summaryrefslogtreecommitdiffstats
path: root/drivers/firmware/efi/libstub/arm32-stub.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/firmware/efi/libstub/arm32-stub.c')
-rw-r--r--drivers/firmware/efi/libstub/arm32-stub.c249
1 files changed, 249 insertions, 0 deletions
diff --git a/drivers/firmware/efi/libstub/arm32-stub.c b/drivers/firmware/efi/libstub/arm32-stub.c
new file mode 100644
index 000000000..becbda445
--- /dev/null
+++ b/drivers/firmware/efi/libstub/arm32-stub.c
@@ -0,0 +1,249 @@
+/*
+ * Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+#include <linux/efi.h>
+#include <asm/efi.h>
+
+#include "efistub.h"
+
+efi_status_t check_platform_features(efi_system_table_t *sys_table_arg)
+{
+ int block;
+
+ /* non-LPAE kernels can run anywhere */
+ if (!IS_ENABLED(CONFIG_ARM_LPAE))
+ return EFI_SUCCESS;
+
+ /* LPAE kernels need compatible hardware */
+ block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
+ if (block < 5) {
+ pr_efi_err(sys_table_arg, "This LPAE kernel is not supported by your CPU\n");
+ return EFI_UNSUPPORTED;
+ }
+ return EFI_SUCCESS;
+}
+
+static efi_guid_t screen_info_guid = LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID;
+
+struct screen_info *alloc_screen_info(efi_system_table_t *sys_table_arg)
+{
+ struct screen_info *si;
+ efi_status_t status;
+
+ /*
+ * Unlike on arm64, where we can directly fill out the screen_info
+ * structure from the stub, we need to allocate a buffer to hold
+ * its contents while we hand over to the kernel proper from the
+ * decompressor.
+ */
+ status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
+ sizeof(*si), (void **)&si);
+
+ if (status != EFI_SUCCESS)
+ return NULL;
+
+ status = efi_call_early(install_configuration_table,
+ &screen_info_guid, si);
+ if (status == EFI_SUCCESS)
+ return si;
+
+ efi_call_early(free_pool, si);
+ return NULL;
+}
+
+void free_screen_info(efi_system_table_t *sys_table_arg, struct screen_info *si)
+{
+ if (!si)
+ return;
+
+ efi_call_early(install_configuration_table, &screen_info_guid, NULL);
+ efi_call_early(free_pool, si);
+}
+
+static efi_status_t reserve_kernel_base(efi_system_table_t *sys_table_arg,
+ unsigned long dram_base,
+ unsigned long *reserve_addr,
+ unsigned long *reserve_size)
+{
+ efi_physical_addr_t alloc_addr;
+ efi_memory_desc_t *memory_map;
+ unsigned long nr_pages, map_size, desc_size, buff_size;
+ efi_status_t status;
+ unsigned long l;
+
+ struct efi_boot_memmap map = {
+ .map = &memory_map,
+ .map_size = &map_size,
+ .desc_size = &desc_size,
+ .desc_ver = NULL,
+ .key_ptr = NULL,
+ .buff_size = &buff_size,
+ };
+
+ /*
+ * Reserve memory for the uncompressed kernel image. This is
+ * all that prevents any future allocations from conflicting
+ * with the kernel. Since we can't tell from the compressed
+ * image how much DRAM the kernel actually uses (due to BSS
+ * size uncertainty) we allocate the maximum possible size.
+ * Do this very early, as prints can cause memory allocations
+ * that may conflict with this.
+ */
+ alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE;
+ nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE;
+ status = efi_call_early(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
+ EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr);
+ if (status == EFI_SUCCESS) {
+ if (alloc_addr == dram_base) {
+ *reserve_addr = alloc_addr;
+ *reserve_size = MAX_UNCOMP_KERNEL_SIZE;
+ return EFI_SUCCESS;
+ }
+ /*
+ * If we end up here, the allocation succeeded but starts below
+ * dram_base. This can only occur if the real base of DRAM is
+ * not a multiple of 128 MB, in which case dram_base will have
+ * been rounded up. Since this implies that a part of the region
+ * was already occupied, we need to fall through to the code
+ * below to ensure that the existing allocations don't conflict.
+ * For this reason, we use EFI_BOOT_SERVICES_DATA above and not
+ * EFI_LOADER_DATA, which we wouldn't able to distinguish from
+ * allocations that we want to disallow.
+ */
+ }
+
+ /*
+ * If the allocation above failed, we may still be able to proceed:
+ * if the only allocations in the region are of types that will be
+ * released to the OS after ExitBootServices(), the decompressor can
+ * safely overwrite them.
+ */
+ status = efi_get_memory_map(sys_table_arg, &map);
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table_arg,
+ "reserve_kernel_base(): Unable to retrieve memory map.\n");
+ return status;
+ }
+
+ for (l = 0; l < map_size; l += desc_size) {
+ efi_memory_desc_t *desc;
+ u64 start, end;
+
+ desc = (void *)memory_map + l;
+ start = desc->phys_addr;
+ end = start + desc->num_pages * EFI_PAGE_SIZE;
+
+ /* Skip if entry does not intersect with region */
+ if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
+ end <= dram_base)
+ continue;
+
+ switch (desc->type) {
+ case EFI_BOOT_SERVICES_CODE:
+ case EFI_BOOT_SERVICES_DATA:
+ /* Ignore types that are released to the OS anyway */
+ continue;
+
+ case EFI_CONVENTIONAL_MEMORY:
+ /*
+ * Reserve the intersection between this entry and the
+ * region.
+ */
+ start = max(start, (u64)dram_base);
+ end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
+
+ status = efi_call_early(allocate_pages,
+ EFI_ALLOCATE_ADDRESS,
+ EFI_LOADER_DATA,
+ (end - start) / EFI_PAGE_SIZE,
+ &start);
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table_arg,
+ "reserve_kernel_base(): alloc failed.\n");
+ goto out;
+ }
+ break;
+
+ case EFI_LOADER_CODE:
+ case EFI_LOADER_DATA:
+ /*
+ * These regions may be released and reallocated for
+ * another purpose (including EFI_RUNTIME_SERVICE_DATA)
+ * at any time during the execution of the OS loader,
+ * so we cannot consider them as safe.
+ */
+ default:
+ /*
+ * Treat any other allocation in the region as unsafe */
+ status = EFI_OUT_OF_RESOURCES;
+ goto out;
+ }
+ }
+
+ status = EFI_SUCCESS;
+out:
+ efi_call_early(free_pool, memory_map);
+ return status;
+}
+
+efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
+ unsigned long *image_addr,
+ unsigned long *image_size,
+ unsigned long *reserve_addr,
+ unsigned long *reserve_size,
+ unsigned long dram_base,
+ efi_loaded_image_t *image)
+{
+ efi_status_t status;
+
+ /*
+ * Verify that the DRAM base address is compatible with the ARM
+ * boot protocol, which determines the base of DRAM by masking
+ * off the low 27 bits of the address at which the zImage is
+ * loaded. These assumptions are made by the decompressor,
+ * before any memory map is available.
+ */
+ dram_base = round_up(dram_base, SZ_128M);
+
+ status = reserve_kernel_base(sys_table, dram_base, reserve_addr,
+ reserve_size);
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table, "Unable to allocate memory for uncompressed kernel.\n");
+ return status;
+ }
+
+ /*
+ * Relocate the zImage, so that it appears in the lowest 128 MB
+ * memory window.
+ */
+ *image_size = image->image_size;
+ status = efi_relocate_kernel(sys_table, image_addr, *image_size,
+ *image_size,
+ dram_base + MAX_UNCOMP_KERNEL_SIZE, 0);
+ if (status != EFI_SUCCESS) {
+ pr_efi_err(sys_table, "Failed to relocate kernel.\n");
+ efi_free(sys_table, *reserve_size, *reserve_addr);
+ *reserve_size = 0;
+ return status;
+ }
+
+ /*
+ * Check to see if we were able to allocate memory low enough
+ * in memory. The kernel determines the base of DRAM from the
+ * address at which the zImage is loaded.
+ */
+ if (*image_addr + *image_size > dram_base + ZIMAGE_OFFSET_LIMIT) {
+ pr_efi_err(sys_table, "Failed to relocate kernel, no low memory available.\n");
+ efi_free(sys_table, *reserve_size, *reserve_addr);
+ *reserve_size = 0;
+ efi_free(sys_table, *image_size, *image_addr);
+ *image_size = 0;
+ return EFI_LOAD_ERROR;
+ }
+ return EFI_SUCCESS;
+}