diff options
Diffstat (limited to 'drivers/media/dvb-frontends/mb86a20s.c')
-rw-r--r-- | drivers/media/dvb-frontends/mb86a20s.c | 2131 |
1 files changed, 2131 insertions, 0 deletions
diff --git a/drivers/media/dvb-frontends/mb86a20s.c b/drivers/media/dvb-frontends/mb86a20s.c new file mode 100644 index 000000000..66fc77db0 --- /dev/null +++ b/drivers/media/dvb-frontends/mb86a20s.c @@ -0,0 +1,2131 @@ +/* + * Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver + * + * Copyright (C) 2010-2013 Mauro Carvalho Chehab + * Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation version 2. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + */ + +#include <linux/kernel.h> +#include <asm/div64.h> + +#include <media/dvb_frontend.h> +#include "mb86a20s.h" + +#define NUM_LAYERS 3 + +enum mb86a20s_bandwidth { + MB86A20S_13SEG = 0, + MB86A20S_13SEG_PARTIAL = 1, + MB86A20S_1SEG = 2, + MB86A20S_3SEG = 3, +}; + +static u8 mb86a20s_subchannel[] = { + 0xb0, 0xc0, 0xd0, 0xe0, + 0xf0, 0x00, 0x10, 0x20, +}; + +struct mb86a20s_state { + struct i2c_adapter *i2c; + const struct mb86a20s_config *config; + u32 last_frequency; + + struct dvb_frontend frontend; + + u32 if_freq; + enum mb86a20s_bandwidth bw; + bool inversion; + u32 subchannel; + + u32 estimated_rate[NUM_LAYERS]; + unsigned long get_strength_time; + + bool need_init; +}; + +struct regdata { + u8 reg; + u8 data; +}; + +#define BER_SAMPLING_RATE 1 /* Seconds */ + +/* + * Initialization sequence: Use whatevere default values that PV SBTVD + * does on its initialisation, obtained via USB snoop + */ +static struct regdata mb86a20s_init1[] = { + { 0x70, 0x0f }, + { 0x70, 0xff }, + { 0x08, 0x01 }, + { 0x50, 0xd1 }, { 0x51, 0x20 }, +}; + +static struct regdata mb86a20s_init2[] = { + { 0x50, 0xd1 }, { 0x51, 0x22 }, + { 0x39, 0x01 }, + { 0x71, 0x00 }, + { 0x3b, 0x21 }, + { 0x3c, 0x3a }, + { 0x01, 0x0d }, + { 0x04, 0x08 }, { 0x05, 0x05 }, + { 0x04, 0x0e }, { 0x05, 0x00 }, + { 0x04, 0x0f }, { 0x05, 0x14 }, + { 0x04, 0x0b }, { 0x05, 0x8c }, + { 0x04, 0x00 }, { 0x05, 0x00 }, + { 0x04, 0x01 }, { 0x05, 0x07 }, + { 0x04, 0x02 }, { 0x05, 0x0f }, + { 0x04, 0x03 }, { 0x05, 0xa0 }, + { 0x04, 0x09 }, { 0x05, 0x00 }, + { 0x04, 0x0a }, { 0x05, 0xff }, + { 0x04, 0x27 }, { 0x05, 0x64 }, + { 0x04, 0x28 }, { 0x05, 0x00 }, + { 0x04, 0x1e }, { 0x05, 0xff }, + { 0x04, 0x29 }, { 0x05, 0x0a }, + { 0x04, 0x32 }, { 0x05, 0x0a }, + { 0x04, 0x14 }, { 0x05, 0x02 }, + { 0x04, 0x04 }, { 0x05, 0x00 }, + { 0x04, 0x05 }, { 0x05, 0x22 }, + { 0x04, 0x06 }, { 0x05, 0x0e }, + { 0x04, 0x07 }, { 0x05, 0xd8 }, + { 0x04, 0x12 }, { 0x05, 0x00 }, + { 0x04, 0x13 }, { 0x05, 0xff }, + + /* + * On this demod, when the bit count reaches the count below, + * it collects the bit error count. The bit counters are initialized + * to 65535 here. This warrants that all of them will be quickly + * calculated when device gets locked. As TMCC is parsed, the values + * will be adjusted later in the driver's code. + */ + { 0x52, 0x01 }, /* Turn on BER before Viterbi */ + { 0x50, 0xa7 }, { 0x51, 0x00 }, + { 0x50, 0xa8 }, { 0x51, 0xff }, + { 0x50, 0xa9 }, { 0x51, 0xff }, + { 0x50, 0xaa }, { 0x51, 0x00 }, + { 0x50, 0xab }, { 0x51, 0xff }, + { 0x50, 0xac }, { 0x51, 0xff }, + { 0x50, 0xad }, { 0x51, 0x00 }, + { 0x50, 0xae }, { 0x51, 0xff }, + { 0x50, 0xaf }, { 0x51, 0xff }, + + /* + * On this demod, post BER counts blocks. When the count reaches the + * value below, it collects the block error count. The block counters + * are initialized to 127 here. This warrants that all of them will be + * quickly calculated when device gets locked. As TMCC is parsed, the + * values will be adjusted later in the driver's code. + */ + { 0x5e, 0x07 }, /* Turn on BER after Viterbi */ + { 0x50, 0xdc }, { 0x51, 0x00 }, + { 0x50, 0xdd }, { 0x51, 0x7f }, + { 0x50, 0xde }, { 0x51, 0x00 }, + { 0x50, 0xdf }, { 0x51, 0x7f }, + { 0x50, 0xe0 }, { 0x51, 0x00 }, + { 0x50, 0xe1 }, { 0x51, 0x7f }, + + /* + * On this demod, when the block count reaches the count below, + * it collects the block error count. The block counters are initialized + * to 127 here. This warrants that all of them will be quickly + * calculated when device gets locked. As TMCC is parsed, the values + * will be adjusted later in the driver's code. + */ + { 0x50, 0xb0 }, { 0x51, 0x07 }, /* Enable PER */ + { 0x50, 0xb2 }, { 0x51, 0x00 }, + { 0x50, 0xb3 }, { 0x51, 0x7f }, + { 0x50, 0xb4 }, { 0x51, 0x00 }, + { 0x50, 0xb5 }, { 0x51, 0x7f }, + { 0x50, 0xb6 }, { 0x51, 0x00 }, + { 0x50, 0xb7 }, { 0x51, 0x7f }, + + { 0x50, 0x50 }, { 0x51, 0x02 }, /* MER manual mode */ + { 0x50, 0x51 }, { 0x51, 0x04 }, /* MER symbol 4 */ + { 0x45, 0x04 }, /* CN symbol 4 */ + { 0x48, 0x04 }, /* CN manual mode */ + { 0x50, 0xd5 }, { 0x51, 0x01 }, + { 0x50, 0xd6 }, { 0x51, 0x1f }, + { 0x50, 0xd2 }, { 0x51, 0x03 }, + { 0x50, 0xd7 }, { 0x51, 0x3f }, + { 0x1c, 0x01 }, + { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 }, + { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d }, + { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 }, + { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 }, + { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 }, + { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 }, + { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 }, + { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 }, + { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e }, + { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e }, + { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 }, + { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f }, + { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 }, + { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 }, + { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe }, + { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 }, + { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee }, + { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 }, + { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f }, + { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 }, + { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 }, + { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a }, + { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc }, + { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba }, + { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 }, + { 0x50, 0x1e }, { 0x51, 0x5d }, + { 0x50, 0x22 }, { 0x51, 0x00 }, + { 0x50, 0x23 }, { 0x51, 0xc8 }, + { 0x50, 0x24 }, { 0x51, 0x00 }, + { 0x50, 0x25 }, { 0x51, 0xf0 }, + { 0x50, 0x26 }, { 0x51, 0x00 }, + { 0x50, 0x27 }, { 0x51, 0xc3 }, + { 0x50, 0x39 }, { 0x51, 0x02 }, + { 0x50, 0xd5 }, { 0x51, 0x01 }, + { 0xd0, 0x00 }, +}; + +static struct regdata mb86a20s_reset_reception[] = { + { 0x70, 0xf0 }, + { 0x70, 0xff }, + { 0x08, 0x01 }, + { 0x08, 0x00 }, +}; + +static struct regdata mb86a20s_per_ber_reset[] = { + { 0x53, 0x00 }, /* pre BER Counter reset */ + { 0x53, 0x07 }, + + { 0x5f, 0x00 }, /* post BER Counter reset */ + { 0x5f, 0x07 }, + + { 0x50, 0xb1 }, /* PER Counter reset */ + { 0x51, 0x07 }, + { 0x51, 0x00 }, +}; + +/* + * I2C read/write functions and macros + */ + +static int mb86a20s_i2c_writereg(struct mb86a20s_state *state, + u8 i2c_addr, u8 reg, u8 data) +{ + u8 buf[] = { reg, data }; + struct i2c_msg msg = { + .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2 + }; + int rc; + + rc = i2c_transfer(state->i2c, &msg, 1); + if (rc != 1) { + dev_err(&state->i2c->dev, + "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n", + __func__, rc, reg, data); + return rc; + } + + return 0; +} + +static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state, + u8 i2c_addr, struct regdata *rd, int size) +{ + int i, rc; + + for (i = 0; i < size; i++) { + rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg, + rd[i].data); + if (rc < 0) + return rc; + } + return 0; +} + +static int mb86a20s_i2c_readreg(struct mb86a20s_state *state, + u8 i2c_addr, u8 reg) +{ + u8 val; + int rc; + struct i2c_msg msg[] = { + { .addr = i2c_addr, .flags = 0, .buf = ®, .len = 1 }, + { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 } + }; + + rc = i2c_transfer(state->i2c, msg, 2); + + if (rc != 2) { + dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n", + __func__, reg, rc); + return (rc < 0) ? rc : -EIO; + } + + return val; +} + +#define mb86a20s_readreg(state, reg) \ + mb86a20s_i2c_readreg(state, state->config->demod_address, reg) +#define mb86a20s_writereg(state, reg, val) \ + mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val) +#define mb86a20s_writeregdata(state, regdata) \ + mb86a20s_i2c_writeregdata(state, state->config->demod_address, \ + regdata, ARRAY_SIZE(regdata)) + +/* + * Ancillary internal routines (likely compiled inlined) + * + * The functions below assume that gateway lock has already obtained + */ + +static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + int val; + + *status = 0; + + val = mb86a20s_readreg(state, 0x0a); + if (val < 0) + return val; + + val &= 0xf; + if (val >= 2) + *status |= FE_HAS_SIGNAL; + + if (val >= 4) + *status |= FE_HAS_CARRIER; + + if (val >= 5) + *status |= FE_HAS_VITERBI; + + if (val >= 7) + *status |= FE_HAS_SYNC; + + /* + * Actually, on state S8, it starts receiving TS, but the TS + * output is only on normal state after the transition to S9. + */ + if (val >= 9) + *status |= FE_HAS_LOCK; + + dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n", + __func__, *status, val); + + return val; +} + +static int mb86a20s_read_signal_strength(struct dvb_frontend *fe) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + struct dtv_frontend_properties *c = &fe->dtv_property_cache; + int rc; + unsigned rf_max, rf_min, rf; + + if (state->get_strength_time && + (!time_after(jiffies, state->get_strength_time))) + return c->strength.stat[0].uvalue; + + /* Reset its value if an error happen */ + c->strength.stat[0].uvalue = 0; + + /* Does a binary search to get RF strength */ + rf_max = 0xfff; + rf_min = 0; + do { + rf = (rf_max + rf_min) / 2; + rc = mb86a20s_writereg(state, 0x04, 0x1f); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x05, rf >> 8); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x04, 0x20); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x05, rf); + if (rc < 0) + return rc; + + rc = mb86a20s_readreg(state, 0x02); + if (rc < 0) + return rc; + if (rc & 0x08) + rf_min = (rf_max + rf_min) / 2; + else + rf_max = (rf_max + rf_min) / 2; + if (rf_max - rf_min < 4) { + rf = (rf_max + rf_min) / 2; + + /* Rescale it from 2^12 (4096) to 2^16 */ + rf = rf << (16 - 12); + if (rf) + rf |= (1 << 12) - 1; + + dev_dbg(&state->i2c->dev, + "%s: signal strength = %d (%d < RF=%d < %d)\n", + __func__, rf, rf_min, rf >> 4, rf_max); + c->strength.stat[0].uvalue = rf; + state->get_strength_time = jiffies + + msecs_to_jiffies(1000); + return 0; + } + } while (1); +} + +static int mb86a20s_get_modulation(struct mb86a20s_state *state, + unsigned layer) +{ + int rc; + static unsigned char reg[] = { + [0] = 0x86, /* Layer A */ + [1] = 0x8a, /* Layer B */ + [2] = 0x8e, /* Layer C */ + }; + + if (layer >= ARRAY_SIZE(reg)) + return -EINVAL; + rc = mb86a20s_writereg(state, 0x6d, reg[layer]); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x6e); + if (rc < 0) + return rc; + switch ((rc >> 4) & 0x07) { + case 0: + return DQPSK; + case 1: + return QPSK; + case 2: + return QAM_16; + case 3: + return QAM_64; + default: + return QAM_AUTO; + } +} + +static int mb86a20s_get_fec(struct mb86a20s_state *state, + unsigned layer) +{ + int rc; + + static unsigned char reg[] = { + [0] = 0x87, /* Layer A */ + [1] = 0x8b, /* Layer B */ + [2] = 0x8f, /* Layer C */ + }; + + if (layer >= ARRAY_SIZE(reg)) + return -EINVAL; + rc = mb86a20s_writereg(state, 0x6d, reg[layer]); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x6e); + if (rc < 0) + return rc; + switch ((rc >> 4) & 0x07) { + case 0: + return FEC_1_2; + case 1: + return FEC_2_3; + case 2: + return FEC_3_4; + case 3: + return FEC_5_6; + case 4: + return FEC_7_8; + default: + return FEC_AUTO; + } +} + +static int mb86a20s_get_interleaving(struct mb86a20s_state *state, + unsigned layer) +{ + int rc; + int interleaving[] = { + 0, 1, 2, 4, 8 + }; + + static unsigned char reg[] = { + [0] = 0x88, /* Layer A */ + [1] = 0x8c, /* Layer B */ + [2] = 0x90, /* Layer C */ + }; + + if (layer >= ARRAY_SIZE(reg)) + return -EINVAL; + rc = mb86a20s_writereg(state, 0x6d, reg[layer]); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x6e); + if (rc < 0) + return rc; + + return interleaving[(rc >> 4) & 0x07]; +} + +static int mb86a20s_get_segment_count(struct mb86a20s_state *state, + unsigned layer) +{ + int rc, count; + static unsigned char reg[] = { + [0] = 0x89, /* Layer A */ + [1] = 0x8d, /* Layer B */ + [2] = 0x91, /* Layer C */ + }; + + dev_dbg(&state->i2c->dev, "%s called.\n", __func__); + + if (layer >= ARRAY_SIZE(reg)) + return -EINVAL; + + rc = mb86a20s_writereg(state, 0x6d, reg[layer]); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x6e); + if (rc < 0) + return rc; + count = (rc >> 4) & 0x0f; + + dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count); + + return count; +} + +static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + struct dtv_frontend_properties *c = &fe->dtv_property_cache; + + dev_dbg(&state->i2c->dev, "%s called.\n", __func__); + + /* Fixed parameters */ + c->delivery_system = SYS_ISDBT; + c->bandwidth_hz = 6000000; + + /* Initialize values that will be later autodetected */ + c->isdbt_layer_enabled = 0; + c->transmission_mode = TRANSMISSION_MODE_AUTO; + c->guard_interval = GUARD_INTERVAL_AUTO; + c->isdbt_sb_mode = 0; + c->isdbt_sb_segment_count = 0; +} + +/* + * Estimates the bit rate using the per-segment bit rate given by + * ABNT/NBR 15601 spec (table 4). + */ +static u32 isdbt_rate[3][5][4] = { + { /* DQPSK/QPSK */ + { 280850, 312060, 330420, 340430 }, /* 1/2 */ + { 374470, 416080, 440560, 453910 }, /* 2/3 */ + { 421280, 468090, 495630, 510650 }, /* 3/4 */ + { 468090, 520100, 550700, 567390 }, /* 5/6 */ + { 491500, 546110, 578230, 595760 }, /* 7/8 */ + }, { /* QAM16 */ + { 561710, 624130, 660840, 680870 }, /* 1/2 */ + { 748950, 832170, 881120, 907820 }, /* 2/3 */ + { 842570, 936190, 991260, 1021300 }, /* 3/4 */ + { 936190, 1040210, 1101400, 1134780 }, /* 5/6 */ + { 983000, 1092220, 1156470, 1191520 }, /* 7/8 */ + }, { /* QAM64 */ + { 842570, 936190, 991260, 1021300 }, /* 1/2 */ + { 1123430, 1248260, 1321680, 1361740 }, /* 2/3 */ + { 1263860, 1404290, 1486900, 1531950 }, /* 3/4 */ + { 1404290, 1560320, 1652110, 1702170 }, /* 5/6 */ + { 1474500, 1638340, 1734710, 1787280 }, /* 7/8 */ + } +}; + +static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer, + u32 modulation, u32 forward_error_correction, + u32 guard_interval, + u32 segment) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + u32 rate; + int mod, fec, guard; + + /* + * If modulation/fec/guard is not detected, the default is + * to consider the lowest bit rate, to avoid taking too long time + * to get BER. + */ + switch (modulation) { + case DQPSK: + case QPSK: + default: + mod = 0; + break; + case QAM_16: + mod = 1; + break; + case QAM_64: + mod = 2; + break; + } + + switch (forward_error_correction) { + default: + case FEC_1_2: + case FEC_AUTO: + fec = 0; + break; + case FEC_2_3: + fec = 1; + break; + case FEC_3_4: + fec = 2; + break; + case FEC_5_6: + fec = 3; + break; + case FEC_7_8: + fec = 4; + break; + } + + switch (guard_interval) { + default: + case GUARD_INTERVAL_1_4: + guard = 0; + break; + case GUARD_INTERVAL_1_8: + guard = 1; + break; + case GUARD_INTERVAL_1_16: + guard = 2; + break; + case GUARD_INTERVAL_1_32: + guard = 3; + break; + } + + /* Samples BER at BER_SAMPLING_RATE seconds */ + rate = isdbt_rate[mod][fec][guard] * segment * BER_SAMPLING_RATE; + + /* Avoids sampling too quickly or to overflow the register */ + if (rate < 256) + rate = 256; + else if (rate > (1 << 24) - 1) + rate = (1 << 24) - 1; + + dev_dbg(&state->i2c->dev, + "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n", + __func__, 'A' + layer, + segment * isdbt_rate[mod][fec][guard]/1000, + rate, rate); + + state->estimated_rate[layer] = rate; +} + +static int mb86a20s_get_frontend(struct dvb_frontend *fe) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + struct dtv_frontend_properties *c = &fe->dtv_property_cache; + int layer, rc; + + dev_dbg(&state->i2c->dev, "%s called.\n", __func__); + + /* Reset frontend cache to default values */ + mb86a20s_reset_frontend_cache(fe); + + /* Check for partial reception */ + rc = mb86a20s_writereg(state, 0x6d, 0x85); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x6e); + if (rc < 0) + return rc; + c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0; + + /* Get per-layer data */ + + for (layer = 0; layer < NUM_LAYERS; layer++) { + dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n", + __func__, 'A' + layer); + + rc = mb86a20s_get_segment_count(state, layer); + if (rc < 0) + goto noperlayer_error; + if (rc >= 0 && rc < 14) { + c->layer[layer].segment_count = rc; + } else { + c->layer[layer].segment_count = 0; + state->estimated_rate[layer] = 0; + continue; + } + c->isdbt_layer_enabled |= 1 << layer; + rc = mb86a20s_get_modulation(state, layer); + if (rc < 0) + goto noperlayer_error; + dev_dbg(&state->i2c->dev, "%s: modulation %d.\n", + __func__, rc); + c->layer[layer].modulation = rc; + rc = mb86a20s_get_fec(state, layer); + if (rc < 0) + goto noperlayer_error; + dev_dbg(&state->i2c->dev, "%s: FEC %d.\n", + __func__, rc); + c->layer[layer].fec = rc; + rc = mb86a20s_get_interleaving(state, layer); + if (rc < 0) + goto noperlayer_error; + dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n", + __func__, rc); + c->layer[layer].interleaving = rc; + mb86a20s_layer_bitrate(fe, layer, c->layer[layer].modulation, + c->layer[layer].fec, + c->guard_interval, + c->layer[layer].segment_count); + } + + rc = mb86a20s_writereg(state, 0x6d, 0x84); + if (rc < 0) + return rc; + if ((rc & 0x60) == 0x20) { + c->isdbt_sb_mode = 1; + /* At least, one segment should exist */ + if (!c->isdbt_sb_segment_count) + c->isdbt_sb_segment_count = 1; + } + + /* Get transmission mode and guard interval */ + rc = mb86a20s_readreg(state, 0x07); + if (rc < 0) + return rc; + c->transmission_mode = TRANSMISSION_MODE_AUTO; + if ((rc & 0x60) == 0x20) { + /* Only modes 2 and 3 are supported */ + switch ((rc >> 2) & 0x03) { + case 1: + c->transmission_mode = TRANSMISSION_MODE_4K; + break; + case 2: + c->transmission_mode = TRANSMISSION_MODE_8K; + break; + } + } + c->guard_interval = GUARD_INTERVAL_AUTO; + if (!(rc & 0x10)) { + /* Guard interval 1/32 is not supported */ + switch (rc & 0x3) { + case 0: + c->guard_interval = GUARD_INTERVAL_1_4; + break; + case 1: + c->guard_interval = GUARD_INTERVAL_1_8; + break; + case 2: + c->guard_interval = GUARD_INTERVAL_1_16; + break; + } + } + return 0; + +noperlayer_error: + + /* per-layer info is incomplete; discard all per-layer */ + c->isdbt_layer_enabled = 0; + + return rc; +} + +static int mb86a20s_reset_counters(struct dvb_frontend *fe) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + struct dtv_frontend_properties *c = &fe->dtv_property_cache; + int rc, val; + + dev_dbg(&state->i2c->dev, "%s called.\n", __func__); + + /* Reset the counters, if the channel changed */ + if (state->last_frequency != c->frequency) { + memset(&c->cnr, 0, sizeof(c->cnr)); + memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error)); + memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count)); + memset(&c->post_bit_error, 0, sizeof(c->post_bit_error)); + memset(&c->post_bit_count, 0, sizeof(c->post_bit_count)); + memset(&c->block_error, 0, sizeof(c->block_error)); + memset(&c->block_count, 0, sizeof(c->block_count)); + + state->last_frequency = c->frequency; + } + + /* Clear status for most stats */ + + /* BER/PER counter reset */ + rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset); + if (rc < 0) + goto err; + + /* CNR counter reset */ + rc = mb86a20s_readreg(state, 0x45); + if (rc < 0) + goto err; + val = rc; + rc = mb86a20s_writereg(state, 0x45, val | 0x10); + if (rc < 0) + goto err; + rc = mb86a20s_writereg(state, 0x45, val & 0x6f); + if (rc < 0) + goto err; + + /* MER counter reset */ + rc = mb86a20s_writereg(state, 0x50, 0x50); + if (rc < 0) + goto err; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + goto err; + val = rc; + rc = mb86a20s_writereg(state, 0x51, val | 0x01); + if (rc < 0) + goto err; + rc = mb86a20s_writereg(state, 0x51, val & 0x06); + if (rc < 0) + goto err; + + goto ok; +err: + dev_err(&state->i2c->dev, + "%s: Can't reset FE statistics (error %d).\n", + __func__, rc); +ok: + return rc; +} + +static int mb86a20s_get_pre_ber(struct dvb_frontend *fe, + unsigned layer, + u32 *error, u32 *count) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + int rc, val; + + dev_dbg(&state->i2c->dev, "%s called.\n", __func__); + + if (layer >= NUM_LAYERS) + return -EINVAL; + + /* Check if the BER measures are already available */ + rc = mb86a20s_readreg(state, 0x54); + if (rc < 0) + return rc; + + /* Check if data is available for that layer */ + if (!(rc & (1 << layer))) { + dev_dbg(&state->i2c->dev, + "%s: preBER for layer %c is not available yet.\n", + __func__, 'A' + layer); + return -EBUSY; + } + + /* Read Bit Error Count */ + rc = mb86a20s_readreg(state, 0x55 + layer * 3); + if (rc < 0) + return rc; + *error = rc << 16; + rc = mb86a20s_readreg(state, 0x56 + layer * 3); + if (rc < 0) + return rc; + *error |= rc << 8; + rc = mb86a20s_readreg(state, 0x57 + layer * 3); + if (rc < 0) + return rc; + *error |= rc; + + dev_dbg(&state->i2c->dev, + "%s: bit error before Viterbi for layer %c: %d.\n", + __func__, 'A' + layer, *error); + + /* Read Bit Count */ + rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + return rc; + *count = rc << 16; + rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + return rc; + *count |= rc << 8; + rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + return rc; + *count |= rc; + + dev_dbg(&state->i2c->dev, + "%s: bit count before Viterbi for layer %c: %d.\n", + __func__, 'A' + layer, *count); + + + /* + * As we get TMCC data from the frontend, we can better estimate the + * BER bit counters, in order to do the BER measure during a longer + * time. Use those data, if available, to update the bit count + * measure. + */ + + if (state->estimated_rate[layer] + && state->estimated_rate[layer] != *count) { + dev_dbg(&state->i2c->dev, + "%s: updating layer %c preBER counter to %d.\n", + __func__, 'A' + layer, state->estimated_rate[layer]); + + /* Turn off BER before Viterbi */ + rc = mb86a20s_writereg(state, 0x52, 0x00); + + /* Update counter for this layer */ + rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x51, + state->estimated_rate[layer] >> 16); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x51, + state->estimated_rate[layer] >> 8); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x51, + state->estimated_rate[layer]); + if (rc < 0) + return rc; + + /* Turn on BER before Viterbi */ + rc = mb86a20s_writereg(state, 0x52, 0x01); + + /* Reset all preBER counters */ + rc = mb86a20s_writereg(state, 0x53, 0x00); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x53, 0x07); + } else { + /* Reset counter to collect new data */ + rc = mb86a20s_readreg(state, 0x53); + if (rc < 0) + return rc; + val = rc; + rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer)); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x53, val | (1 << layer)); + } + + return rc; +} + +static int mb86a20s_get_post_ber(struct dvb_frontend *fe, + unsigned layer, + u32 *error, u32 *count) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + u32 counter, collect_rate; + int rc, val; + + dev_dbg(&state->i2c->dev, "%s called.\n", __func__); + + if (layer >= NUM_LAYERS) + return -EINVAL; + + /* Check if the BER measures are already available */ + rc = mb86a20s_readreg(state, 0x60); + if (rc < 0) + return rc; + + /* Check if data is available for that layer */ + if (!(rc & (1 << layer))) { + dev_dbg(&state->i2c->dev, + "%s: post BER for layer %c is not available yet.\n", + __func__, 'A' + layer); + return -EBUSY; + } + + /* Read Bit Error Count */ + rc = mb86a20s_readreg(state, 0x64 + layer * 3); + if (rc < 0) + return rc; + *error = rc << 16; + rc = mb86a20s_readreg(state, 0x65 + layer * 3); + if (rc < 0) + return rc; + *error |= rc << 8; + rc = mb86a20s_readreg(state, 0x66 + layer * 3); + if (rc < 0) + return rc; + *error |= rc; + + dev_dbg(&state->i2c->dev, + "%s: post bit error for layer %c: %d.\n", + __func__, 'A' + layer, *error); + + /* Read Bit Count */ + rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + return rc; + counter = rc << 8; + rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + return rc; + counter |= rc; + *count = counter * 204 * 8; + + dev_dbg(&state->i2c->dev, + "%s: post bit count for layer %c: %d.\n", + __func__, 'A' + layer, *count); + + /* + * As we get TMCC data from the frontend, we can better estimate the + * BER bit counters, in order to do the BER measure during a longer + * time. Use those data, if available, to update the bit count + * measure. + */ + + if (!state->estimated_rate[layer]) + goto reset_measurement; + + collect_rate = state->estimated_rate[layer] / 204 / 8; + if (collect_rate < 32) + collect_rate = 32; + if (collect_rate > 65535) + collect_rate = 65535; + if (collect_rate != counter) { + dev_dbg(&state->i2c->dev, + "%s: updating postBER counter on layer %c to %d.\n", + __func__, 'A' + layer, collect_rate); + + /* Turn off BER after Viterbi */ + rc = mb86a20s_writereg(state, 0x5e, 0x00); + + /* Update counter for this layer */ + rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff); + if (rc < 0) + return rc; + + /* Turn on BER after Viterbi */ + rc = mb86a20s_writereg(state, 0x5e, 0x07); + + /* Reset all preBER counters */ + rc = mb86a20s_writereg(state, 0x5f, 0x00); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x5f, 0x07); + + return rc; + } + +reset_measurement: + /* Reset counter to collect new data */ + rc = mb86a20s_readreg(state, 0x5f); + if (rc < 0) + return rc; + val = rc; + rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer)); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer)); + + return rc; +} + +static int mb86a20s_get_blk_error(struct dvb_frontend *fe, + unsigned layer, + u32 *error, u32 *count) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + int rc, val; + u32 collect_rate; + dev_dbg(&state->i2c->dev, "%s called.\n", __func__); + + if (layer >= NUM_LAYERS) + return -EINVAL; + + /* Check if the PER measures are already available */ + rc = mb86a20s_writereg(state, 0x50, 0xb8); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + return rc; + + /* Check if data is available for that layer */ + + if (!(rc & (1 << layer))) { + dev_dbg(&state->i2c->dev, + "%s: block counts for layer %c aren't available yet.\n", + __func__, 'A' + layer); + return -EBUSY; + } + + /* Read Packet error Count */ + rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + return rc; + *error = rc << 8; + rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + return rc; + *error |= rc; + dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n", + __func__, 'A' + layer, *error); + + /* Read Bit Count */ + rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + return rc; + *count = rc << 8; + rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + return rc; + *count |= rc; + + dev_dbg(&state->i2c->dev, + "%s: block count for layer %c: %d.\n", + __func__, 'A' + layer, *count); + + /* + * As we get TMCC data from the frontend, we can better estimate the + * BER bit counters, in order to do the BER measure during a longer + * time. Use those data, if available, to update the bit count + * measure. + */ + + if (!state->estimated_rate[layer]) + goto reset_measurement; + + collect_rate = state->estimated_rate[layer] / 204 / 8; + if (collect_rate < 32) + collect_rate = 32; + if (collect_rate > 65535) + collect_rate = 65535; + + if (collect_rate != *count) { + dev_dbg(&state->i2c->dev, + "%s: updating PER counter on layer %c to %d.\n", + __func__, 'A' + layer, collect_rate); + + /* Stop PER measurement */ + rc = mb86a20s_writereg(state, 0x50, 0xb0); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x51, 0x00); + if (rc < 0) + return rc; + + /* Update this layer's counter */ + rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff); + if (rc < 0) + return rc; + + /* start PER measurement */ + rc = mb86a20s_writereg(state, 0x50, 0xb0); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x51, 0x07); + if (rc < 0) + return rc; + + /* Reset all counters to collect new data */ + rc = mb86a20s_writereg(state, 0x50, 0xb1); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x51, 0x07); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x51, 0x00); + + return rc; + } + +reset_measurement: + /* Reset counter to collect new data */ + rc = mb86a20s_writereg(state, 0x50, 0xb1); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + return rc; + val = rc; + rc = mb86a20s_writereg(state, 0x51, val | (1 << layer)); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer)); + + return rc; +} + +struct linear_segments { + unsigned x, y; +}; + +/* + * All tables below return a dB/1000 measurement + */ + +static const struct linear_segments cnr_to_db_table[] = { + { 19648, 0}, + { 18187, 1000}, + { 16534, 2000}, + { 14823, 3000}, + { 13161, 4000}, + { 11622, 5000}, + { 10279, 6000}, + { 9089, 7000}, + { 8042, 8000}, + { 7137, 9000}, + { 6342, 10000}, + { 5641, 11000}, + { 5030, 12000}, + { 4474, 13000}, + { 3988, 14000}, + { 3556, 15000}, + { 3180, 16000}, + { 2841, 17000}, + { 2541, 18000}, + { 2276, 19000}, + { 2038, 20000}, + { 1800, 21000}, + { 1625, 22000}, + { 1462, 23000}, + { 1324, 24000}, + { 1175, 25000}, + { 1063, 26000}, + { 980, 27000}, + { 907, 28000}, + { 840, 29000}, + { 788, 30000}, +}; + +static const struct linear_segments cnr_64qam_table[] = { + { 3922688, 0}, + { 3920384, 1000}, + { 3902720, 2000}, + { 3894784, 3000}, + { 3882496, 4000}, + { 3872768, 5000}, + { 3858944, 6000}, + { 3851520, 7000}, + { 3838976, 8000}, + { 3829248, 9000}, + { 3818240, 10000}, + { 3806976, 11000}, + { 3791872, 12000}, + { 3767040, 13000}, + { 3720960, 14000}, + { 3637504, 15000}, + { 3498496, 16000}, + { 3296000, 17000}, + { 3031040, 18000}, + { 2715392, 19000}, + { 2362624, 20000}, + { 1963264, 21000}, + { 1649664, 22000}, + { 1366784, 23000}, + { 1120768, 24000}, + { 890880, 25000}, + { 723456, 26000}, + { 612096, 27000}, + { 518912, 28000}, + { 448256, 29000}, + { 388864, 30000}, +}; + +static const struct linear_segments cnr_16qam_table[] = { + { 5314816, 0}, + { 5219072, 1000}, + { 5118720, 2000}, + { 4998912, 3000}, + { 4875520, 4000}, + { 4736000, 5000}, + { 4604160, 6000}, + { 4458752, 7000}, + { 4300288, 8000}, + { 4092928, 9000}, + { 3836160, 10000}, + { 3521024, 11000}, + { 3155968, 12000}, + { 2756864, 13000}, + { 2347008, 14000}, + { 1955072, 15000}, + { 1593600, 16000}, + { 1297920, 17000}, + { 1043968, 18000}, + { 839680, 19000}, + { 672256, 20000}, + { 523008, 21000}, + { 424704, 22000}, + { 345088, 23000}, + { 280064, 24000}, + { 221440, 25000}, + { 179712, 26000}, + { 151040, 27000}, + { 128512, 28000}, + { 110080, 29000}, + { 95744, 30000}, +}; + +static const struct linear_segments cnr_qpsk_table[] = { + { 2834176, 0}, + { 2683648, 1000}, + { 2536960, 2000}, + { 2391808, 3000}, + { 2133248, 4000}, + { 1906176, 5000}, + { 1666560, 6000}, + { 1422080, 7000}, + { 1189632, 8000}, + { 976384, 9000}, + { 790272, 10000}, + { 633344, 11000}, + { 505600, 12000}, + { 402944, 13000}, + { 320768, 14000}, + { 255488, 15000}, + { 204032, 16000}, + { 163072, 17000}, + { 130304, 18000}, + { 105216, 19000}, + { 83456, 20000}, + { 65024, 21000}, + { 52480, 22000}, + { 42752, 23000}, + { 34560, 24000}, + { 27136, 25000}, + { 22016, 26000}, + { 18432, 27000}, + { 15616, 28000}, + { 13312, 29000}, + { 11520, 30000}, +}; + +static u32 interpolate_value(u32 value, const struct linear_segments *segments, + unsigned len) +{ + u64 tmp64; + u32 dx, dy; + int i, ret; + + if (value >= segments[0].x) + return segments[0].y; + if (value < segments[len-1].x) + return segments[len-1].y; + + for (i = 1; i < len - 1; i++) { + /* If value is identical, no need to interpolate */ + if (value == segments[i].x) + return segments[i].y; + if (value > segments[i].x) + break; + } + + /* Linear interpolation between the two (x,y) points */ + dy = segments[i].y - segments[i - 1].y; + dx = segments[i - 1].x - segments[i].x; + tmp64 = value - segments[i].x; + tmp64 *= dy; + do_div(tmp64, dx); + ret = segments[i].y - tmp64; + + return ret; +} + +static int mb86a20s_get_main_CNR(struct dvb_frontend *fe) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + struct dtv_frontend_properties *c = &fe->dtv_property_cache; + u32 cnr_linear, cnr; + int rc, val; + + /* Check if CNR is available */ + rc = mb86a20s_readreg(state, 0x45); + if (rc < 0) + return rc; + + if (!(rc & 0x40)) { + dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n", + __func__); + return -EBUSY; + } + val = rc; + + rc = mb86a20s_readreg(state, 0x46); + if (rc < 0) + return rc; + cnr_linear = rc << 8; + + rc = mb86a20s_readreg(state, 0x46); + if (rc < 0) + return rc; + cnr_linear |= rc; + + cnr = interpolate_value(cnr_linear, + cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table)); + + c->cnr.stat[0].scale = FE_SCALE_DECIBEL; + c->cnr.stat[0].svalue = cnr; + + dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n", + __func__, cnr / 1000, cnr % 1000, cnr_linear); + + /* CNR counter reset */ + rc = mb86a20s_writereg(state, 0x45, val | 0x10); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x45, val & 0x6f); + + return rc; +} + +static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + struct dtv_frontend_properties *c = &fe->dtv_property_cache; + u32 mer, cnr; + int rc, val, layer; + const struct linear_segments *segs; + unsigned segs_len; + + dev_dbg(&state->i2c->dev, "%s called.\n", __func__); + + /* Check if the measures are already available */ + rc = mb86a20s_writereg(state, 0x50, 0x5b); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + return rc; + + /* Check if data is available */ + if (!(rc & 0x01)) { + dev_dbg(&state->i2c->dev, + "%s: MER measures aren't available yet.\n", __func__); + return -EBUSY; + } + + /* Read all layers */ + for (layer = 0; layer < NUM_LAYERS; layer++) { + if (!(c->isdbt_layer_enabled & (1 << layer))) { + c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; + continue; + } + + rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + return rc; + mer = rc << 16; + rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + return rc; + mer |= rc << 8; + rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + return rc; + mer |= rc; + + switch (c->layer[layer].modulation) { + case DQPSK: + case QPSK: + segs = cnr_qpsk_table; + segs_len = ARRAY_SIZE(cnr_qpsk_table); + break; + case QAM_16: + segs = cnr_16qam_table; + segs_len = ARRAY_SIZE(cnr_16qam_table); + break; + default: + case QAM_64: + segs = cnr_64qam_table; + segs_len = ARRAY_SIZE(cnr_64qam_table); + break; + } + cnr = interpolate_value(mer, segs, segs_len); + + c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL; + c->cnr.stat[1 + layer].svalue = cnr; + + dev_dbg(&state->i2c->dev, + "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n", + __func__, 'A' + layer, cnr / 1000, cnr % 1000, mer); + + } + + /* Start a new MER measurement */ + /* MER counter reset */ + rc = mb86a20s_writereg(state, 0x50, 0x50); + if (rc < 0) + return rc; + rc = mb86a20s_readreg(state, 0x51); + if (rc < 0) + return rc; + val = rc; + + rc = mb86a20s_writereg(state, 0x51, val | 0x01); + if (rc < 0) + return rc; + rc = mb86a20s_writereg(state, 0x51, val & 0x06); + if (rc < 0) + return rc; + + return 0; +} + +static void mb86a20s_stats_not_ready(struct dvb_frontend *fe) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + struct dtv_frontend_properties *c = &fe->dtv_property_cache; + int layer; + + dev_dbg(&state->i2c->dev, "%s called.\n", __func__); + + /* Fill the length of each status counter */ + + /* Only global stats */ + c->strength.len = 1; + + /* Per-layer stats - 3 layers + global */ + c->cnr.len = NUM_LAYERS + 1; + c->pre_bit_error.len = NUM_LAYERS + 1; + c->pre_bit_count.len = NUM_LAYERS + 1; + c->post_bit_error.len = NUM_LAYERS + 1; + c->post_bit_count.len = NUM_LAYERS + 1; + c->block_error.len = NUM_LAYERS + 1; + c->block_count.len = NUM_LAYERS + 1; + + /* Signal is always available */ + c->strength.stat[0].scale = FE_SCALE_RELATIVE; + c->strength.stat[0].uvalue = 0; + + /* Put all of them at FE_SCALE_NOT_AVAILABLE */ + for (layer = 0; layer < NUM_LAYERS + 1; layer++) { + c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; + c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; + c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; + c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; + c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; + c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; + c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE; + } +} + +static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + struct dtv_frontend_properties *c = &fe->dtv_property_cache; + int rc = 0, layer; + u32 bit_error = 0, bit_count = 0; + u32 t_pre_bit_error = 0, t_pre_bit_count = 0; + u32 t_post_bit_error = 0, t_post_bit_count = 0; + u32 block_error = 0, block_count = 0; + u32 t_block_error = 0, t_block_count = 0; + int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0; + int per_layers = 0; + + dev_dbg(&state->i2c->dev, "%s called.\n", __func__); + + mb86a20s_get_main_CNR(fe); + + /* Get per-layer stats */ + mb86a20s_get_blk_error_layer_CNR(fe); + + /* + * At state 7, only CNR is available + * For BER measures, state=9 is required + * FIXME: we may get MER measures with state=8 + */ + if (status_nr < 9) + return 0; + + for (layer = 0; layer < NUM_LAYERS; layer++) { + if (c->isdbt_layer_enabled & (1 << layer)) { + /* Layer is active and has rc segments */ + active_layers++; + + /* Handle BER before vterbi */ + rc = mb86a20s_get_pre_ber(fe, layer, + &bit_error, &bit_count); + if (rc >= 0) { + c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER; + c->pre_bit_error.stat[1 + layer].uvalue += bit_error; + c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER; + c->pre_bit_count.stat[1 + layer].uvalue += bit_count; + } else if (rc != -EBUSY) { + /* + * If an I/O error happened, + * measures are now unavailable + */ + c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; + c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; + dev_err(&state->i2c->dev, + "%s: Can't get BER for layer %c (error %d).\n", + __func__, 'A' + layer, rc); + } + if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE) + pre_ber_layers++; + + /* Handle BER post vterbi */ + rc = mb86a20s_get_post_ber(fe, layer, + &bit_error, &bit_count); + if (rc >= 0) { + c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER; + c->post_bit_error.stat[1 + layer].uvalue += bit_error; + c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER; + c->post_bit_count.stat[1 + layer].uvalue += bit_count; + } else if (rc != -EBUSY) { + /* + * If an I/O error happened, + * measures are now unavailable + */ + c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; + c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; + dev_err(&state->i2c->dev, + "%s: Can't get BER for layer %c (error %d).\n", + __func__, 'A' + layer, rc); + } + if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE) + post_ber_layers++; + + /* Handle Block errors for PER/UCB reports */ + rc = mb86a20s_get_blk_error(fe, layer, + &block_error, + &block_count); + if (rc >= 0) { + c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER; + c->block_error.stat[1 + layer].uvalue += block_error; + c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER; + c->block_count.stat[1 + layer].uvalue += block_count; + } else if (rc != -EBUSY) { + /* + * If an I/O error happened, + * measures are now unavailable + */ + c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; + c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE; + dev_err(&state->i2c->dev, + "%s: Can't get PER for layer %c (error %d).\n", + __func__, 'A' + layer, rc); + + } + if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE) + per_layers++; + + /* Update total preBER */ + t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue; + t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue; + + /* Update total postBER */ + t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue; + t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue; + + /* Update total PER */ + t_block_error += c->block_error.stat[1 + layer].uvalue; + t_block_count += c->block_count.stat[1 + layer].uvalue; + } + } + + /* + * Start showing global count if at least one error count is + * available. + */ + if (pre_ber_layers) { + /* + * At least one per-layer BER measure was read. We can now + * calculate the total BER + * + * Total Bit Error/Count is calculated as the sum of the + * bit errors on all active layers. + */ + c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER; + c->pre_bit_error.stat[0].uvalue = t_pre_bit_error; + c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; + c->pre_bit_count.stat[0].uvalue = t_pre_bit_count; + } else { + c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; + c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; + } + + /* + * Start showing global count if at least one error count is + * available. + */ + if (post_ber_layers) { + /* + * At least one per-layer BER measure was read. We can now + * calculate the total BER + * + * Total Bit Error/Count is calculated as the sum of the + * bit errors on all active layers. + */ + c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; + c->post_bit_error.stat[0].uvalue = t_post_bit_error; + c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; + c->post_bit_count.stat[0].uvalue = t_post_bit_count; + } else { + c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; + c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; + } + + if (per_layers) { + /* + * At least one per-layer UCB measure was read. We can now + * calculate the total UCB + * + * Total block Error/Count is calculated as the sum of the + * block errors on all active layers. + */ + c->block_error.stat[0].scale = FE_SCALE_COUNTER; + c->block_error.stat[0].uvalue = t_block_error; + c->block_count.stat[0].scale = FE_SCALE_COUNTER; + c->block_count.stat[0].uvalue = t_block_count; + } else { + c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; + c->block_count.stat[0].scale = FE_SCALE_COUNTER; + } + + return rc; +} + +/* + * The functions below are called via DVB callbacks, so they need to + * properly use the I2C gate control + */ + +static int mb86a20s_initfe(struct dvb_frontend *fe) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + u64 pll; + u32 fclk; + int rc; + u8 regD5 = 1, reg71, reg09 = 0x3a; + + dev_dbg(&state->i2c->dev, "%s called.\n", __func__); + + if (fe->ops.i2c_gate_ctrl) + fe->ops.i2c_gate_ctrl(fe, 0); + + /* Initialize the frontend */ + rc = mb86a20s_writeregdata(state, mb86a20s_init1); + if (rc < 0) + goto err; + + if (!state->inversion) + reg09 |= 0x04; + rc = mb86a20s_writereg(state, 0x09, reg09); + if (rc < 0) + goto err; + if (!state->bw) + reg71 = 1; + else + reg71 = 0; + rc = mb86a20s_writereg(state, 0x39, reg71); + if (rc < 0) + goto err; + rc = mb86a20s_writereg(state, 0x71, state->bw); + if (rc < 0) + goto err; + if (state->subchannel) { + rc = mb86a20s_writereg(state, 0x44, state->subchannel); + if (rc < 0) + goto err; + } + + fclk = state->config->fclk; + if (!fclk) + fclk = 32571428; + + /* Adjust IF frequency to match tuner */ + if (fe->ops.tuner_ops.get_if_frequency) + fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq); + + if (!state->if_freq) + state->if_freq = 3300000; + + pll = (((u64)1) << 34) * state->if_freq; + do_div(pll, 63 * fclk); + pll = (1 << 25) - pll; + rc = mb86a20s_writereg(state, 0x28, 0x2a); + if (rc < 0) + goto err; + rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff); + if (rc < 0) + goto err; + rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff); + if (rc < 0) + goto err; + rc = mb86a20s_writereg(state, 0x2b, pll & 0xff); + if (rc < 0) + goto err; + dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n", + __func__, fclk, state->if_freq, (long long)pll); + + /* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */ + pll = state->if_freq * 1677721600L; + do_div(pll, 1628571429L); + rc = mb86a20s_writereg(state, 0x28, 0x20); + if (rc < 0) + goto err; + rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff); + if (rc < 0) + goto err; + rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff); + if (rc < 0) + goto err; + rc = mb86a20s_writereg(state, 0x2b, pll & 0xff); + if (rc < 0) + goto err; + dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n", + __func__, state->if_freq, (long long)pll); + + if (!state->config->is_serial) + regD5 &= ~1; + + rc = mb86a20s_writereg(state, 0x50, 0xd5); + if (rc < 0) + goto err; + rc = mb86a20s_writereg(state, 0x51, regD5); + if (rc < 0) + goto err; + + rc = mb86a20s_writeregdata(state, mb86a20s_init2); + if (rc < 0) + goto err; + + +err: + if (fe->ops.i2c_gate_ctrl) + fe->ops.i2c_gate_ctrl(fe, 1); + + if (rc < 0) { + state->need_init = true; + dev_info(&state->i2c->dev, + "mb86a20s: Init failed. Will try again later\n"); + } else { + state->need_init = false; + dev_dbg(&state->i2c->dev, "Initialization succeeded.\n"); + } + return rc; +} + +static int mb86a20s_set_frontend(struct dvb_frontend *fe) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + struct dtv_frontend_properties *c = &fe->dtv_property_cache; + int rc, if_freq; + dev_dbg(&state->i2c->dev, "%s called.\n", __func__); + + if (!c->isdbt_layer_enabled) + c->isdbt_layer_enabled = 7; + + if (c->isdbt_layer_enabled == 1) + state->bw = MB86A20S_1SEG; + else if (c->isdbt_partial_reception) + state->bw = MB86A20S_13SEG_PARTIAL; + else + state->bw = MB86A20S_13SEG; + + if (c->inversion == INVERSION_ON) + state->inversion = true; + else + state->inversion = false; + + if (!c->isdbt_sb_mode) { + state->subchannel = 0; + } else { + if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel)) + c->isdbt_sb_subchannel = 0; + + state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel]; + } + + /* + * Gate should already be opened, but it doesn't hurt to + * double-check + */ + if (fe->ops.i2c_gate_ctrl) + fe->ops.i2c_gate_ctrl(fe, 1); + fe->ops.tuner_ops.set_params(fe); + + if (fe->ops.tuner_ops.get_if_frequency) + fe->ops.tuner_ops.get_if_frequency(fe, &if_freq); + + /* + * Make it more reliable: if, for some reason, the initial + * device initialization doesn't happen, initialize it when + * a SBTVD parameters are adjusted. + * + * Unfortunately, due to a hard to track bug at tda829x/tda18271, + * the agc callback logic is not called during DVB attach time, + * causing mb86a20s to not be initialized with Kworld SBTVD. + * So, this hack is needed, in order to make Kworld SBTVD to work. + * + * It is also needed to change the IF after the initial init. + * + * HACK: Always init the frontend when set_frontend is called: + * it was noticed that, on some devices, it fails to lock on a + * different channel. So, it is better to reset everything, even + * wasting some time, than to loose channel lock. + */ + mb86a20s_initfe(fe); + + if (fe->ops.i2c_gate_ctrl) + fe->ops.i2c_gate_ctrl(fe, 0); + + rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception); + mb86a20s_reset_counters(fe); + mb86a20s_stats_not_ready(fe); + + if (fe->ops.i2c_gate_ctrl) + fe->ops.i2c_gate_ctrl(fe, 1); + + return rc; +} + +static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe, + enum fe_status *status) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + int rc, status_nr; + + dev_dbg(&state->i2c->dev, "%s called.\n", __func__); + + if (fe->ops.i2c_gate_ctrl) + fe->ops.i2c_gate_ctrl(fe, 0); + + /* Get lock */ + status_nr = mb86a20s_read_status(fe, status); + if (status_nr < 7) { + mb86a20s_stats_not_ready(fe); + mb86a20s_reset_frontend_cache(fe); + } + if (status_nr < 0) { + dev_err(&state->i2c->dev, + "%s: Can't read frontend lock status\n", __func__); + rc = status_nr; + goto error; + } + + /* Get signal strength */ + rc = mb86a20s_read_signal_strength(fe); + if (rc < 0) { + dev_err(&state->i2c->dev, + "%s: Can't reset VBER registers.\n", __func__); + mb86a20s_stats_not_ready(fe); + mb86a20s_reset_frontend_cache(fe); + + rc = 0; /* Status is OK */ + goto error; + } + + if (status_nr >= 7) { + /* Get TMCC info*/ + rc = mb86a20s_get_frontend(fe); + if (rc < 0) { + dev_err(&state->i2c->dev, + "%s: Can't get FE TMCC data.\n", __func__); + rc = 0; /* Status is OK */ + goto error; + } + + /* Get statistics */ + rc = mb86a20s_get_stats(fe, status_nr); + if (rc < 0 && rc != -EBUSY) { + dev_err(&state->i2c->dev, + "%s: Can't get FE statistics.\n", __func__); + rc = 0; + goto error; + } + rc = 0; /* Don't return EBUSY to userspace */ + } + goto ok; + +error: + mb86a20s_stats_not_ready(fe); + +ok: + if (fe->ops.i2c_gate_ctrl) + fe->ops.i2c_gate_ctrl(fe, 1); + + return rc; +} + +static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe, + u16 *strength) +{ + struct dtv_frontend_properties *c = &fe->dtv_property_cache; + + + *strength = c->strength.stat[0].uvalue; + + return 0; +} + +static int mb86a20s_tune(struct dvb_frontend *fe, + bool re_tune, + unsigned int mode_flags, + unsigned int *delay, + enum fe_status *status) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + int rc = 0; + + dev_dbg(&state->i2c->dev, "%s called.\n", __func__); + + if (re_tune) + rc = mb86a20s_set_frontend(fe); + + if (!(mode_flags & FE_TUNE_MODE_ONESHOT)) + mb86a20s_read_status_and_stats(fe, status); + + return rc; +} + +static void mb86a20s_release(struct dvb_frontend *fe) +{ + struct mb86a20s_state *state = fe->demodulator_priv; + + dev_dbg(&state->i2c->dev, "%s called.\n", __func__); + + kfree(state); +} + +static enum dvbfe_algo mb86a20s_get_frontend_algo(struct dvb_frontend *fe) +{ + return DVBFE_ALGO_HW; +} + +static const struct dvb_frontend_ops mb86a20s_ops; + +struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config, + struct i2c_adapter *i2c) +{ + struct mb86a20s_state *state; + u8 rev; + + dev_dbg(&i2c->dev, "%s called.\n", __func__); + + /* allocate memory for the internal state */ + state = kzalloc(sizeof(*state), GFP_KERNEL); + if (!state) + return NULL; + + /* setup the state */ + state->config = config; + state->i2c = i2c; + + /* create dvb_frontend */ + memcpy(&state->frontend.ops, &mb86a20s_ops, + sizeof(struct dvb_frontend_ops)); + state->frontend.demodulator_priv = state; + + /* Check if it is a mb86a20s frontend */ + rev = mb86a20s_readreg(state, 0); + if (rev != 0x13) { + kfree(state); + dev_dbg(&i2c->dev, + "Frontend revision %d is unknown - aborting.\n", + rev); + return NULL; + } + + dev_info(&i2c->dev, "Detected a Fujitsu mb86a20s frontend\n"); + return &state->frontend; +} +EXPORT_SYMBOL(mb86a20s_attach); + +static const struct dvb_frontend_ops mb86a20s_ops = { + .delsys = { SYS_ISDBT }, + /* Use dib8000 values per default */ + .info = { + .name = "Fujitsu mb86A20s", + .caps = FE_CAN_RECOVER | + FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | + FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | + FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | + FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO | + FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO, + /* Actually, those values depend on the used tuner */ + .frequency_min_hz = 45 * MHz, + .frequency_max_hz = 864 * MHz, + .frequency_stepsize_hz = 62500, + }, + + .release = mb86a20s_release, + + .init = mb86a20s_initfe, + .set_frontend = mb86a20s_set_frontend, + .read_status = mb86a20s_read_status_and_stats, + .read_signal_strength = mb86a20s_read_signal_strength_from_cache, + .tune = mb86a20s_tune, + .get_frontend_algo = mb86a20s_get_frontend_algo, +}; + +MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware"); +MODULE_AUTHOR("Mauro Carvalho Chehab"); +MODULE_LICENSE("GPL"); |