summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/i915_request.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/i915/i915_request.c')
-rw-r--r--drivers/gpu/drm/i915/i915_request.c1449
1 files changed, 1449 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/i915_request.c b/drivers/gpu/drm/i915/i915_request.c
new file mode 100644
index 000000000..5c2c93cba
--- /dev/null
+++ b/drivers/gpu/drm/i915/i915_request.c
@@ -0,0 +1,1449 @@
+/*
+ * Copyright © 2008-2015 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ *
+ */
+
+#include <linux/prefetch.h>
+#include <linux/dma-fence-array.h>
+#include <linux/sched.h>
+#include <linux/sched/clock.h>
+#include <linux/sched/signal.h>
+
+#include "i915_drv.h"
+
+static const char *i915_fence_get_driver_name(struct dma_fence *fence)
+{
+ return "i915";
+}
+
+static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
+{
+ /*
+ * The timeline struct (as part of the ppgtt underneath a context)
+ * may be freed when the request is no longer in use by the GPU.
+ * We could extend the life of a context to beyond that of all
+ * fences, possibly keeping the hw resource around indefinitely,
+ * or we just give them a false name. Since
+ * dma_fence_ops.get_timeline_name is a debug feature, the occasional
+ * lie seems justifiable.
+ */
+ if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
+ return "signaled";
+
+ return to_request(fence)->timeline->name;
+}
+
+static bool i915_fence_signaled(struct dma_fence *fence)
+{
+ return i915_request_completed(to_request(fence));
+}
+
+static bool i915_fence_enable_signaling(struct dma_fence *fence)
+{
+ return intel_engine_enable_signaling(to_request(fence), true);
+}
+
+static signed long i915_fence_wait(struct dma_fence *fence,
+ bool interruptible,
+ signed long timeout)
+{
+ return i915_request_wait(to_request(fence), interruptible, timeout);
+}
+
+static void i915_fence_release(struct dma_fence *fence)
+{
+ struct i915_request *rq = to_request(fence);
+
+ /*
+ * The request is put onto a RCU freelist (i.e. the address
+ * is immediately reused), mark the fences as being freed now.
+ * Otherwise the debugobjects for the fences are only marked as
+ * freed when the slab cache itself is freed, and so we would get
+ * caught trying to reuse dead objects.
+ */
+ i915_sw_fence_fini(&rq->submit);
+
+ kmem_cache_free(rq->i915->requests, rq);
+}
+
+const struct dma_fence_ops i915_fence_ops = {
+ .get_driver_name = i915_fence_get_driver_name,
+ .get_timeline_name = i915_fence_get_timeline_name,
+ .enable_signaling = i915_fence_enable_signaling,
+ .signaled = i915_fence_signaled,
+ .wait = i915_fence_wait,
+ .release = i915_fence_release,
+};
+
+static inline void
+i915_request_remove_from_client(struct i915_request *request)
+{
+ struct drm_i915_file_private *file_priv;
+
+ file_priv = request->file_priv;
+ if (!file_priv)
+ return;
+
+ spin_lock(&file_priv->mm.lock);
+ if (request->file_priv) {
+ list_del(&request->client_link);
+ request->file_priv = NULL;
+ }
+ spin_unlock(&file_priv->mm.lock);
+}
+
+static struct i915_dependency *
+i915_dependency_alloc(struct drm_i915_private *i915)
+{
+ return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
+}
+
+static void
+i915_dependency_free(struct drm_i915_private *i915,
+ struct i915_dependency *dep)
+{
+ kmem_cache_free(i915->dependencies, dep);
+}
+
+static void
+__i915_sched_node_add_dependency(struct i915_sched_node *node,
+ struct i915_sched_node *signal,
+ struct i915_dependency *dep,
+ unsigned long flags)
+{
+ INIT_LIST_HEAD(&dep->dfs_link);
+ list_add(&dep->wait_link, &signal->waiters_list);
+ list_add(&dep->signal_link, &node->signalers_list);
+ dep->signaler = signal;
+ dep->flags = flags;
+}
+
+static int
+i915_sched_node_add_dependency(struct drm_i915_private *i915,
+ struct i915_sched_node *node,
+ struct i915_sched_node *signal)
+{
+ struct i915_dependency *dep;
+
+ dep = i915_dependency_alloc(i915);
+ if (!dep)
+ return -ENOMEM;
+
+ __i915_sched_node_add_dependency(node, signal, dep,
+ I915_DEPENDENCY_ALLOC);
+ return 0;
+}
+
+static void
+i915_sched_node_fini(struct drm_i915_private *i915,
+ struct i915_sched_node *node)
+{
+ struct i915_dependency *dep, *tmp;
+
+ GEM_BUG_ON(!list_empty(&node->link));
+
+ /*
+ * Everyone we depended upon (the fences we wait to be signaled)
+ * should retire before us and remove themselves from our list.
+ * However, retirement is run independently on each timeline and
+ * so we may be called out-of-order.
+ */
+ list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
+ GEM_BUG_ON(!i915_sched_node_signaled(dep->signaler));
+ GEM_BUG_ON(!list_empty(&dep->dfs_link));
+
+ list_del(&dep->wait_link);
+ if (dep->flags & I915_DEPENDENCY_ALLOC)
+ i915_dependency_free(i915, dep);
+ }
+
+ /* Remove ourselves from everyone who depends upon us */
+ list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
+ GEM_BUG_ON(dep->signaler != node);
+ GEM_BUG_ON(!list_empty(&dep->dfs_link));
+
+ list_del(&dep->signal_link);
+ if (dep->flags & I915_DEPENDENCY_ALLOC)
+ i915_dependency_free(i915, dep);
+ }
+}
+
+static void
+i915_sched_node_init(struct i915_sched_node *node)
+{
+ INIT_LIST_HEAD(&node->signalers_list);
+ INIT_LIST_HEAD(&node->waiters_list);
+ INIT_LIST_HEAD(&node->link);
+ node->attr.priority = I915_PRIORITY_INVALID;
+}
+
+static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
+{
+ struct intel_engine_cs *engine;
+ struct i915_timeline *timeline;
+ enum intel_engine_id id;
+ int ret;
+
+ /* Carefully retire all requests without writing to the rings */
+ ret = i915_gem_wait_for_idle(i915,
+ I915_WAIT_INTERRUPTIBLE |
+ I915_WAIT_LOCKED,
+ MAX_SCHEDULE_TIMEOUT);
+ if (ret)
+ return ret;
+
+ GEM_BUG_ON(i915->gt.active_requests);
+
+ /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
+ for_each_engine(engine, i915, id) {
+ GEM_TRACE("%s seqno %d (current %d) -> %d\n",
+ engine->name,
+ engine->timeline.seqno,
+ intel_engine_get_seqno(engine),
+ seqno);
+
+ if (!i915_seqno_passed(seqno, engine->timeline.seqno)) {
+ /* Flush any waiters before we reuse the seqno */
+ intel_engine_disarm_breadcrumbs(engine);
+ intel_engine_init_hangcheck(engine);
+ GEM_BUG_ON(!list_empty(&engine->breadcrumbs.signals));
+ }
+
+ /* Check we are idle before we fiddle with hw state! */
+ GEM_BUG_ON(!intel_engine_is_idle(engine));
+ GEM_BUG_ON(i915_gem_active_isset(&engine->timeline.last_request));
+
+ /* Finally reset hw state */
+ intel_engine_init_global_seqno(engine, seqno);
+ engine->timeline.seqno = seqno;
+ }
+
+ list_for_each_entry(timeline, &i915->gt.timelines, link)
+ memset(timeline->global_sync, 0, sizeof(timeline->global_sync));
+
+ i915->gt.request_serial = seqno;
+
+ return 0;
+}
+
+int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
+{
+ struct drm_i915_private *i915 = to_i915(dev);
+
+ lockdep_assert_held(&i915->drm.struct_mutex);
+
+ if (seqno == 0)
+ return -EINVAL;
+
+ /* HWS page needs to be set less than what we will inject to ring */
+ return reset_all_global_seqno(i915, seqno - 1);
+}
+
+static int reserve_gt(struct drm_i915_private *i915)
+{
+ int ret;
+
+ /*
+ * Reservation is fine until we may need to wrap around
+ *
+ * By incrementing the serial for every request, we know that no
+ * individual engine may exceed that serial (as each is reset to 0
+ * on any wrap). This protects even the most pessimistic of migrations
+ * of every request from all engines onto just one.
+ */
+ while (unlikely(++i915->gt.request_serial == 0)) {
+ ret = reset_all_global_seqno(i915, 0);
+ if (ret) {
+ i915->gt.request_serial--;
+ return ret;
+ }
+ }
+
+ if (!i915->gt.active_requests++)
+ i915_gem_unpark(i915);
+
+ return 0;
+}
+
+static void unreserve_gt(struct drm_i915_private *i915)
+{
+ GEM_BUG_ON(!i915->gt.active_requests);
+ if (!--i915->gt.active_requests)
+ i915_gem_park(i915);
+}
+
+void i915_gem_retire_noop(struct i915_gem_active *active,
+ struct i915_request *request)
+{
+ /* Space left intentionally blank */
+}
+
+static void advance_ring(struct i915_request *request)
+{
+ struct intel_ring *ring = request->ring;
+ unsigned int tail;
+
+ /*
+ * We know the GPU must have read the request to have
+ * sent us the seqno + interrupt, so use the position
+ * of tail of the request to update the last known position
+ * of the GPU head.
+ *
+ * Note this requires that we are always called in request
+ * completion order.
+ */
+ GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
+ if (list_is_last(&request->ring_link, &ring->request_list)) {
+ /*
+ * We may race here with execlists resubmitting this request
+ * as we retire it. The resubmission will move the ring->tail
+ * forwards (to request->wa_tail). We either read the
+ * current value that was written to hw, or the value that
+ * is just about to be. Either works, if we miss the last two
+ * noops - they are safe to be replayed on a reset.
+ */
+ GEM_TRACE("marking %s as inactive\n", ring->timeline->name);
+ tail = READ_ONCE(request->tail);
+ list_del(&ring->active_link);
+ } else {
+ tail = request->postfix;
+ }
+ list_del_init(&request->ring_link);
+
+ ring->head = tail;
+}
+
+static void free_capture_list(struct i915_request *request)
+{
+ struct i915_capture_list *capture;
+
+ capture = request->capture_list;
+ while (capture) {
+ struct i915_capture_list *next = capture->next;
+
+ kfree(capture);
+ capture = next;
+ }
+}
+
+static void __retire_engine_request(struct intel_engine_cs *engine,
+ struct i915_request *rq)
+{
+ GEM_TRACE("%s(%s) fence %llx:%d, global=%d, current %d\n",
+ __func__, engine->name,
+ rq->fence.context, rq->fence.seqno,
+ rq->global_seqno,
+ intel_engine_get_seqno(engine));
+
+ GEM_BUG_ON(!i915_request_completed(rq));
+
+ local_irq_disable();
+
+ spin_lock(&engine->timeline.lock);
+ GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests));
+ list_del_init(&rq->link);
+ spin_unlock(&engine->timeline.lock);
+
+ spin_lock(&rq->lock);
+ if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
+ dma_fence_signal_locked(&rq->fence);
+ if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
+ intel_engine_cancel_signaling(rq);
+ if (rq->waitboost) {
+ GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
+ atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
+ }
+ spin_unlock(&rq->lock);
+
+ local_irq_enable();
+
+ /*
+ * The backing object for the context is done after switching to the
+ * *next* context. Therefore we cannot retire the previous context until
+ * the next context has already started running. However, since we
+ * cannot take the required locks at i915_request_submit() we
+ * defer the unpinning of the active context to now, retirement of
+ * the subsequent request.
+ */
+ if (engine->last_retired_context)
+ intel_context_unpin(engine->last_retired_context);
+ engine->last_retired_context = rq->hw_context;
+}
+
+static void __retire_engine_upto(struct intel_engine_cs *engine,
+ struct i915_request *rq)
+{
+ struct i915_request *tmp;
+
+ if (list_empty(&rq->link))
+ return;
+
+ do {
+ tmp = list_first_entry(&engine->timeline.requests,
+ typeof(*tmp), link);
+
+ GEM_BUG_ON(tmp->engine != engine);
+ __retire_engine_request(engine, tmp);
+ } while (tmp != rq);
+}
+
+static void i915_request_retire(struct i915_request *request)
+{
+ struct i915_gem_active *active, *next;
+
+ GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
+ request->engine->name,
+ request->fence.context, request->fence.seqno,
+ request->global_seqno,
+ intel_engine_get_seqno(request->engine));
+
+ lockdep_assert_held(&request->i915->drm.struct_mutex);
+ GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
+ GEM_BUG_ON(!i915_request_completed(request));
+
+ trace_i915_request_retire(request);
+
+ advance_ring(request);
+ free_capture_list(request);
+
+ /*
+ * Walk through the active list, calling retire on each. This allows
+ * objects to track their GPU activity and mark themselves as idle
+ * when their *last* active request is completed (updating state
+ * tracking lists for eviction, active references for GEM, etc).
+ *
+ * As the ->retire() may free the node, we decouple it first and
+ * pass along the auxiliary information (to avoid dereferencing
+ * the node after the callback).
+ */
+ list_for_each_entry_safe(active, next, &request->active_list, link) {
+ /*
+ * In microbenchmarks or focusing upon time inside the kernel,
+ * we may spend an inordinate amount of time simply handling
+ * the retirement of requests and processing their callbacks.
+ * Of which, this loop itself is particularly hot due to the
+ * cache misses when jumping around the list of i915_gem_active.
+ * So we try to keep this loop as streamlined as possible and
+ * also prefetch the next i915_gem_active to try and hide
+ * the likely cache miss.
+ */
+ prefetchw(next);
+
+ INIT_LIST_HEAD(&active->link);
+ RCU_INIT_POINTER(active->request, NULL);
+
+ active->retire(active, request);
+ }
+
+ i915_request_remove_from_client(request);
+
+ /* Retirement decays the ban score as it is a sign of ctx progress */
+ atomic_dec_if_positive(&request->gem_context->ban_score);
+ intel_context_unpin(request->hw_context);
+
+ __retire_engine_upto(request->engine, request);
+
+ unreserve_gt(request->i915);
+
+ i915_sched_node_fini(request->i915, &request->sched);
+ i915_request_put(request);
+}
+
+void i915_request_retire_upto(struct i915_request *rq)
+{
+ struct intel_ring *ring = rq->ring;
+ struct i915_request *tmp;
+
+ GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
+ rq->engine->name,
+ rq->fence.context, rq->fence.seqno,
+ rq->global_seqno,
+ intel_engine_get_seqno(rq->engine));
+
+ lockdep_assert_held(&rq->i915->drm.struct_mutex);
+ GEM_BUG_ON(!i915_request_completed(rq));
+
+ if (list_empty(&rq->ring_link))
+ return;
+
+ do {
+ tmp = list_first_entry(&ring->request_list,
+ typeof(*tmp), ring_link);
+
+ i915_request_retire(tmp);
+ } while (tmp != rq);
+}
+
+static u32 timeline_get_seqno(struct i915_timeline *tl)
+{
+ return ++tl->seqno;
+}
+
+static void move_to_timeline(struct i915_request *request,
+ struct i915_timeline *timeline)
+{
+ GEM_BUG_ON(request->timeline == &request->engine->timeline);
+ lockdep_assert_held(&request->engine->timeline.lock);
+
+ spin_lock(&request->timeline->lock);
+ list_move_tail(&request->link, &timeline->requests);
+ spin_unlock(&request->timeline->lock);
+}
+
+void __i915_request_submit(struct i915_request *request)
+{
+ struct intel_engine_cs *engine = request->engine;
+ u32 seqno;
+
+ GEM_TRACE("%s fence %llx:%d -> global=%d, current %d\n",
+ engine->name,
+ request->fence.context, request->fence.seqno,
+ engine->timeline.seqno + 1,
+ intel_engine_get_seqno(engine));
+
+ GEM_BUG_ON(!irqs_disabled());
+ lockdep_assert_held(&engine->timeline.lock);
+
+ GEM_BUG_ON(request->global_seqno);
+
+ seqno = timeline_get_seqno(&engine->timeline);
+ GEM_BUG_ON(!seqno);
+ GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
+
+ /* We may be recursing from the signal callback of another i915 fence */
+ spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
+ request->global_seqno = seqno;
+ if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
+ intel_engine_enable_signaling(request, false);
+ spin_unlock(&request->lock);
+
+ engine->emit_breadcrumb(request,
+ request->ring->vaddr + request->postfix);
+
+ /* Transfer from per-context onto the global per-engine timeline */
+ move_to_timeline(request, &engine->timeline);
+
+ trace_i915_request_execute(request);
+
+ wake_up_all(&request->execute);
+}
+
+void i915_request_submit(struct i915_request *request)
+{
+ struct intel_engine_cs *engine = request->engine;
+ unsigned long flags;
+
+ /* Will be called from irq-context when using foreign fences. */
+ spin_lock_irqsave(&engine->timeline.lock, flags);
+
+ __i915_request_submit(request);
+
+ spin_unlock_irqrestore(&engine->timeline.lock, flags);
+}
+
+void __i915_request_unsubmit(struct i915_request *request)
+{
+ struct intel_engine_cs *engine = request->engine;
+
+ GEM_TRACE("%s fence %llx:%d <- global=%d, current %d\n",
+ engine->name,
+ request->fence.context, request->fence.seqno,
+ request->global_seqno,
+ intel_engine_get_seqno(engine));
+
+ GEM_BUG_ON(!irqs_disabled());
+ lockdep_assert_held(&engine->timeline.lock);
+
+ /*
+ * Only unwind in reverse order, required so that the per-context list
+ * is kept in seqno/ring order.
+ */
+ GEM_BUG_ON(!request->global_seqno);
+ GEM_BUG_ON(request->global_seqno != engine->timeline.seqno);
+ GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine),
+ request->global_seqno));
+ engine->timeline.seqno--;
+
+ /* We may be recursing from the signal callback of another i915 fence */
+ spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
+ request->global_seqno = 0;
+ if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
+ intel_engine_cancel_signaling(request);
+ spin_unlock(&request->lock);
+
+ /* Transfer back from the global per-engine timeline to per-context */
+ move_to_timeline(request, request->timeline);
+
+ /*
+ * We don't need to wake_up any waiters on request->execute, they
+ * will get woken by any other event or us re-adding this request
+ * to the engine timeline (__i915_request_submit()). The waiters
+ * should be quite adapt at finding that the request now has a new
+ * global_seqno to the one they went to sleep on.
+ */
+}
+
+void i915_request_unsubmit(struct i915_request *request)
+{
+ struct intel_engine_cs *engine = request->engine;
+ unsigned long flags;
+
+ /* Will be called from irq-context when using foreign fences. */
+ spin_lock_irqsave(&engine->timeline.lock, flags);
+
+ __i915_request_unsubmit(request);
+
+ spin_unlock_irqrestore(&engine->timeline.lock, flags);
+}
+
+static int __i915_sw_fence_call
+submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
+{
+ struct i915_request *request =
+ container_of(fence, typeof(*request), submit);
+
+ switch (state) {
+ case FENCE_COMPLETE:
+ trace_i915_request_submit(request);
+ /*
+ * We need to serialize use of the submit_request() callback
+ * with its hotplugging performed during an emergency
+ * i915_gem_set_wedged(). We use the RCU mechanism to mark the
+ * critical section in order to force i915_gem_set_wedged() to
+ * wait until the submit_request() is completed before
+ * proceeding.
+ */
+ rcu_read_lock();
+ request->engine->submit_request(request);
+ rcu_read_unlock();
+ break;
+
+ case FENCE_FREE:
+ i915_request_put(request);
+ break;
+ }
+
+ return NOTIFY_DONE;
+}
+
+/**
+ * i915_request_alloc - allocate a request structure
+ *
+ * @engine: engine that we wish to issue the request on.
+ * @ctx: context that the request will be associated with.
+ *
+ * Returns a pointer to the allocated request if successful,
+ * or an error code if not.
+ */
+struct i915_request *
+i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
+{
+ struct drm_i915_private *i915 = engine->i915;
+ struct i915_request *rq;
+ struct intel_context *ce;
+ int ret;
+
+ lockdep_assert_held(&i915->drm.struct_mutex);
+
+ /*
+ * Preempt contexts are reserved for exclusive use to inject a
+ * preemption context switch. They are never to be used for any trivial
+ * request!
+ */
+ GEM_BUG_ON(ctx == i915->preempt_context);
+
+ /*
+ * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
+ * EIO if the GPU is already wedged.
+ */
+ if (i915_terminally_wedged(&i915->gpu_error))
+ return ERR_PTR(-EIO);
+
+ /*
+ * Pinning the contexts may generate requests in order to acquire
+ * GGTT space, so do this first before we reserve a seqno for
+ * ourselves.
+ */
+ ce = intel_context_pin(ctx, engine);
+ if (IS_ERR(ce))
+ return ERR_CAST(ce);
+
+ ret = reserve_gt(i915);
+ if (ret)
+ goto err_unpin;
+
+ ret = intel_ring_wait_for_space(ce->ring, MIN_SPACE_FOR_ADD_REQUEST);
+ if (ret)
+ goto err_unreserve;
+
+ /* Move our oldest request to the slab-cache (if not in use!) */
+ rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link);
+ if (!list_is_last(&rq->ring_link, &ce->ring->request_list) &&
+ i915_request_completed(rq))
+ i915_request_retire(rq);
+
+ /*
+ * Beware: Dragons be flying overhead.
+ *
+ * We use RCU to look up requests in flight. The lookups may
+ * race with the request being allocated from the slab freelist.
+ * That is the request we are writing to here, may be in the process
+ * of being read by __i915_gem_active_get_rcu(). As such,
+ * we have to be very careful when overwriting the contents. During
+ * the RCU lookup, we change chase the request->engine pointer,
+ * read the request->global_seqno and increment the reference count.
+ *
+ * The reference count is incremented atomically. If it is zero,
+ * the lookup knows the request is unallocated and complete. Otherwise,
+ * it is either still in use, or has been reallocated and reset
+ * with dma_fence_init(). This increment is safe for release as we
+ * check that the request we have a reference to and matches the active
+ * request.
+ *
+ * Before we increment the refcount, we chase the request->engine
+ * pointer. We must not call kmem_cache_zalloc() or else we set
+ * that pointer to NULL and cause a crash during the lookup. If
+ * we see the request is completed (based on the value of the
+ * old engine and seqno), the lookup is complete and reports NULL.
+ * If we decide the request is not completed (new engine or seqno),
+ * then we grab a reference and double check that it is still the
+ * active request - which it won't be and restart the lookup.
+ *
+ * Do not use kmem_cache_zalloc() here!
+ */
+ rq = kmem_cache_alloc(i915->requests,
+ GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
+ if (unlikely(!rq)) {
+ /* Ratelimit ourselves to prevent oom from malicious clients */
+ ret = i915_gem_wait_for_idle(i915,
+ I915_WAIT_LOCKED |
+ I915_WAIT_INTERRUPTIBLE,
+ MAX_SCHEDULE_TIMEOUT);
+ if (ret)
+ goto err_unreserve;
+
+ /*
+ * We've forced the client to stall and catch up with whatever
+ * backlog there might have been. As we are assuming that we
+ * caused the mempressure, now is an opportune time to
+ * recover as much memory from the request pool as is possible.
+ * Having already penalized the client to stall, we spend
+ * a little extra time to re-optimise page allocation.
+ */
+ kmem_cache_shrink(i915->requests);
+ rcu_barrier(); /* Recover the TYPESAFE_BY_RCU pages */
+
+ rq = kmem_cache_alloc(i915->requests, GFP_KERNEL);
+ if (!rq) {
+ ret = -ENOMEM;
+ goto err_unreserve;
+ }
+ }
+
+ INIT_LIST_HEAD(&rq->active_list);
+ rq->i915 = i915;
+ rq->engine = engine;
+ rq->gem_context = ctx;
+ rq->hw_context = ce;
+ rq->ring = ce->ring;
+ rq->timeline = ce->ring->timeline;
+ GEM_BUG_ON(rq->timeline == &engine->timeline);
+
+ spin_lock_init(&rq->lock);
+ dma_fence_init(&rq->fence,
+ &i915_fence_ops,
+ &rq->lock,
+ rq->timeline->fence_context,
+ timeline_get_seqno(rq->timeline));
+
+ /* We bump the ref for the fence chain */
+ i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
+ init_waitqueue_head(&rq->execute);
+
+ i915_sched_node_init(&rq->sched);
+
+ /* No zalloc, must clear what we need by hand */
+ rq->global_seqno = 0;
+ rq->signaling.wait.seqno = 0;
+ rq->file_priv = NULL;
+ rq->batch = NULL;
+ rq->capture_list = NULL;
+ rq->waitboost = false;
+
+ /*
+ * Reserve space in the ring buffer for all the commands required to
+ * eventually emit this request. This is to guarantee that the
+ * i915_request_add() call can't fail. Note that the reserve may need
+ * to be redone if the request is not actually submitted straight
+ * away, e.g. because a GPU scheduler has deferred it.
+ */
+ rq->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
+ GEM_BUG_ON(rq->reserved_space < engine->emit_breadcrumb_sz);
+
+ /*
+ * Record the position of the start of the request so that
+ * should we detect the updated seqno part-way through the
+ * GPU processing the request, we never over-estimate the
+ * position of the head.
+ */
+ rq->head = rq->ring->emit;
+
+ /* Unconditionally invalidate GPU caches and TLBs. */
+ ret = engine->emit_flush(rq, EMIT_INVALIDATE);
+ if (ret)
+ goto err_unwind;
+
+ ret = engine->request_alloc(rq);
+ if (ret)
+ goto err_unwind;
+
+ /* Keep a second pin for the dual retirement along engine and ring */
+ __intel_context_pin(ce);
+
+ rq->infix = rq->ring->emit; /* end of header; start of user payload */
+
+ /* Check that we didn't interrupt ourselves with a new request */
+ GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
+ return rq;
+
+err_unwind:
+ ce->ring->emit = rq->head;
+
+ /* Make sure we didn't add ourselves to external state before freeing */
+ GEM_BUG_ON(!list_empty(&rq->active_list));
+ GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
+ GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
+
+ kmem_cache_free(i915->requests, rq);
+err_unreserve:
+ unreserve_gt(i915);
+err_unpin:
+ intel_context_unpin(ce);
+ return ERR_PTR(ret);
+}
+
+static int
+i915_request_await_request(struct i915_request *to, struct i915_request *from)
+{
+ int ret;
+
+ GEM_BUG_ON(to == from);
+ GEM_BUG_ON(to->timeline == from->timeline);
+
+ if (i915_request_completed(from))
+ return 0;
+
+ if (to->engine->schedule) {
+ ret = i915_sched_node_add_dependency(to->i915,
+ &to->sched,
+ &from->sched);
+ if (ret < 0)
+ return ret;
+ }
+
+ if (to->engine == from->engine) {
+ ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
+ &from->submit,
+ I915_FENCE_GFP);
+ return ret < 0 ? ret : 0;
+ }
+
+ if (to->engine->semaphore.sync_to) {
+ u32 seqno;
+
+ GEM_BUG_ON(!from->engine->semaphore.signal);
+
+ seqno = i915_request_global_seqno(from);
+ if (!seqno)
+ goto await_dma_fence;
+
+ if (seqno <= to->timeline->global_sync[from->engine->id])
+ return 0;
+
+ trace_i915_gem_ring_sync_to(to, from);
+ ret = to->engine->semaphore.sync_to(to, from);
+ if (ret)
+ return ret;
+
+ to->timeline->global_sync[from->engine->id] = seqno;
+ return 0;
+ }
+
+await_dma_fence:
+ ret = i915_sw_fence_await_dma_fence(&to->submit,
+ &from->fence, 0,
+ I915_FENCE_GFP);
+ return ret < 0 ? ret : 0;
+}
+
+int
+i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
+{
+ struct dma_fence **child = &fence;
+ unsigned int nchild = 1;
+ int ret;
+
+ /*
+ * Note that if the fence-array was created in signal-on-any mode,
+ * we should *not* decompose it into its individual fences. However,
+ * we don't currently store which mode the fence-array is operating
+ * in. Fortunately, the only user of signal-on-any is private to
+ * amdgpu and we should not see any incoming fence-array from
+ * sync-file being in signal-on-any mode.
+ */
+ if (dma_fence_is_array(fence)) {
+ struct dma_fence_array *array = to_dma_fence_array(fence);
+
+ child = array->fences;
+ nchild = array->num_fences;
+ GEM_BUG_ON(!nchild);
+ }
+
+ do {
+ fence = *child++;
+ if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
+ continue;
+
+ /*
+ * Requests on the same timeline are explicitly ordered, along
+ * with their dependencies, by i915_request_add() which ensures
+ * that requests are submitted in-order through each ring.
+ */
+ if (fence->context == rq->fence.context)
+ continue;
+
+ /* Squash repeated waits to the same timelines */
+ if (fence->context != rq->i915->mm.unordered_timeline &&
+ i915_timeline_sync_is_later(rq->timeline, fence))
+ continue;
+
+ if (dma_fence_is_i915(fence))
+ ret = i915_request_await_request(rq, to_request(fence));
+ else
+ ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
+ I915_FENCE_TIMEOUT,
+ I915_FENCE_GFP);
+ if (ret < 0)
+ return ret;
+
+ /* Record the latest fence used against each timeline */
+ if (fence->context != rq->i915->mm.unordered_timeline)
+ i915_timeline_sync_set(rq->timeline, fence);
+ } while (--nchild);
+
+ return 0;
+}
+
+/**
+ * i915_request_await_object - set this request to (async) wait upon a bo
+ * @to: request we are wishing to use
+ * @obj: object which may be in use on another ring.
+ * @write: whether the wait is on behalf of a writer
+ *
+ * This code is meant to abstract object synchronization with the GPU.
+ * Conceptually we serialise writes between engines inside the GPU.
+ * We only allow one engine to write into a buffer at any time, but
+ * multiple readers. To ensure each has a coherent view of memory, we must:
+ *
+ * - If there is an outstanding write request to the object, the new
+ * request must wait for it to complete (either CPU or in hw, requests
+ * on the same ring will be naturally ordered).
+ *
+ * - If we are a write request (pending_write_domain is set), the new
+ * request must wait for outstanding read requests to complete.
+ *
+ * Returns 0 if successful, else propagates up the lower layer error.
+ */
+int
+i915_request_await_object(struct i915_request *to,
+ struct drm_i915_gem_object *obj,
+ bool write)
+{
+ struct dma_fence *excl;
+ int ret = 0;
+
+ if (write) {
+ struct dma_fence **shared;
+ unsigned int count, i;
+
+ ret = reservation_object_get_fences_rcu(obj->resv,
+ &excl, &count, &shared);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < count; i++) {
+ ret = i915_request_await_dma_fence(to, shared[i]);
+ if (ret)
+ break;
+
+ dma_fence_put(shared[i]);
+ }
+
+ for (; i < count; i++)
+ dma_fence_put(shared[i]);
+ kfree(shared);
+ } else {
+ excl = reservation_object_get_excl_rcu(obj->resv);
+ }
+
+ if (excl) {
+ if (ret == 0)
+ ret = i915_request_await_dma_fence(to, excl);
+
+ dma_fence_put(excl);
+ }
+
+ return ret;
+}
+
+void i915_request_skip(struct i915_request *rq, int error)
+{
+ void *vaddr = rq->ring->vaddr;
+ u32 head;
+
+ GEM_BUG_ON(!IS_ERR_VALUE((long)error));
+ dma_fence_set_error(&rq->fence, error);
+
+ /*
+ * As this request likely depends on state from the lost
+ * context, clear out all the user operations leaving the
+ * breadcrumb at the end (so we get the fence notifications).
+ */
+ head = rq->infix;
+ if (rq->postfix < head) {
+ memset(vaddr + head, 0, rq->ring->size - head);
+ head = 0;
+ }
+ memset(vaddr + head, 0, rq->postfix - head);
+}
+
+/*
+ * NB: This function is not allowed to fail. Doing so would mean the the
+ * request is not being tracked for completion but the work itself is
+ * going to happen on the hardware. This would be a Bad Thing(tm).
+ */
+void i915_request_add(struct i915_request *request)
+{
+ struct intel_engine_cs *engine = request->engine;
+ struct i915_timeline *timeline = request->timeline;
+ struct intel_ring *ring = request->ring;
+ struct i915_request *prev;
+ u32 *cs;
+
+ GEM_TRACE("%s fence %llx:%d\n",
+ engine->name, request->fence.context, request->fence.seqno);
+
+ lockdep_assert_held(&request->i915->drm.struct_mutex);
+ trace_i915_request_add(request);
+
+ /*
+ * Make sure that no request gazumped us - if it was allocated after
+ * our i915_request_alloc() and called __i915_request_add() before
+ * us, the timeline will hold its seqno which is later than ours.
+ */
+ GEM_BUG_ON(timeline->seqno != request->fence.seqno);
+
+ /*
+ * To ensure that this call will not fail, space for its emissions
+ * should already have been reserved in the ring buffer. Let the ring
+ * know that it is time to use that space up.
+ */
+ request->reserved_space = 0;
+ engine->emit_flush(request, EMIT_FLUSH);
+
+ /*
+ * Record the position of the start of the breadcrumb so that
+ * should we detect the updated seqno part-way through the
+ * GPU processing the request, we never over-estimate the
+ * position of the ring's HEAD.
+ */
+ cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
+ GEM_BUG_ON(IS_ERR(cs));
+ request->postfix = intel_ring_offset(request, cs);
+
+ /*
+ * Seal the request and mark it as pending execution. Note that
+ * we may inspect this state, without holding any locks, during
+ * hangcheck. Hence we apply the barrier to ensure that we do not
+ * see a more recent value in the hws than we are tracking.
+ */
+
+ prev = i915_gem_active_raw(&timeline->last_request,
+ &request->i915->drm.struct_mutex);
+ if (prev && !i915_request_completed(prev)) {
+ i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
+ &request->submitq);
+ if (engine->schedule)
+ __i915_sched_node_add_dependency(&request->sched,
+ &prev->sched,
+ &request->dep,
+ 0);
+ }
+
+ spin_lock_irq(&timeline->lock);
+ list_add_tail(&request->link, &timeline->requests);
+ spin_unlock_irq(&timeline->lock);
+
+ GEM_BUG_ON(timeline->seqno != request->fence.seqno);
+ i915_gem_active_set(&timeline->last_request, request);
+
+ list_add_tail(&request->ring_link, &ring->request_list);
+ if (list_is_first(&request->ring_link, &ring->request_list)) {
+ GEM_TRACE("marking %s as active\n", ring->timeline->name);
+ list_add(&ring->active_link, &request->i915->gt.active_rings);
+ }
+ request->emitted_jiffies = jiffies;
+
+ /*
+ * Let the backend know a new request has arrived that may need
+ * to adjust the existing execution schedule due to a high priority
+ * request - i.e. we may want to preempt the current request in order
+ * to run a high priority dependency chain *before* we can execute this
+ * request.
+ *
+ * This is called before the request is ready to run so that we can
+ * decide whether to preempt the entire chain so that it is ready to
+ * run at the earliest possible convenience.
+ */
+ local_bh_disable();
+ rcu_read_lock(); /* RCU serialisation for set-wedged protection */
+ if (engine->schedule)
+ engine->schedule(request, &request->gem_context->sched);
+ rcu_read_unlock();
+ i915_sw_fence_commit(&request->submit);
+ local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
+
+ /*
+ * In typical scenarios, we do not expect the previous request on
+ * the timeline to be still tracked by timeline->last_request if it
+ * has been completed. If the completed request is still here, that
+ * implies that request retirement is a long way behind submission,
+ * suggesting that we haven't been retiring frequently enough from
+ * the combination of retire-before-alloc, waiters and the background
+ * retirement worker. So if the last request on this timeline was
+ * already completed, do a catch up pass, flushing the retirement queue
+ * up to this client. Since we have now moved the heaviest operations
+ * during retirement onto secondary workers, such as freeing objects
+ * or contexts, retiring a bunch of requests is mostly list management
+ * (and cache misses), and so we should not be overly penalizing this
+ * client by performing excess work, though we may still performing
+ * work on behalf of others -- but instead we should benefit from
+ * improved resource management. (Well, that's the theory at least.)
+ */
+ if (prev && i915_request_completed(prev))
+ i915_request_retire_upto(prev);
+}
+
+static unsigned long local_clock_us(unsigned int *cpu)
+{
+ unsigned long t;
+
+ /*
+ * Cheaply and approximately convert from nanoseconds to microseconds.
+ * The result and subsequent calculations are also defined in the same
+ * approximate microseconds units. The principal source of timing
+ * error here is from the simple truncation.
+ *
+ * Note that local_clock() is only defined wrt to the current CPU;
+ * the comparisons are no longer valid if we switch CPUs. Instead of
+ * blocking preemption for the entire busywait, we can detect the CPU
+ * switch and use that as indicator of system load and a reason to
+ * stop busywaiting, see busywait_stop().
+ */
+ *cpu = get_cpu();
+ t = local_clock() >> 10;
+ put_cpu();
+
+ return t;
+}
+
+static bool busywait_stop(unsigned long timeout, unsigned int cpu)
+{
+ unsigned int this_cpu;
+
+ if (time_after(local_clock_us(&this_cpu), timeout))
+ return true;
+
+ return this_cpu != cpu;
+}
+
+static bool __i915_spin_request(const struct i915_request *rq,
+ u32 seqno, int state, unsigned long timeout_us)
+{
+ struct intel_engine_cs *engine = rq->engine;
+ unsigned int irq, cpu;
+
+ GEM_BUG_ON(!seqno);
+
+ /*
+ * Only wait for the request if we know it is likely to complete.
+ *
+ * We don't track the timestamps around requests, nor the average
+ * request length, so we do not have a good indicator that this
+ * request will complete within the timeout. What we do know is the
+ * order in which requests are executed by the engine and so we can
+ * tell if the request has started. If the request hasn't started yet,
+ * it is a fair assumption that it will not complete within our
+ * relatively short timeout.
+ */
+ if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1))
+ return false;
+
+ /*
+ * When waiting for high frequency requests, e.g. during synchronous
+ * rendering split between the CPU and GPU, the finite amount of time
+ * required to set up the irq and wait upon it limits the response
+ * rate. By busywaiting on the request completion for a short while we
+ * can service the high frequency waits as quick as possible. However,
+ * if it is a slow request, we want to sleep as quickly as possible.
+ * The tradeoff between waiting and sleeping is roughly the time it
+ * takes to sleep on a request, on the order of a microsecond.
+ */
+
+ irq = READ_ONCE(engine->breadcrumbs.irq_count);
+ timeout_us += local_clock_us(&cpu);
+ do {
+ if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno))
+ return seqno == i915_request_global_seqno(rq);
+
+ /*
+ * Seqno are meant to be ordered *before* the interrupt. If
+ * we see an interrupt without a corresponding seqno advance,
+ * assume we won't see one in the near future but require
+ * the engine->seqno_barrier() to fixup coherency.
+ */
+ if (READ_ONCE(engine->breadcrumbs.irq_count) != irq)
+ break;
+
+ if (signal_pending_state(state, current))
+ break;
+
+ if (busywait_stop(timeout_us, cpu))
+ break;
+
+ cpu_relax();
+ } while (!need_resched());
+
+ return false;
+}
+
+static bool __i915_wait_request_check_and_reset(struct i915_request *request)
+{
+ struct i915_gpu_error *error = &request->i915->gpu_error;
+
+ if (likely(!i915_reset_handoff(error)))
+ return false;
+
+ __set_current_state(TASK_RUNNING);
+ i915_reset(request->i915, error->stalled_mask, error->reason);
+ return true;
+}
+
+/**
+ * i915_request_wait - wait until execution of request has finished
+ * @rq: the request to wait upon
+ * @flags: how to wait
+ * @timeout: how long to wait in jiffies
+ *
+ * i915_request_wait() waits for the request to be completed, for a
+ * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
+ * unbounded wait).
+ *
+ * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
+ * in via the flags, and vice versa if the struct_mutex is not held, the caller
+ * must not specify that the wait is locked.
+ *
+ * Returns the remaining time (in jiffies) if the request completed, which may
+ * be zero or -ETIME if the request is unfinished after the timeout expires.
+ * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
+ * pending before the request completes.
+ */
+long i915_request_wait(struct i915_request *rq,
+ unsigned int flags,
+ long timeout)
+{
+ const int state = flags & I915_WAIT_INTERRUPTIBLE ?
+ TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
+ wait_queue_head_t *errq = &rq->i915->gpu_error.wait_queue;
+ DEFINE_WAIT_FUNC(reset, default_wake_function);
+ DEFINE_WAIT_FUNC(exec, default_wake_function);
+ struct intel_wait wait;
+
+ might_sleep();
+#if IS_ENABLED(CONFIG_LOCKDEP)
+ GEM_BUG_ON(debug_locks &&
+ !!lockdep_is_held(&rq->i915->drm.struct_mutex) !=
+ !!(flags & I915_WAIT_LOCKED));
+#endif
+ GEM_BUG_ON(timeout < 0);
+
+ if (i915_request_completed(rq))
+ return timeout;
+
+ if (!timeout)
+ return -ETIME;
+
+ trace_i915_request_wait_begin(rq, flags);
+
+ add_wait_queue(&rq->execute, &exec);
+ if (flags & I915_WAIT_LOCKED)
+ add_wait_queue(errq, &reset);
+
+ intel_wait_init(&wait);
+
+restart:
+ do {
+ set_current_state(state);
+ if (intel_wait_update_request(&wait, rq))
+ break;
+
+ if (flags & I915_WAIT_LOCKED &&
+ __i915_wait_request_check_and_reset(rq))
+ continue;
+
+ if (signal_pending_state(state, current)) {
+ timeout = -ERESTARTSYS;
+ goto complete;
+ }
+
+ if (!timeout) {
+ timeout = -ETIME;
+ goto complete;
+ }
+
+ timeout = io_schedule_timeout(timeout);
+ } while (1);
+
+ GEM_BUG_ON(!intel_wait_has_seqno(&wait));
+ GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
+
+ /* Optimistic short spin before touching IRQs */
+ if (__i915_spin_request(rq, wait.seqno, state, 5))
+ goto complete;
+
+ set_current_state(state);
+ if (intel_engine_add_wait(rq->engine, &wait))
+ /*
+ * In order to check that we haven't missed the interrupt
+ * as we enabled it, we need to kick ourselves to do a
+ * coherent check on the seqno before we sleep.
+ */
+ goto wakeup;
+
+ if (flags & I915_WAIT_LOCKED)
+ __i915_wait_request_check_and_reset(rq);
+
+ for (;;) {
+ if (signal_pending_state(state, current)) {
+ timeout = -ERESTARTSYS;
+ break;
+ }
+
+ if (!timeout) {
+ timeout = -ETIME;
+ break;
+ }
+
+ timeout = io_schedule_timeout(timeout);
+
+ if (intel_wait_complete(&wait) &&
+ intel_wait_check_request(&wait, rq))
+ break;
+
+ set_current_state(state);
+
+wakeup:
+ /*
+ * Carefully check if the request is complete, giving time
+ * for the seqno to be visible following the interrupt.
+ * We also have to check in case we are kicked by the GPU
+ * reset in order to drop the struct_mutex.
+ */
+ if (__i915_request_irq_complete(rq))
+ break;
+
+ /*
+ * If the GPU is hung, and we hold the lock, reset the GPU
+ * and then check for completion. On a full reset, the engine's
+ * HW seqno will be advanced passed us and we are complete.
+ * If we do a partial reset, we have to wait for the GPU to
+ * resume and update the breadcrumb.
+ *
+ * If we don't hold the mutex, we can just wait for the worker
+ * to come along and update the breadcrumb (either directly
+ * itself, or indirectly by recovering the GPU).
+ */
+ if (flags & I915_WAIT_LOCKED &&
+ __i915_wait_request_check_and_reset(rq))
+ continue;
+
+ /* Only spin if we know the GPU is processing this request */
+ if (__i915_spin_request(rq, wait.seqno, state, 2))
+ break;
+
+ if (!intel_wait_check_request(&wait, rq)) {
+ intel_engine_remove_wait(rq->engine, &wait);
+ goto restart;
+ }
+ }
+
+ intel_engine_remove_wait(rq->engine, &wait);
+complete:
+ __set_current_state(TASK_RUNNING);
+ if (flags & I915_WAIT_LOCKED)
+ remove_wait_queue(errq, &reset);
+ remove_wait_queue(&rq->execute, &exec);
+ trace_i915_request_wait_end(rq);
+
+ return timeout;
+}
+
+static void ring_retire_requests(struct intel_ring *ring)
+{
+ struct i915_request *request, *next;
+
+ list_for_each_entry_safe(request, next,
+ &ring->request_list, ring_link) {
+ if (!i915_request_completed(request))
+ break;
+
+ i915_request_retire(request);
+ }
+}
+
+void i915_retire_requests(struct drm_i915_private *i915)
+{
+ struct intel_ring *ring, *tmp;
+
+ lockdep_assert_held(&i915->drm.struct_mutex);
+
+ if (!i915->gt.active_requests)
+ return;
+
+ list_for_each_entry_safe(ring, tmp, &i915->gt.active_rings, active_link)
+ ring_retire_requests(ring);
+}
+
+#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
+#include "selftests/mock_request.c"
+#include "selftests/i915_request.c"
+#endif