stands for "Desktop Management Interface". It is part + * of and an antecedent to, SMBIOS, which stands for System + * Management BIOS. See further: http://www.dmtf.org/standards + */ +static const char dmi_empty_string[] = ""; + +static u32 dmi_ver __initdata; +static u32 dmi_len; +static u16 dmi_num; +static u8 smbios_entry_point[32]; +static int smbios_entry_point_size; + +/* DMI system identification string used during boot */ +static char dmi_ids_string[128] __initdata; + +static struct dmi_memdev_info { + const char *device; + const char *bank; + u64 size; /* bytes */ + u16 handle; +} *dmi_memdev; +static int dmi_memdev_nr; + +static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) +{ + const u8 *bp = ((u8 *) dm) + dm->length; + const u8 *nsp; + + if (s) { + while (--s > 0 && *bp) + bp += strlen(bp) + 1; + + /* Strings containing only spaces are considered empty */ + nsp = bp; + while (*nsp == ' ') + nsp++; + if (*nsp != '\0') + return bp; + } + + return dmi_empty_string; +} + +static const char * __init dmi_string(const struct dmi_header *dm, u8 s) +{ + const char *bp = dmi_string_nosave(dm, s); + char *str; + size_t len; + + if (bp == dmi_empty_string) + return dmi_empty_string; + + len = strlen(bp) + 1; + str = dmi_alloc(len); + if (str != NULL) + strcpy(str, bp); + + return str; +} + +/* + * We have to be cautious here. We have seen BIOSes with DMI pointers + * pointing to completely the wrong place for example + */ +static void dmi_decode_table(u8 *buf, + void (*decode)(const struct dmi_header *, void *), + void *private_data) +{ + u8 *data = buf; + int i = 0; + + /* + * Stop when we have seen all the items the table claimed to have + * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS + * >= 3.0 only) OR we run off the end of the table (should never + * happen but sometimes does on bogus implementations.) + */ + while ((!dmi_num || i < dmi_num) && + (data - buf + sizeof(struct dmi_header)) <= dmi_len) { + const struct dmi_header *dm = (const struct dmi_header *)data; + + /* + * We want to know the total length (formatted area and + * strings) before decoding to make sure we won't run off the + * table in dmi_decode or dmi_string + */ + data += dm->length; + while ((data - buf < dmi_len - 1) && (data[0] || data[1])) + data++; + if (data - buf < dmi_len - 1) + decode(dm, private_data); + + data += 2; + i++; + + /* + * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] + * For tables behind a 64-bit entry point, we have no item + * count and no exact table length, so stop on end-of-table + * marker. For tables behind a 32-bit entry point, we have + * seen OEM structures behind the end-of-table marker on + * some systems, so don't trust it. + */ + if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) + break; + } + + /* Trim DMI table length if needed */ + if (dmi_len > data - buf) + dmi_len = data - buf; +} + +static phys_addr_t dmi_base; + +static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, + void *)) +{ + u8 *buf; + u32 orig_dmi_len = dmi_len; + + buf = dmi_early_remap(dmi_base, orig_dmi_len); + if (buf == NULL) + return -ENOMEM; + + dmi_decode_table(buf, decode, NULL); + + add_device_randomness(buf, dmi_len); + + dmi_early_unmap(buf, orig_dmi_len); + return 0; +} + +static int __init dmi_checksum(const u8 *buf, u8 len) +{ + u8 sum = 0; + int a; + + for (a = 0; a < len; a++) + sum += buf[a]; + + return sum == 0; +} + +static const char *dmi_ident[DMI_STRING_MAX]; +static LIST_HEAD(dmi_devices); +int dmi_available; + +/* + * Save a DMI string + */ +static void __init dmi_save_ident(const struct dmi_header *dm, int slot, + int string) +{ + const char *d = (const char *) dm; + const char *p; + + if (dmi_ident[slot] || dm->length <= string) + return; + + p = dmi_string(dm, d[string]); + if (p == NULL) + return; + + dmi_ident[slot] = p; +} + +static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, + int index) +{ + const u8 *d; + char *s; + int is_ff = 1, is_00 = 1, i; + + if (dmi_ident[slot] || dm->length < index + 16) + return; + + d = (u8 *) dm + index; + for (i = 0; i < 16 && (is_ff || is_00); i++) { + if (d[i] != 0x00) + is_00 = 0; + if (d[i] != 0xFF) + is_ff = 0; + } + + if (is_ff || is_00) + return; + + s = dmi_alloc(16*2+4+1); + if (!s) + return; + + /* + * As of version 2.6 of the SMBIOS specification, the first 3 fields of + * the UUID are supposed to be little-endian encoded. The specification + * says that this is the defacto standard. + */ + if (dmi_ver >= 0x020600) + sprintf(s, "%pUl", d); + else + sprintf(s, "%pUb", d); + + dmi_ident[slot] = s; +} + +static void __init dmi_save_type(const struct dmi_header *dm, int slot, + int index) +{ + const u8 *d; + char *s; + + if (dmi_ident[slot] || dm->length <= index) + return; + + s = dmi_alloc(4); + if (!s) + return; + + d = (u8 *) dm + index; + sprintf(s, "%u", *d & 0x7F); + dmi_ident[slot] = s; +} + +static void __init dmi_save_one_device(int type, const char *name) +{ + struct dmi_device *dev; + + /* No duplicate device */ + if (dmi_find_device(type, name, NULL)) + return; + + dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); + if (!dev) + return; + + dev->type = type; + strcpy((char *)(dev + 1), name); + dev->name = (char *)(dev + 1); + dev->device_data = NULL; + list_add(&dev->list, &dmi_devices); +} + +static void __init dmi_save_devices(const struct dmi_header *dm) +{ + int i, count = (dm->length - sizeof(struct dmi_header)) / 2; + + for (i = 0; i < count; i++) { + const char *d = (char *)(dm + 1) + (i * 2); + + /* Skip disabled device */ + if ((*d & 0x80) == 0) + continue; + + dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); + } +} + +static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) +{ + int i, count; + struct dmi_device *dev; + + if (dm->length < 0x05) + return; + + count = *(u8 *)(dm + 1); + for (i = 1; i <= count; i++) { + const char *devname = dmi_string(dm, i); + + if (devname == dmi_empty_string) + continue; + + dev = dmi_alloc(sizeof(*dev)); + if (!dev) + break; + + dev->type = DMI_DEV_TYPE_OEM_STRING; + dev->name = devname; + dev->device_data = NULL; + + list_add(&dev->list, &dmi_devices); + } +} + +static void __init dmi_save_ipmi_device(const struct dmi_header *dm) +{ + struct dmi_device *dev; + void *data; + + data = dmi_alloc(dm->length); + if (data == NULL) + return; + + memcpy(data, dm, dm->length); + + dev = dmi_alloc(sizeof(*dev)); + if (!dev) + return; + + dev->type = DMI_DEV_TYPE_IPMI; + dev->name = "IPMI controller"; + dev->device_data = data; + + list_add_tail(&dev->list, &dmi_devices); +} + +static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, + int devfn, const char *name, int type) +{ + struct dmi_dev_onboard *dev; + + /* Ignore invalid values */ + if (type == DMI_DEV_TYPE_DEV_SLOT && + segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) + return; + + dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); + if (!dev) + return; + + dev->instance = instance; + dev->segment = segment; + dev->bus = bus; + dev->devfn = devfn; + + strcpy((char *)&dev[1], name); + dev->dev.type = type; + dev->dev.name = (char *)&dev[1]; + dev->dev.device_data = dev; + + list_add(&dev->dev.list, &dmi_devices); +} + +static void __init dmi_save_extended_devices(const struct dmi_header *dm) +{ + const char *name; + const u8 *d = (u8 *)dm; + + if (dm->length < 0x0B) + return; + + /* Skip disabled device */ + if ((d[0x5] & 0x80) == 0) + return; + + name = dmi_string_nosave(dm, d[0x4]); + dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, + DMI_DEV_TYPE_DEV_ONBOARD); + dmi_save_one_device(d[0x5] & 0x7f, name); +} + +static void __init dmi_save_system_slot(const struct dmi_header *dm) +{ + const u8 *d = (u8 *)dm; + + /* Need SMBIOS 2.6+ structure */ + if (dm->length < 0x11) + return; + dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], + d[0x10], dmi_string_nosave(dm, d[0x4]), + DMI_DEV_TYPE_DEV_SLOT); +} + +static void __init count_mem_devices(const struct dmi_header *dm, void *v) +{ + if (dm->type != DMI_ENTRY_MEM_DEVICE) + return; + dmi_memdev_nr++; +} + +static void __init save_mem_devices(const struct dmi_header *dm, void *v) +{ + const char *d = (const char *)dm; + static int nr; + u64 bytes; + u16 size; + + if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12) + return; + if (nr >= dmi_memdev_nr) { + pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); + return; + } + dmi_memdev[nr].handle = get_unaligned(&dm->handle); + dmi_memdev[nr].device = dmi_string(dm, d[0x10]); + dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); + + size = get_unaligned((u16 *)&d[0xC]); + if (size == 0) + bytes = 0; + else if (size == 0xffff) + bytes = ~0ull; + else if (size & 0x8000) + bytes = (u64)(size & 0x7fff) << 10; + else if (size != 0x7fff || dm->length < 0x20) + bytes = (u64)size << 20; + else + bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20; + + dmi_memdev[nr].size = bytes; + nr++; +} + +void __init dmi_memdev_walk(void) +{ + if (!dmi_available) + return; + + if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { + dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); + if (dmi_memdev) + dmi_walk_early(save_mem_devices); + } +} + +/* + * Process a DMI table entry. Right now all we care about are the BIOS + * and machine entries. For 2.5 we should pull the smbus controller info + * out of here. + */ +static void __init dmi_decode(const struct dmi_header *dm, void *dummy) +{ + switch (dm->type) { + case 0: /* BIOS Information */ + dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); + dmi_save_ident(dm, DMI_BIOS_VERSION, 5); + dmi_save_ident(dm, DMI_BIOS_DATE, 8); + break; + case 1: /* System Information */ + dmi_save_ident(dm, DMI_SYS_VENDOR, 4); + dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); + dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); + dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); + dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); + dmi_save_ident(dm, DMI_PRODUCT_SKU, 25); + dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26); + break; + case 2: /* Base Board Information */ + dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); + dmi_save_ident(dm, DMI_BOARD_NAME, 5); + dmi_save_ident(dm, DMI_BOARD_VERSION, 6); + dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); + dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); + break; + case 3: /* Chassis Information */ + dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); + dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); + dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); + dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); + dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); + break; + case 9: /* System Slots */ + dmi_save_system_slot(dm); + break; + case 10: /* Onboard Devices Information */ + dmi_save_devices(dm); + break; + case 11: /* OEM Strings */ + dmi_save_oem_strings_devices(dm); + break; + case 38: /* IPMI Device Information */ + dmi_save_ipmi_device(dm); + break; + case 41: /* Onboard Devices Extended Information */ + dmi_save_extended_devices(dm); + } +} + +static int __init print_filtered(char *buf, size_t len, const char *info) +{ + int c = 0; + const char *p; + + if (!info) + return c; + + for (p = info; *p; p++) + if (isprint(*p)) + c += scnprintf(buf + c, len - c, "%c", *p); + else + c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); + return c; +} + +static void __init dmi_format_ids(char *buf, size_t len) +{ + int c = 0; + const char *board; /* Board Name is optional */ + + c += print_filtered(buf + c, len - c, + dmi_get_system_info(DMI_SYS_VENDOR)); + c += scnprintf(buf + c, len - c, " "); + c += print_filtered(buf + c, len - c, + dmi_get_system_info(DMI_PRODUCT_NAME)); + + board = dmi_get_system_info(DMI_BOARD_NAME); + if (board) { + c += scnprintf(buf + c, len - c, "/"); + c += print_filtered(buf + c, len - c, board); + } + c += scnprintf(buf + c, len - c, ", BIOS "); + c += print_filtered(buf + c, len - c, + dmi_get_system_info(DMI_BIOS_VERSION)); + c += scnprintf(buf + c, len - c, " "); + c += print_filtered(buf + c, len - c, + dmi_get_system_info(DMI_BIOS_DATE)); +} + +/* + * Check for DMI/SMBIOS headers in the system firmware image. Any + * SMBIOS header must start 16 bytes before the DMI header, so take a + * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset + * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS + * takes precedence) and return 0. Otherwise return 1. + */ +static int __init dmi_present(const u8 *buf) +{ + u32 smbios_ver; + + if (memcmp(buf, "_SM_", 4) == 0 && + buf[5] < 32 && dmi_checksum(buf, buf[5])) { + smbios_ver = get_unaligned_be16(buf + 6); + smbios_entry_point_size = buf[5]; + memcpy(smbios_entry_point, buf, smbios_entry_point_size); + + /* Some BIOS report weird SMBIOS version, fix that up */ + switch (smbios_ver) { + case 0x021F: + case 0x0221: + pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", + smbios_ver & 0xFF, 3); + smbios_ver = 0x0203; + break; + case 0x0233: + pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); + smbios_ver = 0x0206; + break; + } + } else { + smbios_ver = 0; + } + + buf += 16; + + if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { + if (smbios_ver) + dmi_ver = smbios_ver; + else + dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); + dmi_ver <<= 8; + dmi_num = get_unaligned_le16(buf + 12); + dmi_len = get_unaligned_le16(buf + 6); + dmi_base = get_unaligned_le32(buf + 8); + + if (dmi_walk_early(dmi_decode) == 0) { + if (smbios_ver) { + pr_info("SMBIOS %d.%d present.\n", + dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); + } else { + smbios_entry_point_size = 15; + memcpy(smbios_entry_point, buf, + smbios_entry_point_size); + pr_info("Legacy DMI %d.%d present.\n", + dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); + } + dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); + pr_info("DMI: %s\n", dmi_ids_string); + return 0; + } + } + + return 1; +} + +/* + * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy + * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. + */ +static int __init dmi_smbios3_present(const u8 *buf) +{ + if (memcmp(buf, "_SM3_", 5) == 0 && + buf[6] < 32 && dmi_checksum(buf, buf[6])) { + dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF; + dmi_num = 0; /* No longer specified */ + dmi_len = get_unaligned_le32(buf + 12); + dmi_base = get_unaligned_le64(buf + 16); + smbios_entry_point_size = buf[6]; + memcpy(smbios_entry_point, buf, smbios_entry_point_size); + + if (dmi_walk_early(dmi_decode) == 0) { + pr_info("SMBIOS %d.%d.%d present.\n", + dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, + dmi_ver & 0xFF); + dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); + pr_info("DMI: %s\n", dmi_ids_string); + return 0; + } + } + return 1; +} + +void __init dmi_scan_machine(void) +{ + char __iomem *p, *q; + char buf[32]; + + if (efi_enabled(EFI_CONFIG_TABLES)) { + /* + * According to the DMTF SMBIOS reference spec v3.0.0, it is + * allowed to define both the 64-bit entry point (smbios3) and + * the 32-bit entry point (smbios), in which case they should + * either both point to the same SMBIOS structure table, or the + * table pointed to by the 64-bit entry point should contain a + * superset of the table contents pointed to by the 32-bit entry + * point (section 5.2) + * This implies that the 64-bit entry point should have + * precedence if it is defined and supported by the OS. If we + * have the 64-bit entry point, but fail to decode it, fall + * back to the legacy one (if available) + */ + if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { + p = dmi_early_remap(efi.smbios3, 32); + if (p == NULL) + goto error; + memcpy_fromio(buf, p, 32); + dmi_early_unmap(p, 32); + + if (!dmi_smbios3_present(buf)) { + dmi_available = 1; + return; + } + } + if (efi.smbios == EFI_INVALID_TABLE_ADDR) + goto error; + + /* This is called as a core_initcall() because it isn't + * needed during early boot. This also means we can + * iounmap the space when we're done with it. + */ + p = dmi_early_remap(efi.smbios, 32); + if (p == NULL) + goto error; + memcpy_fromio(buf, p, 32); + dmi_early_unmap(p, 32); + + if (!dmi_present(buf)) { + dmi_available = 1; + return; + } + } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { + p = dmi_early_remap(0xF0000, 0x10000); + if (p == NULL) + goto error; + + /* + * Same logic as above, look for a 64-bit entry point + * first, and if not found, fall back to 32-bit entry point. + */ + memcpy_fromio(buf, p, 16); + for (q = p + 16; q < p + 0x10000; q += 16) { + memcpy_fromio(buf + 16, q, 16); + if (!dmi_smbios3_present(buf)) { + dmi_available = 1; + dmi_early_unmap(p, 0x10000); + return; + } + memcpy(buf, buf + 16, 16); + } + + /* + * Iterate over all possible DMI header addresses q. + * Maintain the 32 bytes around q in buf. On the + * first iteration, substitute zero for the + * out-of-range bytes so there is no chance of falsely + * detecting an SMBIOS header. + */ + memset(buf, 0, 16); + for (q = p; q < p + 0x10000; q += 16) { + memcpy_fromio(buf + 16, q, 16); + if (!dmi_present(buf)) { + dmi_available = 1; + dmi_early_unmap(p, 0x10000); + return; + } + memcpy(buf, buf + 16, 16); + } + dmi_early_unmap(p, 0x10000); + } + error: + pr_info("DMI not present or invalid.\n"); +} + +static ssize_t raw_table_read(struct file *file, struct kobject *kobj, + struct bin_attribute *attr, char *buf, + loff_t pos, size_t count) +{ + memcpy(buf, attr->private + pos, count); + return count; +} + +static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); +static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); + +static int __init dmi_init(void) +{ + struct kobject *tables_kobj; + u8 *dmi_table; + int ret = -ENOMEM; + + if (!dmi_available) + return 0; + + /* + * Set up dmi directory at /sys/firmware/dmi. This entry should stay + * even after farther error, as it can be used by other modules like + * dmi-sysfs. + */ + dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); + if (!dmi_kobj) + goto err; + + tables_kobj = kobject_create_and_add("tables", dmi_kobj); + if (!tables_kobj) + goto err; + + dmi_table = dmi_remap(dmi_base, dmi_len); + if (!dmi_table) + goto err_tables; + + bin_attr_smbios_entry_point.size = smbios_entry_point_size; + bin_attr_smbios_entry_point.private = smbios_entry_point; + ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); + if (ret) + goto err_unmap; + + bin_attr_DMI.size = dmi_len; + bin_attr_DMI.private = dmi_table; + ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); + if (!ret) + return 0; + + sysfs_remove_bin_file(tables_kobj, + &bin_attr_smbios_entry_point); + err_unmap: + dmi_unmap(dmi_table); + err_tables: + kobject_del(tables_kobj); + kobject_put(tables_kobj); + err: + pr_err("dmi: Firmware registration failed.\n"); + + return ret; +} +subsys_initcall(dmi_init); + +/** + * dmi_set_dump_stack_arch_desc - set arch description for dump_stack() + * + * Invoke dump_stack_set_arch_desc() with DMI system information so that + * DMI identifiers are printed out on task dumps. Arch boot code should + * call this function after dmi_scan_machine() if it wants to print out DMI + * identifiers on task dumps. + */ +void __init dmi_set_dump_stack_arch_desc(void) +{ + dump_stack_set_arch_desc("%s", dmi_ids_string); +} + +/** + * dmi_matches - check if dmi_system_id structure matches system DMI data + * @dmi: pointer to the dmi_system_id structure to check + */ +static bool dmi_matches(const struct dmi_system_id *dmi) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { + int s = dmi->matches[i].slot; + if (s == DMI_NONE) + break; + if (s == DMI_OEM_STRING) { + /* DMI_OEM_STRING must be exact match */ + const struct dmi_device *valid; + + valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, + dmi->matches[i].substr, NULL); + if (valid) + continue; + } else if (dmi_ident[s]) { + if (dmi->matches[i].exact_match) { + if (!strcmp(dmi_ident[s], + dmi->matches[i].substr)) + continue; + } else { + if (strstr(dmi_ident[s], + dmi->matches[i].substr)) + continue; + } + } + + /* No match */ + return false; + } + return true; +} + +/** + * dmi_is_end_of_table - check for end-of-table marker + * @dmi: pointer to the dmi_system_id structure to check + */ +static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) +{ + return dmi->matches[0].slot == DMI_NONE; +} + +/** + * dmi_check_system - check system DMI data + * @list: array of dmi_system_id structures to match against + * All non-null elements of the list must match + * their slot's (field index's) data (i.e., each + * list string must be a substring of the specified + * DMI slot's string data) to be considered a + * successful match. + * + * Walk the blacklist table running matching functions until someone + * returns non zero or we hit the end. Callback function is called for + * each successful match. Returns the number of matches. + * + * dmi_scan_machine must be called before this function is called. + */ +int dmi_check_system(const struct dmi_system_id *list) +{ + int count = 0; + const struct dmi_system_id *d; + + for (d = list; !dmi_is_end_of_table(d); d++) + if (dmi_matches(d)) { + count++; + if (d->callback && d->callback(d)) + break; + } + + return count; +} +EXPORT_SYMBOL(dmi_check_system); + +/** + * dmi_first_match - find dmi_system_id structure matching system DMI data + * @list: array of dmi_system_id structures to match against + * All non-null elements of the list must match + * their slot's (field index's) data (i.e., each + * list string must be a substring of the specified + * DMI slot's string data) to be considered a + * successful match. + * + * Walk the blacklist table until the first match is found. Return the + * pointer to the matching entry or NULL if there's no match. + * + * dmi_scan_machine must be called before this function is called. + */ +const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) +{ + const struct dmi_system_id *d; + + for (d = list; !dmi_is_end_of_table(d); d++) + if (dmi_matches(d)) + return d; + + return NULL; +} +EXPORT_SYMBOL(dmi_first_match); + +/** + * dmi_get_system_info - return DMI data value + * @field: data index (see enum dmi_field) + * + * Returns one DMI data value, can be used to perform + * complex DMI data checks. + */ +const char *dmi_get_system_info(int field) +{ + return dmi_ident[field]; +} +EXPORT_SYMBOL(dmi_get_system_info); + +/** + * dmi_name_in_serial - Check if string is in the DMI product serial information + * @str: string to check for + */ +int dmi_name_in_serial(const char *str) +{ + int f = DMI_PRODUCT_SERIAL; + if (dmi_ident[f] && strstr(dmi_ident[f], str)) + return 1; + return 0; +} + +/** + * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name + * @str: Case sensitive Name + */ +int dmi_name_in_vendors(const char *str) +{ + static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; + int i; + for (i = 0; fields[i] != DMI_NONE; i++) { + int f = fields[i]; + if (dmi_ident[f] && strstr(dmi_ident[f], str)) + return 1; + } + return 0; +} +EXPORT_SYMBOL(dmi_name_in_vendors); + +/** + * dmi_find_device - find onboard device by type/name + * @type: device type or %DMI_DEV_TYPE_ANY to match all device types + * @name: device name string or %NULL to match all + * @from: previous device found in search, or %NULL for new search. + * + * Iterates through the list of known onboard devices. If a device is + * found with a matching @type and @name, a pointer to its device + * structure is returned. Otherwise, %NULL is returned. + * A new search is initiated by passing %NULL as the @from argument. + * If @from is not %NULL, searches continue from next device. + */ +const struct dmi_device *dmi_find_device(int type, const char *name, + const struct dmi_device *from) +{ + const struct list_head *head = from ? &from->list : &dmi_devices; + struct list_head *d; + + for (d = head->next; d != &dmi_devices; d = d->next) { + const struct dmi_device *dev = + list_entry(d, struct dmi_device, list); + + if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && + ((name == NULL) || (strcmp(dev->name, name) == 0))) + return dev; + } + + return NULL; +} +EXPORT_SYMBOL(dmi_find_device); + +/** + * dmi_get_date - parse a DMI date + * @field: data index (see enum dmi_field) + * @yearp: optional out parameter for the year + * @monthp: optional out parameter for the month + * @dayp: optional out parameter for the day + * + * The date field is assumed to be in the form resembling + * [mm[/dd]]/yy[yy] and the result is stored in the out + * parameters any or all of which can be omitted. + * + * If the field doesn't exist, all out parameters are set to zero + * and false is returned. Otherwise, true is returned with any + * invalid part of date set to zero. + * + * On return, year, month and day are guaranteed to be in the + * range of [0,9999], [0,12] and [0,31] respectively. + */ +bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) +{ + int year = 0, month = 0, day = 0; + bool exists; + const char *s, *y; + char *e; + + s = dmi_get_system_info(field); + exists = s; + if (!exists) + goto out; + + /* + * Determine year first. We assume the date string resembles + * mm/dd/yy[yy] but the original code extracted only the year + * from the end. Keep the behavior in the spirit of no + * surprises. + */ + y = strrchr(s, '/'); + if (!y) + goto out; + + y++; + year = simple_strtoul(y, &e, 10); + if (y != e && year < 100) { /* 2-digit year */ + year += 1900; + if (year < 1996) /* no dates < spec 1.0 */ + year += 100; + } + if (year > 9999) /* year should fit in %04d */ + year = 0; + + /* parse the mm and dd */ + month = simple_strtoul(s, &e, 10); + if (s == e || *e != '/' || !month || month > 12) { + month = 0; + goto out; + } + + s = e + 1; + day = simple_strtoul(s, &e, 10); + if (s == y || s == e || *e != '/' || day > 31) + day = 0; +out: + if (yearp) + *yearp = year; + if (monthp) + *monthp = month; + if (dayp) + *dayp = day; + return exists; +} +EXPORT_SYMBOL(dmi_get_date); + +/** + * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field + * + * Returns year on success, -ENXIO if DMI is not selected, + * or a different negative error code if DMI field is not present + * or not parseable. + */ +int dmi_get_bios_year(void) +{ + bool exists; + int year; + + exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL); + if (!exists) + return -ENODATA; + + return year ? year : -ERANGE; +} +EXPORT_SYMBOL(dmi_get_bios_year); + +/** + * dmi_walk - Walk the DMI table and get called back for every record + * @decode: Callback function + * @private_data: Private data to be passed to the callback function + * + * Returns 0 on success, -ENXIO if DMI is not selected or not present, + * or a different negative error code if DMI walking fails. + */ +int dmi_walk(void (*decode)(const struct dmi_header *, void *), + void *private_data) +{ + u8 *buf; + + if (!dmi_available) + return -ENXIO; + + buf = dmi_remap(dmi_base, dmi_len); + if (buf == NULL) + return -ENOMEM; + + dmi_decode_table(buf, decode, private_data); + + dmi_unmap(buf); + return 0; +} +EXPORT_SYMBOL_GPL(dmi_walk); + +/** + * dmi_match - compare a string to the dmi field (if exists) + * @f: DMI field identifier + * @str: string to compare the DMI field to + * + * Returns true if the requested field equals to the str (including NULL). + */ +bool dmi_match(enum dmi_field f, const char *str) +{ + const char *info = dmi_get_system_info(f); + + if (info == NULL || str == NULL) + return info == str; + + return !strcmp(info, str); +} +EXPORT_SYMBOL_GPL(dmi_match); + +void dmi_memdev_name(u16 handle, const char **bank, const char **device) +{ + int n; + + if (dmi_memdev == NULL) + return; + + for (n = 0; n < dmi_memdev_nr; n++) { + if (handle == dmi_memdev[n].handle) { + *bank = dmi_memdev[n].bank; + *device = dmi_memdev[n].device; + break; + } + } +} +EXPORT_SYMBOL_GPL(dmi_memdev_name); + +u64 dmi_memdev_size(u16 handle) +{ + int n; + + if (dmi_memdev) { + for (n = 0; n < dmi_memdev_nr; n++) { + if (handle == dmi_memdev[n].handle) + return dmi_memdev[n].size; + } + } + return ~0ull; +} +EXPORT_SYMBOL_GPL(dmi_memdev_size); |