diff options
Diffstat (limited to 'drivers/scsi/hpsa.c')
-rw-r--r-- | drivers/scsi/hpsa.c | 9924 |
1 files changed, 9924 insertions, 0 deletions
diff --git a/drivers/scsi/hpsa.c b/drivers/scsi/hpsa.c new file mode 100644 index 000000000..0fe21cbdf --- /dev/null +++ b/drivers/scsi/hpsa.c @@ -0,0 +1,9924 @@ +/* + * Disk Array driver for HP Smart Array SAS controllers + * Copyright 2016 Microsemi Corporation + * Copyright 2014-2015 PMC-Sierra, Inc. + * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; version 2 of the License. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or + * NON INFRINGEMENT. See the GNU General Public License for more details. + * + * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com + * + */ + +#include <linux/module.h> +#include <linux/interrupt.h> +#include <linux/types.h> +#include <linux/pci.h> +#include <linux/pci-aspm.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/fs.h> +#include <linux/timer.h> +#include <linux/init.h> +#include <linux/spinlock.h> +#include <linux/compat.h> +#include <linux/blktrace_api.h> +#include <linux/uaccess.h> +#include <linux/io.h> +#include <linux/dma-mapping.h> +#include <linux/completion.h> +#include <linux/moduleparam.h> +#include <scsi/scsi.h> +#include <scsi/scsi_cmnd.h> +#include <scsi/scsi_device.h> +#include <scsi/scsi_host.h> +#include <scsi/scsi_tcq.h> +#include <scsi/scsi_eh.h> +#include <scsi/scsi_transport_sas.h> +#include <scsi/scsi_dbg.h> +#include <linux/cciss_ioctl.h> +#include <linux/string.h> +#include <linux/bitmap.h> +#include <linux/atomic.h> +#include <linux/jiffies.h> +#include <linux/percpu-defs.h> +#include <linux/percpu.h> +#include <asm/unaligned.h> +#include <asm/div64.h> +#include "hpsa_cmd.h" +#include "hpsa.h" + +/* + * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' + * with an optional trailing '-' followed by a byte value (0-255). + */ +#define HPSA_DRIVER_VERSION "3.4.20-125" +#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" +#define HPSA "hpsa" + +/* How long to wait for CISS doorbell communication */ +#define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */ +#define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */ +#define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */ +#define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */ +#define MAX_IOCTL_CONFIG_WAIT 1000 + +/*define how many times we will try a command because of bus resets */ +#define MAX_CMD_RETRIES 3 + +/* Embedded module documentation macros - see modules.h */ +MODULE_AUTHOR("Hewlett-Packard Company"); +MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ + HPSA_DRIVER_VERSION); +MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); +MODULE_VERSION(HPSA_DRIVER_VERSION); +MODULE_LICENSE("GPL"); +MODULE_ALIAS("cciss"); + +static int hpsa_simple_mode; +module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); +MODULE_PARM_DESC(hpsa_simple_mode, + "Use 'simple mode' rather than 'performant mode'"); + +/* define the PCI info for the cards we can control */ +static const struct pci_device_id hpsa_pci_device_id[] = { + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD}, + {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE}, + {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580}, + {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581}, + {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582}, + {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583}, + {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584}, + {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585}, + {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076}, + {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087}, + {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D}, + {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088}, + {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f}, + {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, + PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, + {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, + PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, + {0,} +}; + +MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); + +/* board_id = Subsystem Device ID & Vendor ID + * product = Marketing Name for the board + * access = Address of the struct of function pointers + */ +static struct board_type products[] = { + {0x40700E11, "Smart Array 5300", &SA5A_access}, + {0x40800E11, "Smart Array 5i", &SA5B_access}, + {0x40820E11, "Smart Array 532", &SA5B_access}, + {0x40830E11, "Smart Array 5312", &SA5B_access}, + {0x409A0E11, "Smart Array 641", &SA5A_access}, + {0x409B0E11, "Smart Array 642", &SA5A_access}, + {0x409C0E11, "Smart Array 6400", &SA5A_access}, + {0x409D0E11, "Smart Array 6400 EM", &SA5A_access}, + {0x40910E11, "Smart Array 6i", &SA5A_access}, + {0x3225103C, "Smart Array P600", &SA5A_access}, + {0x3223103C, "Smart Array P800", &SA5A_access}, + {0x3234103C, "Smart Array P400", &SA5A_access}, + {0x3235103C, "Smart Array P400i", &SA5A_access}, + {0x3211103C, "Smart Array E200i", &SA5A_access}, + {0x3212103C, "Smart Array E200", &SA5A_access}, + {0x3213103C, "Smart Array E200i", &SA5A_access}, + {0x3214103C, "Smart Array E200i", &SA5A_access}, + {0x3215103C, "Smart Array E200i", &SA5A_access}, + {0x3237103C, "Smart Array E500", &SA5A_access}, + {0x323D103C, "Smart Array P700m", &SA5A_access}, + {0x3241103C, "Smart Array P212", &SA5_access}, + {0x3243103C, "Smart Array P410", &SA5_access}, + {0x3245103C, "Smart Array P410i", &SA5_access}, + {0x3247103C, "Smart Array P411", &SA5_access}, + {0x3249103C, "Smart Array P812", &SA5_access}, + {0x324A103C, "Smart Array P712m", &SA5_access}, + {0x324B103C, "Smart Array P711m", &SA5_access}, + {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */ + {0x3350103C, "Smart Array P222", &SA5_access}, + {0x3351103C, "Smart Array P420", &SA5_access}, + {0x3352103C, "Smart Array P421", &SA5_access}, + {0x3353103C, "Smart Array P822", &SA5_access}, + {0x3354103C, "Smart Array P420i", &SA5_access}, + {0x3355103C, "Smart Array P220i", &SA5_access}, + {0x3356103C, "Smart Array P721m", &SA5_access}, + {0x1920103C, "Smart Array P430i", &SA5_access}, + {0x1921103C, "Smart Array P830i", &SA5_access}, + {0x1922103C, "Smart Array P430", &SA5_access}, + {0x1923103C, "Smart Array P431", &SA5_access}, + {0x1924103C, "Smart Array P830", &SA5_access}, + {0x1925103C, "Smart Array P831", &SA5_access}, + {0x1926103C, "Smart Array P731m", &SA5_access}, + {0x1928103C, "Smart Array P230i", &SA5_access}, + {0x1929103C, "Smart Array P530", &SA5_access}, + {0x21BD103C, "Smart Array P244br", &SA5_access}, + {0x21BE103C, "Smart Array P741m", &SA5_access}, + {0x21BF103C, "Smart HBA H240ar", &SA5_access}, + {0x21C0103C, "Smart Array P440ar", &SA5_access}, + {0x21C1103C, "Smart Array P840ar", &SA5_access}, + {0x21C2103C, "Smart Array P440", &SA5_access}, + {0x21C3103C, "Smart Array P441", &SA5_access}, + {0x21C4103C, "Smart Array", &SA5_access}, + {0x21C5103C, "Smart Array P841", &SA5_access}, + {0x21C6103C, "Smart HBA H244br", &SA5_access}, + {0x21C7103C, "Smart HBA H240", &SA5_access}, + {0x21C8103C, "Smart HBA H241", &SA5_access}, + {0x21C9103C, "Smart Array", &SA5_access}, + {0x21CA103C, "Smart Array P246br", &SA5_access}, + {0x21CB103C, "Smart Array P840", &SA5_access}, + {0x21CC103C, "Smart Array", &SA5_access}, + {0x21CD103C, "Smart Array", &SA5_access}, + {0x21CE103C, "Smart HBA", &SA5_access}, + {0x05809005, "SmartHBA-SA", &SA5_access}, + {0x05819005, "SmartHBA-SA 8i", &SA5_access}, + {0x05829005, "SmartHBA-SA 8i8e", &SA5_access}, + {0x05839005, "SmartHBA-SA 8e", &SA5_access}, + {0x05849005, "SmartHBA-SA 16i", &SA5_access}, + {0x05859005, "SmartHBA-SA 4i4e", &SA5_access}, + {0x00761590, "HP Storage P1224 Array Controller", &SA5_access}, + {0x00871590, "HP Storage P1224e Array Controller", &SA5_access}, + {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access}, + {0x00881590, "HP Storage P1228e Array Controller", &SA5_access}, + {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access}, + {0xFFFF103C, "Unknown Smart Array", &SA5_access}, +}; + +static struct scsi_transport_template *hpsa_sas_transport_template; +static int hpsa_add_sas_host(struct ctlr_info *h); +static void hpsa_delete_sas_host(struct ctlr_info *h); +static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, + struct hpsa_scsi_dev_t *device); +static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device); +static struct hpsa_scsi_dev_t + *hpsa_find_device_by_sas_rphy(struct ctlr_info *h, + struct sas_rphy *rphy); + +#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy) +static const struct scsi_cmnd hpsa_cmd_busy; +#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle) +static const struct scsi_cmnd hpsa_cmd_idle; +static int number_of_controllers; + +static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); +static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); +static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg); + +#ifdef CONFIG_COMPAT +static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, + void __user *arg); +#endif + +static void cmd_free(struct ctlr_info *h, struct CommandList *c); +static struct CommandList *cmd_alloc(struct ctlr_info *h); +static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c); +static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, + struct scsi_cmnd *scmd); +static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, + void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, + int cmd_type); +static void hpsa_free_cmd_pool(struct ctlr_info *h); +#define VPD_PAGE (1 << 8) +#define HPSA_SIMPLE_ERROR_BITS 0x03 + +static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); +static void hpsa_scan_start(struct Scsi_Host *); +static int hpsa_scan_finished(struct Scsi_Host *sh, + unsigned long elapsed_time); +static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth); + +static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); +static int hpsa_slave_alloc(struct scsi_device *sdev); +static int hpsa_slave_configure(struct scsi_device *sdev); +static void hpsa_slave_destroy(struct scsi_device *sdev); + +static void hpsa_update_scsi_devices(struct ctlr_info *h); +static int check_for_unit_attention(struct ctlr_info *h, + struct CommandList *c); +static void check_ioctl_unit_attention(struct ctlr_info *h, + struct CommandList *c); +/* performant mode helper functions */ +static void calc_bucket_map(int *bucket, int num_buckets, + int nsgs, int min_blocks, u32 *bucket_map); +static void hpsa_free_performant_mode(struct ctlr_info *h); +static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); +static inline u32 next_command(struct ctlr_info *h, u8 q); +static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, + u32 *cfg_base_addr, u64 *cfg_base_addr_index, + u64 *cfg_offset); +static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, + unsigned long *memory_bar); +static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id, + bool *legacy_board); +static int wait_for_device_to_become_ready(struct ctlr_info *h, + unsigned char lunaddr[], + int reply_queue); +static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, + int wait_for_ready); +static inline void finish_cmd(struct CommandList *c); +static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h); +#define BOARD_NOT_READY 0 +#define BOARD_READY 1 +static void hpsa_drain_accel_commands(struct ctlr_info *h); +static void hpsa_flush_cache(struct ctlr_info *h); +static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, + struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, + u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk); +static void hpsa_command_resubmit_worker(struct work_struct *work); +static u32 lockup_detected(struct ctlr_info *h); +static int detect_controller_lockup(struct ctlr_info *h); +static void hpsa_disable_rld_caching(struct ctlr_info *h); +static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, + struct ReportExtendedLUNdata *buf, int bufsize); +static bool hpsa_vpd_page_supported(struct ctlr_info *h, + unsigned char scsi3addr[], u8 page); +static int hpsa_luns_changed(struct ctlr_info *h); +static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, + struct hpsa_scsi_dev_t *dev, + unsigned char *scsi3addr); + +static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) +{ + unsigned long *priv = shost_priv(sdev->host); + return (struct ctlr_info *) *priv; +} + +static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) +{ + unsigned long *priv = shost_priv(sh); + return (struct ctlr_info *) *priv; +} + +static inline bool hpsa_is_cmd_idle(struct CommandList *c) +{ + return c->scsi_cmd == SCSI_CMD_IDLE; +} + +static inline bool hpsa_is_pending_event(struct CommandList *c) +{ + return c->reset_pending; +} + +/* extract sense key, asc, and ascq from sense data. -1 means invalid. */ +static void decode_sense_data(const u8 *sense_data, int sense_data_len, + u8 *sense_key, u8 *asc, u8 *ascq) +{ + struct scsi_sense_hdr sshdr; + bool rc; + + *sense_key = -1; + *asc = -1; + *ascq = -1; + + if (sense_data_len < 1) + return; + + rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr); + if (rc) { + *sense_key = sshdr.sense_key; + *asc = sshdr.asc; + *ascq = sshdr.ascq; + } +} + +static int check_for_unit_attention(struct ctlr_info *h, + struct CommandList *c) +{ + u8 sense_key, asc, ascq; + int sense_len; + + if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) + sense_len = sizeof(c->err_info->SenseInfo); + else + sense_len = c->err_info->SenseLen; + + decode_sense_data(c->err_info->SenseInfo, sense_len, + &sense_key, &asc, &ascq); + if (sense_key != UNIT_ATTENTION || asc == 0xff) + return 0; + + switch (asc) { + case STATE_CHANGED: + dev_warn(&h->pdev->dev, + "%s: a state change detected, command retried\n", + h->devname); + break; + case LUN_FAILED: + dev_warn(&h->pdev->dev, + "%s: LUN failure detected\n", h->devname); + break; + case REPORT_LUNS_CHANGED: + dev_warn(&h->pdev->dev, + "%s: report LUN data changed\n", h->devname); + /* + * Note: this REPORT_LUNS_CHANGED condition only occurs on the external + * target (array) devices. + */ + break; + case POWER_OR_RESET: + dev_warn(&h->pdev->dev, + "%s: a power on or device reset detected\n", + h->devname); + break; + case UNIT_ATTENTION_CLEARED: + dev_warn(&h->pdev->dev, + "%s: unit attention cleared by another initiator\n", + h->devname); + break; + default: + dev_warn(&h->pdev->dev, + "%s: unknown unit attention detected\n", + h->devname); + break; + } + return 1; +} + +static int check_for_busy(struct ctlr_info *h, struct CommandList *c) +{ + if (c->err_info->CommandStatus != CMD_TARGET_STATUS || + (c->err_info->ScsiStatus != SAM_STAT_BUSY && + c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) + return 0; + dev_warn(&h->pdev->dev, HPSA "device busy"); + return 1; +} + +static u32 lockup_detected(struct ctlr_info *h); +static ssize_t host_show_lockup_detected(struct device *dev, + struct device_attribute *attr, char *buf) +{ + int ld; + struct ctlr_info *h; + struct Scsi_Host *shost = class_to_shost(dev); + + h = shost_to_hba(shost); + ld = lockup_detected(h); + + return sprintf(buf, "ld=%d\n", ld); +} + +static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + int status, len; + struct ctlr_info *h; + struct Scsi_Host *shost = class_to_shost(dev); + char tmpbuf[10]; + + if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) + return -EACCES; + len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; + strncpy(tmpbuf, buf, len); + tmpbuf[len] = '\0'; + if (sscanf(tmpbuf, "%d", &status) != 1) + return -EINVAL; + h = shost_to_hba(shost); + h->acciopath_status = !!status; + dev_warn(&h->pdev->dev, + "hpsa: HP SSD Smart Path %s via sysfs update.\n", + h->acciopath_status ? "enabled" : "disabled"); + return count; +} + +static ssize_t host_store_raid_offload_debug(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + int debug_level, len; + struct ctlr_info *h; + struct Scsi_Host *shost = class_to_shost(dev); + char tmpbuf[10]; + + if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) + return -EACCES; + len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; + strncpy(tmpbuf, buf, len); + tmpbuf[len] = '\0'; + if (sscanf(tmpbuf, "%d", &debug_level) != 1) + return -EINVAL; + if (debug_level < 0) + debug_level = 0; + h = shost_to_hba(shost); + h->raid_offload_debug = debug_level; + dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n", + h->raid_offload_debug); + return count; +} + +static ssize_t host_store_rescan(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct ctlr_info *h; + struct Scsi_Host *shost = class_to_shost(dev); + h = shost_to_hba(shost); + hpsa_scan_start(h->scsi_host); + return count; +} + +static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device) +{ + device->offload_enabled = 0; + device->offload_to_be_enabled = 0; +} + +static ssize_t host_show_firmware_revision(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct ctlr_info *h; + struct Scsi_Host *shost = class_to_shost(dev); + unsigned char *fwrev; + + h = shost_to_hba(shost); + if (!h->hba_inquiry_data) + return 0; + fwrev = &h->hba_inquiry_data[32]; + return snprintf(buf, 20, "%c%c%c%c\n", + fwrev[0], fwrev[1], fwrev[2], fwrev[3]); +} + +static ssize_t host_show_commands_outstanding(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct Scsi_Host *shost = class_to_shost(dev); + struct ctlr_info *h = shost_to_hba(shost); + + return snprintf(buf, 20, "%d\n", + atomic_read(&h->commands_outstanding)); +} + +static ssize_t host_show_transport_mode(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct ctlr_info *h; + struct Scsi_Host *shost = class_to_shost(dev); + + h = shost_to_hba(shost); + return snprintf(buf, 20, "%s\n", + h->transMethod & CFGTBL_Trans_Performant ? + "performant" : "simple"); +} + +static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct ctlr_info *h; + struct Scsi_Host *shost = class_to_shost(dev); + + h = shost_to_hba(shost); + return snprintf(buf, 30, "HP SSD Smart Path %s\n", + (h->acciopath_status == 1) ? "enabled" : "disabled"); +} + +/* List of controllers which cannot be hard reset on kexec with reset_devices */ +static u32 unresettable_controller[] = { + 0x324a103C, /* Smart Array P712m */ + 0x324b103C, /* Smart Array P711m */ + 0x3223103C, /* Smart Array P800 */ + 0x3234103C, /* Smart Array P400 */ + 0x3235103C, /* Smart Array P400i */ + 0x3211103C, /* Smart Array E200i */ + 0x3212103C, /* Smart Array E200 */ + 0x3213103C, /* Smart Array E200i */ + 0x3214103C, /* Smart Array E200i */ + 0x3215103C, /* Smart Array E200i */ + 0x3237103C, /* Smart Array E500 */ + 0x323D103C, /* Smart Array P700m */ + 0x40800E11, /* Smart Array 5i */ + 0x409C0E11, /* Smart Array 6400 */ + 0x409D0E11, /* Smart Array 6400 EM */ + 0x40700E11, /* Smart Array 5300 */ + 0x40820E11, /* Smart Array 532 */ + 0x40830E11, /* Smart Array 5312 */ + 0x409A0E11, /* Smart Array 641 */ + 0x409B0E11, /* Smart Array 642 */ + 0x40910E11, /* Smart Array 6i */ +}; + +/* List of controllers which cannot even be soft reset */ +static u32 soft_unresettable_controller[] = { + 0x40800E11, /* Smart Array 5i */ + 0x40700E11, /* Smart Array 5300 */ + 0x40820E11, /* Smart Array 532 */ + 0x40830E11, /* Smart Array 5312 */ + 0x409A0E11, /* Smart Array 641 */ + 0x409B0E11, /* Smart Array 642 */ + 0x40910E11, /* Smart Array 6i */ + /* Exclude 640x boards. These are two pci devices in one slot + * which share a battery backed cache module. One controls the + * cache, the other accesses the cache through the one that controls + * it. If we reset the one controlling the cache, the other will + * likely not be happy. Just forbid resetting this conjoined mess. + * The 640x isn't really supported by hpsa anyway. + */ + 0x409C0E11, /* Smart Array 6400 */ + 0x409D0E11, /* Smart Array 6400 EM */ +}; + +static int board_id_in_array(u32 a[], int nelems, u32 board_id) +{ + int i; + + for (i = 0; i < nelems; i++) + if (a[i] == board_id) + return 1; + return 0; +} + +static int ctlr_is_hard_resettable(u32 board_id) +{ + return !board_id_in_array(unresettable_controller, + ARRAY_SIZE(unresettable_controller), board_id); +} + +static int ctlr_is_soft_resettable(u32 board_id) +{ + return !board_id_in_array(soft_unresettable_controller, + ARRAY_SIZE(soft_unresettable_controller), board_id); +} + +static int ctlr_is_resettable(u32 board_id) +{ + return ctlr_is_hard_resettable(board_id) || + ctlr_is_soft_resettable(board_id); +} + +static ssize_t host_show_resettable(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct ctlr_info *h; + struct Scsi_Host *shost = class_to_shost(dev); + + h = shost_to_hba(shost); + return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); +} + +static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) +{ + return (scsi3addr[3] & 0xC0) == 0x40; +} + +static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6", + "1(+0)ADM", "UNKNOWN", "PHYS DRV" +}; +#define HPSA_RAID_0 0 +#define HPSA_RAID_4 1 +#define HPSA_RAID_1 2 /* also used for RAID 10 */ +#define HPSA_RAID_5 3 /* also used for RAID 50 */ +#define HPSA_RAID_51 4 +#define HPSA_RAID_6 5 /* also used for RAID 60 */ +#define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */ +#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2) +#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1) + +static inline bool is_logical_device(struct hpsa_scsi_dev_t *device) +{ + return !device->physical_device; +} + +static ssize_t raid_level_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + ssize_t l = 0; + unsigned char rlevel; + struct ctlr_info *h; + struct scsi_device *sdev; + struct hpsa_scsi_dev_t *hdev; + unsigned long flags; + + sdev = to_scsi_device(dev); + h = sdev_to_hba(sdev); + spin_lock_irqsave(&h->lock, flags); + hdev = sdev->hostdata; + if (!hdev) { + spin_unlock_irqrestore(&h->lock, flags); + return -ENODEV; + } + + /* Is this even a logical drive? */ + if (!is_logical_device(hdev)) { + spin_unlock_irqrestore(&h->lock, flags); + l = snprintf(buf, PAGE_SIZE, "N/A\n"); + return l; + } + + rlevel = hdev->raid_level; + spin_unlock_irqrestore(&h->lock, flags); + if (rlevel > RAID_UNKNOWN) + rlevel = RAID_UNKNOWN; + l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); + return l; +} + +static ssize_t lunid_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct ctlr_info *h; + struct scsi_device *sdev; + struct hpsa_scsi_dev_t *hdev; + unsigned long flags; + unsigned char lunid[8]; + + sdev = to_scsi_device(dev); + h = sdev_to_hba(sdev); + spin_lock_irqsave(&h->lock, flags); + hdev = sdev->hostdata; + if (!hdev) { + spin_unlock_irqrestore(&h->lock, flags); + return -ENODEV; + } + memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); + spin_unlock_irqrestore(&h->lock, flags); + return snprintf(buf, 20, "0x%8phN\n", lunid); +} + +static ssize_t unique_id_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct ctlr_info *h; + struct scsi_device *sdev; + struct hpsa_scsi_dev_t *hdev; + unsigned long flags; + unsigned char sn[16]; + + sdev = to_scsi_device(dev); + h = sdev_to_hba(sdev); + spin_lock_irqsave(&h->lock, flags); + hdev = sdev->hostdata; + if (!hdev) { + spin_unlock_irqrestore(&h->lock, flags); + return -ENODEV; + } + memcpy(sn, hdev->device_id, sizeof(sn)); + spin_unlock_irqrestore(&h->lock, flags); + return snprintf(buf, 16 * 2 + 2, + "%02X%02X%02X%02X%02X%02X%02X%02X" + "%02X%02X%02X%02X%02X%02X%02X%02X\n", + sn[0], sn[1], sn[2], sn[3], + sn[4], sn[5], sn[6], sn[7], + sn[8], sn[9], sn[10], sn[11], + sn[12], sn[13], sn[14], sn[15]); +} + +static ssize_t sas_address_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct ctlr_info *h; + struct scsi_device *sdev; + struct hpsa_scsi_dev_t *hdev; + unsigned long flags; + u64 sas_address; + + sdev = to_scsi_device(dev); + h = sdev_to_hba(sdev); + spin_lock_irqsave(&h->lock, flags); + hdev = sdev->hostdata; + if (!hdev || is_logical_device(hdev) || !hdev->expose_device) { + spin_unlock_irqrestore(&h->lock, flags); + return -ENODEV; + } + sas_address = hdev->sas_address; + spin_unlock_irqrestore(&h->lock, flags); + + return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address); +} + +static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct ctlr_info *h; + struct scsi_device *sdev; + struct hpsa_scsi_dev_t *hdev; + unsigned long flags; + int offload_enabled; + + sdev = to_scsi_device(dev); + h = sdev_to_hba(sdev); + spin_lock_irqsave(&h->lock, flags); + hdev = sdev->hostdata; + if (!hdev) { + spin_unlock_irqrestore(&h->lock, flags); + return -ENODEV; + } + offload_enabled = hdev->offload_enabled; + spin_unlock_irqrestore(&h->lock, flags); + + if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) + return snprintf(buf, 20, "%d\n", offload_enabled); + else + return snprintf(buf, 40, "%s\n", + "Not applicable for a controller"); +} + +#define MAX_PATHS 8 +static ssize_t path_info_show(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct ctlr_info *h; + struct scsi_device *sdev; + struct hpsa_scsi_dev_t *hdev; + unsigned long flags; + int i; + int output_len = 0; + u8 box; + u8 bay; + u8 path_map_index = 0; + char *active; + unsigned char phys_connector[2]; + + sdev = to_scsi_device(dev); + h = sdev_to_hba(sdev); + spin_lock_irqsave(&h->devlock, flags); + hdev = sdev->hostdata; + if (!hdev) { + spin_unlock_irqrestore(&h->devlock, flags); + return -ENODEV; + } + + bay = hdev->bay; + for (i = 0; i < MAX_PATHS; i++) { + path_map_index = 1<<i; + if (i == hdev->active_path_index) + active = "Active"; + else if (hdev->path_map & path_map_index) + active = "Inactive"; + else + continue; + + output_len += scnprintf(buf + output_len, + PAGE_SIZE - output_len, + "[%d:%d:%d:%d] %20.20s ", + h->scsi_host->host_no, + hdev->bus, hdev->target, hdev->lun, + scsi_device_type(hdev->devtype)); + + if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) { + output_len += scnprintf(buf + output_len, + PAGE_SIZE - output_len, + "%s\n", active); + continue; + } + + box = hdev->box[i]; + memcpy(&phys_connector, &hdev->phys_connector[i], + sizeof(phys_connector)); + if (phys_connector[0] < '0') + phys_connector[0] = '0'; + if (phys_connector[1] < '0') + phys_connector[1] = '0'; + output_len += scnprintf(buf + output_len, + PAGE_SIZE - output_len, + "PORT: %.2s ", + phys_connector); + if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) && + hdev->expose_device) { + if (box == 0 || box == 0xFF) { + output_len += scnprintf(buf + output_len, + PAGE_SIZE - output_len, + "BAY: %hhu %s\n", + bay, active); + } else { + output_len += scnprintf(buf + output_len, + PAGE_SIZE - output_len, + "BOX: %hhu BAY: %hhu %s\n", + box, bay, active); + } + } else if (box != 0 && box != 0xFF) { + output_len += scnprintf(buf + output_len, + PAGE_SIZE - output_len, "BOX: %hhu %s\n", + box, active); + } else + output_len += scnprintf(buf + output_len, + PAGE_SIZE - output_len, "%s\n", active); + } + + spin_unlock_irqrestore(&h->devlock, flags); + return output_len; +} + +static ssize_t host_show_ctlr_num(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct ctlr_info *h; + struct Scsi_Host *shost = class_to_shost(dev); + + h = shost_to_hba(shost); + return snprintf(buf, 20, "%d\n", h->ctlr); +} + +static ssize_t host_show_legacy_board(struct device *dev, + struct device_attribute *attr, char *buf) +{ + struct ctlr_info *h; + struct Scsi_Host *shost = class_to_shost(dev); + + h = shost_to_hba(shost); + return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0); +} + +static DEVICE_ATTR_RO(raid_level); +static DEVICE_ATTR_RO(lunid); +static DEVICE_ATTR_RO(unique_id); +static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); +static DEVICE_ATTR_RO(sas_address); +static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO, + host_show_hp_ssd_smart_path_enabled, NULL); +static DEVICE_ATTR_RO(path_info); +static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH, + host_show_hp_ssd_smart_path_status, + host_store_hp_ssd_smart_path_status); +static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL, + host_store_raid_offload_debug); +static DEVICE_ATTR(firmware_revision, S_IRUGO, + host_show_firmware_revision, NULL); +static DEVICE_ATTR(commands_outstanding, S_IRUGO, + host_show_commands_outstanding, NULL); +static DEVICE_ATTR(transport_mode, S_IRUGO, + host_show_transport_mode, NULL); +static DEVICE_ATTR(resettable, S_IRUGO, + host_show_resettable, NULL); +static DEVICE_ATTR(lockup_detected, S_IRUGO, + host_show_lockup_detected, NULL); +static DEVICE_ATTR(ctlr_num, S_IRUGO, + host_show_ctlr_num, NULL); +static DEVICE_ATTR(legacy_board, S_IRUGO, + host_show_legacy_board, NULL); + +static struct device_attribute *hpsa_sdev_attrs[] = { + &dev_attr_raid_level, + &dev_attr_lunid, + &dev_attr_unique_id, + &dev_attr_hp_ssd_smart_path_enabled, + &dev_attr_path_info, + &dev_attr_sas_address, + NULL, +}; + +static struct device_attribute *hpsa_shost_attrs[] = { + &dev_attr_rescan, + &dev_attr_firmware_revision, + &dev_attr_commands_outstanding, + &dev_attr_transport_mode, + &dev_attr_resettable, + &dev_attr_hp_ssd_smart_path_status, + &dev_attr_raid_offload_debug, + &dev_attr_lockup_detected, + &dev_attr_ctlr_num, + &dev_attr_legacy_board, + NULL, +}; + +#define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\ + HPSA_MAX_CONCURRENT_PASSTHRUS) + +static struct scsi_host_template hpsa_driver_template = { + .module = THIS_MODULE, + .name = HPSA, + .proc_name = HPSA, + .queuecommand = hpsa_scsi_queue_command, + .scan_start = hpsa_scan_start, + .scan_finished = hpsa_scan_finished, + .change_queue_depth = hpsa_change_queue_depth, + .this_id = -1, + .use_clustering = ENABLE_CLUSTERING, + .eh_device_reset_handler = hpsa_eh_device_reset_handler, + .ioctl = hpsa_ioctl, + .slave_alloc = hpsa_slave_alloc, + .slave_configure = hpsa_slave_configure, + .slave_destroy = hpsa_slave_destroy, +#ifdef CONFIG_COMPAT + .compat_ioctl = hpsa_compat_ioctl, +#endif + .sdev_attrs = hpsa_sdev_attrs, + .shost_attrs = hpsa_shost_attrs, + .max_sectors = 2048, + .no_write_same = 1, +}; + +static inline u32 next_command(struct ctlr_info *h, u8 q) +{ + u32 a; + struct reply_queue_buffer *rq = &h->reply_queue[q]; + + if (h->transMethod & CFGTBL_Trans_io_accel1) + return h->access.command_completed(h, q); + + if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) + return h->access.command_completed(h, q); + + if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { + a = rq->head[rq->current_entry]; + rq->current_entry++; + atomic_dec(&h->commands_outstanding); + } else { + a = FIFO_EMPTY; + } + /* Check for wraparound */ + if (rq->current_entry == h->max_commands) { + rq->current_entry = 0; + rq->wraparound ^= 1; + } + return a; +} + +/* + * There are some special bits in the bus address of the + * command that we have to set for the controller to know + * how to process the command: + * + * Normal performant mode: + * bit 0: 1 means performant mode, 0 means simple mode. + * bits 1-3 = block fetch table entry + * bits 4-6 = command type (== 0) + * + * ioaccel1 mode: + * bit 0 = "performant mode" bit. + * bits 1-3 = block fetch table entry + * bits 4-6 = command type (== 110) + * (command type is needed because ioaccel1 mode + * commands are submitted through the same register as normal + * mode commands, so this is how the controller knows whether + * the command is normal mode or ioaccel1 mode.) + * + * ioaccel2 mode: + * bit 0 = "performant mode" bit. + * bits 1-4 = block fetch table entry (note extra bit) + * bits 4-6 = not needed, because ioaccel2 mode has + * a separate special register for submitting commands. + */ + +/* + * set_performant_mode: Modify the tag for cciss performant + * set bit 0 for pull model, bits 3-1 for block fetch + * register number + */ +#define DEFAULT_REPLY_QUEUE (-1) +static void set_performant_mode(struct ctlr_info *h, struct CommandList *c, + int reply_queue) +{ + if (likely(h->transMethod & CFGTBL_Trans_Performant)) { + c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); + if (unlikely(!h->msix_vectors)) + return; + c->Header.ReplyQueue = reply_queue; + } +} + +static void set_ioaccel1_performant_mode(struct ctlr_info *h, + struct CommandList *c, + int reply_queue) +{ + struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; + + /* + * Tell the controller to post the reply to the queue for this + * processor. This seems to give the best I/O throughput. + */ + cp->ReplyQueue = reply_queue; + /* + * Set the bits in the address sent down to include: + * - performant mode bit (bit 0) + * - pull count (bits 1-3) + * - command type (bits 4-6) + */ + c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) | + IOACCEL1_BUSADDR_CMDTYPE; +} + +static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h, + struct CommandList *c, + int reply_queue) +{ + struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *) + &h->ioaccel2_cmd_pool[c->cmdindex]; + + /* Tell the controller to post the reply to the queue for this + * processor. This seems to give the best I/O throughput. + */ + cp->reply_queue = reply_queue; + /* Set the bits in the address sent down to include: + * - performant mode bit not used in ioaccel mode 2 + * - pull count (bits 0-3) + * - command type isn't needed for ioaccel2 + */ + c->busaddr |= h->ioaccel2_blockFetchTable[0]; +} + +static void set_ioaccel2_performant_mode(struct ctlr_info *h, + struct CommandList *c, + int reply_queue) +{ + struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; + + /* + * Tell the controller to post the reply to the queue for this + * processor. This seems to give the best I/O throughput. + */ + cp->reply_queue = reply_queue; + /* + * Set the bits in the address sent down to include: + * - performant mode bit not used in ioaccel mode 2 + * - pull count (bits 0-3) + * - command type isn't needed for ioaccel2 + */ + c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]); +} + +static int is_firmware_flash_cmd(u8 *cdb) +{ + return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; +} + +/* + * During firmware flash, the heartbeat register may not update as frequently + * as it should. So we dial down lockup detection during firmware flash. and + * dial it back up when firmware flash completes. + */ +#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) +#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) +#define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ) +static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, + struct CommandList *c) +{ + if (!is_firmware_flash_cmd(c->Request.CDB)) + return; + atomic_inc(&h->firmware_flash_in_progress); + h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; +} + +static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, + struct CommandList *c) +{ + if (is_firmware_flash_cmd(c->Request.CDB) && + atomic_dec_and_test(&h->firmware_flash_in_progress)) + h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; +} + +static void __enqueue_cmd_and_start_io(struct ctlr_info *h, + struct CommandList *c, int reply_queue) +{ + dial_down_lockup_detection_during_fw_flash(h, c); + atomic_inc(&h->commands_outstanding); + + reply_queue = h->reply_map[raw_smp_processor_id()]; + switch (c->cmd_type) { + case CMD_IOACCEL1: + set_ioaccel1_performant_mode(h, c, reply_queue); + writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET); + break; + case CMD_IOACCEL2: + set_ioaccel2_performant_mode(h, c, reply_queue); + writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); + break; + case IOACCEL2_TMF: + set_ioaccel2_tmf_performant_mode(h, c, reply_queue); + writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); + break; + default: + set_performant_mode(h, c, reply_queue); + h->access.submit_command(h, c); + } +} + +static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c) +{ + if (unlikely(hpsa_is_pending_event(c))) + return finish_cmd(c); + + __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE); +} + +static inline int is_hba_lunid(unsigned char scsi3addr[]) +{ + return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; +} + +static inline int is_scsi_rev_5(struct ctlr_info *h) +{ + if (!h->hba_inquiry_data) + return 0; + if ((h->hba_inquiry_data[2] & 0x07) == 5) + return 1; + return 0; +} + +static int hpsa_find_target_lun(struct ctlr_info *h, + unsigned char scsi3addr[], int bus, int *target, int *lun) +{ + /* finds an unused bus, target, lun for a new physical device + * assumes h->devlock is held + */ + int i, found = 0; + DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); + + bitmap_zero(lun_taken, HPSA_MAX_DEVICES); + + for (i = 0; i < h->ndevices; i++) { + if (h->dev[i]->bus == bus && h->dev[i]->target != -1) + __set_bit(h->dev[i]->target, lun_taken); + } + + i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); + if (i < HPSA_MAX_DEVICES) { + /* *bus = 1; */ + *target = i; + *lun = 0; + found = 1; + } + return !found; +} + +static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h, + struct hpsa_scsi_dev_t *dev, char *description) +{ +#define LABEL_SIZE 25 + char label[LABEL_SIZE]; + + if (h == NULL || h->pdev == NULL || h->scsi_host == NULL) + return; + + switch (dev->devtype) { + case TYPE_RAID: + snprintf(label, LABEL_SIZE, "controller"); + break; + case TYPE_ENCLOSURE: + snprintf(label, LABEL_SIZE, "enclosure"); + break; + case TYPE_DISK: + case TYPE_ZBC: + if (dev->external) + snprintf(label, LABEL_SIZE, "external"); + else if (!is_logical_dev_addr_mode(dev->scsi3addr)) + snprintf(label, LABEL_SIZE, "%s", + raid_label[PHYSICAL_DRIVE]); + else + snprintf(label, LABEL_SIZE, "RAID-%s", + dev->raid_level > RAID_UNKNOWN ? "?" : + raid_label[dev->raid_level]); + break; + case TYPE_ROM: + snprintf(label, LABEL_SIZE, "rom"); + break; + case TYPE_TAPE: + snprintf(label, LABEL_SIZE, "tape"); + break; + case TYPE_MEDIUM_CHANGER: + snprintf(label, LABEL_SIZE, "changer"); + break; + default: + snprintf(label, LABEL_SIZE, "UNKNOWN"); + break; + } + + dev_printk(level, &h->pdev->dev, + "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n", + h->scsi_host->host_no, dev->bus, dev->target, dev->lun, + description, + scsi_device_type(dev->devtype), + dev->vendor, + dev->model, + label, + dev->offload_config ? '+' : '-', + dev->offload_to_be_enabled ? '+' : '-', + dev->expose_device); +} + +/* Add an entry into h->dev[] array. */ +static int hpsa_scsi_add_entry(struct ctlr_info *h, + struct hpsa_scsi_dev_t *device, + struct hpsa_scsi_dev_t *added[], int *nadded) +{ + /* assumes h->devlock is held */ + int n = h->ndevices; + int i; + unsigned char addr1[8], addr2[8]; + struct hpsa_scsi_dev_t *sd; + + if (n >= HPSA_MAX_DEVICES) { + dev_err(&h->pdev->dev, "too many devices, some will be " + "inaccessible.\n"); + return -1; + } + + /* physical devices do not have lun or target assigned until now. */ + if (device->lun != -1) + /* Logical device, lun is already assigned. */ + goto lun_assigned; + + /* If this device a non-zero lun of a multi-lun device + * byte 4 of the 8-byte LUN addr will contain the logical + * unit no, zero otherwise. + */ + if (device->scsi3addr[4] == 0) { + /* This is not a non-zero lun of a multi-lun device */ + if (hpsa_find_target_lun(h, device->scsi3addr, + device->bus, &device->target, &device->lun) != 0) + return -1; + goto lun_assigned; + } + + /* This is a non-zero lun of a multi-lun device. + * Search through our list and find the device which + * has the same 8 byte LUN address, excepting byte 4 and 5. + * Assign the same bus and target for this new LUN. + * Use the logical unit number from the firmware. + */ + memcpy(addr1, device->scsi3addr, 8); + addr1[4] = 0; + addr1[5] = 0; + for (i = 0; i < n; i++) { + sd = h->dev[i]; + memcpy(addr2, sd->scsi3addr, 8); + addr2[4] = 0; + addr2[5] = 0; + /* differ only in byte 4 and 5? */ + if (memcmp(addr1, addr2, 8) == 0) { + device->bus = sd->bus; + device->target = sd->target; + device->lun = device->scsi3addr[4]; + break; + } + } + if (device->lun == -1) { + dev_warn(&h->pdev->dev, "physical device with no LUN=0," + " suspect firmware bug or unsupported hardware " + "configuration.\n"); + return -1; + } + +lun_assigned: + + h->dev[n] = device; + h->ndevices++; + added[*nadded] = device; + (*nadded)++; + hpsa_show_dev_msg(KERN_INFO, h, device, + device->expose_device ? "added" : "masked"); + return 0; +} + +/* + * Called during a scan operation. + * + * Update an entry in h->dev[] array. + */ +static void hpsa_scsi_update_entry(struct ctlr_info *h, + int entry, struct hpsa_scsi_dev_t *new_entry) +{ + /* assumes h->devlock is held */ + BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); + + /* Raid level changed. */ + h->dev[entry]->raid_level = new_entry->raid_level; + + /* + * ioacccel_handle may have changed for a dual domain disk + */ + h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; + + /* Raid offload parameters changed. Careful about the ordering. */ + if (new_entry->offload_config && new_entry->offload_to_be_enabled) { + /* + * if drive is newly offload_enabled, we want to copy the + * raid map data first. If previously offload_enabled and + * offload_config were set, raid map data had better be + * the same as it was before. If raid map data has changed + * then it had better be the case that + * h->dev[entry]->offload_enabled is currently 0. + */ + h->dev[entry]->raid_map = new_entry->raid_map; + h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; + } + if (new_entry->offload_to_be_enabled) { + h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; + wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */ + } + h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled; + h->dev[entry]->offload_config = new_entry->offload_config; + h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror; + h->dev[entry]->queue_depth = new_entry->queue_depth; + + /* + * We can turn off ioaccel offload now, but need to delay turning + * ioaccel on until we can update h->dev[entry]->phys_disk[], but we + * can't do that until all the devices are updated. + */ + h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled; + + /* + * turn ioaccel off immediately if told to do so. + */ + if (!new_entry->offload_to_be_enabled) + h->dev[entry]->offload_enabled = 0; + + hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated"); +} + +/* Replace an entry from h->dev[] array. */ +static void hpsa_scsi_replace_entry(struct ctlr_info *h, + int entry, struct hpsa_scsi_dev_t *new_entry, + struct hpsa_scsi_dev_t *added[], int *nadded, + struct hpsa_scsi_dev_t *removed[], int *nremoved) +{ + /* assumes h->devlock is held */ + BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); + removed[*nremoved] = h->dev[entry]; + (*nremoved)++; + + /* + * New physical devices won't have target/lun assigned yet + * so we need to preserve the values in the slot we are replacing. + */ + if (new_entry->target == -1) { + new_entry->target = h->dev[entry]->target; + new_entry->lun = h->dev[entry]->lun; + } + + h->dev[entry] = new_entry; + added[*nadded] = new_entry; + (*nadded)++; + + hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced"); +} + +/* Remove an entry from h->dev[] array. */ +static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry, + struct hpsa_scsi_dev_t *removed[], int *nremoved) +{ + /* assumes h->devlock is held */ + int i; + struct hpsa_scsi_dev_t *sd; + + BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); + + sd = h->dev[entry]; + removed[*nremoved] = h->dev[entry]; + (*nremoved)++; + + for (i = entry; i < h->ndevices-1; i++) + h->dev[i] = h->dev[i+1]; + h->ndevices--; + hpsa_show_dev_msg(KERN_INFO, h, sd, "removed"); +} + +#define SCSI3ADDR_EQ(a, b) ( \ + (a)[7] == (b)[7] && \ + (a)[6] == (b)[6] && \ + (a)[5] == (b)[5] && \ + (a)[4] == (b)[4] && \ + (a)[3] == (b)[3] && \ + (a)[2] == (b)[2] && \ + (a)[1] == (b)[1] && \ + (a)[0] == (b)[0]) + +static void fixup_botched_add(struct ctlr_info *h, + struct hpsa_scsi_dev_t *added) +{ + /* called when scsi_add_device fails in order to re-adjust + * h->dev[] to match the mid layer's view. + */ + unsigned long flags; + int i, j; + + spin_lock_irqsave(&h->lock, flags); + for (i = 0; i < h->ndevices; i++) { + if (h->dev[i] == added) { + for (j = i; j < h->ndevices-1; j++) + h->dev[j] = h->dev[j+1]; + h->ndevices--; + break; + } + } + spin_unlock_irqrestore(&h->lock, flags); + kfree(added); +} + +static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, + struct hpsa_scsi_dev_t *dev2) +{ + /* we compare everything except lun and target as these + * are not yet assigned. Compare parts likely + * to differ first + */ + if (memcmp(dev1->scsi3addr, dev2->scsi3addr, + sizeof(dev1->scsi3addr)) != 0) + return 0; + if (memcmp(dev1->device_id, dev2->device_id, + sizeof(dev1->device_id)) != 0) + return 0; + if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) + return 0; + if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) + return 0; + if (dev1->devtype != dev2->devtype) + return 0; + if (dev1->bus != dev2->bus) + return 0; + return 1; +} + +static inline int device_updated(struct hpsa_scsi_dev_t *dev1, + struct hpsa_scsi_dev_t *dev2) +{ + /* Device attributes that can change, but don't mean + * that the device is a different device, nor that the OS + * needs to be told anything about the change. + */ + if (dev1->raid_level != dev2->raid_level) + return 1; + if (dev1->offload_config != dev2->offload_config) + return 1; + if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled) + return 1; + if (!is_logical_dev_addr_mode(dev1->scsi3addr)) + if (dev1->queue_depth != dev2->queue_depth) + return 1; + /* + * This can happen for dual domain devices. An active + * path change causes the ioaccel handle to change + * + * for example note the handle differences between p0 and p1 + * Device WWN ,WWN hash,Handle + * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003 + * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004 + */ + if (dev1->ioaccel_handle != dev2->ioaccel_handle) + return 1; + return 0; +} + +/* Find needle in haystack. If exact match found, return DEVICE_SAME, + * and return needle location in *index. If scsi3addr matches, but not + * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle + * location in *index. + * In the case of a minor device attribute change, such as RAID level, just + * return DEVICE_UPDATED, along with the updated device's location in index. + * If needle not found, return DEVICE_NOT_FOUND. + */ +static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, + struct hpsa_scsi_dev_t *haystack[], int haystack_size, + int *index) +{ + int i; +#define DEVICE_NOT_FOUND 0 +#define DEVICE_CHANGED 1 +#define DEVICE_SAME 2 +#define DEVICE_UPDATED 3 + if (needle == NULL) + return DEVICE_NOT_FOUND; + + for (i = 0; i < haystack_size; i++) { + if (haystack[i] == NULL) /* previously removed. */ + continue; + if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { + *index = i; + if (device_is_the_same(needle, haystack[i])) { + if (device_updated(needle, haystack[i])) + return DEVICE_UPDATED; + return DEVICE_SAME; + } else { + /* Keep offline devices offline */ + if (needle->volume_offline) + return DEVICE_NOT_FOUND; + return DEVICE_CHANGED; + } + } + } + *index = -1; + return DEVICE_NOT_FOUND; +} + +static void hpsa_monitor_offline_device(struct ctlr_info *h, + unsigned char scsi3addr[]) +{ + struct offline_device_entry *device; + unsigned long flags; + + /* Check to see if device is already on the list */ + spin_lock_irqsave(&h->offline_device_lock, flags); + list_for_each_entry(device, &h->offline_device_list, offline_list) { + if (memcmp(device->scsi3addr, scsi3addr, + sizeof(device->scsi3addr)) == 0) { + spin_unlock_irqrestore(&h->offline_device_lock, flags); + return; + } + } + spin_unlock_irqrestore(&h->offline_device_lock, flags); + + /* Device is not on the list, add it. */ + device = kmalloc(sizeof(*device), GFP_KERNEL); + if (!device) + return; + + memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr)); + spin_lock_irqsave(&h->offline_device_lock, flags); + list_add_tail(&device->offline_list, &h->offline_device_list); + spin_unlock_irqrestore(&h->offline_device_lock, flags); +} + +/* Print a message explaining various offline volume states */ +static void hpsa_show_volume_status(struct ctlr_info *h, + struct hpsa_scsi_dev_t *sd) +{ + if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED) + dev_info(&h->pdev->dev, + "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n", + h->scsi_host->host_no, + sd->bus, sd->target, sd->lun); + switch (sd->volume_offline) { + case HPSA_LV_OK: + break; + case HPSA_LV_UNDERGOING_ERASE: + dev_info(&h->pdev->dev, + "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n", + h->scsi_host->host_no, + sd->bus, sd->target, sd->lun); + break; + case HPSA_LV_NOT_AVAILABLE: + dev_info(&h->pdev->dev, + "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n", + h->scsi_host->host_no, + sd->bus, sd->target, sd->lun); + break; + case HPSA_LV_UNDERGOING_RPI: + dev_info(&h->pdev->dev, + "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n", + h->scsi_host->host_no, + sd->bus, sd->target, sd->lun); + break; + case HPSA_LV_PENDING_RPI: + dev_info(&h->pdev->dev, + "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n", + h->scsi_host->host_no, + sd->bus, sd->target, sd->lun); + break; + case HPSA_LV_ENCRYPTED_NO_KEY: + dev_info(&h->pdev->dev, + "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n", + h->scsi_host->host_no, + sd->bus, sd->target, sd->lun); + break; + case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: + dev_info(&h->pdev->dev, + "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n", + h->scsi_host->host_no, + sd->bus, sd->target, sd->lun); + break; + case HPSA_LV_UNDERGOING_ENCRYPTION: + dev_info(&h->pdev->dev, + "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n", + h->scsi_host->host_no, + sd->bus, sd->target, sd->lun); + break; + case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: + dev_info(&h->pdev->dev, + "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n", + h->scsi_host->host_no, + sd->bus, sd->target, sd->lun); + break; + case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: + dev_info(&h->pdev->dev, + "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n", + h->scsi_host->host_no, + sd->bus, sd->target, sd->lun); + break; + case HPSA_LV_PENDING_ENCRYPTION: + dev_info(&h->pdev->dev, + "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n", + h->scsi_host->host_no, + sd->bus, sd->target, sd->lun); + break; + case HPSA_LV_PENDING_ENCRYPTION_REKEYING: + dev_info(&h->pdev->dev, + "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n", + h->scsi_host->host_no, + sd->bus, sd->target, sd->lun); + break; + } +} + +/* + * Figure the list of physical drive pointers for a logical drive with + * raid offload configured. + */ +static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h, + struct hpsa_scsi_dev_t *dev[], int ndevices, + struct hpsa_scsi_dev_t *logical_drive) +{ + struct raid_map_data *map = &logical_drive->raid_map; + struct raid_map_disk_data *dd = &map->data[0]; + int i, j; + int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + + le16_to_cpu(map->metadata_disks_per_row); + int nraid_map_entries = le16_to_cpu(map->row_cnt) * + le16_to_cpu(map->layout_map_count) * + total_disks_per_row; + int nphys_disk = le16_to_cpu(map->layout_map_count) * + total_disks_per_row; + int qdepth; + + if (nraid_map_entries > RAID_MAP_MAX_ENTRIES) + nraid_map_entries = RAID_MAP_MAX_ENTRIES; + + logical_drive->nphysical_disks = nraid_map_entries; + + qdepth = 0; + for (i = 0; i < nraid_map_entries; i++) { + logical_drive->phys_disk[i] = NULL; + if (!logical_drive->offload_config) + continue; + for (j = 0; j < ndevices; j++) { + if (dev[j] == NULL) + continue; + if (dev[j]->devtype != TYPE_DISK && + dev[j]->devtype != TYPE_ZBC) + continue; + if (is_logical_device(dev[j])) + continue; + if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle) + continue; + + logical_drive->phys_disk[i] = dev[j]; + if (i < nphys_disk) + qdepth = min(h->nr_cmds, qdepth + + logical_drive->phys_disk[i]->queue_depth); + break; + } + + /* + * This can happen if a physical drive is removed and + * the logical drive is degraded. In that case, the RAID + * map data will refer to a physical disk which isn't actually + * present. And in that case offload_enabled should already + * be 0, but we'll turn it off here just in case + */ + if (!logical_drive->phys_disk[i]) { + dev_warn(&h->pdev->dev, + "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n", + __func__, + h->scsi_host->host_no, logical_drive->bus, + logical_drive->target, logical_drive->lun); + hpsa_turn_off_ioaccel_for_device(logical_drive); + logical_drive->queue_depth = 8; + } + } + if (nraid_map_entries) + /* + * This is correct for reads, too high for full stripe writes, + * way too high for partial stripe writes + */ + logical_drive->queue_depth = qdepth; + else { + if (logical_drive->external) + logical_drive->queue_depth = EXTERNAL_QD; + else + logical_drive->queue_depth = h->nr_cmds; + } +} + +static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h, + struct hpsa_scsi_dev_t *dev[], int ndevices) +{ + int i; + + for (i = 0; i < ndevices; i++) { + if (dev[i] == NULL) + continue; + if (dev[i]->devtype != TYPE_DISK && + dev[i]->devtype != TYPE_ZBC) + continue; + if (!is_logical_device(dev[i])) + continue; + + /* + * If offload is currently enabled, the RAID map and + * phys_disk[] assignment *better* not be changing + * because we would be changing ioaccel phsy_disk[] pointers + * on a ioaccel volume processing I/O requests. + * + * If an ioaccel volume status changed, initially because it was + * re-configured and thus underwent a transformation, or + * a drive failed, we would have received a state change + * request and ioaccel should have been turned off. When the + * transformation completes, we get another state change + * request to turn ioaccel back on. In this case, we need + * to update the ioaccel information. + * + * Thus: If it is not currently enabled, but will be after + * the scan completes, make sure the ioaccel pointers + * are up to date. + */ + + if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled) + hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]); + } +} + +static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) +{ + int rc = 0; + + if (!h->scsi_host) + return 1; + + if (is_logical_device(device)) /* RAID */ + rc = scsi_add_device(h->scsi_host, device->bus, + device->target, device->lun); + else /* HBA */ + rc = hpsa_add_sas_device(h->sas_host, device); + + return rc; +} + +static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h, + struct hpsa_scsi_dev_t *dev) +{ + int i; + int count = 0; + + for (i = 0; i < h->nr_cmds; i++) { + struct CommandList *c = h->cmd_pool + i; + int refcount = atomic_inc_return(&c->refcount); + + if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, + dev->scsi3addr)) { + unsigned long flags; + + spin_lock_irqsave(&h->lock, flags); /* Implied MB */ + if (!hpsa_is_cmd_idle(c)) + ++count; + spin_unlock_irqrestore(&h->lock, flags); + } + + cmd_free(h, c); + } + + return count; +} + +static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h, + struct hpsa_scsi_dev_t *device) +{ + int cmds = 0; + int waits = 0; + + while (1) { + cmds = hpsa_find_outstanding_commands_for_dev(h, device); + if (cmds == 0) + break; + if (++waits > 20) + break; + msleep(1000); + } + + if (waits > 20) + dev_warn(&h->pdev->dev, + "%s: removing device with %d outstanding commands!\n", + __func__, cmds); +} + +static void hpsa_remove_device(struct ctlr_info *h, + struct hpsa_scsi_dev_t *device) +{ + struct scsi_device *sdev = NULL; + + if (!h->scsi_host) + return; + + /* + * Allow for commands to drain + */ + device->removed = 1; + hpsa_wait_for_outstanding_commands_for_dev(h, device); + + if (is_logical_device(device)) { /* RAID */ + sdev = scsi_device_lookup(h->scsi_host, device->bus, + device->target, device->lun); + if (sdev) { + scsi_remove_device(sdev); + scsi_device_put(sdev); + } else { + /* + * We don't expect to get here. Future commands + * to this device will get a selection timeout as + * if the device were gone. + */ + hpsa_show_dev_msg(KERN_WARNING, h, device, + "didn't find device for removal."); + } + } else { /* HBA */ + + hpsa_remove_sas_device(device); + } +} + +static void adjust_hpsa_scsi_table(struct ctlr_info *h, + struct hpsa_scsi_dev_t *sd[], int nsds) +{ + /* sd contains scsi3 addresses and devtypes, and inquiry + * data. This function takes what's in sd to be the current + * reality and updates h->dev[] to reflect that reality. + */ + int i, entry, device_change, changes = 0; + struct hpsa_scsi_dev_t *csd; + unsigned long flags; + struct hpsa_scsi_dev_t **added, **removed; + int nadded, nremoved; + + /* + * A reset can cause a device status to change + * re-schedule the scan to see what happened. + */ + spin_lock_irqsave(&h->reset_lock, flags); + if (h->reset_in_progress) { + h->drv_req_rescan = 1; + spin_unlock_irqrestore(&h->reset_lock, flags); + return; + } + spin_unlock_irqrestore(&h->reset_lock, flags); + + added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL); + removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL); + + if (!added || !removed) { + dev_warn(&h->pdev->dev, "out of memory in " + "adjust_hpsa_scsi_table\n"); + goto free_and_out; + } + + spin_lock_irqsave(&h->devlock, flags); + + /* find any devices in h->dev[] that are not in + * sd[] and remove them from h->dev[], and for any + * devices which have changed, remove the old device + * info and add the new device info. + * If minor device attributes change, just update + * the existing device structure. + */ + i = 0; + nremoved = 0; + nadded = 0; + while (i < h->ndevices) { + csd = h->dev[i]; + device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); + if (device_change == DEVICE_NOT_FOUND) { + changes++; + hpsa_scsi_remove_entry(h, i, removed, &nremoved); + continue; /* remove ^^^, hence i not incremented */ + } else if (device_change == DEVICE_CHANGED) { + changes++; + hpsa_scsi_replace_entry(h, i, sd[entry], + added, &nadded, removed, &nremoved); + /* Set it to NULL to prevent it from being freed + * at the bottom of hpsa_update_scsi_devices() + */ + sd[entry] = NULL; + } else if (device_change == DEVICE_UPDATED) { + hpsa_scsi_update_entry(h, i, sd[entry]); + } + i++; + } + + /* Now, make sure every device listed in sd[] is also + * listed in h->dev[], adding them if they aren't found + */ + + for (i = 0; i < nsds; i++) { + if (!sd[i]) /* if already added above. */ + continue; + + /* Don't add devices which are NOT READY, FORMAT IN PROGRESS + * as the SCSI mid-layer does not handle such devices well. + * It relentlessly loops sending TUR at 3Hz, then READ(10) + * at 160Hz, and prevents the system from coming up. + */ + if (sd[i]->volume_offline) { + hpsa_show_volume_status(h, sd[i]); + hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline"); + continue; + } + + device_change = hpsa_scsi_find_entry(sd[i], h->dev, + h->ndevices, &entry); + if (device_change == DEVICE_NOT_FOUND) { + changes++; + if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0) + break; + sd[i] = NULL; /* prevent from being freed later. */ + } else if (device_change == DEVICE_CHANGED) { + /* should never happen... */ + changes++; + dev_warn(&h->pdev->dev, + "device unexpectedly changed.\n"); + /* but if it does happen, we just ignore that device */ + } + } + hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices); + + /* + * Now that h->dev[]->phys_disk[] is coherent, we can enable + * any logical drives that need it enabled. + * + * The raid map should be current by now. + * + * We are updating the device list used for I/O requests. + */ + for (i = 0; i < h->ndevices; i++) { + if (h->dev[i] == NULL) + continue; + h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled; + } + + spin_unlock_irqrestore(&h->devlock, flags); + + /* Monitor devices which are in one of several NOT READY states to be + * brought online later. This must be done without holding h->devlock, + * so don't touch h->dev[] + */ + for (i = 0; i < nsds; i++) { + if (!sd[i]) /* if already added above. */ + continue; + if (sd[i]->volume_offline) + hpsa_monitor_offline_device(h, sd[i]->scsi3addr); + } + + /* Don't notify scsi mid layer of any changes the first time through + * (or if there are no changes) scsi_scan_host will do it later the + * first time through. + */ + if (!changes) + goto free_and_out; + + /* Notify scsi mid layer of any removed devices */ + for (i = 0; i < nremoved; i++) { + if (removed[i] == NULL) + continue; + if (removed[i]->expose_device) + hpsa_remove_device(h, removed[i]); + kfree(removed[i]); + removed[i] = NULL; + } + + /* Notify scsi mid layer of any added devices */ + for (i = 0; i < nadded; i++) { + int rc = 0; + + if (added[i] == NULL) + continue; + if (!(added[i]->expose_device)) + continue; + rc = hpsa_add_device(h, added[i]); + if (!rc) + continue; + dev_warn(&h->pdev->dev, + "addition failed %d, device not added.", rc); + /* now we have to remove it from h->dev, + * since it didn't get added to scsi mid layer + */ + fixup_botched_add(h, added[i]); + h->drv_req_rescan = 1; + } + +free_and_out: + kfree(added); + kfree(removed); +} + +/* + * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t * + * Assume's h->devlock is held. + */ +static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, + int bus, int target, int lun) +{ + int i; + struct hpsa_scsi_dev_t *sd; + + for (i = 0; i < h->ndevices; i++) { + sd = h->dev[i]; + if (sd->bus == bus && sd->target == target && sd->lun == lun) + return sd; + } + return NULL; +} + +static int hpsa_slave_alloc(struct scsi_device *sdev) +{ + struct hpsa_scsi_dev_t *sd = NULL; + unsigned long flags; + struct ctlr_info *h; + + h = sdev_to_hba(sdev); + spin_lock_irqsave(&h->devlock, flags); + if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) { + struct scsi_target *starget; + struct sas_rphy *rphy; + + starget = scsi_target(sdev); + rphy = target_to_rphy(starget); + sd = hpsa_find_device_by_sas_rphy(h, rphy); + if (sd) { + sd->target = sdev_id(sdev); + sd->lun = sdev->lun; + } + } + if (!sd) + sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), + sdev_id(sdev), sdev->lun); + + if (sd && sd->expose_device) { + atomic_set(&sd->ioaccel_cmds_out, 0); + sdev->hostdata = sd; + } else + sdev->hostdata = NULL; + spin_unlock_irqrestore(&h->devlock, flags); + return 0; +} + +/* configure scsi device based on internal per-device structure */ +static int hpsa_slave_configure(struct scsi_device *sdev) +{ + struct hpsa_scsi_dev_t *sd; + int queue_depth; + + sd = sdev->hostdata; + sdev->no_uld_attach = !sd || !sd->expose_device; + + if (sd) { + if (sd->external) + queue_depth = EXTERNAL_QD; + else + queue_depth = sd->queue_depth != 0 ? + sd->queue_depth : sdev->host->can_queue; + } else + queue_depth = sdev->host->can_queue; + + scsi_change_queue_depth(sdev, queue_depth); + + return 0; +} + +static void hpsa_slave_destroy(struct scsi_device *sdev) +{ + /* nothing to do. */ +} + +static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h) +{ + int i; + + if (!h->ioaccel2_cmd_sg_list) + return; + for (i = 0; i < h->nr_cmds; i++) { + kfree(h->ioaccel2_cmd_sg_list[i]); + h->ioaccel2_cmd_sg_list[i] = NULL; + } + kfree(h->ioaccel2_cmd_sg_list); + h->ioaccel2_cmd_sg_list = NULL; +} + +static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h) +{ + int i; + + if (h->chainsize <= 0) + return 0; + + h->ioaccel2_cmd_sg_list = + kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list), + GFP_KERNEL); + if (!h->ioaccel2_cmd_sg_list) + return -ENOMEM; + for (i = 0; i < h->nr_cmds; i++) { + h->ioaccel2_cmd_sg_list[i] = + kmalloc_array(h->maxsgentries, + sizeof(*h->ioaccel2_cmd_sg_list[i]), + GFP_KERNEL); + if (!h->ioaccel2_cmd_sg_list[i]) + goto clean; + } + return 0; + +clean: + hpsa_free_ioaccel2_sg_chain_blocks(h); + return -ENOMEM; +} + +static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) +{ + int i; + + if (!h->cmd_sg_list) + return; + for (i = 0; i < h->nr_cmds; i++) { + kfree(h->cmd_sg_list[i]); + h->cmd_sg_list[i] = NULL; + } + kfree(h->cmd_sg_list); + h->cmd_sg_list = NULL; +} + +static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h) +{ + int i; + + if (h->chainsize <= 0) + return 0; + + h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list), + GFP_KERNEL); + if (!h->cmd_sg_list) + return -ENOMEM; + + for (i = 0; i < h->nr_cmds; i++) { + h->cmd_sg_list[i] = kmalloc_array(h->chainsize, + sizeof(*h->cmd_sg_list[i]), + GFP_KERNEL); + if (!h->cmd_sg_list[i]) + goto clean; + + } + return 0; + +clean: + hpsa_free_sg_chain_blocks(h); + return -ENOMEM; +} + +static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h, + struct io_accel2_cmd *cp, struct CommandList *c) +{ + struct ioaccel2_sg_element *chain_block; + u64 temp64; + u32 chain_size; + + chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex]; + chain_size = le32_to_cpu(cp->sg[0].length); + temp64 = pci_map_single(h->pdev, chain_block, chain_size, + PCI_DMA_TODEVICE); + if (dma_mapping_error(&h->pdev->dev, temp64)) { + /* prevent subsequent unmapping */ + cp->sg->address = 0; + return -1; + } + cp->sg->address = cpu_to_le64(temp64); + return 0; +} + +static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h, + struct io_accel2_cmd *cp) +{ + struct ioaccel2_sg_element *chain_sg; + u64 temp64; + u32 chain_size; + + chain_sg = cp->sg; + temp64 = le64_to_cpu(chain_sg->address); + chain_size = le32_to_cpu(cp->sg[0].length); + pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE); +} + +static int hpsa_map_sg_chain_block(struct ctlr_info *h, + struct CommandList *c) +{ + struct SGDescriptor *chain_sg, *chain_block; + u64 temp64; + u32 chain_len; + + chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; + chain_block = h->cmd_sg_list[c->cmdindex]; + chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN); + chain_len = sizeof(*chain_sg) * + (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries); + chain_sg->Len = cpu_to_le32(chain_len); + temp64 = pci_map_single(h->pdev, chain_block, chain_len, + PCI_DMA_TODEVICE); + if (dma_mapping_error(&h->pdev->dev, temp64)) { + /* prevent subsequent unmapping */ + chain_sg->Addr = cpu_to_le64(0); + return -1; + } + chain_sg->Addr = cpu_to_le64(temp64); + return 0; +} + +static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, + struct CommandList *c) +{ + struct SGDescriptor *chain_sg; + + if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries) + return; + + chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; + pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr), + le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE); +} + + +/* Decode the various types of errors on ioaccel2 path. + * Return 1 for any error that should generate a RAID path retry. + * Return 0 for errors that don't require a RAID path retry. + */ +static int handle_ioaccel_mode2_error(struct ctlr_info *h, + struct CommandList *c, + struct scsi_cmnd *cmd, + struct io_accel2_cmd *c2, + struct hpsa_scsi_dev_t *dev) +{ + int data_len; + int retry = 0; + u32 ioaccel2_resid = 0; + + switch (c2->error_data.serv_response) { + case IOACCEL2_SERV_RESPONSE_COMPLETE: + switch (c2->error_data.status) { + case IOACCEL2_STATUS_SR_TASK_COMP_GOOD: + if (cmd) + cmd->result = 0; + break; + case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND: + cmd->result |= SAM_STAT_CHECK_CONDITION; + if (c2->error_data.data_present != + IOACCEL2_SENSE_DATA_PRESENT) { + memset(cmd->sense_buffer, 0, + SCSI_SENSE_BUFFERSIZE); + break; + } + /* copy the sense data */ + data_len = c2->error_data.sense_data_len; + if (data_len > SCSI_SENSE_BUFFERSIZE) + data_len = SCSI_SENSE_BUFFERSIZE; + if (data_len > sizeof(c2->error_data.sense_data_buff)) + data_len = + sizeof(c2->error_data.sense_data_buff); + memcpy(cmd->sense_buffer, + c2->error_data.sense_data_buff, data_len); + retry = 1; + break; + case IOACCEL2_STATUS_SR_TASK_COMP_BUSY: + retry = 1; + break; + case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON: + retry = 1; + break; + case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL: + retry = 1; + break; + case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED: + retry = 1; + break; + default: + retry = 1; + break; + } + break; + case IOACCEL2_SERV_RESPONSE_FAILURE: + switch (c2->error_data.status) { + case IOACCEL2_STATUS_SR_IO_ERROR: + case IOACCEL2_STATUS_SR_IO_ABORTED: + case IOACCEL2_STATUS_SR_OVERRUN: + retry = 1; + break; + case IOACCEL2_STATUS_SR_UNDERRUN: + cmd->result = (DID_OK << 16); /* host byte */ + cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ + ioaccel2_resid = get_unaligned_le32( + &c2->error_data.resid_cnt[0]); + scsi_set_resid(cmd, ioaccel2_resid); + break; + case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE: + case IOACCEL2_STATUS_SR_INVALID_DEVICE: + case IOACCEL2_STATUS_SR_IOACCEL_DISABLED: + /* + * Did an HBA disk disappear? We will eventually + * get a state change event from the controller but + * in the meantime, we need to tell the OS that the + * HBA disk is no longer there and stop I/O + * from going down. This allows the potential re-insert + * of the disk to get the same device node. + */ + if (dev->physical_device && dev->expose_device) { + cmd->result = DID_NO_CONNECT << 16; + dev->removed = 1; + h->drv_req_rescan = 1; + dev_warn(&h->pdev->dev, + "%s: device is gone!\n", __func__); + } else + /* + * Retry by sending down the RAID path. + * We will get an event from ctlr to + * trigger rescan regardless. + */ + retry = 1; + break; + default: + retry = 1; + } + break; + case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: + break; + case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: + break; + case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: + retry = 1; + break; + case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: + break; + default: + retry = 1; + break; + } + + return retry; /* retry on raid path? */ +} + +static void hpsa_cmd_resolve_events(struct ctlr_info *h, + struct CommandList *c) +{ + bool do_wake = false; + + /* + * Reset c->scsi_cmd here so that the reset handler will know + * this command has completed. Then, check to see if the handler is + * waiting for this command, and, if so, wake it. + */ + c->scsi_cmd = SCSI_CMD_IDLE; + mb(); /* Declare command idle before checking for pending events. */ + if (c->reset_pending) { + unsigned long flags; + struct hpsa_scsi_dev_t *dev; + + /* + * There appears to be a reset pending; lock the lock and + * reconfirm. If so, then decrement the count of outstanding + * commands and wake the reset command if this is the last one. + */ + spin_lock_irqsave(&h->lock, flags); + dev = c->reset_pending; /* Re-fetch under the lock. */ + if (dev && atomic_dec_and_test(&dev->reset_cmds_out)) + do_wake = true; + c->reset_pending = NULL; + spin_unlock_irqrestore(&h->lock, flags); + } + + if (do_wake) + wake_up_all(&h->event_sync_wait_queue); +} + +static void hpsa_cmd_resolve_and_free(struct ctlr_info *h, + struct CommandList *c) +{ + hpsa_cmd_resolve_events(h, c); + cmd_tagged_free(h, c); +} + +static void hpsa_cmd_free_and_done(struct ctlr_info *h, + struct CommandList *c, struct scsi_cmnd *cmd) +{ + hpsa_cmd_resolve_and_free(h, c); + if (cmd && cmd->scsi_done) + cmd->scsi_done(cmd); +} + +static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c) +{ + INIT_WORK(&c->work, hpsa_command_resubmit_worker); + queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work); +} + +static void process_ioaccel2_completion(struct ctlr_info *h, + struct CommandList *c, struct scsi_cmnd *cmd, + struct hpsa_scsi_dev_t *dev) +{ + struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; + + /* check for good status */ + if (likely(c2->error_data.serv_response == 0 && + c2->error_data.status == 0)) { + cmd->result = 0; + return hpsa_cmd_free_and_done(h, c, cmd); + } + + /* + * Any RAID offload error results in retry which will use + * the normal I/O path so the controller can handle whatever is + * wrong. + */ + if (is_logical_device(dev) && + c2->error_data.serv_response == + IOACCEL2_SERV_RESPONSE_FAILURE) { + if (c2->error_data.status == + IOACCEL2_STATUS_SR_IOACCEL_DISABLED) { + hpsa_turn_off_ioaccel_for_device(dev); + } + + return hpsa_retry_cmd(h, c); + } + + if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev)) + return hpsa_retry_cmd(h, c); + + return hpsa_cmd_free_and_done(h, c, cmd); +} + +/* Returns 0 on success, < 0 otherwise. */ +static int hpsa_evaluate_tmf_status(struct ctlr_info *h, + struct CommandList *cp) +{ + u8 tmf_status = cp->err_info->ScsiStatus; + + switch (tmf_status) { + case CISS_TMF_COMPLETE: + /* + * CISS_TMF_COMPLETE never happens, instead, + * ei->CommandStatus == 0 for this case. + */ + case CISS_TMF_SUCCESS: + return 0; + case CISS_TMF_INVALID_FRAME: + case CISS_TMF_NOT_SUPPORTED: + case CISS_TMF_FAILED: + case CISS_TMF_WRONG_LUN: + case CISS_TMF_OVERLAPPED_TAG: + break; + default: + dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n", + tmf_status); + break; + } + return -tmf_status; +} + +static void complete_scsi_command(struct CommandList *cp) +{ + struct scsi_cmnd *cmd; + struct ctlr_info *h; + struct ErrorInfo *ei; + struct hpsa_scsi_dev_t *dev; + struct io_accel2_cmd *c2; + + u8 sense_key; + u8 asc; /* additional sense code */ + u8 ascq; /* additional sense code qualifier */ + unsigned long sense_data_size; + + ei = cp->err_info; + cmd = cp->scsi_cmd; + h = cp->h; + + if (!cmd->device) { + cmd->result = DID_NO_CONNECT << 16; + return hpsa_cmd_free_and_done(h, cp, cmd); + } + + dev = cmd->device->hostdata; + if (!dev) { + cmd->result = DID_NO_CONNECT << 16; + return hpsa_cmd_free_and_done(h, cp, cmd); + } + c2 = &h->ioaccel2_cmd_pool[cp->cmdindex]; + + scsi_dma_unmap(cmd); /* undo the DMA mappings */ + if ((cp->cmd_type == CMD_SCSI) && + (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries)) + hpsa_unmap_sg_chain_block(h, cp); + + if ((cp->cmd_type == CMD_IOACCEL2) && + (c2->sg[0].chain_indicator == IOACCEL2_CHAIN)) + hpsa_unmap_ioaccel2_sg_chain_block(h, c2); + + cmd->result = (DID_OK << 16); /* host byte */ + cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ + + if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) { + if (dev->physical_device && dev->expose_device && + dev->removed) { + cmd->result = DID_NO_CONNECT << 16; + return hpsa_cmd_free_and_done(h, cp, cmd); + } + if (likely(cp->phys_disk != NULL)) + atomic_dec(&cp->phys_disk->ioaccel_cmds_out); + } + + /* + * We check for lockup status here as it may be set for + * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by + * fail_all_oustanding_cmds() + */ + if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) { + /* DID_NO_CONNECT will prevent a retry */ + cmd->result = DID_NO_CONNECT << 16; + return hpsa_cmd_free_and_done(h, cp, cmd); + } + + if ((unlikely(hpsa_is_pending_event(cp)))) + if (cp->reset_pending) + return hpsa_cmd_free_and_done(h, cp, cmd); + + if (cp->cmd_type == CMD_IOACCEL2) + return process_ioaccel2_completion(h, cp, cmd, dev); + + scsi_set_resid(cmd, ei->ResidualCnt); + if (ei->CommandStatus == 0) + return hpsa_cmd_free_and_done(h, cp, cmd); + + /* For I/O accelerator commands, copy over some fields to the normal + * CISS header used below for error handling. + */ + if (cp->cmd_type == CMD_IOACCEL1) { + struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex]; + cp->Header.SGList = scsi_sg_count(cmd); + cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList); + cp->Request.CDBLen = le16_to_cpu(c->io_flags) & + IOACCEL1_IOFLAGS_CDBLEN_MASK; + cp->Header.tag = c->tag; + memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8); + memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen); + + /* Any RAID offload error results in retry which will use + * the normal I/O path so the controller can handle whatever's + * wrong. + */ + if (is_logical_device(dev)) { + if (ei->CommandStatus == CMD_IOACCEL_DISABLED) + dev->offload_enabled = 0; + return hpsa_retry_cmd(h, cp); + } + } + + /* an error has occurred */ + switch (ei->CommandStatus) { + + case CMD_TARGET_STATUS: + cmd->result |= ei->ScsiStatus; + /* copy the sense data */ + if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) + sense_data_size = SCSI_SENSE_BUFFERSIZE; + else + sense_data_size = sizeof(ei->SenseInfo); + if (ei->SenseLen < sense_data_size) + sense_data_size = ei->SenseLen; + memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); + if (ei->ScsiStatus) + decode_sense_data(ei->SenseInfo, sense_data_size, + &sense_key, &asc, &ascq); + if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { + if (sense_key == ABORTED_COMMAND) { + cmd->result |= DID_SOFT_ERROR << 16; + break; + } + break; + } + /* Problem was not a check condition + * Pass it up to the upper layers... + */ + if (ei->ScsiStatus) { + dev_warn(&h->pdev->dev, "cp %p has status 0x%x " + "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " + "Returning result: 0x%x\n", + cp, ei->ScsiStatus, + sense_key, asc, ascq, + cmd->result); + } else { /* scsi status is zero??? How??? */ + dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " + "Returning no connection.\n", cp), + + /* Ordinarily, this case should never happen, + * but there is a bug in some released firmware + * revisions that allows it to happen if, for + * example, a 4100 backplane loses power and + * the tape drive is in it. We assume that + * it's a fatal error of some kind because we + * can't show that it wasn't. We will make it + * look like selection timeout since that is + * the most common reason for this to occur, + * and it's severe enough. + */ + + cmd->result = DID_NO_CONNECT << 16; + } + break; + + case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ + break; + case CMD_DATA_OVERRUN: + dev_warn(&h->pdev->dev, + "CDB %16phN data overrun\n", cp->Request.CDB); + break; + case CMD_INVALID: { + /* print_bytes(cp, sizeof(*cp), 1, 0); + print_cmd(cp); */ + /* We get CMD_INVALID if you address a non-existent device + * instead of a selection timeout (no response). You will + * see this if you yank out a drive, then try to access it. + * This is kind of a shame because it means that any other + * CMD_INVALID (e.g. driver bug) will get interpreted as a + * missing target. */ + cmd->result = DID_NO_CONNECT << 16; + } + break; + case CMD_PROTOCOL_ERR: + cmd->result = DID_ERROR << 16; + dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n", + cp->Request.CDB); + break; + case CMD_HARDWARE_ERR: + cmd->result = DID_ERROR << 16; + dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n", + cp->Request.CDB); + break; + case CMD_CONNECTION_LOST: + cmd->result = DID_ERROR << 16; + dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n", + cp->Request.CDB); + break; + case CMD_ABORTED: + cmd->result = DID_ABORT << 16; + break; + case CMD_ABORT_FAILED: + cmd->result = DID_ERROR << 16; + dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n", + cp->Request.CDB); + break; + case CMD_UNSOLICITED_ABORT: + cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ + dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n", + cp->Request.CDB); + break; + case CMD_TIMEOUT: + cmd->result = DID_TIME_OUT << 16; + dev_warn(&h->pdev->dev, "CDB %16phN timed out\n", + cp->Request.CDB); + break; + case CMD_UNABORTABLE: + cmd->result = DID_ERROR << 16; + dev_warn(&h->pdev->dev, "Command unabortable\n"); + break; + case CMD_TMF_STATUS: + if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */ + cmd->result = DID_ERROR << 16; + break; + case CMD_IOACCEL_DISABLED: + /* This only handles the direct pass-through case since RAID + * offload is handled above. Just attempt a retry. + */ + cmd->result = DID_SOFT_ERROR << 16; + dev_warn(&h->pdev->dev, + "cp %p had HP SSD Smart Path error\n", cp); + break; + default: + cmd->result = DID_ERROR << 16; + dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", + cp, ei->CommandStatus); + } + + return hpsa_cmd_free_and_done(h, cp, cmd); +} + +static void hpsa_pci_unmap(struct pci_dev *pdev, + struct CommandList *c, int sg_used, int data_direction) +{ + int i; + + for (i = 0; i < sg_used; i++) + pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr), + le32_to_cpu(c->SG[i].Len), + data_direction); +} + +static int hpsa_map_one(struct pci_dev *pdev, + struct CommandList *cp, + unsigned char *buf, + size_t buflen, + int data_direction) +{ + u64 addr64; + + if (buflen == 0 || data_direction == PCI_DMA_NONE) { + cp->Header.SGList = 0; + cp->Header.SGTotal = cpu_to_le16(0); + return 0; + } + + addr64 = pci_map_single(pdev, buf, buflen, data_direction); + if (dma_mapping_error(&pdev->dev, addr64)) { + /* Prevent subsequent unmap of something never mapped */ + cp->Header.SGList = 0; + cp->Header.SGTotal = cpu_to_le16(0); + return -1; + } + cp->SG[0].Addr = cpu_to_le64(addr64); + cp->SG[0].Len = cpu_to_le32(buflen); + cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */ + cp->Header.SGList = 1; /* no. SGs contig in this cmd */ + cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */ + return 0; +} + +#define NO_TIMEOUT ((unsigned long) -1) +#define DEFAULT_TIMEOUT 30000 /* milliseconds */ +static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, + struct CommandList *c, int reply_queue, unsigned long timeout_msecs) +{ + DECLARE_COMPLETION_ONSTACK(wait); + + c->waiting = &wait; + __enqueue_cmd_and_start_io(h, c, reply_queue); + if (timeout_msecs == NO_TIMEOUT) { + /* TODO: get rid of this no-timeout thing */ + wait_for_completion_io(&wait); + return IO_OK; + } + if (!wait_for_completion_io_timeout(&wait, + msecs_to_jiffies(timeout_msecs))) { + dev_warn(&h->pdev->dev, "Command timed out.\n"); + return -ETIMEDOUT; + } + return IO_OK; +} + +static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c, + int reply_queue, unsigned long timeout_msecs) +{ + if (unlikely(lockup_detected(h))) { + c->err_info->CommandStatus = CMD_CTLR_LOCKUP; + return IO_OK; + } + return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs); +} + +static u32 lockup_detected(struct ctlr_info *h) +{ + int cpu; + u32 rc, *lockup_detected; + + cpu = get_cpu(); + lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); + rc = *lockup_detected; + put_cpu(); + return rc; +} + +#define MAX_DRIVER_CMD_RETRIES 25 +static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, + struct CommandList *c, int data_direction, unsigned long timeout_msecs) +{ + int backoff_time = 10, retry_count = 0; + int rc; + + do { + memset(c->err_info, 0, sizeof(*c->err_info)); + rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, + timeout_msecs); + if (rc) + break; + retry_count++; + if (retry_count > 3) { + msleep(backoff_time); + if (backoff_time < 1000) + backoff_time *= 2; + } + } while ((check_for_unit_attention(h, c) || + check_for_busy(h, c)) && + retry_count <= MAX_DRIVER_CMD_RETRIES); + hpsa_pci_unmap(h->pdev, c, 1, data_direction); + if (retry_count > MAX_DRIVER_CMD_RETRIES) + rc = -EIO; + return rc; +} + +static void hpsa_print_cmd(struct ctlr_info *h, char *txt, + struct CommandList *c) +{ + const u8 *cdb = c->Request.CDB; + const u8 *lun = c->Header.LUN.LunAddrBytes; + + dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n", + txt, lun, cdb); +} + +static void hpsa_scsi_interpret_error(struct ctlr_info *h, + struct CommandList *cp) +{ + const struct ErrorInfo *ei = cp->err_info; + struct device *d = &cp->h->pdev->dev; + u8 sense_key, asc, ascq; + int sense_len; + + switch (ei->CommandStatus) { + case CMD_TARGET_STATUS: + if (ei->SenseLen > sizeof(ei->SenseInfo)) + sense_len = sizeof(ei->SenseInfo); + else + sense_len = ei->SenseLen; + decode_sense_data(ei->SenseInfo, sense_len, + &sense_key, &asc, &ascq); + hpsa_print_cmd(h, "SCSI status", cp); + if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) + dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n", + sense_key, asc, ascq); + else + dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus); + if (ei->ScsiStatus == 0) + dev_warn(d, "SCSI status is abnormally zero. " + "(probably indicates selection timeout " + "reported incorrectly due to a known " + "firmware bug, circa July, 2001.)\n"); + break; + case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ + break; + case CMD_DATA_OVERRUN: + hpsa_print_cmd(h, "overrun condition", cp); + break; + case CMD_INVALID: { + /* controller unfortunately reports SCSI passthru's + * to non-existent targets as invalid commands. + */ + hpsa_print_cmd(h, "invalid command", cp); + dev_warn(d, "probably means device no longer present\n"); + } + break; + case CMD_PROTOCOL_ERR: + hpsa_print_cmd(h, "protocol error", cp); + break; + case CMD_HARDWARE_ERR: + hpsa_print_cmd(h, "hardware error", cp); + break; + case CMD_CONNECTION_LOST: + hpsa_print_cmd(h, "connection lost", cp); + break; + case CMD_ABORTED: + hpsa_print_cmd(h, "aborted", cp); + break; + case CMD_ABORT_FAILED: + hpsa_print_cmd(h, "abort failed", cp); + break; + case CMD_UNSOLICITED_ABORT: + hpsa_print_cmd(h, "unsolicited abort", cp); + break; + case CMD_TIMEOUT: + hpsa_print_cmd(h, "timed out", cp); + break; + case CMD_UNABORTABLE: + hpsa_print_cmd(h, "unabortable", cp); + break; + case CMD_CTLR_LOCKUP: + hpsa_print_cmd(h, "controller lockup detected", cp); + break; + default: + hpsa_print_cmd(h, "unknown status", cp); + dev_warn(d, "Unknown command status %x\n", + ei->CommandStatus); + } +} + +static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr, + u8 page, u8 *buf, size_t bufsize) +{ + int rc = IO_OK; + struct CommandList *c; + struct ErrorInfo *ei; + + c = cmd_alloc(h); + if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize, + page, scsi3addr, TYPE_CMD)) { + rc = -1; + goto out; + } + rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, + PCI_DMA_FROMDEVICE, NO_TIMEOUT); + if (rc) + goto out; + ei = c->err_info; + if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { + hpsa_scsi_interpret_error(h, c); + rc = -1; + } +out: + cmd_free(h, c); + return rc; +} + +static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h, + u8 *scsi3addr) +{ + u8 *buf; + u64 sa = 0; + int rc = 0; + + buf = kzalloc(1024, GFP_KERNEL); + if (!buf) + return 0; + + rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC, + buf, 1024); + + if (rc) + goto out; + + sa = get_unaligned_be64(buf+12); + +out: + kfree(buf); + return sa; +} + +static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, + u16 page, unsigned char *buf, + unsigned char bufsize) +{ + int rc = IO_OK; + struct CommandList *c; + struct ErrorInfo *ei; + + c = cmd_alloc(h); + + if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, + page, scsi3addr, TYPE_CMD)) { + rc = -1; + goto out; + } + rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, + PCI_DMA_FROMDEVICE, NO_TIMEOUT); + if (rc) + goto out; + ei = c->err_info; + if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { + hpsa_scsi_interpret_error(h, c); + rc = -1; + } +out: + cmd_free(h, c); + return rc; +} + +static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr, + u8 reset_type, int reply_queue) +{ + int rc = IO_OK; + struct CommandList *c; + struct ErrorInfo *ei; + + c = cmd_alloc(h); + + + /* fill_cmd can't fail here, no data buffer to map. */ + (void) fill_cmd(c, reset_type, h, NULL, 0, 0, + scsi3addr, TYPE_MSG); + rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); + if (rc) { + dev_warn(&h->pdev->dev, "Failed to send reset command\n"); + goto out; + } + /* no unmap needed here because no data xfer. */ + + ei = c->err_info; + if (ei->CommandStatus != 0) { + hpsa_scsi_interpret_error(h, c); + rc = -1; + } +out: + cmd_free(h, c); + return rc; +} + +static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, + struct hpsa_scsi_dev_t *dev, + unsigned char *scsi3addr) +{ + int i; + bool match = false; + struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; + struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2; + + if (hpsa_is_cmd_idle(c)) + return false; + + switch (c->cmd_type) { + case CMD_SCSI: + case CMD_IOCTL_PEND: + match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes, + sizeof(c->Header.LUN.LunAddrBytes)); + break; + + case CMD_IOACCEL1: + case CMD_IOACCEL2: + if (c->phys_disk == dev) { + /* HBA mode match */ + match = true; + } else { + /* Possible RAID mode -- check each phys dev. */ + /* FIXME: Do we need to take out a lock here? If + * so, we could just call hpsa_get_pdisk_of_ioaccel2() + * instead. */ + for (i = 0; i < dev->nphysical_disks && !match; i++) { + /* FIXME: an alternate test might be + * + * match = dev->phys_disk[i]->ioaccel_handle + * == c2->scsi_nexus; */ + match = dev->phys_disk[i] == c->phys_disk; + } + } + break; + + case IOACCEL2_TMF: + for (i = 0; i < dev->nphysical_disks && !match; i++) { + match = dev->phys_disk[i]->ioaccel_handle == + le32_to_cpu(ac->it_nexus); + } + break; + + case 0: /* The command is in the middle of being initialized. */ + match = false; + break; + + default: + dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n", + c->cmd_type); + BUG(); + } + + return match; +} + +static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, + unsigned char *scsi3addr, u8 reset_type, int reply_queue) +{ + int i; + int rc = 0; + + /* We can really only handle one reset at a time */ + if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) { + dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n"); + return -EINTR; + } + + BUG_ON(atomic_read(&dev->reset_cmds_out) != 0); + + for (i = 0; i < h->nr_cmds; i++) { + struct CommandList *c = h->cmd_pool + i; + int refcount = atomic_inc_return(&c->refcount); + + if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) { + unsigned long flags; + + /* + * Mark the target command as having a reset pending, + * then lock a lock so that the command cannot complete + * while we're considering it. If the command is not + * idle then count it; otherwise revoke the event. + */ + c->reset_pending = dev; + spin_lock_irqsave(&h->lock, flags); /* Implied MB */ + if (!hpsa_is_cmd_idle(c)) + atomic_inc(&dev->reset_cmds_out); + else + c->reset_pending = NULL; + spin_unlock_irqrestore(&h->lock, flags); + } + + cmd_free(h, c); + } + + rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue); + if (!rc) + wait_event(h->event_sync_wait_queue, + atomic_read(&dev->reset_cmds_out) == 0 || + lockup_detected(h)); + + if (unlikely(lockup_detected(h))) { + dev_warn(&h->pdev->dev, + "Controller lockup detected during reset wait\n"); + rc = -ENODEV; + } + + if (unlikely(rc)) + atomic_set(&dev->reset_cmds_out, 0); + else + rc = wait_for_device_to_become_ready(h, scsi3addr, 0); + + mutex_unlock(&h->reset_mutex); + return rc; +} + +static void hpsa_get_raid_level(struct ctlr_info *h, + unsigned char *scsi3addr, unsigned char *raid_level) +{ + int rc; + unsigned char *buf; + + *raid_level = RAID_UNKNOWN; + buf = kzalloc(64, GFP_KERNEL); + if (!buf) + return; + + if (!hpsa_vpd_page_supported(h, scsi3addr, + HPSA_VPD_LV_DEVICE_GEOMETRY)) + goto exit; + + rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | + HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64); + + if (rc == 0) + *raid_level = buf[8]; + if (*raid_level > RAID_UNKNOWN) + *raid_level = RAID_UNKNOWN; +exit: + kfree(buf); + return; +} + +#define HPSA_MAP_DEBUG +#ifdef HPSA_MAP_DEBUG +static void hpsa_debug_map_buff(struct ctlr_info *h, int rc, + struct raid_map_data *map_buff) +{ + struct raid_map_disk_data *dd = &map_buff->data[0]; + int map, row, col; + u16 map_cnt, row_cnt, disks_per_row; + + if (rc != 0) + return; + + /* Show details only if debugging has been activated. */ + if (h->raid_offload_debug < 2) + return; + + dev_info(&h->pdev->dev, "structure_size = %u\n", + le32_to_cpu(map_buff->structure_size)); + dev_info(&h->pdev->dev, "volume_blk_size = %u\n", + le32_to_cpu(map_buff->volume_blk_size)); + dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n", + le64_to_cpu(map_buff->volume_blk_cnt)); + dev_info(&h->pdev->dev, "physicalBlockShift = %u\n", + map_buff->phys_blk_shift); + dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n", + map_buff->parity_rotation_shift); + dev_info(&h->pdev->dev, "strip_size = %u\n", + le16_to_cpu(map_buff->strip_size)); + dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n", + le64_to_cpu(map_buff->disk_starting_blk)); + dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n", + le64_to_cpu(map_buff->disk_blk_cnt)); + dev_info(&h->pdev->dev, "data_disks_per_row = %u\n", + le16_to_cpu(map_buff->data_disks_per_row)); + dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n", + le16_to_cpu(map_buff->metadata_disks_per_row)); + dev_info(&h->pdev->dev, "row_cnt = %u\n", + le16_to_cpu(map_buff->row_cnt)); + dev_info(&h->pdev->dev, "layout_map_count = %u\n", + le16_to_cpu(map_buff->layout_map_count)); + dev_info(&h->pdev->dev, "flags = 0x%x\n", + le16_to_cpu(map_buff->flags)); + dev_info(&h->pdev->dev, "encryption = %s\n", + le16_to_cpu(map_buff->flags) & + RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF"); + dev_info(&h->pdev->dev, "dekindex = %u\n", + le16_to_cpu(map_buff->dekindex)); + map_cnt = le16_to_cpu(map_buff->layout_map_count); + for (map = 0; map < map_cnt; map++) { + dev_info(&h->pdev->dev, "Map%u:\n", map); + row_cnt = le16_to_cpu(map_buff->row_cnt); + for (row = 0; row < row_cnt; row++) { + dev_info(&h->pdev->dev, " Row%u:\n", row); + disks_per_row = + le16_to_cpu(map_buff->data_disks_per_row); + for (col = 0; col < disks_per_row; col++, dd++) + dev_info(&h->pdev->dev, + " D%02u: h=0x%04x xor=%u,%u\n", + col, dd->ioaccel_handle, + dd->xor_mult[0], dd->xor_mult[1]); + disks_per_row = + le16_to_cpu(map_buff->metadata_disks_per_row); + for (col = 0; col < disks_per_row; col++, dd++) + dev_info(&h->pdev->dev, + " M%02u: h=0x%04x xor=%u,%u\n", + col, dd->ioaccel_handle, + dd->xor_mult[0], dd->xor_mult[1]); + } + } +} +#else +static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h, + __attribute__((unused)) int rc, + __attribute__((unused)) struct raid_map_data *map_buff) +{ +} +#endif + +static int hpsa_get_raid_map(struct ctlr_info *h, + unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) +{ + int rc = 0; + struct CommandList *c; + struct ErrorInfo *ei; + + c = cmd_alloc(h); + + if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map, + sizeof(this_device->raid_map), 0, + scsi3addr, TYPE_CMD)) { + dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n"); + cmd_free(h, c); + return -1; + } + rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, + PCI_DMA_FROMDEVICE, NO_TIMEOUT); + if (rc) + goto out; + ei = c->err_info; + if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { + hpsa_scsi_interpret_error(h, c); + rc = -1; + goto out; + } + cmd_free(h, c); + + /* @todo in the future, dynamically allocate RAID map memory */ + if (le32_to_cpu(this_device->raid_map.structure_size) > + sizeof(this_device->raid_map)) { + dev_warn(&h->pdev->dev, "RAID map size is too large!\n"); + rc = -1; + } + hpsa_debug_map_buff(h, rc, &this_device->raid_map); + return rc; +out: + cmd_free(h, c); + return rc; +} + +static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h, + unsigned char scsi3addr[], u16 bmic_device_index, + struct bmic_sense_subsystem_info *buf, size_t bufsize) +{ + int rc = IO_OK; + struct CommandList *c; + struct ErrorInfo *ei; + + c = cmd_alloc(h); + + rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize, + 0, RAID_CTLR_LUNID, TYPE_CMD); + if (rc) + goto out; + + c->Request.CDB[2] = bmic_device_index & 0xff; + c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; + + rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, + PCI_DMA_FROMDEVICE, NO_TIMEOUT); + if (rc) + goto out; + ei = c->err_info; + if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { + hpsa_scsi_interpret_error(h, c); + rc = -1; + } +out: + cmd_free(h, c); + return rc; +} + +static int hpsa_bmic_id_controller(struct ctlr_info *h, + struct bmic_identify_controller *buf, size_t bufsize) +{ + int rc = IO_OK; + struct CommandList *c; + struct ErrorInfo *ei; + + c = cmd_alloc(h); + + rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize, + 0, RAID_CTLR_LUNID, TYPE_CMD); + if (rc) + goto out; + + rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, + PCI_DMA_FROMDEVICE, NO_TIMEOUT); + if (rc) + goto out; + ei = c->err_info; + if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { + hpsa_scsi_interpret_error(h, c); + rc = -1; + } +out: + cmd_free(h, c); + return rc; +} + +static int hpsa_bmic_id_physical_device(struct ctlr_info *h, + unsigned char scsi3addr[], u16 bmic_device_index, + struct bmic_identify_physical_device *buf, size_t bufsize) +{ + int rc = IO_OK; + struct CommandList *c; + struct ErrorInfo *ei; + + c = cmd_alloc(h); + rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize, + 0, RAID_CTLR_LUNID, TYPE_CMD); + if (rc) + goto out; + + c->Request.CDB[2] = bmic_device_index & 0xff; + c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; + + hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, + NO_TIMEOUT); + ei = c->err_info; + if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { + hpsa_scsi_interpret_error(h, c); + rc = -1; + } +out: + cmd_free(h, c); + + return rc; +} + +/* + * get enclosure information + * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number + * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure + * Uses id_physical_device to determine the box_index. + */ +static void hpsa_get_enclosure_info(struct ctlr_info *h, + unsigned char *scsi3addr, + struct ReportExtendedLUNdata *rlep, int rle_index, + struct hpsa_scsi_dev_t *encl_dev) +{ + int rc = -1; + struct CommandList *c = NULL; + struct ErrorInfo *ei = NULL; + struct bmic_sense_storage_box_params *bssbp = NULL; + struct bmic_identify_physical_device *id_phys = NULL; + struct ext_report_lun_entry *rle = &rlep->LUN[rle_index]; + u16 bmic_device_index = 0; + + encl_dev->eli = + hpsa_get_enclosure_logical_identifier(h, scsi3addr); + + bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]); + + if (encl_dev->target == -1 || encl_dev->lun == -1) { + rc = IO_OK; + goto out; + } + + if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) { + rc = IO_OK; + goto out; + } + + bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL); + if (!bssbp) + goto out; + + id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); + if (!id_phys) + goto out; + + rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index, + id_phys, sizeof(*id_phys)); + if (rc) { + dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n", + __func__, encl_dev->external, bmic_device_index); + goto out; + } + + c = cmd_alloc(h); + + rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp, + sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD); + + if (rc) + goto out; + + if (id_phys->phys_connector[1] == 'E') + c->Request.CDB[5] = id_phys->box_index; + else + c->Request.CDB[5] = 0; + + rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, + NO_TIMEOUT); + if (rc) + goto out; + + ei = c->err_info; + if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { + rc = -1; + goto out; + } + + encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port; + memcpy(&encl_dev->phys_connector[id_phys->active_path_number], + bssbp->phys_connector, sizeof(bssbp->phys_connector)); + + rc = IO_OK; +out: + kfree(bssbp); + kfree(id_phys); + + if (c) + cmd_free(h, c); + + if (rc != IO_OK) + hpsa_show_dev_msg(KERN_INFO, h, encl_dev, + "Error, could not get enclosure information"); +} + +static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h, + unsigned char *scsi3addr) +{ + struct ReportExtendedLUNdata *physdev; + u32 nphysicals; + u64 sa = 0; + int i; + + physdev = kzalloc(sizeof(*physdev), GFP_KERNEL); + if (!physdev) + return 0; + + if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { + dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); + kfree(physdev); + return 0; + } + nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24; + + for (i = 0; i < nphysicals; i++) + if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) { + sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]); + break; + } + + kfree(physdev); + + return sa; +} + +static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr, + struct hpsa_scsi_dev_t *dev) +{ + int rc; + u64 sa = 0; + + if (is_hba_lunid(scsi3addr)) { + struct bmic_sense_subsystem_info *ssi; + + ssi = kzalloc(sizeof(*ssi), GFP_KERNEL); + if (!ssi) + return; + + rc = hpsa_bmic_sense_subsystem_information(h, + scsi3addr, 0, ssi, sizeof(*ssi)); + if (rc == 0) { + sa = get_unaligned_be64(ssi->primary_world_wide_id); + h->sas_address = sa; + } + + kfree(ssi); + } else + sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr); + + dev->sas_address = sa; +} + +static void hpsa_ext_ctrl_present(struct ctlr_info *h, + struct ReportExtendedLUNdata *physdev) +{ + u32 nphysicals; + int i; + + if (h->discovery_polling) + return; + + nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1; + + for (i = 0; i < nphysicals; i++) { + if (physdev->LUN[i].device_type == + BMIC_DEVICE_TYPE_CONTROLLER + && !is_hba_lunid(physdev->LUN[i].lunid)) { + dev_info(&h->pdev->dev, + "External controller present, activate discovery polling and disable rld caching\n"); + hpsa_disable_rld_caching(h); + h->discovery_polling = 1; + break; + } + } +} + +/* Get a device id from inquiry page 0x83 */ +static bool hpsa_vpd_page_supported(struct ctlr_info *h, + unsigned char scsi3addr[], u8 page) +{ + int rc; + int i; + int pages; + unsigned char *buf, bufsize; + + buf = kzalloc(256, GFP_KERNEL); + if (!buf) + return false; + + /* Get the size of the page list first */ + rc = hpsa_scsi_do_inquiry(h, scsi3addr, + VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, + buf, HPSA_VPD_HEADER_SZ); + if (rc != 0) + goto exit_unsupported; + pages = buf[3]; + if ((pages + HPSA_VPD_HEADER_SZ) <= 255) + bufsize = pages + HPSA_VPD_HEADER_SZ; + else + bufsize = 255; + + /* Get the whole VPD page list */ + rc = hpsa_scsi_do_inquiry(h, scsi3addr, + VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, + buf, bufsize); + if (rc != 0) + goto exit_unsupported; + + pages = buf[3]; + for (i = 1; i <= pages; i++) + if (buf[3 + i] == page) + goto exit_supported; +exit_unsupported: + kfree(buf); + return false; +exit_supported: + kfree(buf); + return true; +} + +/* + * Called during a scan operation. + * Sets ioaccel status on the new device list, not the existing device list + * + * The device list used during I/O will be updated later in + * adjust_hpsa_scsi_table. + */ +static void hpsa_get_ioaccel_status(struct ctlr_info *h, + unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) +{ + int rc; + unsigned char *buf; + u8 ioaccel_status; + + this_device->offload_config = 0; + this_device->offload_enabled = 0; + this_device->offload_to_be_enabled = 0; + + buf = kzalloc(64, GFP_KERNEL); + if (!buf) + return; + if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS)) + goto out; + rc = hpsa_scsi_do_inquiry(h, scsi3addr, + VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64); + if (rc != 0) + goto out; + +#define IOACCEL_STATUS_BYTE 4 +#define OFFLOAD_CONFIGURED_BIT 0x01 +#define OFFLOAD_ENABLED_BIT 0x02 + ioaccel_status = buf[IOACCEL_STATUS_BYTE]; + this_device->offload_config = + !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); + if (this_device->offload_config) { + bool offload_enabled = + !!(ioaccel_status & OFFLOAD_ENABLED_BIT); + /* + * Check to see if offload can be enabled. + */ + if (offload_enabled) { + rc = hpsa_get_raid_map(h, scsi3addr, this_device); + if (rc) /* could not load raid_map */ + goto out; + this_device->offload_to_be_enabled = 1; + } + } + +out: + kfree(buf); + return; +} + +/* Get the device id from inquiry page 0x83 */ +static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, + unsigned char *device_id, int index, int buflen) +{ + int rc; + unsigned char *buf; + + /* Does controller have VPD for device id? */ + if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID)) + return 1; /* not supported */ + + buf = kzalloc(64, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | + HPSA_VPD_LV_DEVICE_ID, buf, 64); + if (rc == 0) { + if (buflen > 16) + buflen = 16; + memcpy(device_id, &buf[8], buflen); + } + + kfree(buf); + + return rc; /*0 - got id, otherwise, didn't */ +} + +static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, + void *buf, int bufsize, + int extended_response) +{ + int rc = IO_OK; + struct CommandList *c; + unsigned char scsi3addr[8]; + struct ErrorInfo *ei; + + c = cmd_alloc(h); + + /* address the controller */ + memset(scsi3addr, 0, sizeof(scsi3addr)); + if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, + buf, bufsize, 0, scsi3addr, TYPE_CMD)) { + rc = -EAGAIN; + goto out; + } + if (extended_response) + c->Request.CDB[1] = extended_response; + rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, + PCI_DMA_FROMDEVICE, NO_TIMEOUT); + if (rc) + goto out; + ei = c->err_info; + if (ei->CommandStatus != 0 && + ei->CommandStatus != CMD_DATA_UNDERRUN) { + hpsa_scsi_interpret_error(h, c); + rc = -EIO; + } else { + struct ReportLUNdata *rld = buf; + + if (rld->extended_response_flag != extended_response) { + if (!h->legacy_board) { + dev_err(&h->pdev->dev, + "report luns requested format %u, got %u\n", + extended_response, + rld->extended_response_flag); + rc = -EINVAL; + } else + rc = -EOPNOTSUPP; + } + } +out: + cmd_free(h, c); + return rc; +} + +static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, + struct ReportExtendedLUNdata *buf, int bufsize) +{ + int rc; + struct ReportLUNdata *lbuf; + + rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize, + HPSA_REPORT_PHYS_EXTENDED); + if (!rc || rc != -EOPNOTSUPP) + return rc; + + /* REPORT PHYS EXTENDED is not supported */ + lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL); + if (!lbuf) + return -ENOMEM; + + rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0); + if (!rc) { + int i; + u32 nphys; + + /* Copy ReportLUNdata header */ + memcpy(buf, lbuf, 8); + nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8; + for (i = 0; i < nphys; i++) + memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8); + } + kfree(lbuf); + return rc; +} + +static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, + struct ReportLUNdata *buf, int bufsize) +{ + return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); +} + +static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, + int bus, int target, int lun) +{ + device->bus = bus; + device->target = target; + device->lun = lun; +} + +/* Use VPD inquiry to get details of volume status */ +static int hpsa_get_volume_status(struct ctlr_info *h, + unsigned char scsi3addr[]) +{ + int rc; + int status; + int size; + unsigned char *buf; + + buf = kzalloc(64, GFP_KERNEL); + if (!buf) + return HPSA_VPD_LV_STATUS_UNSUPPORTED; + + /* Does controller have VPD for logical volume status? */ + if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) + goto exit_failed; + + /* Get the size of the VPD return buffer */ + rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, + buf, HPSA_VPD_HEADER_SZ); + if (rc != 0) + goto exit_failed; + size = buf[3]; + + /* Now get the whole VPD buffer */ + rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, + buf, size + HPSA_VPD_HEADER_SZ); + if (rc != 0) + goto exit_failed; + status = buf[4]; /* status byte */ + + kfree(buf); + return status; +exit_failed: + kfree(buf); + return HPSA_VPD_LV_STATUS_UNSUPPORTED; +} + +/* Determine offline status of a volume. + * Return either: + * 0 (not offline) + * 0xff (offline for unknown reasons) + * # (integer code indicating one of several NOT READY states + * describing why a volume is to be kept offline) + */ +static unsigned char hpsa_volume_offline(struct ctlr_info *h, + unsigned char scsi3addr[]) +{ + struct CommandList *c; + unsigned char *sense; + u8 sense_key, asc, ascq; + int sense_len; + int rc, ldstat = 0; + u16 cmd_status; + u8 scsi_status; +#define ASC_LUN_NOT_READY 0x04 +#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04 +#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02 + + c = cmd_alloc(h); + + (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD); + rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, + NO_TIMEOUT); + if (rc) { + cmd_free(h, c); + return HPSA_VPD_LV_STATUS_UNSUPPORTED; + } + sense = c->err_info->SenseInfo; + if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) + sense_len = sizeof(c->err_info->SenseInfo); + else + sense_len = c->err_info->SenseLen; + decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq); + cmd_status = c->err_info->CommandStatus; + scsi_status = c->err_info->ScsiStatus; + cmd_free(h, c); + + /* Determine the reason for not ready state */ + ldstat = hpsa_get_volume_status(h, scsi3addr); + + /* Keep volume offline in certain cases: */ + switch (ldstat) { + case HPSA_LV_FAILED: + case HPSA_LV_UNDERGOING_ERASE: + case HPSA_LV_NOT_AVAILABLE: + case HPSA_LV_UNDERGOING_RPI: + case HPSA_LV_PENDING_RPI: + case HPSA_LV_ENCRYPTED_NO_KEY: + case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: + case HPSA_LV_UNDERGOING_ENCRYPTION: + case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: + case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: + return ldstat; + case HPSA_VPD_LV_STATUS_UNSUPPORTED: + /* If VPD status page isn't available, + * use ASC/ASCQ to determine state + */ + if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) || + (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ)) + return ldstat; + break; + default: + break; + } + return HPSA_LV_OK; +} + +static int hpsa_update_device_info(struct ctlr_info *h, + unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, + unsigned char *is_OBDR_device) +{ + +#define OBDR_SIG_OFFSET 43 +#define OBDR_TAPE_SIG "$DR-10" +#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) +#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) + + unsigned char *inq_buff; + unsigned char *obdr_sig; + int rc = 0; + + inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); + if (!inq_buff) { + rc = -ENOMEM; + goto bail_out; + } + + /* Do an inquiry to the device to see what it is. */ + if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, + (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { + dev_err(&h->pdev->dev, + "%s: inquiry failed, device will be skipped.\n", + __func__); + rc = HPSA_INQUIRY_FAILED; + goto bail_out; + } + + scsi_sanitize_inquiry_string(&inq_buff[8], 8); + scsi_sanitize_inquiry_string(&inq_buff[16], 16); + + this_device->devtype = (inq_buff[0] & 0x1f); + memcpy(this_device->scsi3addr, scsi3addr, 8); + memcpy(this_device->vendor, &inq_buff[8], + sizeof(this_device->vendor)); + memcpy(this_device->model, &inq_buff[16], + sizeof(this_device->model)); + this_device->rev = inq_buff[2]; + memset(this_device->device_id, 0, + sizeof(this_device->device_id)); + if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8, + sizeof(this_device->device_id)) < 0) + dev_err(&h->pdev->dev, + "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n", + h->ctlr, __func__, + h->scsi_host->host_no, + this_device->target, this_device->lun, + scsi_device_type(this_device->devtype), + this_device->model); + + if ((this_device->devtype == TYPE_DISK || + this_device->devtype == TYPE_ZBC) && + is_logical_dev_addr_mode(scsi3addr)) { + unsigned char volume_offline; + + hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); + if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC) + hpsa_get_ioaccel_status(h, scsi3addr, this_device); + volume_offline = hpsa_volume_offline(h, scsi3addr); + if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED && + h->legacy_board) { + /* + * Legacy boards might not support volume status + */ + dev_info(&h->pdev->dev, + "C0:T%d:L%d Volume status not available, assuming online.\n", + this_device->target, this_device->lun); + volume_offline = 0; + } + this_device->volume_offline = volume_offline; + if (volume_offline == HPSA_LV_FAILED) { + rc = HPSA_LV_FAILED; + dev_err(&h->pdev->dev, + "%s: LV failed, device will be skipped.\n", + __func__); + goto bail_out; + } + } else { + this_device->raid_level = RAID_UNKNOWN; + this_device->offload_config = 0; + hpsa_turn_off_ioaccel_for_device(this_device); + this_device->hba_ioaccel_enabled = 0; + this_device->volume_offline = 0; + this_device->queue_depth = h->nr_cmds; + } + + if (this_device->external) + this_device->queue_depth = EXTERNAL_QD; + + if (is_OBDR_device) { + /* See if this is a One-Button-Disaster-Recovery device + * by looking for "$DR-10" at offset 43 in inquiry data. + */ + obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; + *is_OBDR_device = (this_device->devtype == TYPE_ROM && + strncmp(obdr_sig, OBDR_TAPE_SIG, + OBDR_SIG_LEN) == 0); + } + kfree(inq_buff); + return 0; + +bail_out: + kfree(inq_buff); + return rc; +} + +/* + * Helper function to assign bus, target, lun mapping of devices. + * Logical drive target and lun are assigned at this time, but + * physical device lun and target assignment are deferred (assigned + * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) +*/ +static void figure_bus_target_lun(struct ctlr_info *h, + u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) +{ + u32 lunid = get_unaligned_le32(lunaddrbytes); + + if (!is_logical_dev_addr_mode(lunaddrbytes)) { + /* physical device, target and lun filled in later */ + if (is_hba_lunid(lunaddrbytes)) { + int bus = HPSA_HBA_BUS; + + if (!device->rev) + bus = HPSA_LEGACY_HBA_BUS; + hpsa_set_bus_target_lun(device, + bus, 0, lunid & 0x3fff); + } else + /* defer target, lun assignment for physical devices */ + hpsa_set_bus_target_lun(device, + HPSA_PHYSICAL_DEVICE_BUS, -1, -1); + return; + } + /* It's a logical device */ + if (device->external) { + hpsa_set_bus_target_lun(device, + HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff, + lunid & 0x00ff); + return; + } + hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS, + 0, lunid & 0x3fff); +} + +static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position, + int i, int nphysicals, int nlocal_logicals) +{ + /* In report logicals, local logicals are listed first, + * then any externals. + */ + int logicals_start = nphysicals + (raid_ctlr_position == 0); + + if (i == raid_ctlr_position) + return 0; + + if (i < logicals_start) + return 0; + + /* i is in logicals range, but still within local logicals */ + if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals) + return 0; + + return 1; /* it's an external lun */ +} + +/* + * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, + * logdev. The number of luns in physdev and logdev are returned in + * *nphysicals and *nlogicals, respectively. + * Returns 0 on success, -1 otherwise. + */ +static int hpsa_gather_lun_info(struct ctlr_info *h, + struct ReportExtendedLUNdata *physdev, u32 *nphysicals, + struct ReportLUNdata *logdev, u32 *nlogicals) +{ + if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { + dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); + return -1; + } + *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24; + if (*nphysicals > HPSA_MAX_PHYS_LUN) { + dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n", + HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN); + *nphysicals = HPSA_MAX_PHYS_LUN; + } + if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) { + dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); + return -1; + } + *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; + /* Reject Logicals in excess of our max capability. */ + if (*nlogicals > HPSA_MAX_LUN) { + dev_warn(&h->pdev->dev, + "maximum logical LUNs (%d) exceeded. " + "%d LUNs ignored.\n", HPSA_MAX_LUN, + *nlogicals - HPSA_MAX_LUN); + *nlogicals = HPSA_MAX_LUN; + } + if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { + dev_warn(&h->pdev->dev, + "maximum logical + physical LUNs (%d) exceeded. " + "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, + *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); + *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; + } + return 0; +} + +static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, + int i, int nphysicals, int nlogicals, + struct ReportExtendedLUNdata *physdev_list, + struct ReportLUNdata *logdev_list) +{ + /* Helper function, figure out where the LUN ID info is coming from + * given index i, lists of physical and logical devices, where in + * the list the raid controller is supposed to appear (first or last) + */ + + int logicals_start = nphysicals + (raid_ctlr_position == 0); + int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); + + if (i == raid_ctlr_position) + return RAID_CTLR_LUNID; + + if (i < logicals_start) + return &physdev_list->LUN[i - + (raid_ctlr_position == 0)].lunid[0]; + + if (i < last_device) + return &logdev_list->LUN[i - nphysicals - + (raid_ctlr_position == 0)][0]; + BUG(); + return NULL; +} + +/* get physical drive ioaccel handle and queue depth */ +static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h, + struct hpsa_scsi_dev_t *dev, + struct ReportExtendedLUNdata *rlep, int rle_index, + struct bmic_identify_physical_device *id_phys) +{ + int rc; + struct ext_report_lun_entry *rle; + + rle = &rlep->LUN[rle_index]; + + dev->ioaccel_handle = rle->ioaccel_handle; + if ((rle->device_flags & 0x08) && dev->ioaccel_handle) + dev->hba_ioaccel_enabled = 1; + memset(id_phys, 0, sizeof(*id_phys)); + rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0], + GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys, + sizeof(*id_phys)); + if (!rc) + /* Reserve space for FW operations */ +#define DRIVE_CMDS_RESERVED_FOR_FW 2 +#define DRIVE_QUEUE_DEPTH 7 + dev->queue_depth = + le16_to_cpu(id_phys->current_queue_depth_limit) - + DRIVE_CMDS_RESERVED_FOR_FW; + else + dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */ +} + +static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device, + struct ReportExtendedLUNdata *rlep, int rle_index, + struct bmic_identify_physical_device *id_phys) +{ + struct ext_report_lun_entry *rle = &rlep->LUN[rle_index]; + + if ((rle->device_flags & 0x08) && this_device->ioaccel_handle) + this_device->hba_ioaccel_enabled = 1; + + memcpy(&this_device->active_path_index, + &id_phys->active_path_number, + sizeof(this_device->active_path_index)); + memcpy(&this_device->path_map, + &id_phys->redundant_path_present_map, + sizeof(this_device->path_map)); + memcpy(&this_device->box, + &id_phys->alternate_paths_phys_box_on_port, + sizeof(this_device->box)); + memcpy(&this_device->phys_connector, + &id_phys->alternate_paths_phys_connector, + sizeof(this_device->phys_connector)); + memcpy(&this_device->bay, + &id_phys->phys_bay_in_box, + sizeof(this_device->bay)); +} + +/* get number of local logical disks. */ +static int hpsa_set_local_logical_count(struct ctlr_info *h, + struct bmic_identify_controller *id_ctlr, + u32 *nlocals) +{ + int rc; + + if (!id_ctlr) { + dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n", + __func__); + return -ENOMEM; + } + memset(id_ctlr, 0, sizeof(*id_ctlr)); + rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr)); + if (!rc) + if (id_ctlr->configured_logical_drive_count < 255) + *nlocals = id_ctlr->configured_logical_drive_count; + else + *nlocals = le16_to_cpu( + id_ctlr->extended_logical_unit_count); + else + *nlocals = -1; + return rc; +} + +static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes) +{ + struct bmic_identify_physical_device *id_phys; + bool is_spare = false; + int rc; + + id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); + if (!id_phys) + return false; + + rc = hpsa_bmic_id_physical_device(h, + lunaddrbytes, + GET_BMIC_DRIVE_NUMBER(lunaddrbytes), + id_phys, sizeof(*id_phys)); + if (rc == 0) + is_spare = (id_phys->more_flags >> 6) & 0x01; + + kfree(id_phys); + return is_spare; +} + +#define RPL_DEV_FLAG_NON_DISK 0x1 +#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2 +#define RPL_DEV_FLAG_UNCONFIG_DISK 0x4 + +#define BMIC_DEVICE_TYPE_ENCLOSURE 6 + +static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes, + struct ext_report_lun_entry *rle) +{ + u8 device_flags; + u8 device_type; + + if (!MASKED_DEVICE(lunaddrbytes)) + return false; + + device_flags = rle->device_flags; + device_type = rle->device_type; + + if (device_flags & RPL_DEV_FLAG_NON_DISK) { + if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE) + return false; + return true; + } + + if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED)) + return false; + + if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK) + return false; + + /* + * Spares may be spun down, we do not want to + * do an Inquiry to a RAID set spare drive as + * that would have them spun up, that is a + * performance hit because I/O to the RAID device + * stops while the spin up occurs which can take + * over 50 seconds. + */ + if (hpsa_is_disk_spare(h, lunaddrbytes)) + return true; + + return false; +} + +static void hpsa_update_scsi_devices(struct ctlr_info *h) +{ + /* the idea here is we could get notified + * that some devices have changed, so we do a report + * physical luns and report logical luns cmd, and adjust + * our list of devices accordingly. + * + * The scsi3addr's of devices won't change so long as the + * adapter is not reset. That means we can rescan and + * tell which devices we already know about, vs. new + * devices, vs. disappearing devices. + */ + struct ReportExtendedLUNdata *physdev_list = NULL; + struct ReportLUNdata *logdev_list = NULL; + struct bmic_identify_physical_device *id_phys = NULL; + struct bmic_identify_controller *id_ctlr = NULL; + u32 nphysicals = 0; + u32 nlogicals = 0; + u32 nlocal_logicals = 0; + u32 ndev_allocated = 0; + struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; + int ncurrent = 0; + int i, n_ext_target_devs, ndevs_to_allocate; + int raid_ctlr_position; + bool physical_device; + DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS); + + currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL); + physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL); + logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL); + tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); + id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); + id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL); + + if (!currentsd || !physdev_list || !logdev_list || + !tmpdevice || !id_phys || !id_ctlr) { + dev_err(&h->pdev->dev, "out of memory\n"); + goto out; + } + memset(lunzerobits, 0, sizeof(lunzerobits)); + + h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */ + + if (hpsa_gather_lun_info(h, physdev_list, &nphysicals, + logdev_list, &nlogicals)) { + h->drv_req_rescan = 1; + goto out; + } + + /* Set number of local logicals (non PTRAID) */ + if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) { + dev_warn(&h->pdev->dev, + "%s: Can't determine number of local logical devices.\n", + __func__); + } + + /* We might see up to the maximum number of logical and physical disks + * plus external target devices, and a device for the local RAID + * controller. + */ + ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; + + hpsa_ext_ctrl_present(h, physdev_list); + + /* Allocate the per device structures */ + for (i = 0; i < ndevs_to_allocate; i++) { + if (i >= HPSA_MAX_DEVICES) { + dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." + " %d devices ignored.\n", HPSA_MAX_DEVICES, + ndevs_to_allocate - HPSA_MAX_DEVICES); + break; + } + + currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); + if (!currentsd[i]) { + h->drv_req_rescan = 1; + goto out; + } + ndev_allocated++; + } + + if (is_scsi_rev_5(h)) + raid_ctlr_position = 0; + else + raid_ctlr_position = nphysicals + nlogicals; + + /* adjust our table of devices */ + n_ext_target_devs = 0; + for (i = 0; i < nphysicals + nlogicals + 1; i++) { + u8 *lunaddrbytes, is_OBDR = 0; + int rc = 0; + int phys_dev_index = i - (raid_ctlr_position == 0); + bool skip_device = false; + + memset(tmpdevice, 0, sizeof(*tmpdevice)); + + physical_device = i < nphysicals + (raid_ctlr_position == 0); + + /* Figure out where the LUN ID info is coming from */ + lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, + i, nphysicals, nlogicals, physdev_list, logdev_list); + + /* Determine if this is a lun from an external target array */ + tmpdevice->external = + figure_external_status(h, raid_ctlr_position, i, + nphysicals, nlocal_logicals); + + /* + * Skip over some devices such as a spare. + */ + if (!tmpdevice->external && physical_device) { + skip_device = hpsa_skip_device(h, lunaddrbytes, + &physdev_list->LUN[phys_dev_index]); + if (skip_device) + continue; + } + + /* Get device type, vendor, model, device id, raid_map */ + rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice, + &is_OBDR); + if (rc == -ENOMEM) { + dev_warn(&h->pdev->dev, + "Out of memory, rescan deferred.\n"); + h->drv_req_rescan = 1; + goto out; + } + if (rc) { + h->drv_req_rescan = 1; + continue; + } + + figure_bus_target_lun(h, lunaddrbytes, tmpdevice); + this_device = currentsd[ncurrent]; + + *this_device = *tmpdevice; + this_device->physical_device = physical_device; + + /* + * Expose all devices except for physical devices that + * are masked. + */ + if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device) + this_device->expose_device = 0; + else + this_device->expose_device = 1; + + + /* + * Get the SAS address for physical devices that are exposed. + */ + if (this_device->physical_device && this_device->expose_device) + hpsa_get_sas_address(h, lunaddrbytes, this_device); + + switch (this_device->devtype) { + case TYPE_ROM: + /* We don't *really* support actual CD-ROM devices, + * just "One Button Disaster Recovery" tape drive + * which temporarily pretends to be a CD-ROM drive. + * So we check that the device is really an OBDR tape + * device by checking for "$DR-10" in bytes 43-48 of + * the inquiry data. + */ + if (is_OBDR) + ncurrent++; + break; + case TYPE_DISK: + case TYPE_ZBC: + if (this_device->physical_device) { + /* The disk is in HBA mode. */ + /* Never use RAID mapper in HBA mode. */ + this_device->offload_enabled = 0; + hpsa_get_ioaccel_drive_info(h, this_device, + physdev_list, phys_dev_index, id_phys); + hpsa_get_path_info(this_device, + physdev_list, phys_dev_index, id_phys); + } + ncurrent++; + break; + case TYPE_TAPE: + case TYPE_MEDIUM_CHANGER: + ncurrent++; + break; + case TYPE_ENCLOSURE: + if (!this_device->external) + hpsa_get_enclosure_info(h, lunaddrbytes, + physdev_list, phys_dev_index, + this_device); + ncurrent++; + break; + case TYPE_RAID: + /* Only present the Smartarray HBA as a RAID controller. + * If it's a RAID controller other than the HBA itself + * (an external RAID controller, MSA500 or similar) + * don't present it. + */ + if (!is_hba_lunid(lunaddrbytes)) + break; + ncurrent++; + break; + default: + break; + } + if (ncurrent >= HPSA_MAX_DEVICES) + break; + } + + if (h->sas_host == NULL) { + int rc = 0; + + rc = hpsa_add_sas_host(h); + if (rc) { + dev_warn(&h->pdev->dev, + "Could not add sas host %d\n", rc); + goto out; + } + } + + adjust_hpsa_scsi_table(h, currentsd, ncurrent); +out: + kfree(tmpdevice); + for (i = 0; i < ndev_allocated; i++) + kfree(currentsd[i]); + kfree(currentsd); + kfree(physdev_list); + kfree(logdev_list); + kfree(id_ctlr); + kfree(id_phys); +} + +static void hpsa_set_sg_descriptor(struct SGDescriptor *desc, + struct scatterlist *sg) +{ + u64 addr64 = (u64) sg_dma_address(sg); + unsigned int len = sg_dma_len(sg); + + desc->Addr = cpu_to_le64(addr64); + desc->Len = cpu_to_le32(len); + desc->Ext = 0; +} + +/* + * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci + * dma mapping and fills in the scatter gather entries of the + * hpsa command, cp. + */ +static int hpsa_scatter_gather(struct ctlr_info *h, + struct CommandList *cp, + struct scsi_cmnd *cmd) +{ + struct scatterlist *sg; + int use_sg, i, sg_limit, chained, last_sg; + struct SGDescriptor *curr_sg; + + BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); + + use_sg = scsi_dma_map(cmd); + if (use_sg < 0) + return use_sg; + + if (!use_sg) + goto sglist_finished; + + /* + * If the number of entries is greater than the max for a single list, + * then we have a chained list; we will set up all but one entry in the + * first list (the last entry is saved for link information); + * otherwise, we don't have a chained list and we'll set up at each of + * the entries in the one list. + */ + curr_sg = cp->SG; + chained = use_sg > h->max_cmd_sg_entries; + sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg; + last_sg = scsi_sg_count(cmd) - 1; + scsi_for_each_sg(cmd, sg, sg_limit, i) { + hpsa_set_sg_descriptor(curr_sg, sg); + curr_sg++; + } + + if (chained) { + /* + * Continue with the chained list. Set curr_sg to the chained + * list. Modify the limit to the total count less the entries + * we've already set up. Resume the scan at the list entry + * where the previous loop left off. + */ + curr_sg = h->cmd_sg_list[cp->cmdindex]; + sg_limit = use_sg - sg_limit; + for_each_sg(sg, sg, sg_limit, i) { + hpsa_set_sg_descriptor(curr_sg, sg); + curr_sg++; + } + } + + /* Back the pointer up to the last entry and mark it as "last". */ + (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST); + + if (use_sg + chained > h->maxSG) + h->maxSG = use_sg + chained; + + if (chained) { + cp->Header.SGList = h->max_cmd_sg_entries; + cp->Header.SGTotal = cpu_to_le16(use_sg + 1); + if (hpsa_map_sg_chain_block(h, cp)) { + scsi_dma_unmap(cmd); + return -1; + } + return 0; + } + +sglist_finished: + + cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ + cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */ + return 0; +} + +static inline void warn_zero_length_transfer(struct ctlr_info *h, + u8 *cdb, int cdb_len, + const char *func) +{ + dev_warn(&h->pdev->dev, + "%s: Blocking zero-length request: CDB:%*phN\n", + func, cdb_len, cdb); +} + +#define IO_ACCEL_INELIGIBLE 1 +/* zero-length transfers trigger hardware errors. */ +static bool is_zero_length_transfer(u8 *cdb) +{ + u32 block_cnt; + + /* Block zero-length transfer sizes on certain commands. */ + switch (cdb[0]) { + case READ_10: + case WRITE_10: + case VERIFY: /* 0x2F */ + case WRITE_VERIFY: /* 0x2E */ + block_cnt = get_unaligned_be16(&cdb[7]); + break; + case READ_12: + case WRITE_12: + case VERIFY_12: /* 0xAF */ + case WRITE_VERIFY_12: /* 0xAE */ + block_cnt = get_unaligned_be32(&cdb[6]); + break; + case READ_16: + case WRITE_16: + case VERIFY_16: /* 0x8F */ + block_cnt = get_unaligned_be32(&cdb[10]); + break; + default: + return false; + } + + return block_cnt == 0; +} + +static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len) +{ + int is_write = 0; + u32 block; + u32 block_cnt; + + /* Perform some CDB fixups if needed using 10 byte reads/writes only */ + switch (cdb[0]) { + case WRITE_6: + case WRITE_12: + is_write = 1; + case READ_6: + case READ_12: + if (*cdb_len == 6) { + block = (((cdb[1] & 0x1F) << 16) | + (cdb[2] << 8) | + cdb[3]); + block_cnt = cdb[4]; + if (block_cnt == 0) + block_cnt = 256; + } else { + BUG_ON(*cdb_len != 12); + block = get_unaligned_be32(&cdb[2]); + block_cnt = get_unaligned_be32(&cdb[6]); + } + if (block_cnt > 0xffff) + return IO_ACCEL_INELIGIBLE; + + cdb[0] = is_write ? WRITE_10 : READ_10; + cdb[1] = 0; + cdb[2] = (u8) (block >> 24); + cdb[3] = (u8) (block >> 16); + cdb[4] = (u8) (block >> 8); + cdb[5] = (u8) (block); + cdb[6] = 0; + cdb[7] = (u8) (block_cnt >> 8); + cdb[8] = (u8) (block_cnt); + cdb[9] = 0; + *cdb_len = 10; + break; + } + return 0; +} + +static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h, + struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, + u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) +{ + struct scsi_cmnd *cmd = c->scsi_cmd; + struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; + unsigned int len; + unsigned int total_len = 0; + struct scatterlist *sg; + u64 addr64; + int use_sg, i; + struct SGDescriptor *curr_sg; + u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE; + + /* TODO: implement chaining support */ + if (scsi_sg_count(cmd) > h->ioaccel_maxsg) { + atomic_dec(&phys_disk->ioaccel_cmds_out); + return IO_ACCEL_INELIGIBLE; + } + + BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX); + + if (is_zero_length_transfer(cdb)) { + warn_zero_length_transfer(h, cdb, cdb_len, __func__); + atomic_dec(&phys_disk->ioaccel_cmds_out); + return IO_ACCEL_INELIGIBLE; + } + + if (fixup_ioaccel_cdb(cdb, &cdb_len)) { + atomic_dec(&phys_disk->ioaccel_cmds_out); + return IO_ACCEL_INELIGIBLE; + } + + c->cmd_type = CMD_IOACCEL1; + + /* Adjust the DMA address to point to the accelerated command buffer */ + c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle + + (c->cmdindex * sizeof(*cp)); + BUG_ON(c->busaddr & 0x0000007F); + + use_sg = scsi_dma_map(cmd); + if (use_sg < 0) { + atomic_dec(&phys_disk->ioaccel_cmds_out); + return use_sg; + } + + if (use_sg) { + curr_sg = cp->SG; + scsi_for_each_sg(cmd, sg, use_sg, i) { + addr64 = (u64) sg_dma_address(sg); + len = sg_dma_len(sg); + total_len += len; + curr_sg->Addr = cpu_to_le64(addr64); + curr_sg->Len = cpu_to_le32(len); + curr_sg->Ext = cpu_to_le32(0); + curr_sg++; + } + (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST); + + switch (cmd->sc_data_direction) { + case DMA_TO_DEVICE: + control |= IOACCEL1_CONTROL_DATA_OUT; + break; + case DMA_FROM_DEVICE: + control |= IOACCEL1_CONTROL_DATA_IN; + break; + case DMA_NONE: + control |= IOACCEL1_CONTROL_NODATAXFER; + break; + default: + dev_err(&h->pdev->dev, "unknown data direction: %d\n", + cmd->sc_data_direction); + BUG(); + break; + } + } else { + control |= IOACCEL1_CONTROL_NODATAXFER; + } + + c->Header.SGList = use_sg; + /* Fill out the command structure to submit */ + cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF); + cp->transfer_len = cpu_to_le32(total_len); + cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ | + (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK)); + cp->control = cpu_to_le32(control); + memcpy(cp->CDB, cdb, cdb_len); + memcpy(cp->CISS_LUN, scsi3addr, 8); + /* Tag was already set at init time. */ + enqueue_cmd_and_start_io(h, c); + return 0; +} + +/* + * Queue a command directly to a device behind the controller using the + * I/O accelerator path. + */ +static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h, + struct CommandList *c) +{ + struct scsi_cmnd *cmd = c->scsi_cmd; + struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; + + if (!dev) + return -1; + + c->phys_disk = dev; + + return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle, + cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev); +} + +/* + * Set encryption parameters for the ioaccel2 request + */ +static void set_encrypt_ioaccel2(struct ctlr_info *h, + struct CommandList *c, struct io_accel2_cmd *cp) +{ + struct scsi_cmnd *cmd = c->scsi_cmd; + struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; + struct raid_map_data *map = &dev->raid_map; + u64 first_block; + + /* Are we doing encryption on this device */ + if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON)) + return; + /* Set the data encryption key index. */ + cp->dekindex = map->dekindex; + + /* Set the encryption enable flag, encoded into direction field. */ + cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK; + + /* Set encryption tweak values based on logical block address + * If block size is 512, tweak value is LBA. + * For other block sizes, tweak is (LBA * block size)/ 512) + */ + switch (cmd->cmnd[0]) { + /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */ + case READ_6: + case WRITE_6: + first_block = (((cmd->cmnd[1] & 0x1F) << 16) | + (cmd->cmnd[2] << 8) | + cmd->cmnd[3]); + break; + case WRITE_10: + case READ_10: + /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */ + case WRITE_12: + case READ_12: + first_block = get_unaligned_be32(&cmd->cmnd[2]); + break; + case WRITE_16: + case READ_16: + first_block = get_unaligned_be64(&cmd->cmnd[2]); + break; + default: + dev_err(&h->pdev->dev, + "ERROR: %s: size (0x%x) not supported for encryption\n", + __func__, cmd->cmnd[0]); + BUG(); + break; + } + + if (le32_to_cpu(map->volume_blk_size) != 512) + first_block = first_block * + le32_to_cpu(map->volume_blk_size)/512; + + cp->tweak_lower = cpu_to_le32(first_block); + cp->tweak_upper = cpu_to_le32(first_block >> 32); +} + +static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h, + struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, + u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) +{ + struct scsi_cmnd *cmd = c->scsi_cmd; + struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; + struct ioaccel2_sg_element *curr_sg; + int use_sg, i; + struct scatterlist *sg; + u64 addr64; + u32 len; + u32 total_len = 0; + + if (!cmd->device) + return -1; + + if (!cmd->device->hostdata) + return -1; + + BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); + + if (is_zero_length_transfer(cdb)) { + warn_zero_length_transfer(h, cdb, cdb_len, __func__); + atomic_dec(&phys_disk->ioaccel_cmds_out); + return IO_ACCEL_INELIGIBLE; + } + + if (fixup_ioaccel_cdb(cdb, &cdb_len)) { + atomic_dec(&phys_disk->ioaccel_cmds_out); + return IO_ACCEL_INELIGIBLE; + } + + c->cmd_type = CMD_IOACCEL2; + /* Adjust the DMA address to point to the accelerated command buffer */ + c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + + (c->cmdindex * sizeof(*cp)); + BUG_ON(c->busaddr & 0x0000007F); + + memset(cp, 0, sizeof(*cp)); + cp->IU_type = IOACCEL2_IU_TYPE; + + use_sg = scsi_dma_map(cmd); + if (use_sg < 0) { + atomic_dec(&phys_disk->ioaccel_cmds_out); + return use_sg; + } + + if (use_sg) { + curr_sg = cp->sg; + if (use_sg > h->ioaccel_maxsg) { + addr64 = le64_to_cpu( + h->ioaccel2_cmd_sg_list[c->cmdindex]->address); + curr_sg->address = cpu_to_le64(addr64); + curr_sg->length = 0; + curr_sg->reserved[0] = 0; + curr_sg->reserved[1] = 0; + curr_sg->reserved[2] = 0; + curr_sg->chain_indicator = IOACCEL2_CHAIN; + + curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex]; + } + scsi_for_each_sg(cmd, sg, use_sg, i) { + addr64 = (u64) sg_dma_address(sg); + len = sg_dma_len(sg); + total_len += len; + curr_sg->address = cpu_to_le64(addr64); + curr_sg->length = cpu_to_le32(len); + curr_sg->reserved[0] = 0; + curr_sg->reserved[1] = 0; + curr_sg->reserved[2] = 0; + curr_sg->chain_indicator = 0; + curr_sg++; + } + + /* + * Set the last s/g element bit + */ + (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG; + + switch (cmd->sc_data_direction) { + case DMA_TO_DEVICE: + cp->direction &= ~IOACCEL2_DIRECTION_MASK; + cp->direction |= IOACCEL2_DIR_DATA_OUT; + break; + case DMA_FROM_DEVICE: + cp->direction &= ~IOACCEL2_DIRECTION_MASK; + cp->direction |= IOACCEL2_DIR_DATA_IN; + break; + case DMA_NONE: + cp->direction &= ~IOACCEL2_DIRECTION_MASK; + cp->direction |= IOACCEL2_DIR_NO_DATA; + break; + default: + dev_err(&h->pdev->dev, "unknown data direction: %d\n", + cmd->sc_data_direction); + BUG(); + break; + } + } else { + cp->direction &= ~IOACCEL2_DIRECTION_MASK; + cp->direction |= IOACCEL2_DIR_NO_DATA; + } + + /* Set encryption parameters, if necessary */ + set_encrypt_ioaccel2(h, c, cp); + + cp->scsi_nexus = cpu_to_le32(ioaccel_handle); + cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT); + memcpy(cp->cdb, cdb, sizeof(cp->cdb)); + + cp->data_len = cpu_to_le32(total_len); + cp->err_ptr = cpu_to_le64(c->busaddr + + offsetof(struct io_accel2_cmd, error_data)); + cp->err_len = cpu_to_le32(sizeof(cp->error_data)); + + /* fill in sg elements */ + if (use_sg > h->ioaccel_maxsg) { + cp->sg_count = 1; + cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0])); + if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) { + atomic_dec(&phys_disk->ioaccel_cmds_out); + scsi_dma_unmap(cmd); + return -1; + } + } else + cp->sg_count = (u8) use_sg; + + enqueue_cmd_and_start_io(h, c); + return 0; +} + +/* + * Queue a command to the correct I/O accelerator path. + */ +static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, + struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, + u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) +{ + if (!c->scsi_cmd->device) + return -1; + + if (!c->scsi_cmd->device->hostdata) + return -1; + + /* Try to honor the device's queue depth */ + if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) > + phys_disk->queue_depth) { + atomic_dec(&phys_disk->ioaccel_cmds_out); + return IO_ACCEL_INELIGIBLE; + } + if (h->transMethod & CFGTBL_Trans_io_accel1) + return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle, + cdb, cdb_len, scsi3addr, + phys_disk); + else + return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle, + cdb, cdb_len, scsi3addr, + phys_disk); +} + +static void raid_map_helper(struct raid_map_data *map, + int offload_to_mirror, u32 *map_index, u32 *current_group) +{ + if (offload_to_mirror == 0) { + /* use physical disk in the first mirrored group. */ + *map_index %= le16_to_cpu(map->data_disks_per_row); + return; + } + do { + /* determine mirror group that *map_index indicates */ + *current_group = *map_index / + le16_to_cpu(map->data_disks_per_row); + if (offload_to_mirror == *current_group) + continue; + if (*current_group < le16_to_cpu(map->layout_map_count) - 1) { + /* select map index from next group */ + *map_index += le16_to_cpu(map->data_disks_per_row); + (*current_group)++; + } else { + /* select map index from first group */ + *map_index %= le16_to_cpu(map->data_disks_per_row); + *current_group = 0; + } + } while (offload_to_mirror != *current_group); +} + +/* + * Attempt to perform offload RAID mapping for a logical volume I/O. + */ +static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h, + struct CommandList *c) +{ + struct scsi_cmnd *cmd = c->scsi_cmd; + struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; + struct raid_map_data *map = &dev->raid_map; + struct raid_map_disk_data *dd = &map->data[0]; + int is_write = 0; + u32 map_index; + u64 first_block, last_block; + u32 block_cnt; + u32 blocks_per_row; + u64 first_row, last_row; + u32 first_row_offset, last_row_offset; + u32 first_column, last_column; + u64 r0_first_row, r0_last_row; + u32 r5or6_blocks_per_row; + u64 r5or6_first_row, r5or6_last_row; + u32 r5or6_first_row_offset, r5or6_last_row_offset; + u32 r5or6_first_column, r5or6_last_column; + u32 total_disks_per_row; + u32 stripesize; + u32 first_group, last_group, current_group; + u32 map_row; + u32 disk_handle; + u64 disk_block; + u32 disk_block_cnt; + u8 cdb[16]; + u8 cdb_len; + u16 strip_size; +#if BITS_PER_LONG == 32 + u64 tmpdiv; +#endif + int offload_to_mirror; + + if (!dev) + return -1; + + /* check for valid opcode, get LBA and block count */ + switch (cmd->cmnd[0]) { + case WRITE_6: + is_write = 1; + case READ_6: + first_block = (((cmd->cmnd[1] & 0x1F) << 16) | + (cmd->cmnd[2] << 8) | + cmd->cmnd[3]); + block_cnt = cmd->cmnd[4]; + if (block_cnt == 0) + block_cnt = 256; + break; + case WRITE_10: + is_write = 1; + case READ_10: + first_block = + (((u64) cmd->cmnd[2]) << 24) | + (((u64) cmd->cmnd[3]) << 16) | + (((u64) cmd->cmnd[4]) << 8) | + cmd->cmnd[5]; + block_cnt = + (((u32) cmd->cmnd[7]) << 8) | + cmd->cmnd[8]; + break; + case WRITE_12: + is_write = 1; + case READ_12: + first_block = + (((u64) cmd->cmnd[2]) << 24) | + (((u64) cmd->cmnd[3]) << 16) | + (((u64) cmd->cmnd[4]) << 8) | + cmd->cmnd[5]; + block_cnt = + (((u32) cmd->cmnd[6]) << 24) | + (((u32) cmd->cmnd[7]) << 16) | + (((u32) cmd->cmnd[8]) << 8) | + cmd->cmnd[9]; + break; + case WRITE_16: + is_write = 1; + case READ_16: + first_block = + (((u64) cmd->cmnd[2]) << 56) | + (((u64) cmd->cmnd[3]) << 48) | + (((u64) cmd->cmnd[4]) << 40) | + (((u64) cmd->cmnd[5]) << 32) | + (((u64) cmd->cmnd[6]) << 24) | + (((u64) cmd->cmnd[7]) << 16) | + (((u64) cmd->cmnd[8]) << 8) | + cmd->cmnd[9]; + block_cnt = + (((u32) cmd->cmnd[10]) << 24) | + (((u32) cmd->cmnd[11]) << 16) | + (((u32) cmd->cmnd[12]) << 8) | + cmd->cmnd[13]; + break; + default: + return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */ + } + last_block = first_block + block_cnt - 1; + + /* check for write to non-RAID-0 */ + if (is_write && dev->raid_level != 0) + return IO_ACCEL_INELIGIBLE; + + /* check for invalid block or wraparound */ + if (last_block >= le64_to_cpu(map->volume_blk_cnt) || + last_block < first_block) + return IO_ACCEL_INELIGIBLE; + + /* calculate stripe information for the request */ + blocks_per_row = le16_to_cpu(map->data_disks_per_row) * + le16_to_cpu(map->strip_size); + strip_size = le16_to_cpu(map->strip_size); +#if BITS_PER_LONG == 32 + tmpdiv = first_block; + (void) do_div(tmpdiv, blocks_per_row); + first_row = tmpdiv; + tmpdiv = last_block; + (void) do_div(tmpdiv, blocks_per_row); + last_row = tmpdiv; + first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); + last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); + tmpdiv = first_row_offset; + (void) do_div(tmpdiv, strip_size); + first_column = tmpdiv; + tmpdiv = last_row_offset; + (void) do_div(tmpdiv, strip_size); + last_column = tmpdiv; +#else + first_row = first_block / blocks_per_row; + last_row = last_block / blocks_per_row; + first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); + last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); + first_column = first_row_offset / strip_size; + last_column = last_row_offset / strip_size; +#endif + + /* if this isn't a single row/column then give to the controller */ + if ((first_row != last_row) || (first_column != last_column)) + return IO_ACCEL_INELIGIBLE; + + /* proceeding with driver mapping */ + total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + + le16_to_cpu(map->metadata_disks_per_row); + map_row = ((u32)(first_row >> map->parity_rotation_shift)) % + le16_to_cpu(map->row_cnt); + map_index = (map_row * total_disks_per_row) + first_column; + + switch (dev->raid_level) { + case HPSA_RAID_0: + break; /* nothing special to do */ + case HPSA_RAID_1: + /* Handles load balance across RAID 1 members. + * (2-drive R1 and R10 with even # of drives.) + * Appropriate for SSDs, not optimal for HDDs + * Ensure we have the correct raid_map. + */ + if (le16_to_cpu(map->layout_map_count) != 2) { + hpsa_turn_off_ioaccel_for_device(dev); + return IO_ACCEL_INELIGIBLE; + } + if (dev->offload_to_mirror) + map_index += le16_to_cpu(map->data_disks_per_row); + dev->offload_to_mirror = !dev->offload_to_mirror; + break; + case HPSA_RAID_ADM: + /* Handles N-way mirrors (R1-ADM) + * and R10 with # of drives divisible by 3.) + * Ensure we have the correct raid_map. + */ + if (le16_to_cpu(map->layout_map_count) != 3) { + hpsa_turn_off_ioaccel_for_device(dev); + return IO_ACCEL_INELIGIBLE; + } + + offload_to_mirror = dev->offload_to_mirror; + raid_map_helper(map, offload_to_mirror, + &map_index, ¤t_group); + /* set mirror group to use next time */ + offload_to_mirror = + (offload_to_mirror >= + le16_to_cpu(map->layout_map_count) - 1) + ? 0 : offload_to_mirror + 1; + dev->offload_to_mirror = offload_to_mirror; + /* Avoid direct use of dev->offload_to_mirror within this + * function since multiple threads might simultaneously + * increment it beyond the range of dev->layout_map_count -1. + */ + break; + case HPSA_RAID_5: + case HPSA_RAID_6: + if (le16_to_cpu(map->layout_map_count) <= 1) + break; + + /* Verify first and last block are in same RAID group */ + r5or6_blocks_per_row = + le16_to_cpu(map->strip_size) * + le16_to_cpu(map->data_disks_per_row); + if (r5or6_blocks_per_row == 0) { + hpsa_turn_off_ioaccel_for_device(dev); + return IO_ACCEL_INELIGIBLE; + } + stripesize = r5or6_blocks_per_row * + le16_to_cpu(map->layout_map_count); +#if BITS_PER_LONG == 32 + tmpdiv = first_block; + first_group = do_div(tmpdiv, stripesize); + tmpdiv = first_group; + (void) do_div(tmpdiv, r5or6_blocks_per_row); + first_group = tmpdiv; + tmpdiv = last_block; + last_group = do_div(tmpdiv, stripesize); + tmpdiv = last_group; + (void) do_div(tmpdiv, r5or6_blocks_per_row); + last_group = tmpdiv; +#else + first_group = (first_block % stripesize) / r5or6_blocks_per_row; + last_group = (last_block % stripesize) / r5or6_blocks_per_row; +#endif + if (first_group != last_group) + return IO_ACCEL_INELIGIBLE; + + /* Verify request is in a single row of RAID 5/6 */ +#if BITS_PER_LONG == 32 + tmpdiv = first_block; + (void) do_div(tmpdiv, stripesize); + first_row = r5or6_first_row = r0_first_row = tmpdiv; + tmpdiv = last_block; + (void) do_div(tmpdiv, stripesize); + r5or6_last_row = r0_last_row = tmpdiv; +#else + first_row = r5or6_first_row = r0_first_row = + first_block / stripesize; + r5or6_last_row = r0_last_row = last_block / stripesize; +#endif + if (r5or6_first_row != r5or6_last_row) + return IO_ACCEL_INELIGIBLE; + + + /* Verify request is in a single column */ +#if BITS_PER_LONG == 32 + tmpdiv = first_block; + first_row_offset = do_div(tmpdiv, stripesize); + tmpdiv = first_row_offset; + first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row); + r5or6_first_row_offset = first_row_offset; + tmpdiv = last_block; + r5or6_last_row_offset = do_div(tmpdiv, stripesize); + tmpdiv = r5or6_last_row_offset; + r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row); + tmpdiv = r5or6_first_row_offset; + (void) do_div(tmpdiv, map->strip_size); + first_column = r5or6_first_column = tmpdiv; + tmpdiv = r5or6_last_row_offset; + (void) do_div(tmpdiv, map->strip_size); + r5or6_last_column = tmpdiv; +#else + first_row_offset = r5or6_first_row_offset = + (u32)((first_block % stripesize) % + r5or6_blocks_per_row); + + r5or6_last_row_offset = + (u32)((last_block % stripesize) % + r5or6_blocks_per_row); + + first_column = r5or6_first_column = + r5or6_first_row_offset / le16_to_cpu(map->strip_size); + r5or6_last_column = + r5or6_last_row_offset / le16_to_cpu(map->strip_size); +#endif + if (r5or6_first_column != r5or6_last_column) + return IO_ACCEL_INELIGIBLE; + + /* Request is eligible */ + map_row = ((u32)(first_row >> map->parity_rotation_shift)) % + le16_to_cpu(map->row_cnt); + + map_index = (first_group * + (le16_to_cpu(map->row_cnt) * total_disks_per_row)) + + (map_row * total_disks_per_row) + first_column; + break; + default: + return IO_ACCEL_INELIGIBLE; + } + + if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES)) + return IO_ACCEL_INELIGIBLE; + + c->phys_disk = dev->phys_disk[map_index]; + if (!c->phys_disk) + return IO_ACCEL_INELIGIBLE; + + disk_handle = dd[map_index].ioaccel_handle; + disk_block = le64_to_cpu(map->disk_starting_blk) + + first_row * le16_to_cpu(map->strip_size) + + (first_row_offset - first_column * + le16_to_cpu(map->strip_size)); + disk_block_cnt = block_cnt; + + /* handle differing logical/physical block sizes */ + if (map->phys_blk_shift) { + disk_block <<= map->phys_blk_shift; + disk_block_cnt <<= map->phys_blk_shift; + } + BUG_ON(disk_block_cnt > 0xffff); + + /* build the new CDB for the physical disk I/O */ + if (disk_block > 0xffffffff) { + cdb[0] = is_write ? WRITE_16 : READ_16; + cdb[1] = 0; + cdb[2] = (u8) (disk_block >> 56); + cdb[3] = (u8) (disk_block >> 48); + cdb[4] = (u8) (disk_block >> 40); + cdb[5] = (u8) (disk_block >> 32); + cdb[6] = (u8) (disk_block >> 24); + cdb[7] = (u8) (disk_block >> 16); + cdb[8] = (u8) (disk_block >> 8); + cdb[9] = (u8) (disk_block); + cdb[10] = (u8) (disk_block_cnt >> 24); + cdb[11] = (u8) (disk_block_cnt >> 16); + cdb[12] = (u8) (disk_block_cnt >> 8); + cdb[13] = (u8) (disk_block_cnt); + cdb[14] = 0; + cdb[15] = 0; + cdb_len = 16; + } else { + cdb[0] = is_write ? WRITE_10 : READ_10; + cdb[1] = 0; + cdb[2] = (u8) (disk_block >> 24); + cdb[3] = (u8) (disk_block >> 16); + cdb[4] = (u8) (disk_block >> 8); + cdb[5] = (u8) (disk_block); + cdb[6] = 0; + cdb[7] = (u8) (disk_block_cnt >> 8); + cdb[8] = (u8) (disk_block_cnt); + cdb[9] = 0; + cdb_len = 10; + } + return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len, + dev->scsi3addr, + dev->phys_disk[map_index]); +} + +/* + * Submit commands down the "normal" RAID stack path + * All callers to hpsa_ciss_submit must check lockup_detected + * beforehand, before (opt.) and after calling cmd_alloc + */ +static int hpsa_ciss_submit(struct ctlr_info *h, + struct CommandList *c, struct scsi_cmnd *cmd, + unsigned char scsi3addr[]) +{ + cmd->host_scribble = (unsigned char *) c; + c->cmd_type = CMD_SCSI; + c->scsi_cmd = cmd; + c->Header.ReplyQueue = 0; /* unused in simple mode */ + memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); + c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT)); + + /* Fill in the request block... */ + + c->Request.Timeout = 0; + BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); + c->Request.CDBLen = cmd->cmd_len; + memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); + switch (cmd->sc_data_direction) { + case DMA_TO_DEVICE: + c->Request.type_attr_dir = + TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE); + break; + case DMA_FROM_DEVICE: + c->Request.type_attr_dir = + TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ); + break; + case DMA_NONE: + c->Request.type_attr_dir = + TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE); + break; + case DMA_BIDIRECTIONAL: + /* This can happen if a buggy application does a scsi passthru + * and sets both inlen and outlen to non-zero. ( see + * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) + */ + + c->Request.type_attr_dir = + TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD); + /* This is technically wrong, and hpsa controllers should + * reject it with CMD_INVALID, which is the most correct + * response, but non-fibre backends appear to let it + * slide by, and give the same results as if this field + * were set correctly. Either way is acceptable for + * our purposes here. + */ + + break; + + default: + dev_err(&h->pdev->dev, "unknown data direction: %d\n", + cmd->sc_data_direction); + BUG(); + break; + } + + if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ + hpsa_cmd_resolve_and_free(h, c); + return SCSI_MLQUEUE_HOST_BUSY; + } + enqueue_cmd_and_start_io(h, c); + /* the cmd'll come back via intr handler in complete_scsi_command() */ + return 0; +} + +static void hpsa_cmd_init(struct ctlr_info *h, int index, + struct CommandList *c) +{ + dma_addr_t cmd_dma_handle, err_dma_handle; + + /* Zero out all of commandlist except the last field, refcount */ + memset(c, 0, offsetof(struct CommandList, refcount)); + c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT)); + cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); + c->err_info = h->errinfo_pool + index; + memset(c->err_info, 0, sizeof(*c->err_info)); + err_dma_handle = h->errinfo_pool_dhandle + + index * sizeof(*c->err_info); + c->cmdindex = index; + c->busaddr = (u32) cmd_dma_handle; + c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle); + c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info)); + c->h = h; + c->scsi_cmd = SCSI_CMD_IDLE; +} + +static void hpsa_preinitialize_commands(struct ctlr_info *h) +{ + int i; + + for (i = 0; i < h->nr_cmds; i++) { + struct CommandList *c = h->cmd_pool + i; + + hpsa_cmd_init(h, i, c); + atomic_set(&c->refcount, 0); + } +} + +static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index, + struct CommandList *c) +{ + dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); + + BUG_ON(c->cmdindex != index); + + memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); + memset(c->err_info, 0, sizeof(*c->err_info)); + c->busaddr = (u32) cmd_dma_handle; +} + +static int hpsa_ioaccel_submit(struct ctlr_info *h, + struct CommandList *c, struct scsi_cmnd *cmd, + unsigned char *scsi3addr) +{ + struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; + int rc = IO_ACCEL_INELIGIBLE; + + if (!dev) + return SCSI_MLQUEUE_HOST_BUSY; + + cmd->host_scribble = (unsigned char *) c; + + if (dev->offload_enabled) { + hpsa_cmd_init(h, c->cmdindex, c); + c->cmd_type = CMD_SCSI; + c->scsi_cmd = cmd; + rc = hpsa_scsi_ioaccel_raid_map(h, c); + if (rc < 0) /* scsi_dma_map failed. */ + rc = SCSI_MLQUEUE_HOST_BUSY; + } else if (dev->hba_ioaccel_enabled) { + hpsa_cmd_init(h, c->cmdindex, c); + c->cmd_type = CMD_SCSI; + c->scsi_cmd = cmd; + rc = hpsa_scsi_ioaccel_direct_map(h, c); + if (rc < 0) /* scsi_dma_map failed. */ + rc = SCSI_MLQUEUE_HOST_BUSY; + } + return rc; +} + +static void hpsa_command_resubmit_worker(struct work_struct *work) +{ + struct scsi_cmnd *cmd; + struct hpsa_scsi_dev_t *dev; + struct CommandList *c = container_of(work, struct CommandList, work); + + cmd = c->scsi_cmd; + dev = cmd->device->hostdata; + if (!dev) { + cmd->result = DID_NO_CONNECT << 16; + return hpsa_cmd_free_and_done(c->h, c, cmd); + } + if (c->reset_pending) + return hpsa_cmd_free_and_done(c->h, c, cmd); + if (c->cmd_type == CMD_IOACCEL2) { + struct ctlr_info *h = c->h; + struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; + int rc; + + if (c2->error_data.serv_response == + IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) { + rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr); + if (rc == 0) + return; + if (rc == SCSI_MLQUEUE_HOST_BUSY) { + /* + * If we get here, it means dma mapping failed. + * Try again via scsi mid layer, which will + * then get SCSI_MLQUEUE_HOST_BUSY. + */ + cmd->result = DID_IMM_RETRY << 16; + return hpsa_cmd_free_and_done(h, c, cmd); + } + /* else, fall thru and resubmit down CISS path */ + } + } + hpsa_cmd_partial_init(c->h, c->cmdindex, c); + if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) { + /* + * If we get here, it means dma mapping failed. Try + * again via scsi mid layer, which will then get + * SCSI_MLQUEUE_HOST_BUSY. + * + * hpsa_ciss_submit will have already freed c + * if it encountered a dma mapping failure. + */ + cmd->result = DID_IMM_RETRY << 16; + cmd->scsi_done(cmd); + } +} + +/* Running in struct Scsi_Host->host_lock less mode */ +static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd) +{ + struct ctlr_info *h; + struct hpsa_scsi_dev_t *dev; + unsigned char scsi3addr[8]; + struct CommandList *c; + int rc = 0; + + /* Get the ptr to our adapter structure out of cmd->host. */ + h = sdev_to_hba(cmd->device); + + BUG_ON(cmd->request->tag < 0); + + dev = cmd->device->hostdata; + if (!dev) { + cmd->result = DID_NO_CONNECT << 16; + cmd->scsi_done(cmd); + return 0; + } + + if (dev->removed) { + cmd->result = DID_NO_CONNECT << 16; + cmd->scsi_done(cmd); + return 0; + } + + memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); + + if (unlikely(lockup_detected(h))) { + cmd->result = DID_NO_CONNECT << 16; + cmd->scsi_done(cmd); + return 0; + } + c = cmd_tagged_alloc(h, cmd); + + /* + * This is necessary because the SML doesn't zero out this field during + * error recovery. + */ + cmd->result = 0; + + /* + * Call alternate submit routine for I/O accelerated commands. + * Retries always go down the normal I/O path. + */ + if (likely(cmd->retries == 0 && + !blk_rq_is_passthrough(cmd->request) && + h->acciopath_status)) { + rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr); + if (rc == 0) + return 0; + if (rc == SCSI_MLQUEUE_HOST_BUSY) { + hpsa_cmd_resolve_and_free(h, c); + return SCSI_MLQUEUE_HOST_BUSY; + } + } + return hpsa_ciss_submit(h, c, cmd, scsi3addr); +} + +static void hpsa_scan_complete(struct ctlr_info *h) +{ + unsigned long flags; + + spin_lock_irqsave(&h->scan_lock, flags); + h->scan_finished = 1; + wake_up(&h->scan_wait_queue); + spin_unlock_irqrestore(&h->scan_lock, flags); +} + +static void hpsa_scan_start(struct Scsi_Host *sh) +{ + struct ctlr_info *h = shost_to_hba(sh); + unsigned long flags; + + /* + * Don't let rescans be initiated on a controller known to be locked + * up. If the controller locks up *during* a rescan, that thread is + * probably hosed, but at least we can prevent new rescan threads from + * piling up on a locked up controller. + */ + if (unlikely(lockup_detected(h))) + return hpsa_scan_complete(h); + + /* + * If a scan is already waiting to run, no need to add another + */ + spin_lock_irqsave(&h->scan_lock, flags); + if (h->scan_waiting) { + spin_unlock_irqrestore(&h->scan_lock, flags); + return; + } + + spin_unlock_irqrestore(&h->scan_lock, flags); + + /* wait until any scan already in progress is finished. */ + while (1) { + spin_lock_irqsave(&h->scan_lock, flags); + if (h->scan_finished) + break; + h->scan_waiting = 1; + spin_unlock_irqrestore(&h->scan_lock, flags); + wait_event(h->scan_wait_queue, h->scan_finished); + /* Note: We don't need to worry about a race between this + * thread and driver unload because the midlayer will + * have incremented the reference count, so unload won't + * happen if we're in here. + */ + } + h->scan_finished = 0; /* mark scan as in progress */ + h->scan_waiting = 0; + spin_unlock_irqrestore(&h->scan_lock, flags); + + if (unlikely(lockup_detected(h))) + return hpsa_scan_complete(h); + + /* + * Do the scan after a reset completion + */ + spin_lock_irqsave(&h->reset_lock, flags); + if (h->reset_in_progress) { + h->drv_req_rescan = 1; + spin_unlock_irqrestore(&h->reset_lock, flags); + hpsa_scan_complete(h); + return; + } + spin_unlock_irqrestore(&h->reset_lock, flags); + + hpsa_update_scsi_devices(h); + + hpsa_scan_complete(h); +} + +static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth) +{ + struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata; + + if (!logical_drive) + return -ENODEV; + + if (qdepth < 1) + qdepth = 1; + else if (qdepth > logical_drive->queue_depth) + qdepth = logical_drive->queue_depth; + + return scsi_change_queue_depth(sdev, qdepth); +} + +static int hpsa_scan_finished(struct Scsi_Host *sh, + unsigned long elapsed_time) +{ + struct ctlr_info *h = shost_to_hba(sh); + unsigned long flags; + int finished; + + spin_lock_irqsave(&h->scan_lock, flags); + finished = h->scan_finished; + spin_unlock_irqrestore(&h->scan_lock, flags); + return finished; +} + +static int hpsa_scsi_host_alloc(struct ctlr_info *h) +{ + struct Scsi_Host *sh; + + sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); + if (sh == NULL) { + dev_err(&h->pdev->dev, "scsi_host_alloc failed\n"); + return -ENOMEM; + } + + sh->io_port = 0; + sh->n_io_port = 0; + sh->this_id = -1; + sh->max_channel = 3; + sh->max_cmd_len = MAX_COMMAND_SIZE; + sh->max_lun = HPSA_MAX_LUN; + sh->max_id = HPSA_MAX_LUN; + sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS; + sh->cmd_per_lun = sh->can_queue; + sh->sg_tablesize = h->maxsgentries; + sh->transportt = hpsa_sas_transport_template; + sh->hostdata[0] = (unsigned long) h; + sh->irq = pci_irq_vector(h->pdev, 0); + sh->unique_id = sh->irq; + + h->scsi_host = sh; + return 0; +} + +static int hpsa_scsi_add_host(struct ctlr_info *h) +{ + int rv; + + rv = scsi_add_host(h->scsi_host, &h->pdev->dev); + if (rv) { + dev_err(&h->pdev->dev, "scsi_add_host failed\n"); + return rv; + } + scsi_scan_host(h->scsi_host); + return 0; +} + +/* + * The block layer has already gone to the trouble of picking out a unique, + * small-integer tag for this request. We use an offset from that value as + * an index to select our command block. (The offset allows us to reserve the + * low-numbered entries for our own uses.) + */ +static int hpsa_get_cmd_index(struct scsi_cmnd *scmd) +{ + int idx = scmd->request->tag; + + if (idx < 0) + return idx; + + /* Offset to leave space for internal cmds. */ + return idx += HPSA_NRESERVED_CMDS; +} + +/* + * Send a TEST_UNIT_READY command to the specified LUN using the specified + * reply queue; returns zero if the unit is ready, and non-zero otherwise. + */ +static int hpsa_send_test_unit_ready(struct ctlr_info *h, + struct CommandList *c, unsigned char lunaddr[], + int reply_queue) +{ + int rc; + + /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */ + (void) fill_cmd(c, TEST_UNIT_READY, h, + NULL, 0, 0, lunaddr, TYPE_CMD); + rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT); + if (rc) + return rc; + /* no unmap needed here because no data xfer. */ + + /* Check if the unit is already ready. */ + if (c->err_info->CommandStatus == CMD_SUCCESS) + return 0; + + /* + * The first command sent after reset will receive "unit attention" to + * indicate that the LUN has been reset...this is actually what we're + * looking for (but, success is good too). + */ + if (c->err_info->CommandStatus == CMD_TARGET_STATUS && + c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && + (c->err_info->SenseInfo[2] == NO_SENSE || + c->err_info->SenseInfo[2] == UNIT_ATTENTION)) + return 0; + + return 1; +} + +/* + * Wait for a TEST_UNIT_READY command to complete, retrying as necessary; + * returns zero when the unit is ready, and non-zero when giving up. + */ +static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h, + struct CommandList *c, + unsigned char lunaddr[], int reply_queue) +{ + int rc; + int count = 0; + int waittime = 1; /* seconds */ + + /* Send test unit ready until device ready, or give up. */ + for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) { + + /* + * Wait for a bit. do this first, because if we send + * the TUR right away, the reset will just abort it. + */ + msleep(1000 * waittime); + + rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue); + if (!rc) + break; + + /* Increase wait time with each try, up to a point. */ + if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) + waittime *= 2; + + dev_warn(&h->pdev->dev, + "waiting %d secs for device to become ready.\n", + waittime); + } + + return rc; +} + +static int wait_for_device_to_become_ready(struct ctlr_info *h, + unsigned char lunaddr[], + int reply_queue) +{ + int first_queue; + int last_queue; + int rq; + int rc = 0; + struct CommandList *c; + + c = cmd_alloc(h); + + /* + * If no specific reply queue was requested, then send the TUR + * repeatedly, requesting a reply on each reply queue; otherwise execute + * the loop exactly once using only the specified queue. + */ + if (reply_queue == DEFAULT_REPLY_QUEUE) { + first_queue = 0; + last_queue = h->nreply_queues - 1; + } else { + first_queue = reply_queue; + last_queue = reply_queue; + } + + for (rq = first_queue; rq <= last_queue; rq++) { + rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq); + if (rc) + break; + } + + if (rc) + dev_warn(&h->pdev->dev, "giving up on device.\n"); + else + dev_warn(&h->pdev->dev, "device is ready.\n"); + + cmd_free(h, c); + return rc; +} + +/* Need at least one of these error handlers to keep ../scsi/hosts.c from + * complaining. Doing a host- or bus-reset can't do anything good here. + */ +static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) +{ + int rc = SUCCESS; + struct ctlr_info *h; + struct hpsa_scsi_dev_t *dev; + u8 reset_type; + char msg[48]; + unsigned long flags; + + /* find the controller to which the command to be aborted was sent */ + h = sdev_to_hba(scsicmd->device); + if (h == NULL) /* paranoia */ + return FAILED; + + spin_lock_irqsave(&h->reset_lock, flags); + h->reset_in_progress = 1; + spin_unlock_irqrestore(&h->reset_lock, flags); + + if (lockup_detected(h)) { + rc = FAILED; + goto return_reset_status; + } + + dev = scsicmd->device->hostdata; + if (!dev) { + dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__); + rc = FAILED; + goto return_reset_status; + } + + if (dev->devtype == TYPE_ENCLOSURE) { + rc = SUCCESS; + goto return_reset_status; + } + + /* if controller locked up, we can guarantee command won't complete */ + if (lockup_detected(h)) { + snprintf(msg, sizeof(msg), + "cmd %d RESET FAILED, lockup detected", + hpsa_get_cmd_index(scsicmd)); + hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); + rc = FAILED; + goto return_reset_status; + } + + /* this reset request might be the result of a lockup; check */ + if (detect_controller_lockup(h)) { + snprintf(msg, sizeof(msg), + "cmd %d RESET FAILED, new lockup detected", + hpsa_get_cmd_index(scsicmd)); + hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); + rc = FAILED; + goto return_reset_status; + } + + /* Do not attempt on controller */ + if (is_hba_lunid(dev->scsi3addr)) { + rc = SUCCESS; + goto return_reset_status; + } + + if (is_logical_dev_addr_mode(dev->scsi3addr)) + reset_type = HPSA_DEVICE_RESET_MSG; + else + reset_type = HPSA_PHYS_TARGET_RESET; + + sprintf(msg, "resetting %s", + reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical "); + hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); + + /* send a reset to the SCSI LUN which the command was sent to */ + rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type, + DEFAULT_REPLY_QUEUE); + if (rc == 0) + rc = SUCCESS; + else + rc = FAILED; + + sprintf(msg, "reset %s %s", + reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ", + rc == SUCCESS ? "completed successfully" : "failed"); + hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); + +return_reset_status: + spin_lock_irqsave(&h->reset_lock, flags); + h->reset_in_progress = 0; + spin_unlock_irqrestore(&h->reset_lock, flags); + return rc; +} + +/* + * For operations with an associated SCSI command, a command block is allocated + * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the + * block request tag as an index into a table of entries. cmd_tagged_free() is + * the complement, although cmd_free() may be called instead. + */ +static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, + struct scsi_cmnd *scmd) +{ + int idx = hpsa_get_cmd_index(scmd); + struct CommandList *c = h->cmd_pool + idx; + + if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) { + dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n", + idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1); + /* The index value comes from the block layer, so if it's out of + * bounds, it's probably not our bug. + */ + BUG(); + } + + atomic_inc(&c->refcount); + if (unlikely(!hpsa_is_cmd_idle(c))) { + /* + * We expect that the SCSI layer will hand us a unique tag + * value. Thus, there should never be a collision here between + * two requests...because if the selected command isn't idle + * then someone is going to be very disappointed. + */ + dev_err(&h->pdev->dev, + "tag collision (tag=%d) in cmd_tagged_alloc().\n", + idx); + if (c->scsi_cmd != NULL) + scsi_print_command(c->scsi_cmd); + scsi_print_command(scmd); + } + + hpsa_cmd_partial_init(h, idx, c); + return c; +} + +static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c) +{ + /* + * Release our reference to the block. We don't need to do anything + * else to free it, because it is accessed by index. + */ + (void)atomic_dec(&c->refcount); +} + +/* + * For operations that cannot sleep, a command block is allocated at init, + * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track + * which ones are free or in use. Lock must be held when calling this. + * cmd_free() is the complement. + * This function never gives up and returns NULL. If it hangs, + * another thread must call cmd_free() to free some tags. + */ + +static struct CommandList *cmd_alloc(struct ctlr_info *h) +{ + struct CommandList *c; + int refcount, i; + int offset = 0; + + /* + * There is some *extremely* small but non-zero chance that that + * multiple threads could get in here, and one thread could + * be scanning through the list of bits looking for a free + * one, but the free ones are always behind him, and other + * threads sneak in behind him and eat them before he can + * get to them, so that while there is always a free one, a + * very unlucky thread might be starved anyway, never able to + * beat the other threads. In reality, this happens so + * infrequently as to be indistinguishable from never. + * + * Note that we start allocating commands before the SCSI host structure + * is initialized. Since the search starts at bit zero, this + * all works, since we have at least one command structure available; + * however, it means that the structures with the low indexes have to be + * reserved for driver-initiated requests, while requests from the block + * layer will use the higher indexes. + */ + + for (;;) { + i = find_next_zero_bit(h->cmd_pool_bits, + HPSA_NRESERVED_CMDS, + offset); + if (unlikely(i >= HPSA_NRESERVED_CMDS)) { + offset = 0; + continue; + } + c = h->cmd_pool + i; + refcount = atomic_inc_return(&c->refcount); + if (unlikely(refcount > 1)) { + cmd_free(h, c); /* already in use */ + offset = (i + 1) % HPSA_NRESERVED_CMDS; + continue; + } + set_bit(i & (BITS_PER_LONG - 1), + h->cmd_pool_bits + (i / BITS_PER_LONG)); + break; /* it's ours now. */ + } + hpsa_cmd_partial_init(h, i, c); + return c; +} + +/* + * This is the complementary operation to cmd_alloc(). Note, however, in some + * corner cases it may also be used to free blocks allocated by + * cmd_tagged_alloc() in which case the ref-count decrement does the trick and + * the clear-bit is harmless. + */ +static void cmd_free(struct ctlr_info *h, struct CommandList *c) +{ + if (atomic_dec_and_test(&c->refcount)) { + int i; + + i = c - h->cmd_pool; + clear_bit(i & (BITS_PER_LONG - 1), + h->cmd_pool_bits + (i / BITS_PER_LONG)); + } +} + +#ifdef CONFIG_COMPAT + +static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, + void __user *arg) +{ + IOCTL32_Command_struct __user *arg32 = + (IOCTL32_Command_struct __user *) arg; + IOCTL_Command_struct arg64; + IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); + int err; + u32 cp; + + memset(&arg64, 0, sizeof(arg64)); + err = 0; + err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, + sizeof(arg64.LUN_info)); + err |= copy_from_user(&arg64.Request, &arg32->Request, + sizeof(arg64.Request)); + err |= copy_from_user(&arg64.error_info, &arg32->error_info, + sizeof(arg64.error_info)); + err |= get_user(arg64.buf_size, &arg32->buf_size); + err |= get_user(cp, &arg32->buf); + arg64.buf = compat_ptr(cp); + err |= copy_to_user(p, &arg64, sizeof(arg64)); + + if (err) + return -EFAULT; + + err = hpsa_ioctl(dev, CCISS_PASSTHRU, p); + if (err) + return err; + err |= copy_in_user(&arg32->error_info, &p->error_info, + sizeof(arg32->error_info)); + if (err) + return -EFAULT; + return err; +} + +static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, + int cmd, void __user *arg) +{ + BIG_IOCTL32_Command_struct __user *arg32 = + (BIG_IOCTL32_Command_struct __user *) arg; + BIG_IOCTL_Command_struct arg64; + BIG_IOCTL_Command_struct __user *p = + compat_alloc_user_space(sizeof(arg64)); + int err; + u32 cp; + + memset(&arg64, 0, sizeof(arg64)); + err = 0; + err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, + sizeof(arg64.LUN_info)); + err |= copy_from_user(&arg64.Request, &arg32->Request, + sizeof(arg64.Request)); + err |= copy_from_user(&arg64.error_info, &arg32->error_info, + sizeof(arg64.error_info)); + err |= get_user(arg64.buf_size, &arg32->buf_size); + err |= get_user(arg64.malloc_size, &arg32->malloc_size); + err |= get_user(cp, &arg32->buf); + arg64.buf = compat_ptr(cp); + err |= copy_to_user(p, &arg64, sizeof(arg64)); + + if (err) + return -EFAULT; + + err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p); + if (err) + return err; + err |= copy_in_user(&arg32->error_info, &p->error_info, + sizeof(arg32->error_info)); + if (err) + return -EFAULT; + return err; +} + +static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg) +{ + switch (cmd) { + case CCISS_GETPCIINFO: + case CCISS_GETINTINFO: + case CCISS_SETINTINFO: + case CCISS_GETNODENAME: + case CCISS_SETNODENAME: + case CCISS_GETHEARTBEAT: + case CCISS_GETBUSTYPES: + case CCISS_GETFIRMVER: + case CCISS_GETDRIVVER: + case CCISS_REVALIDVOLS: + case CCISS_DEREGDISK: + case CCISS_REGNEWDISK: + case CCISS_REGNEWD: + case CCISS_RESCANDISK: + case CCISS_GETLUNINFO: + return hpsa_ioctl(dev, cmd, arg); + + case CCISS_PASSTHRU32: + return hpsa_ioctl32_passthru(dev, cmd, arg); + case CCISS_BIG_PASSTHRU32: + return hpsa_ioctl32_big_passthru(dev, cmd, arg); + + default: + return -ENOIOCTLCMD; + } +} +#endif + +static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) +{ + struct hpsa_pci_info pciinfo; + + if (!argp) + return -EINVAL; + pciinfo.domain = pci_domain_nr(h->pdev->bus); + pciinfo.bus = h->pdev->bus->number; + pciinfo.dev_fn = h->pdev->devfn; + pciinfo.board_id = h->board_id; + if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) + return -EFAULT; + return 0; +} + +static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) +{ + DriverVer_type DriverVer; + unsigned char vmaj, vmin, vsubmin; + int rc; + + rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", + &vmaj, &vmin, &vsubmin); + if (rc != 3) { + dev_info(&h->pdev->dev, "driver version string '%s' " + "unrecognized.", HPSA_DRIVER_VERSION); + vmaj = 0; + vmin = 0; + vsubmin = 0; + } + DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; + if (!argp) + return -EINVAL; + if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) + return -EFAULT; + return 0; +} + +static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) +{ + IOCTL_Command_struct iocommand; + struct CommandList *c; + char *buff = NULL; + u64 temp64; + int rc = 0; + + if (!argp) + return -EINVAL; + if (!capable(CAP_SYS_RAWIO)) + return -EPERM; + if (copy_from_user(&iocommand, argp, sizeof(iocommand))) + return -EFAULT; + if ((iocommand.buf_size < 1) && + (iocommand.Request.Type.Direction != XFER_NONE)) { + return -EINVAL; + } + if (iocommand.buf_size > 0) { + buff = kmalloc(iocommand.buf_size, GFP_KERNEL); + if (buff == NULL) + return -ENOMEM; + if (iocommand.Request.Type.Direction & XFER_WRITE) { + /* Copy the data into the buffer we created */ + if (copy_from_user(buff, iocommand.buf, + iocommand.buf_size)) { + rc = -EFAULT; + goto out_kfree; + } + } else { + memset(buff, 0, iocommand.buf_size); + } + } + c = cmd_alloc(h); + + /* Fill in the command type */ + c->cmd_type = CMD_IOCTL_PEND; + c->scsi_cmd = SCSI_CMD_BUSY; + /* Fill in Command Header */ + c->Header.ReplyQueue = 0; /* unused in simple mode */ + if (iocommand.buf_size > 0) { /* buffer to fill */ + c->Header.SGList = 1; + c->Header.SGTotal = cpu_to_le16(1); + } else { /* no buffers to fill */ + c->Header.SGList = 0; + c->Header.SGTotal = cpu_to_le16(0); + } + memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); + + /* Fill in Request block */ + memcpy(&c->Request, &iocommand.Request, + sizeof(c->Request)); + + /* Fill in the scatter gather information */ + if (iocommand.buf_size > 0) { + temp64 = pci_map_single(h->pdev, buff, + iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); + if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) { + c->SG[0].Addr = cpu_to_le64(0); + c->SG[0].Len = cpu_to_le32(0); + rc = -ENOMEM; + goto out; + } + c->SG[0].Addr = cpu_to_le64(temp64); + c->SG[0].Len = cpu_to_le32(iocommand.buf_size); + c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */ + } + rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, + NO_TIMEOUT); + if (iocommand.buf_size > 0) + hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); + check_ioctl_unit_attention(h, c); + if (rc) { + rc = -EIO; + goto out; + } + + /* Copy the error information out */ + memcpy(&iocommand.error_info, c->err_info, + sizeof(iocommand.error_info)); + if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { + rc = -EFAULT; + goto out; + } + if ((iocommand.Request.Type.Direction & XFER_READ) && + iocommand.buf_size > 0) { + /* Copy the data out of the buffer we created */ + if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { + rc = -EFAULT; + goto out; + } + } +out: + cmd_free(h, c); +out_kfree: + kfree(buff); + return rc; +} + +static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) +{ + BIG_IOCTL_Command_struct *ioc; + struct CommandList *c; + unsigned char **buff = NULL; + int *buff_size = NULL; + u64 temp64; + BYTE sg_used = 0; + int status = 0; + u32 left; + u32 sz; + BYTE __user *data_ptr; + + if (!argp) + return -EINVAL; + if (!capable(CAP_SYS_RAWIO)) + return -EPERM; + ioc = kmalloc(sizeof(*ioc), GFP_KERNEL); + if (!ioc) { + status = -ENOMEM; + goto cleanup1; + } + if (copy_from_user(ioc, argp, sizeof(*ioc))) { + status = -EFAULT; + goto cleanup1; + } + if ((ioc->buf_size < 1) && + (ioc->Request.Type.Direction != XFER_NONE)) { + status = -EINVAL; + goto cleanup1; + } + /* Check kmalloc limits using all SGs */ + if (ioc->malloc_size > MAX_KMALLOC_SIZE) { + status = -EINVAL; + goto cleanup1; + } + if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) { + status = -EINVAL; + goto cleanup1; + } + buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL); + if (!buff) { + status = -ENOMEM; + goto cleanup1; + } + buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL); + if (!buff_size) { + status = -ENOMEM; + goto cleanup1; + } + left = ioc->buf_size; + data_ptr = ioc->buf; + while (left) { + sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; + buff_size[sg_used] = sz; + buff[sg_used] = kmalloc(sz, GFP_KERNEL); + if (buff[sg_used] == NULL) { + status = -ENOMEM; + goto cleanup1; + } + if (ioc->Request.Type.Direction & XFER_WRITE) { + if (copy_from_user(buff[sg_used], data_ptr, sz)) { + status = -EFAULT; + goto cleanup1; + } + } else + memset(buff[sg_used], 0, sz); + left -= sz; + data_ptr += sz; + sg_used++; + } + c = cmd_alloc(h); + + c->cmd_type = CMD_IOCTL_PEND; + c->scsi_cmd = SCSI_CMD_BUSY; + c->Header.ReplyQueue = 0; + c->Header.SGList = (u8) sg_used; + c->Header.SGTotal = cpu_to_le16(sg_used); + memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); + memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); + if (ioc->buf_size > 0) { + int i; + for (i = 0; i < sg_used; i++) { + temp64 = pci_map_single(h->pdev, buff[i], + buff_size[i], PCI_DMA_BIDIRECTIONAL); + if (dma_mapping_error(&h->pdev->dev, + (dma_addr_t) temp64)) { + c->SG[i].Addr = cpu_to_le64(0); + c->SG[i].Len = cpu_to_le32(0); + hpsa_pci_unmap(h->pdev, c, i, + PCI_DMA_BIDIRECTIONAL); + status = -ENOMEM; + goto cleanup0; + } + c->SG[i].Addr = cpu_to_le64(temp64); + c->SG[i].Len = cpu_to_le32(buff_size[i]); + c->SG[i].Ext = cpu_to_le32(0); + } + c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST); + } + status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, + NO_TIMEOUT); + if (sg_used) + hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); + check_ioctl_unit_attention(h, c); + if (status) { + status = -EIO; + goto cleanup0; + } + + /* Copy the error information out */ + memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); + if (copy_to_user(argp, ioc, sizeof(*ioc))) { + status = -EFAULT; + goto cleanup0; + } + if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) { + int i; + + /* Copy the data out of the buffer we created */ + BYTE __user *ptr = ioc->buf; + for (i = 0; i < sg_used; i++) { + if (copy_to_user(ptr, buff[i], buff_size[i])) { + status = -EFAULT; + goto cleanup0; + } + ptr += buff_size[i]; + } + } + status = 0; +cleanup0: + cmd_free(h, c); +cleanup1: + if (buff) { + int i; + + for (i = 0; i < sg_used; i++) + kfree(buff[i]); + kfree(buff); + } + kfree(buff_size); + kfree(ioc); + return status; +} + +static void check_ioctl_unit_attention(struct ctlr_info *h, + struct CommandList *c) +{ + if (c->err_info->CommandStatus == CMD_TARGET_STATUS && + c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) + (void) check_for_unit_attention(h, c); +} + +/* + * ioctl + */ +static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg) +{ + struct ctlr_info *h; + void __user *argp = (void __user *)arg; + int rc; + + h = sdev_to_hba(dev); + + switch (cmd) { + case CCISS_DEREGDISK: + case CCISS_REGNEWDISK: + case CCISS_REGNEWD: + hpsa_scan_start(h->scsi_host); + return 0; + case CCISS_GETPCIINFO: + return hpsa_getpciinfo_ioctl(h, argp); + case CCISS_GETDRIVVER: + return hpsa_getdrivver_ioctl(h, argp); + case CCISS_PASSTHRU: + if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) + return -EAGAIN; + rc = hpsa_passthru_ioctl(h, argp); + atomic_inc(&h->passthru_cmds_avail); + return rc; + case CCISS_BIG_PASSTHRU: + if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) + return -EAGAIN; + rc = hpsa_big_passthru_ioctl(h, argp); + atomic_inc(&h->passthru_cmds_avail); + return rc; + default: + return -ENOTTY; + } +} + +static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr, + u8 reset_type) +{ + struct CommandList *c; + + c = cmd_alloc(h); + + /* fill_cmd can't fail here, no data buffer to map */ + (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, + RAID_CTLR_LUNID, TYPE_MSG); + c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ + c->waiting = NULL; + enqueue_cmd_and_start_io(h, c); + /* Don't wait for completion, the reset won't complete. Don't free + * the command either. This is the last command we will send before + * re-initializing everything, so it doesn't matter and won't leak. + */ + return; +} + +static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, + void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, + int cmd_type) +{ + int pci_dir = XFER_NONE; + + c->cmd_type = CMD_IOCTL_PEND; + c->scsi_cmd = SCSI_CMD_BUSY; + c->Header.ReplyQueue = 0; + if (buff != NULL && size > 0) { + c->Header.SGList = 1; + c->Header.SGTotal = cpu_to_le16(1); + } else { + c->Header.SGList = 0; + c->Header.SGTotal = cpu_to_le16(0); + } + memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); + + if (cmd_type == TYPE_CMD) { + switch (cmd) { + case HPSA_INQUIRY: + /* are we trying to read a vital product page */ + if (page_code & VPD_PAGE) { + c->Request.CDB[1] = 0x01; + c->Request.CDB[2] = (page_code & 0xff); + } + c->Request.CDBLen = 6; + c->Request.type_attr_dir = + TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); + c->Request.Timeout = 0; + c->Request.CDB[0] = HPSA_INQUIRY; + c->Request.CDB[4] = size & 0xFF; + break; + case RECEIVE_DIAGNOSTIC: + c->Request.CDBLen = 6; + c->Request.type_attr_dir = + TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); + c->Request.Timeout = 0; + c->Request.CDB[0] = cmd; + c->Request.CDB[1] = 1; + c->Request.CDB[2] = 1; + c->Request.CDB[3] = (size >> 8) & 0xFF; + c->Request.CDB[4] = size & 0xFF; + break; + case HPSA_REPORT_LOG: + case HPSA_REPORT_PHYS: + /* Talking to controller so It's a physical command + mode = 00 target = 0. Nothing to write. + */ + c->Request.CDBLen = 12; + c->Request.type_attr_dir = + TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); + c->Request.Timeout = 0; + c->Request.CDB[0] = cmd; + c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ + c->Request.CDB[7] = (size >> 16) & 0xFF; + c->Request.CDB[8] = (size >> 8) & 0xFF; + c->Request.CDB[9] = size & 0xFF; + break; + case BMIC_SENSE_DIAG_OPTIONS: + c->Request.CDBLen = 16; + c->Request.type_attr_dir = + TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); + c->Request.Timeout = 0; + /* Spec says this should be BMIC_WRITE */ + c->Request.CDB[0] = BMIC_READ; + c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS; + break; + case BMIC_SET_DIAG_OPTIONS: + c->Request.CDBLen = 16; + c->Request.type_attr_dir = + TYPE_ATTR_DIR(cmd_type, + ATTR_SIMPLE, XFER_WRITE); + c->Request.Timeout = 0; + c->Request.CDB[0] = BMIC_WRITE; + c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS; + break; + case HPSA_CACHE_FLUSH: + c->Request.CDBLen = 12; + c->Request.type_attr_dir = + TYPE_ATTR_DIR(cmd_type, + ATTR_SIMPLE, XFER_WRITE); + c->Request.Timeout = 0; + c->Request.CDB[0] = BMIC_WRITE; + c->Request.CDB[6] = BMIC_CACHE_FLUSH; + c->Request.CDB[7] = (size >> 8) & 0xFF; + c->Request.CDB[8] = size & 0xFF; + break; + case TEST_UNIT_READY: + c->Request.CDBLen = 6; + c->Request.type_attr_dir = + TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); + c->Request.Timeout = 0; + break; + case HPSA_GET_RAID_MAP: + c->Request.CDBLen = 12; + c->Request.type_attr_dir = + TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); + c->Request.Timeout = 0; + c->Request.CDB[0] = HPSA_CISS_READ; + c->Request.CDB[1] = cmd; + c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ + c->Request.CDB[7] = (size >> 16) & 0xFF; + c->Request.CDB[8] = (size >> 8) & 0xFF; + c->Request.CDB[9] = size & 0xFF; + break; + case BMIC_SENSE_CONTROLLER_PARAMETERS: + c->Request.CDBLen = 10; + c->Request.type_attr_dir = + TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); + c->Request.Timeout = 0; + c->Request.CDB[0] = BMIC_READ; + c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS; + c->Request.CDB[7] = (size >> 16) & 0xFF; + c->Request.CDB[8] = (size >> 8) & 0xFF; + break; + case BMIC_IDENTIFY_PHYSICAL_DEVICE: + c->Request.CDBLen = 10; + c->Request.type_attr_dir = + TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); + c->Request.Timeout = 0; + c->Request.CDB[0] = BMIC_READ; + c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE; + c->Request.CDB[7] = (size >> 16) & 0xFF; + c->Request.CDB[8] = (size >> 8) & 0XFF; + break; + case BMIC_SENSE_SUBSYSTEM_INFORMATION: + c->Request.CDBLen = 10; + c->Request.type_attr_dir = + TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); + c->Request.Timeout = 0; + c->Request.CDB[0] = BMIC_READ; + c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION; + c->Request.CDB[7] = (size >> 16) & 0xFF; + c->Request.CDB[8] = (size >> 8) & 0XFF; + break; + case BMIC_SENSE_STORAGE_BOX_PARAMS: + c->Request.CDBLen = 10; + c->Request.type_attr_dir = + TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); + c->Request.Timeout = 0; + c->Request.CDB[0] = BMIC_READ; + c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS; + c->Request.CDB[7] = (size >> 16) & 0xFF; + c->Request.CDB[8] = (size >> 8) & 0XFF; + break; + case BMIC_IDENTIFY_CONTROLLER: + c->Request.CDBLen = 10; + c->Request.type_attr_dir = + TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); + c->Request.Timeout = 0; + c->Request.CDB[0] = BMIC_READ; + c->Request.CDB[1] = 0; + c->Request.CDB[2] = 0; + c->Request.CDB[3] = 0; + c->Request.CDB[4] = 0; + c->Request.CDB[5] = 0; + c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER; + c->Request.CDB[7] = (size >> 16) & 0xFF; + c->Request.CDB[8] = (size >> 8) & 0XFF; + c->Request.CDB[9] = 0; + break; + default: + dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); + BUG(); + } + } else if (cmd_type == TYPE_MSG) { + switch (cmd) { + + case HPSA_PHYS_TARGET_RESET: + c->Request.CDBLen = 16; + c->Request.type_attr_dir = + TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); + c->Request.Timeout = 0; /* Don't time out */ + memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); + c->Request.CDB[0] = HPSA_RESET; + c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE; + /* Physical target reset needs no control bytes 4-7*/ + c->Request.CDB[4] = 0x00; + c->Request.CDB[5] = 0x00; + c->Request.CDB[6] = 0x00; + c->Request.CDB[7] = 0x00; + break; + case HPSA_DEVICE_RESET_MSG: + c->Request.CDBLen = 16; + c->Request.type_attr_dir = + TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); + c->Request.Timeout = 0; /* Don't time out */ + memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); + c->Request.CDB[0] = cmd; + c->Request.CDB[1] = HPSA_RESET_TYPE_LUN; + /* If bytes 4-7 are zero, it means reset the */ + /* LunID device */ + c->Request.CDB[4] = 0x00; + c->Request.CDB[5] = 0x00; + c->Request.CDB[6] = 0x00; + c->Request.CDB[7] = 0x00; + break; + default: + dev_warn(&h->pdev->dev, "unknown message type %d\n", + cmd); + BUG(); + } + } else { + dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); + BUG(); + } + + switch (GET_DIR(c->Request.type_attr_dir)) { + case XFER_READ: + pci_dir = PCI_DMA_FROMDEVICE; + break; + case XFER_WRITE: + pci_dir = PCI_DMA_TODEVICE; + break; + case XFER_NONE: + pci_dir = PCI_DMA_NONE; + break; + default: + pci_dir = PCI_DMA_BIDIRECTIONAL; + } + if (hpsa_map_one(h->pdev, c, buff, size, pci_dir)) + return -1; + return 0; +} + +/* + * Map (physical) PCI mem into (virtual) kernel space + */ +static void __iomem *remap_pci_mem(ulong base, ulong size) +{ + ulong page_base = ((ulong) base) & PAGE_MASK; + ulong page_offs = ((ulong) base) - page_base; + void __iomem *page_remapped = ioremap_nocache(page_base, + page_offs + size); + + return page_remapped ? (page_remapped + page_offs) : NULL; +} + +static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) +{ + return h->access.command_completed(h, q); +} + +static inline bool interrupt_pending(struct ctlr_info *h) +{ + return h->access.intr_pending(h); +} + +static inline long interrupt_not_for_us(struct ctlr_info *h) +{ + return (h->access.intr_pending(h) == 0) || + (h->interrupts_enabled == 0); +} + +static inline int bad_tag(struct ctlr_info *h, u32 tag_index, + u32 raw_tag) +{ + if (unlikely(tag_index >= h->nr_cmds)) { + dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); + return 1; + } + return 0; +} + +static inline void finish_cmd(struct CommandList *c) +{ + dial_up_lockup_detection_on_fw_flash_complete(c->h, c); + if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI + || c->cmd_type == CMD_IOACCEL2)) + complete_scsi_command(c); + else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF) + complete(c->waiting); +} + +/* process completion of an indexed ("direct lookup") command */ +static inline void process_indexed_cmd(struct ctlr_info *h, + u32 raw_tag) +{ + u32 tag_index; + struct CommandList *c; + + tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT; + if (!bad_tag(h, tag_index, raw_tag)) { + c = h->cmd_pool + tag_index; + finish_cmd(c); + } +} + +/* Some controllers, like p400, will give us one interrupt + * after a soft reset, even if we turned interrupts off. + * Only need to check for this in the hpsa_xxx_discard_completions + * functions. + */ +static int ignore_bogus_interrupt(struct ctlr_info *h) +{ + if (likely(!reset_devices)) + return 0; + + if (likely(h->interrupts_enabled)) + return 0; + + dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " + "(known firmware bug.) Ignoring.\n"); + + return 1; +} + +/* + * Convert &h->q[x] (passed to interrupt handlers) back to h. + * Relies on (h-q[x] == x) being true for x such that + * 0 <= x < MAX_REPLY_QUEUES. + */ +static struct ctlr_info *queue_to_hba(u8 *queue) +{ + return container_of((queue - *queue), struct ctlr_info, q[0]); +} + +static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) +{ + struct ctlr_info *h = queue_to_hba(queue); + u8 q = *(u8 *) queue; + u32 raw_tag; + + if (ignore_bogus_interrupt(h)) + return IRQ_NONE; + + if (interrupt_not_for_us(h)) + return IRQ_NONE; + h->last_intr_timestamp = get_jiffies_64(); + while (interrupt_pending(h)) { + raw_tag = get_next_completion(h, q); + while (raw_tag != FIFO_EMPTY) + raw_tag = next_command(h, q); + } + return IRQ_HANDLED; +} + +static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) +{ + struct ctlr_info *h = queue_to_hba(queue); + u32 raw_tag; + u8 q = *(u8 *) queue; + + if (ignore_bogus_interrupt(h)) + return IRQ_NONE; + + h->last_intr_timestamp = get_jiffies_64(); + raw_tag = get_next_completion(h, q); + while (raw_tag != FIFO_EMPTY) + raw_tag = next_command(h, q); + return IRQ_HANDLED; +} + +static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) +{ + struct ctlr_info *h = queue_to_hba((u8 *) queue); + u32 raw_tag; + u8 q = *(u8 *) queue; + + if (interrupt_not_for_us(h)) + return IRQ_NONE; + h->last_intr_timestamp = get_jiffies_64(); + while (interrupt_pending(h)) { + raw_tag = get_next_completion(h, q); + while (raw_tag != FIFO_EMPTY) { + process_indexed_cmd(h, raw_tag); + raw_tag = next_command(h, q); + } + } + return IRQ_HANDLED; +} + +static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) +{ + struct ctlr_info *h = queue_to_hba(queue); + u32 raw_tag; + u8 q = *(u8 *) queue; + + h->last_intr_timestamp = get_jiffies_64(); + raw_tag = get_next_completion(h, q); + while (raw_tag != FIFO_EMPTY) { + process_indexed_cmd(h, raw_tag); + raw_tag = next_command(h, q); + } + return IRQ_HANDLED; +} + +/* Send a message CDB to the firmware. Careful, this only works + * in simple mode, not performant mode due to the tag lookup. + * We only ever use this immediately after a controller reset. + */ +static int hpsa_message(struct pci_dev *pdev, unsigned char opcode, + unsigned char type) +{ + struct Command { + struct CommandListHeader CommandHeader; + struct RequestBlock Request; + struct ErrDescriptor ErrorDescriptor; + }; + struct Command *cmd; + static const size_t cmd_sz = sizeof(*cmd) + + sizeof(cmd->ErrorDescriptor); + dma_addr_t paddr64; + __le32 paddr32; + u32 tag; + void __iomem *vaddr; + int i, err; + + vaddr = pci_ioremap_bar(pdev, 0); + if (vaddr == NULL) + return -ENOMEM; + + /* The Inbound Post Queue only accepts 32-bit physical addresses for the + * CCISS commands, so they must be allocated from the lower 4GiB of + * memory. + */ + err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); + if (err) { + iounmap(vaddr); + return err; + } + + cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); + if (cmd == NULL) { + iounmap(vaddr); + return -ENOMEM; + } + + /* This must fit, because of the 32-bit consistent DMA mask. Also, + * although there's no guarantee, we assume that the address is at + * least 4-byte aligned (most likely, it's page-aligned). + */ + paddr32 = cpu_to_le32(paddr64); + + cmd->CommandHeader.ReplyQueue = 0; + cmd->CommandHeader.SGList = 0; + cmd->CommandHeader.SGTotal = cpu_to_le16(0); + cmd->CommandHeader.tag = cpu_to_le64(paddr64); + memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); + + cmd->Request.CDBLen = 16; + cmd->Request.type_attr_dir = + TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE); + cmd->Request.Timeout = 0; /* Don't time out */ + cmd->Request.CDB[0] = opcode; + cmd->Request.CDB[1] = type; + memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ + cmd->ErrorDescriptor.Addr = + cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd))); + cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo)); + + writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET); + + for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { + tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); + if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64) + break; + msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); + } + + iounmap(vaddr); + + /* we leak the DMA buffer here ... no choice since the controller could + * still complete the command. + */ + if (i == HPSA_MSG_SEND_RETRY_LIMIT) { + dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", + opcode, type); + return -ETIMEDOUT; + } + + pci_free_consistent(pdev, cmd_sz, cmd, paddr64); + + if (tag & HPSA_ERROR_BIT) { + dev_err(&pdev->dev, "controller message %02x:%02x failed\n", + opcode, type); + return -EIO; + } + + dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", + opcode, type); + return 0; +} + +#define hpsa_noop(p) hpsa_message(p, 3, 0) + +static int hpsa_controller_hard_reset(struct pci_dev *pdev, + void __iomem *vaddr, u32 use_doorbell) +{ + + if (use_doorbell) { + /* For everything after the P600, the PCI power state method + * of resetting the controller doesn't work, so we have this + * other way using the doorbell register. + */ + dev_info(&pdev->dev, "using doorbell to reset controller\n"); + writel(use_doorbell, vaddr + SA5_DOORBELL); + + /* PMC hardware guys tell us we need a 10 second delay after + * doorbell reset and before any attempt to talk to the board + * at all to ensure that this actually works and doesn't fall + * over in some weird corner cases. + */ + msleep(10000); + } else { /* Try to do it the PCI power state way */ + + /* Quoting from the Open CISS Specification: "The Power + * Management Control/Status Register (CSR) controls the power + * state of the device. The normal operating state is D0, + * CSR=00h. The software off state is D3, CSR=03h. To reset + * the controller, place the interface device in D3 then to D0, + * this causes a secondary PCI reset which will reset the + * controller." */ + + int rc = 0; + + dev_info(&pdev->dev, "using PCI PM to reset controller\n"); + + /* enter the D3hot power management state */ + rc = pci_set_power_state(pdev, PCI_D3hot); + if (rc) + return rc; + + msleep(500); + + /* enter the D0 power management state */ + rc = pci_set_power_state(pdev, PCI_D0); + if (rc) + return rc; + + /* + * The P600 requires a small delay when changing states. + * Otherwise we may think the board did not reset and we bail. + * This for kdump only and is particular to the P600. + */ + msleep(500); + } + return 0; +} + +static void init_driver_version(char *driver_version, int len) +{ + memset(driver_version, 0, len); + strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); +} + +static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable) +{ + char *driver_version; + int i, size = sizeof(cfgtable->driver_version); + + driver_version = kmalloc(size, GFP_KERNEL); + if (!driver_version) + return -ENOMEM; + + init_driver_version(driver_version, size); + for (i = 0; i < size; i++) + writeb(driver_version[i], &cfgtable->driver_version[i]); + kfree(driver_version); + return 0; +} + +static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable, + unsigned char *driver_ver) +{ + int i; + + for (i = 0; i < sizeof(cfgtable->driver_version); i++) + driver_ver[i] = readb(&cfgtable->driver_version[i]); +} + +static int controller_reset_failed(struct CfgTable __iomem *cfgtable) +{ + + char *driver_ver, *old_driver_ver; + int rc, size = sizeof(cfgtable->driver_version); + + old_driver_ver = kmalloc_array(2, size, GFP_KERNEL); + if (!old_driver_ver) + return -ENOMEM; + driver_ver = old_driver_ver + size; + + /* After a reset, the 32 bytes of "driver version" in the cfgtable + * should have been changed, otherwise we know the reset failed. + */ + init_driver_version(old_driver_ver, size); + read_driver_ver_from_cfgtable(cfgtable, driver_ver); + rc = !memcmp(driver_ver, old_driver_ver, size); + kfree(old_driver_ver); + return rc; +} +/* This does a hard reset of the controller using PCI power management + * states or the using the doorbell register. + */ +static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id) +{ + u64 cfg_offset; + u32 cfg_base_addr; + u64 cfg_base_addr_index; + void __iomem *vaddr; + unsigned long paddr; + u32 misc_fw_support; + int rc; + struct CfgTable __iomem *cfgtable; + u32 use_doorbell; + u16 command_register; + + /* For controllers as old as the P600, this is very nearly + * the same thing as + * + * pci_save_state(pci_dev); + * pci_set_power_state(pci_dev, PCI_D3hot); + * pci_set_power_state(pci_dev, PCI_D0); + * pci_restore_state(pci_dev); + * + * For controllers newer than the P600, the pci power state + * method of resetting doesn't work so we have another way + * using the doorbell register. + */ + + if (!ctlr_is_resettable(board_id)) { + dev_warn(&pdev->dev, "Controller not resettable\n"); + return -ENODEV; + } + + /* if controller is soft- but not hard resettable... */ + if (!ctlr_is_hard_resettable(board_id)) + return -ENOTSUPP; /* try soft reset later. */ + + /* Save the PCI command register */ + pci_read_config_word(pdev, 4, &command_register); + pci_save_state(pdev); + + /* find the first memory BAR, so we can find the cfg table */ + rc = hpsa_pci_find_memory_BAR(pdev, &paddr); + if (rc) + return rc; + vaddr = remap_pci_mem(paddr, 0x250); + if (!vaddr) + return -ENOMEM; + + /* find cfgtable in order to check if reset via doorbell is supported */ + rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, + &cfg_base_addr_index, &cfg_offset); + if (rc) + goto unmap_vaddr; + cfgtable = remap_pci_mem(pci_resource_start(pdev, + cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); + if (!cfgtable) { + rc = -ENOMEM; + goto unmap_vaddr; + } + rc = write_driver_ver_to_cfgtable(cfgtable); + if (rc) + goto unmap_cfgtable; + + /* If reset via doorbell register is supported, use that. + * There are two such methods. Favor the newest method. + */ + misc_fw_support = readl(&cfgtable->misc_fw_support); + use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; + if (use_doorbell) { + use_doorbell = DOORBELL_CTLR_RESET2; + } else { + use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; + if (use_doorbell) { + dev_warn(&pdev->dev, + "Soft reset not supported. Firmware update is required.\n"); + rc = -ENOTSUPP; /* try soft reset */ + goto unmap_cfgtable; + } + } + + rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); + if (rc) + goto unmap_cfgtable; + + pci_restore_state(pdev); + pci_write_config_word(pdev, 4, command_register); + + /* Some devices (notably the HP Smart Array 5i Controller) + need a little pause here */ + msleep(HPSA_POST_RESET_PAUSE_MSECS); + + rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); + if (rc) { + dev_warn(&pdev->dev, + "Failed waiting for board to become ready after hard reset\n"); + goto unmap_cfgtable; + } + + rc = controller_reset_failed(vaddr); + if (rc < 0) + goto unmap_cfgtable; + if (rc) { + dev_warn(&pdev->dev, "Unable to successfully reset " + "controller. Will try soft reset.\n"); + rc = -ENOTSUPP; + } else { + dev_info(&pdev->dev, "board ready after hard reset.\n"); + } + +unmap_cfgtable: + iounmap(cfgtable); + +unmap_vaddr: + iounmap(vaddr); + return rc; +} + +/* + * We cannot read the structure directly, for portability we must use + * the io functions. + * This is for debug only. + */ +static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb) +{ +#ifdef HPSA_DEBUG + int i; + char temp_name[17]; + + dev_info(dev, "Controller Configuration information\n"); + dev_info(dev, "------------------------------------\n"); + for (i = 0; i < 4; i++) + temp_name[i] = readb(&(tb->Signature[i])); + temp_name[4] = '\0'; + dev_info(dev, " Signature = %s\n", temp_name); + dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); + dev_info(dev, " Transport methods supported = 0x%x\n", + readl(&(tb->TransportSupport))); + dev_info(dev, " Transport methods active = 0x%x\n", + readl(&(tb->TransportActive))); + dev_info(dev, " Requested transport Method = 0x%x\n", + readl(&(tb->HostWrite.TransportRequest))); + dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", + readl(&(tb->HostWrite.CoalIntDelay))); + dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", + readl(&(tb->HostWrite.CoalIntCount))); + dev_info(dev, " Max outstanding commands = %d\n", + readl(&(tb->CmdsOutMax))); + dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); + for (i = 0; i < 16; i++) + temp_name[i] = readb(&(tb->ServerName[i])); + temp_name[16] = '\0'; + dev_info(dev, " Server Name = %s\n", temp_name); + dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", + readl(&(tb->HeartBeat))); +#endif /* HPSA_DEBUG */ +} + +static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) +{ + int i, offset, mem_type, bar_type; + + if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ + return 0; + offset = 0; + for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { + bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; + if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) + offset += 4; + else { + mem_type = pci_resource_flags(pdev, i) & + PCI_BASE_ADDRESS_MEM_TYPE_MASK; + switch (mem_type) { + case PCI_BASE_ADDRESS_MEM_TYPE_32: + case PCI_BASE_ADDRESS_MEM_TYPE_1M: + offset += 4; /* 32 bit */ + break; + case PCI_BASE_ADDRESS_MEM_TYPE_64: + offset += 8; + break; + default: /* reserved in PCI 2.2 */ + dev_warn(&pdev->dev, + "base address is invalid\n"); + return -1; + break; + } + } + if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) + return i + 1; + } + return -1; +} + +static void hpsa_disable_interrupt_mode(struct ctlr_info *h) +{ + pci_free_irq_vectors(h->pdev); + h->msix_vectors = 0; +} + +static void hpsa_setup_reply_map(struct ctlr_info *h) +{ + const struct cpumask *mask; + unsigned int queue, cpu; + + for (queue = 0; queue < h->msix_vectors; queue++) { + mask = pci_irq_get_affinity(h->pdev, queue); + if (!mask) + goto fallback; + + for_each_cpu(cpu, mask) + h->reply_map[cpu] = queue; + } + return; + +fallback: + for_each_possible_cpu(cpu) + h->reply_map[cpu] = 0; +} + +/* If MSI/MSI-X is supported by the kernel we will try to enable it on + * controllers that are capable. If not, we use legacy INTx mode. + */ +static int hpsa_interrupt_mode(struct ctlr_info *h) +{ + unsigned int flags = PCI_IRQ_LEGACY; + int ret; + + /* Some boards advertise MSI but don't really support it */ + switch (h->board_id) { + case 0x40700E11: + case 0x40800E11: + case 0x40820E11: + case 0x40830E11: + break; + default: + ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES, + PCI_IRQ_MSIX | PCI_IRQ_AFFINITY); + if (ret > 0) { + h->msix_vectors = ret; + return 0; + } + + flags |= PCI_IRQ_MSI; + break; + } + + ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags); + if (ret < 0) + return ret; + return 0; +} + +static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id, + bool *legacy_board) +{ + int i; + u32 subsystem_vendor_id, subsystem_device_id; + + subsystem_vendor_id = pdev->subsystem_vendor; + subsystem_device_id = pdev->subsystem_device; + *board_id = ((subsystem_device_id << 16) & 0xffff0000) | + subsystem_vendor_id; + + if (legacy_board) + *legacy_board = false; + for (i = 0; i < ARRAY_SIZE(products); i++) + if (*board_id == products[i].board_id) { + if (products[i].access != &SA5A_access && + products[i].access != &SA5B_access) + return i; + dev_warn(&pdev->dev, + "legacy board ID: 0x%08x\n", + *board_id); + if (legacy_board) + *legacy_board = true; + return i; + } + + dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id); + if (legacy_board) + *legacy_board = true; + return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ +} + +static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, + unsigned long *memory_bar) +{ + int i; + + for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) + if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { + /* addressing mode bits already removed */ + *memory_bar = pci_resource_start(pdev, i); + dev_dbg(&pdev->dev, "memory BAR = %lx\n", + *memory_bar); + return 0; + } + dev_warn(&pdev->dev, "no memory BAR found\n"); + return -ENODEV; +} + +static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, + int wait_for_ready) +{ + int i, iterations; + u32 scratchpad; + if (wait_for_ready) + iterations = HPSA_BOARD_READY_ITERATIONS; + else + iterations = HPSA_BOARD_NOT_READY_ITERATIONS; + + for (i = 0; i < iterations; i++) { + scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); + if (wait_for_ready) { + if (scratchpad == HPSA_FIRMWARE_READY) + return 0; + } else { + if (scratchpad != HPSA_FIRMWARE_READY) + return 0; + } + msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); + } + dev_warn(&pdev->dev, "board not ready, timed out.\n"); + return -ENODEV; +} + +static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, + u32 *cfg_base_addr, u64 *cfg_base_addr_index, + u64 *cfg_offset) +{ + *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); + *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); + *cfg_base_addr &= (u32) 0x0000ffff; + *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); + if (*cfg_base_addr_index == -1) { + dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); + return -ENODEV; + } + return 0; +} + +static void hpsa_free_cfgtables(struct ctlr_info *h) +{ + if (h->transtable) { + iounmap(h->transtable); + h->transtable = NULL; + } + if (h->cfgtable) { + iounmap(h->cfgtable); + h->cfgtable = NULL; + } +} + +/* Find and map CISS config table and transfer table ++ * several items must be unmapped (freed) later ++ * */ +static int hpsa_find_cfgtables(struct ctlr_info *h) +{ + u64 cfg_offset; + u32 cfg_base_addr; + u64 cfg_base_addr_index; + u32 trans_offset; + int rc; + + rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, + &cfg_base_addr_index, &cfg_offset); + if (rc) + return rc; + h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, + cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); + if (!h->cfgtable) { + dev_err(&h->pdev->dev, "Failed mapping cfgtable\n"); + return -ENOMEM; + } + rc = write_driver_ver_to_cfgtable(h->cfgtable); + if (rc) + return rc; + /* Find performant mode table. */ + trans_offset = readl(&h->cfgtable->TransMethodOffset); + h->transtable = remap_pci_mem(pci_resource_start(h->pdev, + cfg_base_addr_index)+cfg_offset+trans_offset, + sizeof(*h->transtable)); + if (!h->transtable) { + dev_err(&h->pdev->dev, "Failed mapping transfer table\n"); + hpsa_free_cfgtables(h); + return -ENOMEM; + } + return 0; +} + +static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) +{ +#define MIN_MAX_COMMANDS 16 + BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS); + + h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands); + + /* Limit commands in memory limited kdump scenario. */ + if (reset_devices && h->max_commands > 32) + h->max_commands = 32; + + if (h->max_commands < MIN_MAX_COMMANDS) { + dev_warn(&h->pdev->dev, + "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n", + h->max_commands, + MIN_MAX_COMMANDS); + h->max_commands = MIN_MAX_COMMANDS; + } +} + +/* If the controller reports that the total max sg entries is greater than 512, + * then we know that chained SG blocks work. (Original smart arrays did not + * support chained SG blocks and would return zero for max sg entries.) + */ +static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h) +{ + return h->maxsgentries > 512; +} + +/* Interrogate the hardware for some limits: + * max commands, max SG elements without chaining, and with chaining, + * SG chain block size, etc. + */ +static void hpsa_find_board_params(struct ctlr_info *h) +{ + hpsa_get_max_perf_mode_cmds(h); + h->nr_cmds = h->max_commands; + h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); + h->fw_support = readl(&(h->cfgtable->misc_fw_support)); + if (hpsa_supports_chained_sg_blocks(h)) { + /* Limit in-command s/g elements to 32 save dma'able memory. */ + h->max_cmd_sg_entries = 32; + h->chainsize = h->maxsgentries - h->max_cmd_sg_entries; + h->maxsgentries--; /* save one for chain pointer */ + } else { + /* + * Original smart arrays supported at most 31 s/g entries + * embedded inline in the command (trying to use more + * would lock up the controller) + */ + h->max_cmd_sg_entries = 31; + h->maxsgentries = 31; /* default to traditional values */ + h->chainsize = 0; + } + + /* Find out what task management functions are supported and cache */ + h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); + if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags)) + dev_warn(&h->pdev->dev, "Physical aborts not supported\n"); + if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) + dev_warn(&h->pdev->dev, "Logical aborts not supported\n"); + if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)) + dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n"); +} + +static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) +{ + if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { + dev_err(&h->pdev->dev, "not a valid CISS config table\n"); + return false; + } + return true; +} + +static inline void hpsa_set_driver_support_bits(struct ctlr_info *h) +{ + u32 driver_support; + + driver_support = readl(&(h->cfgtable->driver_support)); + /* Need to enable prefetch in the SCSI core for 6400 in x86 */ +#ifdef CONFIG_X86 + driver_support |= ENABLE_SCSI_PREFETCH; +#endif + driver_support |= ENABLE_UNIT_ATTN; + writel(driver_support, &(h->cfgtable->driver_support)); +} + +/* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result + * in a prefetch beyond physical memory. + */ +static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) +{ + u32 dma_prefetch; + + if (h->board_id != 0x3225103C) + return; + dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); + dma_prefetch |= 0x8000; + writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); +} + +static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h) +{ + int i; + u32 doorbell_value; + unsigned long flags; + /* wait until the clear_event_notify bit 6 is cleared by controller. */ + for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) { + spin_lock_irqsave(&h->lock, flags); + doorbell_value = readl(h->vaddr + SA5_DOORBELL); + spin_unlock_irqrestore(&h->lock, flags); + if (!(doorbell_value & DOORBELL_CLEAR_EVENTS)) + goto done; + /* delay and try again */ + msleep(CLEAR_EVENT_WAIT_INTERVAL); + } + return -ENODEV; +done: + return 0; +} + +static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h) +{ + int i; + u32 doorbell_value; + unsigned long flags; + + /* under certain very rare conditions, this can take awhile. + * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right + * as we enter this code.) + */ + for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) { + if (h->remove_in_progress) + goto done; + spin_lock_irqsave(&h->lock, flags); + doorbell_value = readl(h->vaddr + SA5_DOORBELL); + spin_unlock_irqrestore(&h->lock, flags); + if (!(doorbell_value & CFGTBL_ChangeReq)) + goto done; + /* delay and try again */ + msleep(MODE_CHANGE_WAIT_INTERVAL); + } + return -ENODEV; +done: + return 0; +} + +/* return -ENODEV or other reason on error, 0 on success */ +static int hpsa_enter_simple_mode(struct ctlr_info *h) +{ + u32 trans_support; + + trans_support = readl(&(h->cfgtable->TransportSupport)); + if (!(trans_support & SIMPLE_MODE)) + return -ENOTSUPP; + + h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); + + /* Update the field, and then ring the doorbell */ + writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); + writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); + writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); + if (hpsa_wait_for_mode_change_ack(h)) + goto error; + print_cfg_table(&h->pdev->dev, h->cfgtable); + if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) + goto error; + h->transMethod = CFGTBL_Trans_Simple; + return 0; +error: + dev_err(&h->pdev->dev, "failed to enter simple mode\n"); + return -ENODEV; +} + +/* free items allocated or mapped by hpsa_pci_init */ +static void hpsa_free_pci_init(struct ctlr_info *h) +{ + hpsa_free_cfgtables(h); /* pci_init 4 */ + iounmap(h->vaddr); /* pci_init 3 */ + h->vaddr = NULL; + hpsa_disable_interrupt_mode(h); /* pci_init 2 */ + /* + * call pci_disable_device before pci_release_regions per + * Documentation/PCI/pci.txt + */ + pci_disable_device(h->pdev); /* pci_init 1 */ + pci_release_regions(h->pdev); /* pci_init 2 */ +} + +/* several items must be freed later */ +static int hpsa_pci_init(struct ctlr_info *h) +{ + int prod_index, err; + bool legacy_board; + + prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board); + if (prod_index < 0) + return prod_index; + h->product_name = products[prod_index].product_name; + h->access = *(products[prod_index].access); + h->legacy_board = legacy_board; + pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | + PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); + + err = pci_enable_device(h->pdev); + if (err) { + dev_err(&h->pdev->dev, "failed to enable PCI device\n"); + pci_disable_device(h->pdev); + return err; + } + + err = pci_request_regions(h->pdev, HPSA); + if (err) { + dev_err(&h->pdev->dev, + "failed to obtain PCI resources\n"); + pci_disable_device(h->pdev); + return err; + } + + pci_set_master(h->pdev); + + err = hpsa_interrupt_mode(h); + if (err) + goto clean1; + + /* setup mapping between CPU and reply queue */ + hpsa_setup_reply_map(h); + + err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); + if (err) + goto clean2; /* intmode+region, pci */ + h->vaddr = remap_pci_mem(h->paddr, 0x250); + if (!h->vaddr) { + dev_err(&h->pdev->dev, "failed to remap PCI mem\n"); + err = -ENOMEM; + goto clean2; /* intmode+region, pci */ + } + err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); + if (err) + goto clean3; /* vaddr, intmode+region, pci */ + err = hpsa_find_cfgtables(h); + if (err) + goto clean3; /* vaddr, intmode+region, pci */ + hpsa_find_board_params(h); + + if (!hpsa_CISS_signature_present(h)) { + err = -ENODEV; + goto clean4; /* cfgtables, vaddr, intmode+region, pci */ + } + hpsa_set_driver_support_bits(h); + hpsa_p600_dma_prefetch_quirk(h); + err = hpsa_enter_simple_mode(h); + if (err) + goto clean4; /* cfgtables, vaddr, intmode+region, pci */ + return 0; + +clean4: /* cfgtables, vaddr, intmode+region, pci */ + hpsa_free_cfgtables(h); +clean3: /* vaddr, intmode+region, pci */ + iounmap(h->vaddr); + h->vaddr = NULL; +clean2: /* intmode+region, pci */ + hpsa_disable_interrupt_mode(h); +clean1: + /* + * call pci_disable_device before pci_release_regions per + * Documentation/PCI/pci.txt + */ + pci_disable_device(h->pdev); + pci_release_regions(h->pdev); + return err; +} + +static void hpsa_hba_inquiry(struct ctlr_info *h) +{ + int rc; + +#define HBA_INQUIRY_BYTE_COUNT 64 + h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); + if (!h->hba_inquiry_data) + return; + rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, + h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); + if (rc != 0) { + kfree(h->hba_inquiry_data); + h->hba_inquiry_data = NULL; + } +} + +static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id) +{ + int rc, i; + void __iomem *vaddr; + + if (!reset_devices) + return 0; + + /* kdump kernel is loading, we don't know in which state is + * the pci interface. The dev->enable_cnt is equal zero + * so we call enable+disable, wait a while and switch it on. + */ + rc = pci_enable_device(pdev); + if (rc) { + dev_warn(&pdev->dev, "Failed to enable PCI device\n"); + return -ENODEV; + } + pci_disable_device(pdev); + msleep(260); /* a randomly chosen number */ + rc = pci_enable_device(pdev); + if (rc) { + dev_warn(&pdev->dev, "failed to enable device.\n"); + return -ENODEV; + } + + pci_set_master(pdev); + + vaddr = pci_ioremap_bar(pdev, 0); + if (vaddr == NULL) { + rc = -ENOMEM; + goto out_disable; + } + writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET); + iounmap(vaddr); + + /* Reset the controller with a PCI power-cycle or via doorbell */ + rc = hpsa_kdump_hard_reset_controller(pdev, board_id); + + /* -ENOTSUPP here means we cannot reset the controller + * but it's already (and still) up and running in + * "performant mode". Or, it might be 640x, which can't reset + * due to concerns about shared bbwc between 6402/6404 pair. + */ + if (rc) + goto out_disable; + + /* Now try to get the controller to respond to a no-op */ + dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n"); + for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { + if (hpsa_noop(pdev) == 0) + break; + else + dev_warn(&pdev->dev, "no-op failed%s\n", + (i < 11 ? "; re-trying" : "")); + } + +out_disable: + + pci_disable_device(pdev); + return rc; +} + +static void hpsa_free_cmd_pool(struct ctlr_info *h) +{ + kfree(h->cmd_pool_bits); + h->cmd_pool_bits = NULL; + if (h->cmd_pool) { + pci_free_consistent(h->pdev, + h->nr_cmds * sizeof(struct CommandList), + h->cmd_pool, + h->cmd_pool_dhandle); + h->cmd_pool = NULL; + h->cmd_pool_dhandle = 0; + } + if (h->errinfo_pool) { + pci_free_consistent(h->pdev, + h->nr_cmds * sizeof(struct ErrorInfo), + h->errinfo_pool, + h->errinfo_pool_dhandle); + h->errinfo_pool = NULL; + h->errinfo_pool_dhandle = 0; + } +} + +static int hpsa_alloc_cmd_pool(struct ctlr_info *h) +{ + h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG), + sizeof(unsigned long), + GFP_KERNEL); + h->cmd_pool = pci_alloc_consistent(h->pdev, + h->nr_cmds * sizeof(*h->cmd_pool), + &(h->cmd_pool_dhandle)); + h->errinfo_pool = pci_alloc_consistent(h->pdev, + h->nr_cmds * sizeof(*h->errinfo_pool), + &(h->errinfo_pool_dhandle)); + if ((h->cmd_pool_bits == NULL) + || (h->cmd_pool == NULL) + || (h->errinfo_pool == NULL)) { + dev_err(&h->pdev->dev, "out of memory in %s", __func__); + goto clean_up; + } + hpsa_preinitialize_commands(h); + return 0; +clean_up: + hpsa_free_cmd_pool(h); + return -ENOMEM; +} + +/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */ +static void hpsa_free_irqs(struct ctlr_info *h) +{ + int i; + + if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) { + /* Single reply queue, only one irq to free */ + free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]); + h->q[h->intr_mode] = 0; + return; + } + + for (i = 0; i < h->msix_vectors; i++) { + free_irq(pci_irq_vector(h->pdev, i), &h->q[i]); + h->q[i] = 0; + } + for (; i < MAX_REPLY_QUEUES; i++) + h->q[i] = 0; +} + +/* returns 0 on success; cleans up and returns -Enn on error */ +static int hpsa_request_irqs(struct ctlr_info *h, + irqreturn_t (*msixhandler)(int, void *), + irqreturn_t (*intxhandler)(int, void *)) +{ + int rc, i; + + /* + * initialize h->q[x] = x so that interrupt handlers know which + * queue to process. + */ + for (i = 0; i < MAX_REPLY_QUEUES; i++) + h->q[i] = (u8) i; + + if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) { + /* If performant mode and MSI-X, use multiple reply queues */ + for (i = 0; i < h->msix_vectors; i++) { + sprintf(h->intrname[i], "%s-msix%d", h->devname, i); + rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler, + 0, h->intrname[i], + &h->q[i]); + if (rc) { + int j; + + dev_err(&h->pdev->dev, + "failed to get irq %d for %s\n", + pci_irq_vector(h->pdev, i), h->devname); + for (j = 0; j < i; j++) { + free_irq(pci_irq_vector(h->pdev, j), &h->q[j]); + h->q[j] = 0; + } + for (; j < MAX_REPLY_QUEUES; j++) + h->q[j] = 0; + return rc; + } + } + } else { + /* Use single reply pool */ + if (h->msix_vectors > 0 || h->pdev->msi_enabled) { + sprintf(h->intrname[0], "%s-msi%s", h->devname, + h->msix_vectors ? "x" : ""); + rc = request_irq(pci_irq_vector(h->pdev, 0), + msixhandler, 0, + h->intrname[0], + &h->q[h->intr_mode]); + } else { + sprintf(h->intrname[h->intr_mode], + "%s-intx", h->devname); + rc = request_irq(pci_irq_vector(h->pdev, 0), + intxhandler, IRQF_SHARED, + h->intrname[0], + &h->q[h->intr_mode]); + } + } + if (rc) { + dev_err(&h->pdev->dev, "failed to get irq %d for %s\n", + pci_irq_vector(h->pdev, 0), h->devname); + hpsa_free_irqs(h); + return -ENODEV; + } + return 0; +} + +static int hpsa_kdump_soft_reset(struct ctlr_info *h) +{ + int rc; + hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER); + + dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); + rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY); + if (rc) { + dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); + return rc; + } + + dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); + rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); + if (rc) { + dev_warn(&h->pdev->dev, "Board failed to become ready " + "after soft reset.\n"); + return rc; + } + + return 0; +} + +static void hpsa_free_reply_queues(struct ctlr_info *h) +{ + int i; + + for (i = 0; i < h->nreply_queues; i++) { + if (!h->reply_queue[i].head) + continue; + pci_free_consistent(h->pdev, + h->reply_queue_size, + h->reply_queue[i].head, + h->reply_queue[i].busaddr); + h->reply_queue[i].head = NULL; + h->reply_queue[i].busaddr = 0; + } + h->reply_queue_size = 0; +} + +static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) +{ + hpsa_free_performant_mode(h); /* init_one 7 */ + hpsa_free_sg_chain_blocks(h); /* init_one 6 */ + hpsa_free_cmd_pool(h); /* init_one 5 */ + hpsa_free_irqs(h); /* init_one 4 */ + scsi_host_put(h->scsi_host); /* init_one 3 */ + h->scsi_host = NULL; /* init_one 3 */ + hpsa_free_pci_init(h); /* init_one 2_5 */ + free_percpu(h->lockup_detected); /* init_one 2 */ + h->lockup_detected = NULL; /* init_one 2 */ + if (h->resubmit_wq) { + destroy_workqueue(h->resubmit_wq); /* init_one 1 */ + h->resubmit_wq = NULL; + } + if (h->rescan_ctlr_wq) { + destroy_workqueue(h->rescan_ctlr_wq); + h->rescan_ctlr_wq = NULL; + } + kfree(h); /* init_one 1 */ +} + +/* Called when controller lockup detected. */ +static void fail_all_outstanding_cmds(struct ctlr_info *h) +{ + int i, refcount; + struct CommandList *c; + int failcount = 0; + + flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */ + for (i = 0; i < h->nr_cmds; i++) { + c = h->cmd_pool + i; + refcount = atomic_inc_return(&c->refcount); + if (refcount > 1) { + c->err_info->CommandStatus = CMD_CTLR_LOCKUP; + finish_cmd(c); + atomic_dec(&h->commands_outstanding); + failcount++; + } + cmd_free(h, c); + } + dev_warn(&h->pdev->dev, + "failed %d commands in fail_all\n", failcount); +} + +static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value) +{ + int cpu; + + for_each_online_cpu(cpu) { + u32 *lockup_detected; + lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); + *lockup_detected = value; + } + wmb(); /* be sure the per-cpu variables are out to memory */ +} + +static void controller_lockup_detected(struct ctlr_info *h) +{ + unsigned long flags; + u32 lockup_detected; + + h->access.set_intr_mask(h, HPSA_INTR_OFF); + spin_lock_irqsave(&h->lock, flags); + lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); + if (!lockup_detected) { + /* no heartbeat, but controller gave us a zero. */ + dev_warn(&h->pdev->dev, + "lockup detected after %d but scratchpad register is zero\n", + h->heartbeat_sample_interval / HZ); + lockup_detected = 0xffffffff; + } + set_lockup_detected_for_all_cpus(h, lockup_detected); + spin_unlock_irqrestore(&h->lock, flags); + dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n", + lockup_detected, h->heartbeat_sample_interval / HZ); + if (lockup_detected == 0xffff0000) { + dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n"); + writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL); + } + pci_disable_device(h->pdev); + fail_all_outstanding_cmds(h); +} + +static int detect_controller_lockup(struct ctlr_info *h) +{ + u64 now; + u32 heartbeat; + unsigned long flags; + + now = get_jiffies_64(); + /* If we've received an interrupt recently, we're ok. */ + if (time_after64(h->last_intr_timestamp + + (h->heartbeat_sample_interval), now)) + return false; + + /* + * If we've already checked the heartbeat recently, we're ok. + * This could happen if someone sends us a signal. We + * otherwise don't care about signals in this thread. + */ + if (time_after64(h->last_heartbeat_timestamp + + (h->heartbeat_sample_interval), now)) + return false; + + /* If heartbeat has not changed since we last looked, we're not ok. */ + spin_lock_irqsave(&h->lock, flags); + heartbeat = readl(&h->cfgtable->HeartBeat); + spin_unlock_irqrestore(&h->lock, flags); + if (h->last_heartbeat == heartbeat) { + controller_lockup_detected(h); + return true; + } + + /* We're ok. */ + h->last_heartbeat = heartbeat; + h->last_heartbeat_timestamp = now; + return false; +} + +/* + * Set ioaccel status for all ioaccel volumes. + * + * Called from monitor controller worker (hpsa_event_monitor_worker) + * + * A Volume (or Volumes that comprise an Array set) may be undergoing a + * transformation, so we will be turning off ioaccel for all volumes that + * make up the Array. + */ +static void hpsa_set_ioaccel_status(struct ctlr_info *h) +{ + int rc; + int i; + u8 ioaccel_status; + unsigned char *buf; + struct hpsa_scsi_dev_t *device; + + if (!h) + return; + + buf = kmalloc(64, GFP_KERNEL); + if (!buf) + return; + + /* + * Run through current device list used during I/O requests. + */ + for (i = 0; i < h->ndevices; i++) { + int offload_to_be_enabled = 0; + int offload_config = 0; + + device = h->dev[i]; + + if (!device) + continue; + if (!hpsa_vpd_page_supported(h, device->scsi3addr, + HPSA_VPD_LV_IOACCEL_STATUS)) + continue; + + memset(buf, 0, 64); + + rc = hpsa_scsi_do_inquiry(h, device->scsi3addr, + VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, + buf, 64); + if (rc != 0) + continue; + + ioaccel_status = buf[IOACCEL_STATUS_BYTE]; + + /* + * Check if offload is still configured on + */ + offload_config = + !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); + /* + * If offload is configured on, check to see if ioaccel + * needs to be enabled. + */ + if (offload_config) + offload_to_be_enabled = + !!(ioaccel_status & OFFLOAD_ENABLED_BIT); + + /* + * If ioaccel is to be re-enabled, re-enable later during the + * scan operation so the driver can get a fresh raidmap + * before turning ioaccel back on. + */ + if (offload_to_be_enabled) + continue; + + /* + * Immediately turn off ioaccel for any volume the + * controller tells us to. Some of the reasons could be: + * transformation - change to the LVs of an Array. + * degraded volume - component failure + */ + hpsa_turn_off_ioaccel_for_device(device); + } + + kfree(buf); +} + +static void hpsa_ack_ctlr_events(struct ctlr_info *h) +{ + char *event_type; + + if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) + return; + + /* Ask the controller to clear the events we're handling. */ + if ((h->transMethod & (CFGTBL_Trans_io_accel1 + | CFGTBL_Trans_io_accel2)) && + (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE || + h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) { + + if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE) + event_type = "state change"; + if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE) + event_type = "configuration change"; + /* Stop sending new RAID offload reqs via the IO accelerator */ + scsi_block_requests(h->scsi_host); + hpsa_set_ioaccel_status(h); + hpsa_drain_accel_commands(h); + /* Set 'accelerator path config change' bit */ + dev_warn(&h->pdev->dev, + "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n", + h->events, event_type); + writel(h->events, &(h->cfgtable->clear_event_notify)); + /* Set the "clear event notify field update" bit 6 */ + writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); + /* Wait until ctlr clears 'clear event notify field', bit 6 */ + hpsa_wait_for_clear_event_notify_ack(h); + scsi_unblock_requests(h->scsi_host); + } else { + /* Acknowledge controller notification events. */ + writel(h->events, &(h->cfgtable->clear_event_notify)); + writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); + hpsa_wait_for_clear_event_notify_ack(h); + } + return; +} + +/* Check a register on the controller to see if there are configuration + * changes (added/changed/removed logical drives, etc.) which mean that + * we should rescan the controller for devices. + * Also check flag for driver-initiated rescan. + */ +static int hpsa_ctlr_needs_rescan(struct ctlr_info *h) +{ + if (h->drv_req_rescan) { + h->drv_req_rescan = 0; + return 1; + } + + if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) + return 0; + + h->events = readl(&(h->cfgtable->event_notify)); + return h->events & RESCAN_REQUIRED_EVENT_BITS; +} + +/* + * Check if any of the offline devices have become ready + */ +static int hpsa_offline_devices_ready(struct ctlr_info *h) +{ + unsigned long flags; + struct offline_device_entry *d; + struct list_head *this, *tmp; + + spin_lock_irqsave(&h->offline_device_lock, flags); + list_for_each_safe(this, tmp, &h->offline_device_list) { + d = list_entry(this, struct offline_device_entry, + offline_list); + spin_unlock_irqrestore(&h->offline_device_lock, flags); + if (!hpsa_volume_offline(h, d->scsi3addr)) { + spin_lock_irqsave(&h->offline_device_lock, flags); + list_del(&d->offline_list); + spin_unlock_irqrestore(&h->offline_device_lock, flags); + return 1; + } + spin_lock_irqsave(&h->offline_device_lock, flags); + } + spin_unlock_irqrestore(&h->offline_device_lock, flags); + return 0; +} + +static int hpsa_luns_changed(struct ctlr_info *h) +{ + int rc = 1; /* assume there are changes */ + struct ReportLUNdata *logdev = NULL; + + /* if we can't find out if lun data has changed, + * assume that it has. + */ + + if (!h->lastlogicals) + return rc; + + logdev = kzalloc(sizeof(*logdev), GFP_KERNEL); + if (!logdev) + return rc; + + if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) { + dev_warn(&h->pdev->dev, + "report luns failed, can't track lun changes.\n"); + goto out; + } + if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) { + dev_info(&h->pdev->dev, + "Lun changes detected.\n"); + memcpy(h->lastlogicals, logdev, sizeof(*logdev)); + goto out; + } else + rc = 0; /* no changes detected. */ +out: + kfree(logdev); + return rc; +} + +static void hpsa_perform_rescan(struct ctlr_info *h) +{ + struct Scsi_Host *sh = NULL; + unsigned long flags; + + /* + * Do the scan after the reset + */ + spin_lock_irqsave(&h->reset_lock, flags); + if (h->reset_in_progress) { + h->drv_req_rescan = 1; + spin_unlock_irqrestore(&h->reset_lock, flags); + return; + } + spin_unlock_irqrestore(&h->reset_lock, flags); + + sh = scsi_host_get(h->scsi_host); + if (sh != NULL) { + hpsa_scan_start(sh); + scsi_host_put(sh); + h->drv_req_rescan = 0; + } +} + +/* + * watch for controller events + */ +static void hpsa_event_monitor_worker(struct work_struct *work) +{ + struct ctlr_info *h = container_of(to_delayed_work(work), + struct ctlr_info, event_monitor_work); + unsigned long flags; + + spin_lock_irqsave(&h->lock, flags); + if (h->remove_in_progress) { + spin_unlock_irqrestore(&h->lock, flags); + return; + } + spin_unlock_irqrestore(&h->lock, flags); + + if (hpsa_ctlr_needs_rescan(h)) { + hpsa_ack_ctlr_events(h); + hpsa_perform_rescan(h); + } + + spin_lock_irqsave(&h->lock, flags); + if (!h->remove_in_progress) + schedule_delayed_work(&h->event_monitor_work, + HPSA_EVENT_MONITOR_INTERVAL); + spin_unlock_irqrestore(&h->lock, flags); +} + +static void hpsa_rescan_ctlr_worker(struct work_struct *work) +{ + unsigned long flags; + struct ctlr_info *h = container_of(to_delayed_work(work), + struct ctlr_info, rescan_ctlr_work); + + spin_lock_irqsave(&h->lock, flags); + if (h->remove_in_progress) { + spin_unlock_irqrestore(&h->lock, flags); + return; + } + spin_unlock_irqrestore(&h->lock, flags); + + if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) { + hpsa_perform_rescan(h); + } else if (h->discovery_polling) { + if (hpsa_luns_changed(h)) { + dev_info(&h->pdev->dev, + "driver discovery polling rescan.\n"); + hpsa_perform_rescan(h); + } + } + spin_lock_irqsave(&h->lock, flags); + if (!h->remove_in_progress) + queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, + h->heartbeat_sample_interval); + spin_unlock_irqrestore(&h->lock, flags); +} + +static void hpsa_monitor_ctlr_worker(struct work_struct *work) +{ + unsigned long flags; + struct ctlr_info *h = container_of(to_delayed_work(work), + struct ctlr_info, monitor_ctlr_work); + + detect_controller_lockup(h); + if (lockup_detected(h)) + return; + + spin_lock_irqsave(&h->lock, flags); + if (!h->remove_in_progress) + schedule_delayed_work(&h->monitor_ctlr_work, + h->heartbeat_sample_interval); + spin_unlock_irqrestore(&h->lock, flags); +} + +static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h, + char *name) +{ + struct workqueue_struct *wq = NULL; + + wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr); + if (!wq) + dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name); + + return wq; +} + +static void hpda_free_ctlr_info(struct ctlr_info *h) +{ + kfree(h->reply_map); + kfree(h); +} + +static struct ctlr_info *hpda_alloc_ctlr_info(void) +{ + struct ctlr_info *h; + + h = kzalloc(sizeof(*h), GFP_KERNEL); + if (!h) + return NULL; + + h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL); + if (!h->reply_map) { + kfree(h); + return NULL; + } + return h; +} + +static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) +{ + int dac, rc; + struct ctlr_info *h; + int try_soft_reset = 0; + unsigned long flags; + u32 board_id; + + if (number_of_controllers == 0) + printk(KERN_INFO DRIVER_NAME "\n"); + + rc = hpsa_lookup_board_id(pdev, &board_id, NULL); + if (rc < 0) { + dev_warn(&pdev->dev, "Board ID not found\n"); + return rc; + } + + rc = hpsa_init_reset_devices(pdev, board_id); + if (rc) { + if (rc != -ENOTSUPP) + return rc; + /* If the reset fails in a particular way (it has no way to do + * a proper hard reset, so returns -ENOTSUPP) we can try to do + * a soft reset once we get the controller configured up to the + * point that it can accept a command. + */ + try_soft_reset = 1; + rc = 0; + } + +reinit_after_soft_reset: + + /* Command structures must be aligned on a 32-byte boundary because + * the 5 lower bits of the address are used by the hardware. and by + * the driver. See comments in hpsa.h for more info. + */ + BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); + h = hpda_alloc_ctlr_info(); + if (!h) { + dev_err(&pdev->dev, "Failed to allocate controller head\n"); + return -ENOMEM; + } + + h->pdev = pdev; + + h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; + INIT_LIST_HEAD(&h->offline_device_list); + spin_lock_init(&h->lock); + spin_lock_init(&h->offline_device_lock); + spin_lock_init(&h->scan_lock); + spin_lock_init(&h->reset_lock); + atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS); + + /* Allocate and clear per-cpu variable lockup_detected */ + h->lockup_detected = alloc_percpu(u32); + if (!h->lockup_detected) { + dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n"); + rc = -ENOMEM; + goto clean1; /* aer/h */ + } + set_lockup_detected_for_all_cpus(h, 0); + + rc = hpsa_pci_init(h); + if (rc) + goto clean2; /* lu, aer/h */ + + /* relies on h-> settings made by hpsa_pci_init, including + * interrupt_mode h->intr */ + rc = hpsa_scsi_host_alloc(h); + if (rc) + goto clean2_5; /* pci, lu, aer/h */ + + sprintf(h->devname, HPSA "%d", h->scsi_host->host_no); + h->ctlr = number_of_controllers; + number_of_controllers++; + + /* configure PCI DMA stuff */ + rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); + if (rc == 0) { + dac = 1; + } else { + rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); + if (rc == 0) { + dac = 0; + } else { + dev_err(&pdev->dev, "no suitable DMA available\n"); + goto clean3; /* shost, pci, lu, aer/h */ + } + } + + /* make sure the board interrupts are off */ + h->access.set_intr_mask(h, HPSA_INTR_OFF); + + rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx); + if (rc) + goto clean3; /* shost, pci, lu, aer/h */ + rc = hpsa_alloc_cmd_pool(h); + if (rc) + goto clean4; /* irq, shost, pci, lu, aer/h */ + rc = hpsa_alloc_sg_chain_blocks(h); + if (rc) + goto clean5; /* cmd, irq, shost, pci, lu, aer/h */ + init_waitqueue_head(&h->scan_wait_queue); + init_waitqueue_head(&h->event_sync_wait_queue); + mutex_init(&h->reset_mutex); + h->scan_finished = 1; /* no scan currently in progress */ + h->scan_waiting = 0; + + pci_set_drvdata(pdev, h); + h->ndevices = 0; + + spin_lock_init(&h->devlock); + rc = hpsa_put_ctlr_into_performant_mode(h); + if (rc) + goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */ + + /* create the resubmit workqueue */ + h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan"); + if (!h->rescan_ctlr_wq) { + rc = -ENOMEM; + goto clean7; + } + + h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit"); + if (!h->resubmit_wq) { + rc = -ENOMEM; + goto clean7; /* aer/h */ + } + + /* + * At this point, the controller is ready to take commands. + * Now, if reset_devices and the hard reset didn't work, try + * the soft reset and see if that works. + */ + if (try_soft_reset) { + + /* This is kind of gross. We may or may not get a completion + * from the soft reset command, and if we do, then the value + * from the fifo may or may not be valid. So, we wait 10 secs + * after the reset throwing away any completions we get during + * that time. Unregister the interrupt handler and register + * fake ones to scoop up any residual completions. + */ + spin_lock_irqsave(&h->lock, flags); + h->access.set_intr_mask(h, HPSA_INTR_OFF); + spin_unlock_irqrestore(&h->lock, flags); + hpsa_free_irqs(h); + rc = hpsa_request_irqs(h, hpsa_msix_discard_completions, + hpsa_intx_discard_completions); + if (rc) { + dev_warn(&h->pdev->dev, + "Failed to request_irq after soft reset.\n"); + /* + * cannot goto clean7 or free_irqs will be called + * again. Instead, do its work + */ + hpsa_free_performant_mode(h); /* clean7 */ + hpsa_free_sg_chain_blocks(h); /* clean6 */ + hpsa_free_cmd_pool(h); /* clean5 */ + /* + * skip hpsa_free_irqs(h) clean4 since that + * was just called before request_irqs failed + */ + goto clean3; + } + + rc = hpsa_kdump_soft_reset(h); + if (rc) + /* Neither hard nor soft reset worked, we're hosed. */ + goto clean7; + + dev_info(&h->pdev->dev, "Board READY.\n"); + dev_info(&h->pdev->dev, + "Waiting for stale completions to drain.\n"); + h->access.set_intr_mask(h, HPSA_INTR_ON); + msleep(10000); + h->access.set_intr_mask(h, HPSA_INTR_OFF); + + rc = controller_reset_failed(h->cfgtable); + if (rc) + dev_info(&h->pdev->dev, + "Soft reset appears to have failed.\n"); + + /* since the controller's reset, we have to go back and re-init + * everything. Easiest to just forget what we've done and do it + * all over again. + */ + hpsa_undo_allocations_after_kdump_soft_reset(h); + try_soft_reset = 0; + if (rc) + /* don't goto clean, we already unallocated */ + return -ENODEV; + + goto reinit_after_soft_reset; + } + + /* Enable Accelerated IO path at driver layer */ + h->acciopath_status = 1; + /* Disable discovery polling.*/ + h->discovery_polling = 0; + + + /* Turn the interrupts on so we can service requests */ + h->access.set_intr_mask(h, HPSA_INTR_ON); + + hpsa_hba_inquiry(h); + + h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL); + if (!h->lastlogicals) + dev_info(&h->pdev->dev, + "Can't track change to report lun data\n"); + + /* hook into SCSI subsystem */ + rc = hpsa_scsi_add_host(h); + if (rc) + goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */ + + /* Monitor the controller for firmware lockups */ + h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; + INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker); + schedule_delayed_work(&h->monitor_ctlr_work, + h->heartbeat_sample_interval); + INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker); + queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, + h->heartbeat_sample_interval); + INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker); + schedule_delayed_work(&h->event_monitor_work, + HPSA_EVENT_MONITOR_INTERVAL); + return 0; + +clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */ + kfree(h->lastlogicals); +clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ + hpsa_free_performant_mode(h); + h->access.set_intr_mask(h, HPSA_INTR_OFF); +clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */ + hpsa_free_sg_chain_blocks(h); +clean5: /* cmd, irq, shost, pci, lu, aer/h */ + hpsa_free_cmd_pool(h); +clean4: /* irq, shost, pci, lu, aer/h */ + hpsa_free_irqs(h); +clean3: /* shost, pci, lu, aer/h */ + scsi_host_put(h->scsi_host); + h->scsi_host = NULL; +clean2_5: /* pci, lu, aer/h */ + hpsa_free_pci_init(h); +clean2: /* lu, aer/h */ + if (h->lockup_detected) { + free_percpu(h->lockup_detected); + h->lockup_detected = NULL; + } +clean1: /* wq/aer/h */ + if (h->resubmit_wq) { + destroy_workqueue(h->resubmit_wq); + h->resubmit_wq = NULL; + } + if (h->rescan_ctlr_wq) { + destroy_workqueue(h->rescan_ctlr_wq); + h->rescan_ctlr_wq = NULL; + } + kfree(h); + return rc; +} + +static void hpsa_flush_cache(struct ctlr_info *h) +{ + char *flush_buf; + struct CommandList *c; + int rc; + + if (unlikely(lockup_detected(h))) + return; + flush_buf = kzalloc(4, GFP_KERNEL); + if (!flush_buf) + return; + + c = cmd_alloc(h); + + if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, + RAID_CTLR_LUNID, TYPE_CMD)) { + goto out; + } + rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, + PCI_DMA_TODEVICE, DEFAULT_TIMEOUT); + if (rc) + goto out; + if (c->err_info->CommandStatus != 0) +out: + dev_warn(&h->pdev->dev, + "error flushing cache on controller\n"); + cmd_free(h, c); + kfree(flush_buf); +} + +/* Make controller gather fresh report lun data each time we + * send down a report luns request + */ +static void hpsa_disable_rld_caching(struct ctlr_info *h) +{ + u32 *options; + struct CommandList *c; + int rc; + + /* Don't bother trying to set diag options if locked up */ + if (unlikely(h->lockup_detected)) + return; + + options = kzalloc(sizeof(*options), GFP_KERNEL); + if (!options) + return; + + c = cmd_alloc(h); + + /* first, get the current diag options settings */ + if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, + RAID_CTLR_LUNID, TYPE_CMD)) + goto errout; + + rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, + PCI_DMA_FROMDEVICE, NO_TIMEOUT); + if ((rc != 0) || (c->err_info->CommandStatus != 0)) + goto errout; + + /* Now, set the bit for disabling the RLD caching */ + *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING; + + if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0, + RAID_CTLR_LUNID, TYPE_CMD)) + goto errout; + + rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, + PCI_DMA_TODEVICE, NO_TIMEOUT); + if ((rc != 0) || (c->err_info->CommandStatus != 0)) + goto errout; + + /* Now verify that it got set: */ + if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0, + RAID_CTLR_LUNID, TYPE_CMD)) + goto errout; + + rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, + PCI_DMA_FROMDEVICE, NO_TIMEOUT); + if ((rc != 0) || (c->err_info->CommandStatus != 0)) + goto errout; + + if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING) + goto out; + +errout: + dev_err(&h->pdev->dev, + "Error: failed to disable report lun data caching.\n"); +out: + cmd_free(h, c); + kfree(options); +} + +static void __hpsa_shutdown(struct pci_dev *pdev) +{ + struct ctlr_info *h; + + h = pci_get_drvdata(pdev); + /* Turn board interrupts off and send the flush cache command + * sendcmd will turn off interrupt, and send the flush... + * To write all data in the battery backed cache to disks + */ + hpsa_flush_cache(h); + h->access.set_intr_mask(h, HPSA_INTR_OFF); + hpsa_free_irqs(h); /* init_one 4 */ + hpsa_disable_interrupt_mode(h); /* pci_init 2 */ +} + +static void hpsa_shutdown(struct pci_dev *pdev) +{ + __hpsa_shutdown(pdev); + pci_disable_device(pdev); +} + +static void hpsa_free_device_info(struct ctlr_info *h) +{ + int i; + + for (i = 0; i < h->ndevices; i++) { + kfree(h->dev[i]); + h->dev[i] = NULL; + } +} + +static void hpsa_remove_one(struct pci_dev *pdev) +{ + struct ctlr_info *h; + unsigned long flags; + + if (pci_get_drvdata(pdev) == NULL) { + dev_err(&pdev->dev, "unable to remove device\n"); + return; + } + h = pci_get_drvdata(pdev); + + /* Get rid of any controller monitoring work items */ + spin_lock_irqsave(&h->lock, flags); + h->remove_in_progress = 1; + spin_unlock_irqrestore(&h->lock, flags); + cancel_delayed_work_sync(&h->monitor_ctlr_work); + cancel_delayed_work_sync(&h->rescan_ctlr_work); + cancel_delayed_work_sync(&h->event_monitor_work); + destroy_workqueue(h->rescan_ctlr_wq); + destroy_workqueue(h->resubmit_wq); + + hpsa_delete_sas_host(h); + + /* + * Call before disabling interrupts. + * scsi_remove_host can trigger I/O operations especially + * when multipath is enabled. There can be SYNCHRONIZE CACHE + * operations which cannot complete and will hang the system. + */ + if (h->scsi_host) + scsi_remove_host(h->scsi_host); /* init_one 8 */ + /* includes hpsa_free_irqs - init_one 4 */ + /* includes hpsa_disable_interrupt_mode - pci_init 2 */ + __hpsa_shutdown(pdev); + + hpsa_free_device_info(h); /* scan */ + + kfree(h->hba_inquiry_data); /* init_one 10 */ + h->hba_inquiry_data = NULL; /* init_one 10 */ + hpsa_free_ioaccel2_sg_chain_blocks(h); + hpsa_free_performant_mode(h); /* init_one 7 */ + hpsa_free_sg_chain_blocks(h); /* init_one 6 */ + hpsa_free_cmd_pool(h); /* init_one 5 */ + kfree(h->lastlogicals); + + /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */ + + scsi_host_put(h->scsi_host); /* init_one 3 */ + h->scsi_host = NULL; /* init_one 3 */ + + /* includes hpsa_disable_interrupt_mode - pci_init 2 */ + hpsa_free_pci_init(h); /* init_one 2.5 */ + + free_percpu(h->lockup_detected); /* init_one 2 */ + h->lockup_detected = NULL; /* init_one 2 */ + /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */ + + hpda_free_ctlr_info(h); /* init_one 1 */ +} + +static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, + __attribute__((unused)) pm_message_t state) +{ + return -ENOSYS; +} + +static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) +{ + return -ENOSYS; +} + +static struct pci_driver hpsa_pci_driver = { + .name = HPSA, + .probe = hpsa_init_one, + .remove = hpsa_remove_one, + .id_table = hpsa_pci_device_id, /* id_table */ + .shutdown = hpsa_shutdown, + .suspend = hpsa_suspend, + .resume = hpsa_resume, +}; + +/* Fill in bucket_map[], given nsgs (the max number of + * scatter gather elements supported) and bucket[], + * which is an array of 8 integers. The bucket[] array + * contains 8 different DMA transfer sizes (in 16 + * byte increments) which the controller uses to fetch + * commands. This function fills in bucket_map[], which + * maps a given number of scatter gather elements to one of + * the 8 DMA transfer sizes. The point of it is to allow the + * controller to only do as much DMA as needed to fetch the + * command, with the DMA transfer size encoded in the lower + * bits of the command address. + */ +static void calc_bucket_map(int bucket[], int num_buckets, + int nsgs, int min_blocks, u32 *bucket_map) +{ + int i, j, b, size; + + /* Note, bucket_map must have nsgs+1 entries. */ + for (i = 0; i <= nsgs; i++) { + /* Compute size of a command with i SG entries */ + size = i + min_blocks; + b = num_buckets; /* Assume the biggest bucket */ + /* Find the bucket that is just big enough */ + for (j = 0; j < num_buckets; j++) { + if (bucket[j] >= size) { + b = j; + break; + } + } + /* for a command with i SG entries, use bucket b. */ + bucket_map[i] = b; + } +} + +/* + * return -ENODEV on err, 0 on success (or no action) + * allocates numerous items that must be freed later + */ +static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support) +{ + int i; + unsigned long register_value; + unsigned long transMethod = CFGTBL_Trans_Performant | + (trans_support & CFGTBL_Trans_use_short_tags) | + CFGTBL_Trans_enable_directed_msix | + (trans_support & (CFGTBL_Trans_io_accel1 | + CFGTBL_Trans_io_accel2)); + struct access_method access = SA5_performant_access; + + /* This is a bit complicated. There are 8 registers on + * the controller which we write to to tell it 8 different + * sizes of commands which there may be. It's a way of + * reducing the DMA done to fetch each command. Encoded into + * each command's tag are 3 bits which communicate to the controller + * which of the eight sizes that command fits within. The size of + * each command depends on how many scatter gather entries there are. + * Each SG entry requires 16 bytes. The eight registers are programmed + * with the number of 16-byte blocks a command of that size requires. + * The smallest command possible requires 5 such 16 byte blocks. + * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte + * blocks. Note, this only extends to the SG entries contained + * within the command block, and does not extend to chained blocks + * of SG elements. bft[] contains the eight values we write to + * the registers. They are not evenly distributed, but have more + * sizes for small commands, and fewer sizes for larger commands. + */ + int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; +#define MIN_IOACCEL2_BFT_ENTRY 5 +#define HPSA_IOACCEL2_HEADER_SZ 4 + int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12, + 13, 14, 15, 16, 17, 18, 19, + HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES}; + BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16); + BUILD_BUG_ON(ARRAY_SIZE(bft) != 8); + BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) > + 16 * MIN_IOACCEL2_BFT_ENTRY); + BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16); + BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); + /* 5 = 1 s/g entry or 4k + * 6 = 2 s/g entry or 8k + * 8 = 4 s/g entry or 16k + * 10 = 6 s/g entry or 24k + */ + + /* If the controller supports either ioaccel method then + * we can also use the RAID stack submit path that does not + * perform the superfluous readl() after each command submission. + */ + if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)) + access = SA5_performant_access_no_read; + + /* Controller spec: zero out this buffer. */ + for (i = 0; i < h->nreply_queues; i++) + memset(h->reply_queue[i].head, 0, h->reply_queue_size); + + bft[7] = SG_ENTRIES_IN_CMD + 4; + calc_bucket_map(bft, ARRAY_SIZE(bft), + SG_ENTRIES_IN_CMD, 4, h->blockFetchTable); + for (i = 0; i < 8; i++) + writel(bft[i], &h->transtable->BlockFetch[i]); + + /* size of controller ring buffer */ + writel(h->max_commands, &h->transtable->RepQSize); + writel(h->nreply_queues, &h->transtable->RepQCount); + writel(0, &h->transtable->RepQCtrAddrLow32); + writel(0, &h->transtable->RepQCtrAddrHigh32); + + for (i = 0; i < h->nreply_queues; i++) { + writel(0, &h->transtable->RepQAddr[i].upper); + writel(h->reply_queue[i].busaddr, + &h->transtable->RepQAddr[i].lower); + } + + writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); + writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest)); + /* + * enable outbound interrupt coalescing in accelerator mode; + */ + if (trans_support & CFGTBL_Trans_io_accel1) { + access = SA5_ioaccel_mode1_access; + writel(10, &h->cfgtable->HostWrite.CoalIntDelay); + writel(4, &h->cfgtable->HostWrite.CoalIntCount); + } else + if (trans_support & CFGTBL_Trans_io_accel2) + access = SA5_ioaccel_mode2_access; + writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); + if (hpsa_wait_for_mode_change_ack(h)) { + dev_err(&h->pdev->dev, + "performant mode problem - doorbell timeout\n"); + return -ENODEV; + } + register_value = readl(&(h->cfgtable->TransportActive)); + if (!(register_value & CFGTBL_Trans_Performant)) { + dev_err(&h->pdev->dev, + "performant mode problem - transport not active\n"); + return -ENODEV; + } + /* Change the access methods to the performant access methods */ + h->access = access; + h->transMethod = transMethod; + + if (!((trans_support & CFGTBL_Trans_io_accel1) || + (trans_support & CFGTBL_Trans_io_accel2))) + return 0; + + if (trans_support & CFGTBL_Trans_io_accel1) { + /* Set up I/O accelerator mode */ + for (i = 0; i < h->nreply_queues; i++) { + writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX); + h->reply_queue[i].current_entry = + readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX); + } + bft[7] = h->ioaccel_maxsg + 8; + calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8, + h->ioaccel1_blockFetchTable); + + /* initialize all reply queue entries to unused */ + for (i = 0; i < h->nreply_queues; i++) + memset(h->reply_queue[i].head, + (u8) IOACCEL_MODE1_REPLY_UNUSED, + h->reply_queue_size); + + /* set all the constant fields in the accelerator command + * frames once at init time to save CPU cycles later. + */ + for (i = 0; i < h->nr_cmds; i++) { + struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i]; + + cp->function = IOACCEL1_FUNCTION_SCSIIO; + cp->err_info = (u32) (h->errinfo_pool_dhandle + + (i * sizeof(struct ErrorInfo))); + cp->err_info_len = sizeof(struct ErrorInfo); + cp->sgl_offset = IOACCEL1_SGLOFFSET; + cp->host_context_flags = + cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT); + cp->timeout_sec = 0; + cp->ReplyQueue = 0; + cp->tag = + cpu_to_le64((i << DIRECT_LOOKUP_SHIFT)); + cp->host_addr = + cpu_to_le64(h->ioaccel_cmd_pool_dhandle + + (i * sizeof(struct io_accel1_cmd))); + } + } else if (trans_support & CFGTBL_Trans_io_accel2) { + u64 cfg_offset, cfg_base_addr_index; + u32 bft2_offset, cfg_base_addr; + int rc; + + rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, + &cfg_base_addr_index, &cfg_offset); + BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64); + bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ; + calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg, + 4, h->ioaccel2_blockFetchTable); + bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset); + BUILD_BUG_ON(offsetof(struct CfgTable, + io_accel_request_size_offset) != 0xb8); + h->ioaccel2_bft2_regs = + remap_pci_mem(pci_resource_start(h->pdev, + cfg_base_addr_index) + + cfg_offset + bft2_offset, + ARRAY_SIZE(bft2) * + sizeof(*h->ioaccel2_bft2_regs)); + for (i = 0; i < ARRAY_SIZE(bft2); i++) + writel(bft2[i], &h->ioaccel2_bft2_regs[i]); + } + writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); + if (hpsa_wait_for_mode_change_ack(h)) { + dev_err(&h->pdev->dev, + "performant mode problem - enabling ioaccel mode\n"); + return -ENODEV; + } + return 0; +} + +/* Free ioaccel1 mode command blocks and block fetch table */ +static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h) +{ + if (h->ioaccel_cmd_pool) { + pci_free_consistent(h->pdev, + h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), + h->ioaccel_cmd_pool, + h->ioaccel_cmd_pool_dhandle); + h->ioaccel_cmd_pool = NULL; + h->ioaccel_cmd_pool_dhandle = 0; + } + kfree(h->ioaccel1_blockFetchTable); + h->ioaccel1_blockFetchTable = NULL; +} + +/* Allocate ioaccel1 mode command blocks and block fetch table */ +static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h) +{ + h->ioaccel_maxsg = + readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); + if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES) + h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES; + + /* Command structures must be aligned on a 128-byte boundary + * because the 7 lower bits of the address are used by the + * hardware. + */ + BUILD_BUG_ON(sizeof(struct io_accel1_cmd) % + IOACCEL1_COMMANDLIST_ALIGNMENT); + h->ioaccel_cmd_pool = + pci_alloc_consistent(h->pdev, + h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), + &(h->ioaccel_cmd_pool_dhandle)); + + h->ioaccel1_blockFetchTable = + kmalloc(((h->ioaccel_maxsg + 1) * + sizeof(u32)), GFP_KERNEL); + + if ((h->ioaccel_cmd_pool == NULL) || + (h->ioaccel1_blockFetchTable == NULL)) + goto clean_up; + + memset(h->ioaccel_cmd_pool, 0, + h->nr_cmds * sizeof(*h->ioaccel_cmd_pool)); + return 0; + +clean_up: + hpsa_free_ioaccel1_cmd_and_bft(h); + return -ENOMEM; +} + +/* Free ioaccel2 mode command blocks and block fetch table */ +static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h) +{ + hpsa_free_ioaccel2_sg_chain_blocks(h); + + if (h->ioaccel2_cmd_pool) { + pci_free_consistent(h->pdev, + h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), + h->ioaccel2_cmd_pool, + h->ioaccel2_cmd_pool_dhandle); + h->ioaccel2_cmd_pool = NULL; + h->ioaccel2_cmd_pool_dhandle = 0; + } + kfree(h->ioaccel2_blockFetchTable); + h->ioaccel2_blockFetchTable = NULL; +} + +/* Allocate ioaccel2 mode command blocks and block fetch table */ +static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h) +{ + int rc; + + /* Allocate ioaccel2 mode command blocks and block fetch table */ + + h->ioaccel_maxsg = + readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); + if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES) + h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES; + + BUILD_BUG_ON(sizeof(struct io_accel2_cmd) % + IOACCEL2_COMMANDLIST_ALIGNMENT); + h->ioaccel2_cmd_pool = + pci_alloc_consistent(h->pdev, + h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), + &(h->ioaccel2_cmd_pool_dhandle)); + + h->ioaccel2_blockFetchTable = + kmalloc(((h->ioaccel_maxsg + 1) * + sizeof(u32)), GFP_KERNEL); + + if ((h->ioaccel2_cmd_pool == NULL) || + (h->ioaccel2_blockFetchTable == NULL)) { + rc = -ENOMEM; + goto clean_up; + } + + rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h); + if (rc) + goto clean_up; + + memset(h->ioaccel2_cmd_pool, 0, + h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool)); + return 0; + +clean_up: + hpsa_free_ioaccel2_cmd_and_bft(h); + return rc; +} + +/* Free items allocated by hpsa_put_ctlr_into_performant_mode */ +static void hpsa_free_performant_mode(struct ctlr_info *h) +{ + kfree(h->blockFetchTable); + h->blockFetchTable = NULL; + hpsa_free_reply_queues(h); + hpsa_free_ioaccel1_cmd_and_bft(h); + hpsa_free_ioaccel2_cmd_and_bft(h); +} + +/* return -ENODEV on error, 0 on success (or no action) + * allocates numerous items that must be freed later + */ +static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) +{ + u32 trans_support; + unsigned long transMethod = CFGTBL_Trans_Performant | + CFGTBL_Trans_use_short_tags; + int i, rc; + + if (hpsa_simple_mode) + return 0; + + trans_support = readl(&(h->cfgtable->TransportSupport)); + if (!(trans_support & PERFORMANT_MODE)) + return 0; + + /* Check for I/O accelerator mode support */ + if (trans_support & CFGTBL_Trans_io_accel1) { + transMethod |= CFGTBL_Trans_io_accel1 | + CFGTBL_Trans_enable_directed_msix; + rc = hpsa_alloc_ioaccel1_cmd_and_bft(h); + if (rc) + return rc; + } else if (trans_support & CFGTBL_Trans_io_accel2) { + transMethod |= CFGTBL_Trans_io_accel2 | + CFGTBL_Trans_enable_directed_msix; + rc = hpsa_alloc_ioaccel2_cmd_and_bft(h); + if (rc) + return rc; + } + + h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1; + hpsa_get_max_perf_mode_cmds(h); + /* Performant mode ring buffer and supporting data structures */ + h->reply_queue_size = h->max_commands * sizeof(u64); + + for (i = 0; i < h->nreply_queues; i++) { + h->reply_queue[i].head = pci_alloc_consistent(h->pdev, + h->reply_queue_size, + &(h->reply_queue[i].busaddr)); + if (!h->reply_queue[i].head) { + rc = -ENOMEM; + goto clean1; /* rq, ioaccel */ + } + h->reply_queue[i].size = h->max_commands; + h->reply_queue[i].wraparound = 1; /* spec: init to 1 */ + h->reply_queue[i].current_entry = 0; + } + + /* Need a block fetch table for performant mode */ + h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * + sizeof(u32)), GFP_KERNEL); + if (!h->blockFetchTable) { + rc = -ENOMEM; + goto clean1; /* rq, ioaccel */ + } + + rc = hpsa_enter_performant_mode(h, trans_support); + if (rc) + goto clean2; /* bft, rq, ioaccel */ + return 0; + +clean2: /* bft, rq, ioaccel */ + kfree(h->blockFetchTable); + h->blockFetchTable = NULL; +clean1: /* rq, ioaccel */ + hpsa_free_reply_queues(h); + hpsa_free_ioaccel1_cmd_and_bft(h); + hpsa_free_ioaccel2_cmd_and_bft(h); + return rc; +} + +static int is_accelerated_cmd(struct CommandList *c) +{ + return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2; +} + +static void hpsa_drain_accel_commands(struct ctlr_info *h) +{ + struct CommandList *c = NULL; + int i, accel_cmds_out; + int refcount; + + do { /* wait for all outstanding ioaccel commands to drain out */ + accel_cmds_out = 0; + for (i = 0; i < h->nr_cmds; i++) { + c = h->cmd_pool + i; + refcount = atomic_inc_return(&c->refcount); + if (refcount > 1) /* Command is allocated */ + accel_cmds_out += is_accelerated_cmd(c); + cmd_free(h, c); + } + if (accel_cmds_out <= 0) + break; + msleep(100); + } while (1); +} + +static struct hpsa_sas_phy *hpsa_alloc_sas_phy( + struct hpsa_sas_port *hpsa_sas_port) +{ + struct hpsa_sas_phy *hpsa_sas_phy; + struct sas_phy *phy; + + hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL); + if (!hpsa_sas_phy) + return NULL; + + phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev, + hpsa_sas_port->next_phy_index); + if (!phy) { + kfree(hpsa_sas_phy); + return NULL; + } + + hpsa_sas_port->next_phy_index++; + hpsa_sas_phy->phy = phy; + hpsa_sas_phy->parent_port = hpsa_sas_port; + + return hpsa_sas_phy; +} + +static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy) +{ + struct sas_phy *phy = hpsa_sas_phy->phy; + + sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy); + if (hpsa_sas_phy->added_to_port) + list_del(&hpsa_sas_phy->phy_list_entry); + sas_phy_delete(phy); + kfree(hpsa_sas_phy); +} + +static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy) +{ + int rc; + struct hpsa_sas_port *hpsa_sas_port; + struct sas_phy *phy; + struct sas_identify *identify; + + hpsa_sas_port = hpsa_sas_phy->parent_port; + phy = hpsa_sas_phy->phy; + + identify = &phy->identify; + memset(identify, 0, sizeof(*identify)); + identify->sas_address = hpsa_sas_port->sas_address; + identify->device_type = SAS_END_DEVICE; + identify->initiator_port_protocols = SAS_PROTOCOL_STP; + identify->target_port_protocols = SAS_PROTOCOL_STP; + phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; + phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN; + phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN; + phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN; + phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN; + + rc = sas_phy_add(hpsa_sas_phy->phy); + if (rc) + return rc; + + sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy); + list_add_tail(&hpsa_sas_phy->phy_list_entry, + &hpsa_sas_port->phy_list_head); + hpsa_sas_phy->added_to_port = true; + + return 0; +} + +static int + hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port, + struct sas_rphy *rphy) +{ + struct sas_identify *identify; + + identify = &rphy->identify; + identify->sas_address = hpsa_sas_port->sas_address; + identify->initiator_port_protocols = SAS_PROTOCOL_STP; + identify->target_port_protocols = SAS_PROTOCOL_STP; + + return sas_rphy_add(rphy); +} + +static struct hpsa_sas_port + *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node, + u64 sas_address) +{ + int rc; + struct hpsa_sas_port *hpsa_sas_port; + struct sas_port *port; + + hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL); + if (!hpsa_sas_port) + return NULL; + + INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head); + hpsa_sas_port->parent_node = hpsa_sas_node; + + port = sas_port_alloc_num(hpsa_sas_node->parent_dev); + if (!port) + goto free_hpsa_port; + + rc = sas_port_add(port); + if (rc) + goto free_sas_port; + + hpsa_sas_port->port = port; + hpsa_sas_port->sas_address = sas_address; + list_add_tail(&hpsa_sas_port->port_list_entry, + &hpsa_sas_node->port_list_head); + + return hpsa_sas_port; + +free_sas_port: + sas_port_free(port); +free_hpsa_port: + kfree(hpsa_sas_port); + + return NULL; +} + +static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port) +{ + struct hpsa_sas_phy *hpsa_sas_phy; + struct hpsa_sas_phy *next; + + list_for_each_entry_safe(hpsa_sas_phy, next, + &hpsa_sas_port->phy_list_head, phy_list_entry) + hpsa_free_sas_phy(hpsa_sas_phy); + + sas_port_delete(hpsa_sas_port->port); + list_del(&hpsa_sas_port->port_list_entry); + kfree(hpsa_sas_port); +} + +static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev) +{ + struct hpsa_sas_node *hpsa_sas_node; + + hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL); + if (hpsa_sas_node) { + hpsa_sas_node->parent_dev = parent_dev; + INIT_LIST_HEAD(&hpsa_sas_node->port_list_head); + } + + return hpsa_sas_node; +} + +static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node) +{ + struct hpsa_sas_port *hpsa_sas_port; + struct hpsa_sas_port *next; + + if (!hpsa_sas_node) + return; + + list_for_each_entry_safe(hpsa_sas_port, next, + &hpsa_sas_node->port_list_head, port_list_entry) + hpsa_free_sas_port(hpsa_sas_port); + + kfree(hpsa_sas_node); +} + +static struct hpsa_scsi_dev_t + *hpsa_find_device_by_sas_rphy(struct ctlr_info *h, + struct sas_rphy *rphy) +{ + int i; + struct hpsa_scsi_dev_t *device; + + for (i = 0; i < h->ndevices; i++) { + device = h->dev[i]; + if (!device->sas_port) + continue; + if (device->sas_port->rphy == rphy) + return device; + } + + return NULL; +} + +static int hpsa_add_sas_host(struct ctlr_info *h) +{ + int rc; + struct device *parent_dev; + struct hpsa_sas_node *hpsa_sas_node; + struct hpsa_sas_port *hpsa_sas_port; + struct hpsa_sas_phy *hpsa_sas_phy; + + parent_dev = &h->scsi_host->shost_dev; + + hpsa_sas_node = hpsa_alloc_sas_node(parent_dev); + if (!hpsa_sas_node) + return -ENOMEM; + + hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address); + if (!hpsa_sas_port) { + rc = -ENODEV; + goto free_sas_node; + } + + hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port); + if (!hpsa_sas_phy) { + rc = -ENODEV; + goto free_sas_port; + } + + rc = hpsa_sas_port_add_phy(hpsa_sas_phy); + if (rc) + goto free_sas_phy; + + h->sas_host = hpsa_sas_node; + + return 0; + +free_sas_phy: + hpsa_free_sas_phy(hpsa_sas_phy); +free_sas_port: + hpsa_free_sas_port(hpsa_sas_port); +free_sas_node: + hpsa_free_sas_node(hpsa_sas_node); + + return rc; +} + +static void hpsa_delete_sas_host(struct ctlr_info *h) +{ + hpsa_free_sas_node(h->sas_host); +} + +static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node, + struct hpsa_scsi_dev_t *device) +{ + int rc; + struct hpsa_sas_port *hpsa_sas_port; + struct sas_rphy *rphy; + + hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address); + if (!hpsa_sas_port) + return -ENOMEM; + + rphy = sas_end_device_alloc(hpsa_sas_port->port); + if (!rphy) { + rc = -ENODEV; + goto free_sas_port; + } + + hpsa_sas_port->rphy = rphy; + device->sas_port = hpsa_sas_port; + + rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy); + if (rc) + goto free_sas_port; + + return 0; + +free_sas_port: + hpsa_free_sas_port(hpsa_sas_port); + device->sas_port = NULL; + + return rc; +} + +static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device) +{ + if (device->sas_port) { + hpsa_free_sas_port(device->sas_port); + device->sas_port = NULL; + } +} + +static int +hpsa_sas_get_linkerrors(struct sas_phy *phy) +{ + return 0; +} + +static int +hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier) +{ + struct Scsi_Host *shost = phy_to_shost(rphy); + struct ctlr_info *h; + struct hpsa_scsi_dev_t *sd; + + if (!shost) + return -ENXIO; + + h = shost_to_hba(shost); + + if (!h) + return -ENXIO; + + sd = hpsa_find_device_by_sas_rphy(h, rphy); + if (!sd) + return -ENXIO; + + *identifier = sd->eli; + + return 0; +} + +static int +hpsa_sas_get_bay_identifier(struct sas_rphy *rphy) +{ + return -ENXIO; +} + +static int +hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset) +{ + return 0; +} + +static int +hpsa_sas_phy_enable(struct sas_phy *phy, int enable) +{ + return 0; +} + +static int +hpsa_sas_phy_setup(struct sas_phy *phy) +{ + return 0; +} + +static void +hpsa_sas_phy_release(struct sas_phy *phy) +{ +} + +static int +hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates) +{ + return -EINVAL; +} + +static struct sas_function_template hpsa_sas_transport_functions = { + .get_linkerrors = hpsa_sas_get_linkerrors, + .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier, + .get_bay_identifier = hpsa_sas_get_bay_identifier, + .phy_reset = hpsa_sas_phy_reset, + .phy_enable = hpsa_sas_phy_enable, + .phy_setup = hpsa_sas_phy_setup, + .phy_release = hpsa_sas_phy_release, + .set_phy_speed = hpsa_sas_phy_speed, +}; + +/* + * This is it. Register the PCI driver information for the cards we control + * the OS will call our registered routines when it finds one of our cards. + */ +static int __init hpsa_init(void) +{ + int rc; + + hpsa_sas_transport_template = + sas_attach_transport(&hpsa_sas_transport_functions); + if (!hpsa_sas_transport_template) + return -ENODEV; + + rc = pci_register_driver(&hpsa_pci_driver); + + if (rc) + sas_release_transport(hpsa_sas_transport_template); + + return rc; +} + +static void __exit hpsa_cleanup(void) +{ + pci_unregister_driver(&hpsa_pci_driver); + sas_release_transport(hpsa_sas_transport_template); +} + +static void __attribute__((unused)) verify_offsets(void) +{ +#define VERIFY_OFFSET(member, offset) \ + BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset) + + VERIFY_OFFSET(structure_size, 0); + VERIFY_OFFSET(volume_blk_size, 4); + VERIFY_OFFSET(volume_blk_cnt, 8); + VERIFY_OFFSET(phys_blk_shift, 16); + VERIFY_OFFSET(parity_rotation_shift, 17); + VERIFY_OFFSET(strip_size, 18); + VERIFY_OFFSET(disk_starting_blk, 20); + VERIFY_OFFSET(disk_blk_cnt, 28); + VERIFY_OFFSET(data_disks_per_row, 36); + VERIFY_OFFSET(metadata_disks_per_row, 38); + VERIFY_OFFSET(row_cnt, 40); + VERIFY_OFFSET(layout_map_count, 42); + VERIFY_OFFSET(flags, 44); + VERIFY_OFFSET(dekindex, 46); + /* VERIFY_OFFSET(reserved, 48 */ + VERIFY_OFFSET(data, 64); + +#undef VERIFY_OFFSET + +#define VERIFY_OFFSET(member, offset) \ + BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset) + + VERIFY_OFFSET(IU_type, 0); + VERIFY_OFFSET(direction, 1); + VERIFY_OFFSET(reply_queue, 2); + /* VERIFY_OFFSET(reserved1, 3); */ + VERIFY_OFFSET(scsi_nexus, 4); + VERIFY_OFFSET(Tag, 8); + VERIFY_OFFSET(cdb, 16); + VERIFY_OFFSET(cciss_lun, 32); + VERIFY_OFFSET(data_len, 40); + VERIFY_OFFSET(cmd_priority_task_attr, 44); + VERIFY_OFFSET(sg_count, 45); + /* VERIFY_OFFSET(reserved3 */ + VERIFY_OFFSET(err_ptr, 48); + VERIFY_OFFSET(err_len, 56); + /* VERIFY_OFFSET(reserved4 */ + VERIFY_OFFSET(sg, 64); + +#undef VERIFY_OFFSET + +#define VERIFY_OFFSET(member, offset) \ + BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset) + + VERIFY_OFFSET(dev_handle, 0x00); + VERIFY_OFFSET(reserved1, 0x02); + VERIFY_OFFSET(function, 0x03); + VERIFY_OFFSET(reserved2, 0x04); + VERIFY_OFFSET(err_info, 0x0C); + VERIFY_OFFSET(reserved3, 0x10); + VERIFY_OFFSET(err_info_len, 0x12); + VERIFY_OFFSET(reserved4, 0x13); + VERIFY_OFFSET(sgl_offset, 0x14); + VERIFY_OFFSET(reserved5, 0x15); + VERIFY_OFFSET(transfer_len, 0x1C); + VERIFY_OFFSET(reserved6, 0x20); + VERIFY_OFFSET(io_flags, 0x24); + VERIFY_OFFSET(reserved7, 0x26); + VERIFY_OFFSET(LUN, 0x34); + VERIFY_OFFSET(control, 0x3C); + VERIFY_OFFSET(CDB, 0x40); + VERIFY_OFFSET(reserved8, 0x50); + VERIFY_OFFSET(host_context_flags, 0x60); + VERIFY_OFFSET(timeout_sec, 0x62); + VERIFY_OFFSET(ReplyQueue, 0x64); + VERIFY_OFFSET(reserved9, 0x65); + VERIFY_OFFSET(tag, 0x68); + VERIFY_OFFSET(host_addr, 0x70); + VERIFY_OFFSET(CISS_LUN, 0x78); + VERIFY_OFFSET(SG, 0x78 + 8); +#undef VERIFY_OFFSET +} + +module_init(hpsa_init); +module_exit(hpsa_cleanup); |