diff options
Diffstat (limited to 'drivers/gpu/drm/vc4/vc4_crtc.c')
-rw-r--r-- | drivers/gpu/drm/vc4/vc4_crtc.c | 1254 |
1 files changed, 1254 insertions, 0 deletions
diff --git a/drivers/gpu/drm/vc4/vc4_crtc.c b/drivers/gpu/drm/vc4/vc4_crtc.c new file mode 100644 index 000000000..5615ceb15 --- /dev/null +++ b/drivers/gpu/drm/vc4/vc4_crtc.c @@ -0,0 +1,1254 @@ +/* + * Copyright (C) 2015 Broadcom + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +/** + * DOC: VC4 CRTC module + * + * In VC4, the Pixel Valve is what most closely corresponds to the + * DRM's concept of a CRTC. The PV generates video timings from the + * encoder's clock plus its configuration. It pulls scaled pixels from + * the HVS at that timing, and feeds it to the encoder. + * + * However, the DRM CRTC also collects the configuration of all the + * DRM planes attached to it. As a result, the CRTC is also + * responsible for writing the display list for the HVS channel that + * the CRTC will use. + * + * The 2835 has 3 different pixel valves. pv0 in the audio power + * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the + * image domain can feed either HDMI or the SDTV controller. The + * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for + * SDTV, etc.) according to which output type is chosen in the mux. + * + * For power management, the pixel valve's registers are all clocked + * by the AXI clock, while the timings and FIFOs make use of the + * output-specific clock. Since the encoders also directly consume + * the CPRMAN clocks, and know what timings they need, they are the + * ones that set the clock. + */ + +#include <drm/drm_atomic.h> +#include <drm/drm_atomic_helper.h> +#include <drm/drm_crtc_helper.h> +#include <linux/clk.h> +#include <drm/drm_fb_cma_helper.h> +#include <linux/component.h> +#include <linux/of_device.h> +#include "vc4_drv.h" +#include "vc4_regs.h" + +struct vc4_crtc_state { + struct drm_crtc_state base; + /* Dlist area for this CRTC configuration. */ + struct drm_mm_node mm; + bool feed_txp; + bool txp_armed; +}; + +static inline struct vc4_crtc_state * +to_vc4_crtc_state(struct drm_crtc_state *crtc_state) +{ + return (struct vc4_crtc_state *)crtc_state; +} + +#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) +#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) + +#define CRTC_REG(reg) { reg, #reg } +static const struct { + u32 reg; + const char *name; +} crtc_regs[] = { + CRTC_REG(PV_CONTROL), + CRTC_REG(PV_V_CONTROL), + CRTC_REG(PV_VSYNCD_EVEN), + CRTC_REG(PV_HORZA), + CRTC_REG(PV_HORZB), + CRTC_REG(PV_VERTA), + CRTC_REG(PV_VERTB), + CRTC_REG(PV_VERTA_EVEN), + CRTC_REG(PV_VERTB_EVEN), + CRTC_REG(PV_INTEN), + CRTC_REG(PV_INTSTAT), + CRTC_REG(PV_STAT), + CRTC_REG(PV_HACT_ACT), +}; + +static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { + DRM_INFO("0x%04x (%s): 0x%08x\n", + crtc_regs[i].reg, crtc_regs[i].name, + CRTC_READ(crtc_regs[i].reg)); + } +} + +#ifdef CONFIG_DEBUG_FS +int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) +{ + struct drm_info_node *node = (struct drm_info_node *)m->private; + struct drm_device *dev = node->minor->dev; + int crtc_index = (uintptr_t)node->info_ent->data; + struct drm_crtc *crtc; + struct vc4_crtc *vc4_crtc; + int i; + + i = 0; + list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { + if (i == crtc_index) + break; + i++; + } + if (!crtc) + return 0; + vc4_crtc = to_vc4_crtc(crtc); + + for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { + seq_printf(m, "%s (0x%04x): 0x%08x\n", + crtc_regs[i].name, crtc_regs[i].reg, + CRTC_READ(crtc_regs[i].reg)); + } + + return 0; +} +#endif + +bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id, + bool in_vblank_irq, int *vpos, int *hpos, + ktime_t *stime, ktime_t *etime, + const struct drm_display_mode *mode) +{ + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + u32 val; + int fifo_lines; + int vblank_lines; + bool ret = false; + + /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ + + /* Get optional system timestamp before query. */ + if (stime) + *stime = ktime_get(); + + /* + * Read vertical scanline which is currently composed for our + * pixelvalve by the HVS, and also the scaler status. + */ + val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)); + + /* Get optional system timestamp after query. */ + if (etime) + *etime = ktime_get(); + + /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ + + /* Vertical position of hvs composed scanline. */ + *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); + *hpos = 0; + + if (mode->flags & DRM_MODE_FLAG_INTERLACE) { + *vpos /= 2; + + /* Use hpos to correct for field offset in interlaced mode. */ + if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) + *hpos += mode->crtc_htotal / 2; + } + + /* This is the offset we need for translating hvs -> pv scanout pos. */ + fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay; + + if (fifo_lines > 0) + ret = true; + + /* HVS more than fifo_lines into frame for compositing? */ + if (*vpos > fifo_lines) { + /* + * We are in active scanout and can get some meaningful results + * from HVS. The actual PV scanout can not trail behind more + * than fifo_lines as that is the fifo's capacity. Assume that + * in active scanout the HVS and PV work in lockstep wrt. HVS + * refilling the fifo and PV consuming from the fifo, ie. + * whenever the PV consumes and frees up a scanline in the + * fifo, the HVS will immediately refill it, therefore + * incrementing vpos. Therefore we choose HVS read position - + * fifo size in scanlines as a estimate of the real scanout + * position of the PV. + */ + *vpos -= fifo_lines + 1; + + return ret; + } + + /* + * Less: This happens when we are in vblank and the HVS, after getting + * the VSTART restart signal from the PV, just started refilling its + * fifo with new lines from the top-most lines of the new framebuffers. + * The PV does not scan out in vblank, so does not remove lines from + * the fifo, so the fifo will be full quickly and the HVS has to pause. + * We can't get meaningful readings wrt. scanline position of the PV + * and need to make things up in a approximative but consistent way. + */ + vblank_lines = mode->vtotal - mode->vdisplay; + + if (in_vblank_irq) { + /* + * Assume the irq handler got called close to first + * line of vblank, so PV has about a full vblank + * scanlines to go, and as a base timestamp use the + * one taken at entry into vblank irq handler, so it + * is not affected by random delays due to lock + * contention on event_lock or vblank_time lock in + * the core. + */ + *vpos = -vblank_lines; + + if (stime) + *stime = vc4_crtc->t_vblank; + if (etime) + *etime = vc4_crtc->t_vblank; + + /* + * If the HVS fifo is not yet full then we know for certain + * we are at the very beginning of vblank, as the hvs just + * started refilling, and the stime and etime timestamps + * truly correspond to start of vblank. + * + * Unfortunately there's no way to report this to upper levels + * and make it more useful. + */ + } else { + /* + * No clue where we are inside vblank. Return a vpos of zero, + * which will cause calling code to just return the etime + * timestamp uncorrected. At least this is no worse than the + * standard fallback. + */ + *vpos = 0; + } + + return ret; +} + +static void vc4_crtc_destroy(struct drm_crtc *crtc) +{ + drm_crtc_cleanup(crtc); +} + +static void +vc4_crtc_lut_load(struct drm_crtc *crtc) +{ + struct drm_device *dev = crtc->dev; + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + u32 i; + + /* The LUT memory is laid out with each HVS channel in order, + * each of which takes 256 writes for R, 256 for G, then 256 + * for B. + */ + HVS_WRITE(SCALER_GAMADDR, + SCALER_GAMADDR_AUTOINC | + (vc4_crtc->channel * 3 * crtc->gamma_size)); + + for (i = 0; i < crtc->gamma_size; i++) + HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); + for (i = 0; i < crtc->gamma_size; i++) + HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); + for (i = 0; i < crtc->gamma_size; i++) + HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); +} + +static void +vc4_crtc_update_gamma_lut(struct drm_crtc *crtc) +{ + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + struct drm_color_lut *lut = crtc->state->gamma_lut->data; + u32 length = drm_color_lut_size(crtc->state->gamma_lut); + u32 i; + + for (i = 0; i < length; i++) { + vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8); + vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8); + vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8); + } + + vc4_crtc_lut_load(crtc); +} + +static u32 vc4_get_fifo_full_level(u32 format) +{ + static const u32 fifo_len_bytes = 64; + static const u32 hvs_latency_pix = 6; + + switch (format) { + case PV_CONTROL_FORMAT_DSIV_16: + case PV_CONTROL_FORMAT_DSIC_16: + return fifo_len_bytes - 2 * hvs_latency_pix; + case PV_CONTROL_FORMAT_DSIV_18: + return fifo_len_bytes - 14; + case PV_CONTROL_FORMAT_24: + case PV_CONTROL_FORMAT_DSIV_24: + default: + return fifo_len_bytes - 3 * hvs_latency_pix; + } +} + +/* + * Returns the encoder attached to the CRTC. + * + * VC4 can only scan out to one encoder at a time, while the DRM core + * allows drivers to push pixels to more than one encoder from the + * same CRTC. + */ +static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc) +{ + struct drm_connector *connector; + struct drm_connector_list_iter conn_iter; + + drm_connector_list_iter_begin(crtc->dev, &conn_iter); + drm_for_each_connector_iter(connector, &conn_iter) { + if (connector->state->crtc == crtc) { + drm_connector_list_iter_end(&conn_iter); + return connector->encoder; + } + } + drm_connector_list_iter_end(&conn_iter); + + return NULL; +} + +static void vc4_crtc_config_pv(struct drm_crtc *crtc) +{ + struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); + struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + struct drm_crtc_state *state = crtc->state; + struct drm_display_mode *mode = &state->adjusted_mode; + bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; + u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; + bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || + vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); + u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; + + /* Reset the PV fifo. */ + CRTC_WRITE(PV_CONTROL, 0); + CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); + CRTC_WRITE(PV_CONTROL, 0); + + CRTC_WRITE(PV_HORZA, + VC4_SET_FIELD((mode->htotal - + mode->hsync_end) * pixel_rep, + PV_HORZA_HBP) | + VC4_SET_FIELD((mode->hsync_end - + mode->hsync_start) * pixel_rep, + PV_HORZA_HSYNC)); + CRTC_WRITE(PV_HORZB, + VC4_SET_FIELD((mode->hsync_start - + mode->hdisplay) * pixel_rep, + PV_HORZB_HFP) | + VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE)); + + CRTC_WRITE(PV_VERTA, + VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, + PV_VERTA_VBP) | + VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, + PV_VERTA_VSYNC)); + CRTC_WRITE(PV_VERTB, + VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, + PV_VERTB_VFP) | + VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); + + if (interlace) { + CRTC_WRITE(PV_VERTA_EVEN, + VC4_SET_FIELD(mode->crtc_vtotal - + mode->crtc_vsync_end - 1, + PV_VERTA_VBP) | + VC4_SET_FIELD(mode->crtc_vsync_end - + mode->crtc_vsync_start, + PV_VERTA_VSYNC)); + CRTC_WRITE(PV_VERTB_EVEN, + VC4_SET_FIELD(mode->crtc_vsync_start - + mode->crtc_vdisplay, + PV_VERTB_VFP) | + VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); + + /* We set up first field even mode for HDMI. VEC's + * NTSC mode would want first field odd instead, once + * we support it (to do so, set ODD_FIRST and put the + * delay in VSYNCD_EVEN instead). + */ + CRTC_WRITE(PV_V_CONTROL, + PV_VCONTROL_CONTINUOUS | + (is_dsi ? PV_VCONTROL_DSI : 0) | + PV_VCONTROL_INTERLACE | + VC4_SET_FIELD(mode->htotal * pixel_rep / 2, + PV_VCONTROL_ODD_DELAY)); + CRTC_WRITE(PV_VSYNCD_EVEN, 0); + } else { + CRTC_WRITE(PV_V_CONTROL, + PV_VCONTROL_CONTINUOUS | + (is_dsi ? PV_VCONTROL_DSI : 0)); + } + + CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); + + CRTC_WRITE(PV_CONTROL, + VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | + VC4_SET_FIELD(vc4_get_fifo_full_level(format), + PV_CONTROL_FIFO_LEVEL) | + VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | + PV_CONTROL_CLR_AT_START | + PV_CONTROL_TRIGGER_UNDERFLOW | + PV_CONTROL_WAIT_HSTART | + VC4_SET_FIELD(vc4_encoder->clock_select, + PV_CONTROL_CLK_SELECT) | + PV_CONTROL_FIFO_CLR | + PV_CONTROL_EN); +} + +static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) +{ + struct drm_device *dev = crtc->dev; + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); + struct drm_display_mode *mode = &crtc->state->adjusted_mode; + bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; + bool debug_dump_regs = false; + + if (debug_dump_regs) { + DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); + vc4_crtc_dump_regs(vc4_crtc); + } + + if (vc4_crtc->channel == 2) { + u32 dispctrl; + u32 dsp3_mux; + + /* + * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to + * FIFO X'. + * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. + * + * DSP3 is connected to FIFO2 unless the transposer is + * enabled. In this case, FIFO 2 is directly accessed by the + * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 + * route. + */ + if (vc4_state->feed_txp) + dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); + else + dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); + + dispctrl = HVS_READ(SCALER_DISPCTRL) & + ~SCALER_DISPCTRL_DSP3_MUX_MASK; + HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); + } + + if (!vc4_state->feed_txp) + vc4_crtc_config_pv(crtc); + + HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), + SCALER_DISPBKGND_AUTOHS | + SCALER_DISPBKGND_GAMMA | + (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); + + /* Reload the LUT, since the SRAMs would have been disabled if + * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. + */ + vc4_crtc_lut_load(crtc); + + if (debug_dump_regs) { + DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); + vc4_crtc_dump_regs(vc4_crtc); + } +} + +static void require_hvs_enabled(struct drm_device *dev) +{ + struct vc4_dev *vc4 = to_vc4_dev(dev); + + WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != + SCALER_DISPCTRL_ENABLE); +} + +static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, + struct drm_crtc_state *old_state) +{ + struct drm_device *dev = crtc->dev; + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + u32 chan = vc4_crtc->channel; + int ret; + require_hvs_enabled(dev); + + /* Disable vblank irq handling before crtc is disabled. */ + drm_crtc_vblank_off(crtc); + + CRTC_WRITE(PV_V_CONTROL, + CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); + ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); + WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); + + if (HVS_READ(SCALER_DISPCTRLX(chan)) & + SCALER_DISPCTRLX_ENABLE) { + HVS_WRITE(SCALER_DISPCTRLX(chan), + SCALER_DISPCTRLX_RESET); + + /* While the docs say that reset is self-clearing, it + * seems it doesn't actually. + */ + HVS_WRITE(SCALER_DISPCTRLX(chan), 0); + } + + /* Once we leave, the scaler should be disabled and its fifo empty. */ + + WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); + + WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), + SCALER_DISPSTATX_MODE) != + SCALER_DISPSTATX_MODE_DISABLED); + + WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & + (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != + SCALER_DISPSTATX_EMPTY); + + /* + * Make sure we issue a vblank event after disabling the CRTC if + * someone was waiting it. + */ + if (crtc->state->event) { + unsigned long flags; + + spin_lock_irqsave(&dev->event_lock, flags); + drm_crtc_send_vblank_event(crtc, crtc->state->event); + crtc->state->event = NULL; + spin_unlock_irqrestore(&dev->event_lock, flags); + } +} + +void vc4_crtc_txp_armed(struct drm_crtc_state *state) +{ + struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); + + vc4_state->txp_armed = true; +} + +static void vc4_crtc_update_dlist(struct drm_crtc *crtc) +{ + struct drm_device *dev = crtc->dev; + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); + + if (crtc->state->event) { + unsigned long flags; + + crtc->state->event->pipe = drm_crtc_index(crtc); + + WARN_ON(drm_crtc_vblank_get(crtc) != 0); + + spin_lock_irqsave(&dev->event_lock, flags); + + if (!vc4_state->feed_txp || vc4_state->txp_armed) { + vc4_crtc->event = crtc->state->event; + crtc->state->event = NULL; + } + + HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), + vc4_state->mm.start); + + spin_unlock_irqrestore(&dev->event_lock, flags); + } else { + HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), + vc4_state->mm.start); + } +} + +static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, + struct drm_crtc_state *old_state) +{ + struct drm_device *dev = crtc->dev; + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); + struct drm_display_mode *mode = &crtc->state->adjusted_mode; + + require_hvs_enabled(dev); + + /* Enable vblank irq handling before crtc is started otherwise + * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). + */ + drm_crtc_vblank_on(crtc); + vc4_crtc_update_dlist(crtc); + + /* Turn on the scaler, which will wait for vstart to start + * compositing. + * When feeding the transposer, we should operate in oneshot + * mode. + */ + HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), + VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | + VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | + SCALER_DISPCTRLX_ENABLE | + (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0)); + + /* When feeding the transposer block the pixelvalve is unneeded and + * should not be enabled. + */ + if (!vc4_state->feed_txp) + CRTC_WRITE(PV_V_CONTROL, + CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); +} + +static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, + const struct drm_display_mode *mode) +{ + /* Do not allow doublescan modes from user space */ + if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { + DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", + crtc->base.id); + return MODE_NO_DBLESCAN; + } + + return MODE_OK; +} + +static int vc4_crtc_atomic_check(struct drm_crtc *crtc, + struct drm_crtc_state *state) +{ + struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); + struct drm_device *dev = crtc->dev; + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct drm_plane *plane; + unsigned long flags; + const struct drm_plane_state *plane_state; + struct drm_connector *conn; + struct drm_connector_state *conn_state; + u32 dlist_count = 0; + int ret, i; + + /* The pixelvalve can only feed one encoder (and encoders are + * 1:1 with connectors.) + */ + if (hweight32(state->connector_mask) > 1) + return -EINVAL; + + drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) + dlist_count += vc4_plane_dlist_size(plane_state); + + dlist_count++; /* Account for SCALER_CTL0_END. */ + + spin_lock_irqsave(&vc4->hvs->mm_lock, flags); + ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, + dlist_count); + spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); + if (ret) + return ret; + + for_each_new_connector_in_state(state->state, conn, conn_state, i) { + if (conn_state->crtc != crtc) + continue; + + /* The writeback connector is implemented using the transposer + * block which is directly taking its data from the HVS FIFO. + */ + if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) { + state->no_vblank = true; + vc4_state->feed_txp = true; + } else { + state->no_vblank = false; + vc4_state->feed_txp = false; + } + + break; + } + + return 0; +} + +static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, + struct drm_crtc_state *old_state) +{ + struct drm_device *dev = crtc->dev; + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); + struct drm_plane *plane; + struct vc4_plane_state *vc4_plane_state; + bool debug_dump_regs = false; + bool enable_bg_fill = false; + u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; + u32 __iomem *dlist_next = dlist_start; + + if (debug_dump_regs) { + DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); + vc4_hvs_dump_state(dev); + } + + /* Copy all the active planes' dlist contents to the hardware dlist. */ + drm_atomic_crtc_for_each_plane(plane, crtc) { + /* Is this the first active plane? */ + if (dlist_next == dlist_start) { + /* We need to enable background fill when a plane + * could be alpha blending from the background, i.e. + * where no other plane is underneath. It suffices to + * consider the first active plane here since we set + * needs_bg_fill such that either the first plane + * already needs it or all planes on top blend from + * the first or a lower plane. + */ + vc4_plane_state = to_vc4_plane_state(plane->state); + enable_bg_fill = vc4_plane_state->needs_bg_fill; + } + + dlist_next += vc4_plane_write_dlist(plane, dlist_next); + } + + writel(SCALER_CTL0_END, dlist_next); + dlist_next++; + + WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); + + if (enable_bg_fill) + /* This sets a black background color fill, as is the case + * with other DRM drivers. + */ + HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), + HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) | + SCALER_DISPBKGND_FILL); + + /* Only update DISPLIST if the CRTC was already running and is not + * being disabled. + * vc4_crtc_enable() takes care of updating the dlist just after + * re-enabling VBLANK interrupts and before enabling the engine. + * If the CRTC is being disabled, there's no point in updating this + * information. + */ + if (crtc->state->active && old_state->active) + vc4_crtc_update_dlist(crtc); + + if (crtc->state->color_mgmt_changed) { + u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)); + + if (crtc->state->gamma_lut) { + vc4_crtc_update_gamma_lut(crtc); + dispbkgndx |= SCALER_DISPBKGND_GAMMA; + } else { + /* Unsetting DISPBKGND_GAMMA skips the gamma lut step + * in hardware, which is the same as a linear lut that + * DRM expects us to use in absence of a user lut. + */ + dispbkgndx &= ~SCALER_DISPBKGND_GAMMA; + } + HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx); + } + + if (debug_dump_regs) { + DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); + vc4_hvs_dump_state(dev); + } +} + +static int vc4_enable_vblank(struct drm_crtc *crtc) +{ + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + + CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); + + return 0; +} + +static void vc4_disable_vblank(struct drm_crtc *crtc) +{ + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + + CRTC_WRITE(PV_INTEN, 0); +} + +static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) +{ + struct drm_crtc *crtc = &vc4_crtc->base; + struct drm_device *dev = crtc->dev; + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); + u32 chan = vc4_crtc->channel; + unsigned long flags; + + spin_lock_irqsave(&dev->event_lock, flags); + if (vc4_crtc->event && + (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) || + vc4_state->feed_txp)) { + drm_crtc_send_vblank_event(crtc, vc4_crtc->event); + vc4_crtc->event = NULL; + drm_crtc_vblank_put(crtc); + } + spin_unlock_irqrestore(&dev->event_lock, flags); +} + +void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) +{ + crtc->t_vblank = ktime_get(); + drm_crtc_handle_vblank(&crtc->base); + vc4_crtc_handle_page_flip(crtc); +} + +static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) +{ + struct vc4_crtc *vc4_crtc = data; + u32 stat = CRTC_READ(PV_INTSTAT); + irqreturn_t ret = IRQ_NONE; + + if (stat & PV_INT_VFP_START) { + CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); + vc4_crtc_handle_vblank(vc4_crtc); + ret = IRQ_HANDLED; + } + + return ret; +} + +struct vc4_async_flip_state { + struct drm_crtc *crtc; + struct drm_framebuffer *fb; + struct drm_framebuffer *old_fb; + struct drm_pending_vblank_event *event; + + struct vc4_seqno_cb cb; +}; + +/* Called when the V3D execution for the BO being flipped to is done, so that + * we can actually update the plane's address to point to it. + */ +static void +vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) +{ + struct vc4_async_flip_state *flip_state = + container_of(cb, struct vc4_async_flip_state, cb); + struct drm_crtc *crtc = flip_state->crtc; + struct drm_device *dev = crtc->dev; + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct drm_plane *plane = crtc->primary; + + vc4_plane_async_set_fb(plane, flip_state->fb); + if (flip_state->event) { + unsigned long flags; + + spin_lock_irqsave(&dev->event_lock, flags); + drm_crtc_send_vblank_event(crtc, flip_state->event); + spin_unlock_irqrestore(&dev->event_lock, flags); + } + + drm_crtc_vblank_put(crtc); + drm_framebuffer_put(flip_state->fb); + + /* Decrement the BO usecnt in order to keep the inc/dec calls balanced + * when the planes are updated through the async update path. + * FIXME: we should move to generic async-page-flip when it's + * available, so that we can get rid of this hand-made cleanup_fb() + * logic. + */ + if (flip_state->old_fb) { + struct drm_gem_cma_object *cma_bo; + struct vc4_bo *bo; + + cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0); + bo = to_vc4_bo(&cma_bo->base); + vc4_bo_dec_usecnt(bo); + drm_framebuffer_put(flip_state->old_fb); + } + + kfree(flip_state); + + up(&vc4->async_modeset); +} + +/* Implements async (non-vblank-synced) page flips. + * + * The page flip ioctl needs to return immediately, so we grab the + * modeset semaphore on the pipe, and queue the address update for + * when V3D is done with the BO being flipped to. + */ +static int vc4_async_page_flip(struct drm_crtc *crtc, + struct drm_framebuffer *fb, + struct drm_pending_vblank_event *event, + uint32_t flags) +{ + struct drm_device *dev = crtc->dev; + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct drm_plane *plane = crtc->primary; + int ret = 0; + struct vc4_async_flip_state *flip_state; + struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); + struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); + + /* Increment the BO usecnt here, so that we never end up with an + * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the + * plane is later updated through the non-async path. + * FIXME: we should move to generic async-page-flip when it's + * available, so that we can get rid of this hand-made prepare_fb() + * logic. + */ + ret = vc4_bo_inc_usecnt(bo); + if (ret) + return ret; + + flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); + if (!flip_state) { + vc4_bo_dec_usecnt(bo); + return -ENOMEM; + } + + drm_framebuffer_get(fb); + flip_state->fb = fb; + flip_state->crtc = crtc; + flip_state->event = event; + + /* Make sure all other async modesetes have landed. */ + ret = down_interruptible(&vc4->async_modeset); + if (ret) { + drm_framebuffer_put(fb); + vc4_bo_dec_usecnt(bo); + kfree(flip_state); + return ret; + } + + /* Save the current FB before it's replaced by the new one in + * drm_atomic_set_fb_for_plane(). We'll need the old FB in + * vc4_async_page_flip_complete() to decrement the BO usecnt and keep + * it consistent. + * FIXME: we should move to generic async-page-flip when it's + * available, so that we can get rid of this hand-made cleanup_fb() + * logic. + */ + flip_state->old_fb = plane->state->fb; + if (flip_state->old_fb) + drm_framebuffer_get(flip_state->old_fb); + + WARN_ON(drm_crtc_vblank_get(crtc) != 0); + + /* Immediately update the plane's legacy fb pointer, so that later + * modeset prep sees the state that will be present when the semaphore + * is released. + */ + drm_atomic_set_fb_for_plane(plane->state, fb); + + vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, + vc4_async_page_flip_complete); + + /* Driver takes ownership of state on successful async commit. */ + return 0; +} + +static int vc4_page_flip(struct drm_crtc *crtc, + struct drm_framebuffer *fb, + struct drm_pending_vblank_event *event, + uint32_t flags, + struct drm_modeset_acquire_ctx *ctx) +{ + if (flags & DRM_MODE_PAGE_FLIP_ASYNC) + return vc4_async_page_flip(crtc, fb, event, flags); + else + return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); +} + +static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) +{ + struct vc4_crtc_state *vc4_state, *old_vc4_state; + + vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); + if (!vc4_state) + return NULL; + + old_vc4_state = to_vc4_crtc_state(crtc->state); + vc4_state->feed_txp = old_vc4_state->feed_txp; + + __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); + return &vc4_state->base; +} + +static void vc4_crtc_destroy_state(struct drm_crtc *crtc, + struct drm_crtc_state *state) +{ + struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); + struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); + + if (vc4_state->mm.allocated) { + unsigned long flags; + + spin_lock_irqsave(&vc4->hvs->mm_lock, flags); + drm_mm_remove_node(&vc4_state->mm); + spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); + + } + + drm_atomic_helper_crtc_destroy_state(crtc, state); +} + +static void +vc4_crtc_reset(struct drm_crtc *crtc) +{ + if (crtc->state) + vc4_crtc_destroy_state(crtc, crtc->state); + + crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL); + if (crtc->state) + crtc->state->crtc = crtc; +} + +static const struct drm_crtc_funcs vc4_crtc_funcs = { + .set_config = drm_atomic_helper_set_config, + .destroy = vc4_crtc_destroy, + .page_flip = vc4_page_flip, + .set_property = NULL, + .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ + .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ + .reset = vc4_crtc_reset, + .atomic_duplicate_state = vc4_crtc_duplicate_state, + .atomic_destroy_state = vc4_crtc_destroy_state, + .gamma_set = drm_atomic_helper_legacy_gamma_set, + .enable_vblank = vc4_enable_vblank, + .disable_vblank = vc4_disable_vblank, +}; + +static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { + .mode_set_nofb = vc4_crtc_mode_set_nofb, + .mode_valid = vc4_crtc_mode_valid, + .atomic_check = vc4_crtc_atomic_check, + .atomic_flush = vc4_crtc_atomic_flush, + .atomic_enable = vc4_crtc_atomic_enable, + .atomic_disable = vc4_crtc_atomic_disable, +}; + +static const struct vc4_crtc_data pv0_data = { + .hvs_channel = 0, + .encoder_types = { + [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, + [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, + }, +}; + +static const struct vc4_crtc_data pv1_data = { + .hvs_channel = 2, + .encoder_types = { + [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, + [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, + }, +}; + +static const struct vc4_crtc_data pv2_data = { + .hvs_channel = 1, + .encoder_types = { + [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI, + [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, + }, +}; + +static const struct of_device_id vc4_crtc_dt_match[] = { + { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, + { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, + { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, + {} +}; + +static void vc4_set_crtc_possible_masks(struct drm_device *drm, + struct drm_crtc *crtc) +{ + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + const struct vc4_crtc_data *crtc_data = vc4_crtc->data; + const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types; + struct drm_encoder *encoder; + + drm_for_each_encoder(encoder, drm) { + struct vc4_encoder *vc4_encoder; + int i; + + /* HVS FIFO2 can feed the TXP IP. */ + if (crtc_data->hvs_channel == 2 && + encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) { + encoder->possible_crtcs |= drm_crtc_mask(crtc); + continue; + } + + vc4_encoder = to_vc4_encoder(encoder); + for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) { + if (vc4_encoder->type == encoder_types[i]) { + vc4_encoder->clock_select = i; + encoder->possible_crtcs |= drm_crtc_mask(crtc); + break; + } + } + } +} + +static void +vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc) +{ + struct drm_device *drm = vc4_crtc->base.dev; + struct vc4_dev *vc4 = to_vc4_dev(drm); + u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel)); + /* Top/base are supposed to be 4-pixel aligned, but the + * Raspberry Pi firmware fills the low bits (which are + * presumably ignored). + */ + u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; + u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; + + vc4_crtc->cob_size = top - base + 4; +} + +static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) +{ + struct platform_device *pdev = to_platform_device(dev); + struct drm_device *drm = dev_get_drvdata(master); + struct vc4_crtc *vc4_crtc; + struct drm_crtc *crtc; + struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; + const struct of_device_id *match; + int ret, i; + + vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); + if (!vc4_crtc) + return -ENOMEM; + crtc = &vc4_crtc->base; + + match = of_match_device(vc4_crtc_dt_match, dev); + if (!match) + return -ENODEV; + vc4_crtc->data = match->data; + + vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); + if (IS_ERR(vc4_crtc->regs)) + return PTR_ERR(vc4_crtc->regs); + + /* For now, we create just the primary and the legacy cursor + * planes. We should be able to stack more planes on easily, + * but to do that we would need to compute the bandwidth + * requirement of the plane configuration, and reject ones + * that will take too much. + */ + primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); + if (IS_ERR(primary_plane)) { + dev_err(dev, "failed to construct primary plane\n"); + ret = PTR_ERR(primary_plane); + goto err; + } + + drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, + &vc4_crtc_funcs, NULL); + drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); + vc4_crtc->channel = vc4_crtc->data->hvs_channel; + drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); + drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); + + /* We support CTM, but only for one CRTC at a time. It's therefore + * implemented as private driver state in vc4_kms, not here. + */ + drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); + + /* Set up some arbitrary number of planes. We're not limited + * by a set number of physical registers, just the space in + * the HVS (16k) and how small an plane can be (28 bytes). + * However, each plane we set up takes up some memory, and + * increases the cost of looping over planes, which atomic + * modesetting does quite a bit. As a result, we pick a + * modest number of planes to expose, that should hopefully + * still cover any sane usecase. + */ + for (i = 0; i < 8; i++) { + struct drm_plane *plane = + vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); + + if (IS_ERR(plane)) + continue; + + plane->possible_crtcs = drm_crtc_mask(crtc); + } + + /* Set up the legacy cursor after overlay initialization, + * since we overlay planes on the CRTC in the order they were + * initialized. + */ + cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); + if (!IS_ERR(cursor_plane)) { + cursor_plane->possible_crtcs = drm_crtc_mask(crtc); + crtc->cursor = cursor_plane; + } + + vc4_crtc_get_cob_allocation(vc4_crtc); + + CRTC_WRITE(PV_INTEN, 0); + CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); + ret = devm_request_irq(dev, platform_get_irq(pdev, 0), + vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); + if (ret) + goto err_destroy_planes; + + vc4_set_crtc_possible_masks(drm, crtc); + + for (i = 0; i < crtc->gamma_size; i++) { + vc4_crtc->lut_r[i] = i; + vc4_crtc->lut_g[i] = i; + vc4_crtc->lut_b[i] = i; + } + + platform_set_drvdata(pdev, vc4_crtc); + + return 0; + +err_destroy_planes: + list_for_each_entry_safe(destroy_plane, temp, + &drm->mode_config.plane_list, head) { + if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc)) + destroy_plane->funcs->destroy(destroy_plane); + } +err: + return ret; +} + +static void vc4_crtc_unbind(struct device *dev, struct device *master, + void *data) +{ + struct platform_device *pdev = to_platform_device(dev); + struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); + + vc4_crtc_destroy(&vc4_crtc->base); + + CRTC_WRITE(PV_INTEN, 0); + + platform_set_drvdata(pdev, NULL); +} + +static const struct component_ops vc4_crtc_ops = { + .bind = vc4_crtc_bind, + .unbind = vc4_crtc_unbind, +}; + +static int vc4_crtc_dev_probe(struct platform_device *pdev) +{ + return component_add(&pdev->dev, &vc4_crtc_ops); +} + +static int vc4_crtc_dev_remove(struct platform_device *pdev) +{ + component_del(&pdev->dev, &vc4_crtc_ops); + return 0; +} + +struct platform_driver vc4_crtc_driver = { + .probe = vc4_crtc_dev_probe, + .remove = vc4_crtc_dev_remove, + .driver = { + .name = "vc4_crtc", + .of_match_table = vc4_crtc_dt_match, + }, +}; |