diff options
Diffstat (limited to 'fs/btrfs/volumes.c')
-rw-r--r-- | fs/btrfs/volumes.c | 7553 |
1 files changed, 7553 insertions, 0 deletions
diff --git a/fs/btrfs/volumes.c b/fs/btrfs/volumes.c new file mode 100644 index 000000000..2b4d33b58 --- /dev/null +++ b/fs/btrfs/volumes.c @@ -0,0 +1,7553 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2007 Oracle. All rights reserved. + */ + +#include <linux/sched.h> +#include <linux/sched/mm.h> +#include <linux/bio.h> +#include <linux/slab.h> +#include <linux/buffer_head.h> +#include <linux/blkdev.h> +#include <linux/ratelimit.h> +#include <linux/kthread.h> +#include <linux/raid/pq.h> +#include <linux/semaphore.h> +#include <linux/uuid.h> +#include <linux/list_sort.h> +#include "ctree.h" +#include "extent_map.h" +#include "disk-io.h" +#include "transaction.h" +#include "print-tree.h" +#include "volumes.h" +#include "raid56.h" +#include "async-thread.h" +#include "check-integrity.h" +#include "rcu-string.h" +#include "math.h" +#include "dev-replace.h" +#include "sysfs.h" +#include "tree-checker.h" + +const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { + [BTRFS_RAID_RAID10] = { + .sub_stripes = 2, + .dev_stripes = 1, + .devs_max = 0, /* 0 == as many as possible */ + .devs_min = 4, + .tolerated_failures = 1, + .devs_increment = 2, + .ncopies = 2, + .raid_name = "raid10", + .bg_flag = BTRFS_BLOCK_GROUP_RAID10, + .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, + }, + [BTRFS_RAID_RAID1] = { + .sub_stripes = 1, + .dev_stripes = 1, + .devs_max = 2, + .devs_min = 2, + .tolerated_failures = 1, + .devs_increment = 2, + .ncopies = 2, + .raid_name = "raid1", + .bg_flag = BTRFS_BLOCK_GROUP_RAID1, + .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, + }, + [BTRFS_RAID_DUP] = { + .sub_stripes = 1, + .dev_stripes = 2, + .devs_max = 1, + .devs_min = 1, + .tolerated_failures = 0, + .devs_increment = 1, + .ncopies = 2, + .raid_name = "dup", + .bg_flag = BTRFS_BLOCK_GROUP_DUP, + .mindev_error = 0, + }, + [BTRFS_RAID_RAID0] = { + .sub_stripes = 1, + .dev_stripes = 1, + .devs_max = 0, + .devs_min = 2, + .tolerated_failures = 0, + .devs_increment = 1, + .ncopies = 1, + .raid_name = "raid0", + .bg_flag = BTRFS_BLOCK_GROUP_RAID0, + .mindev_error = 0, + }, + [BTRFS_RAID_SINGLE] = { + .sub_stripes = 1, + .dev_stripes = 1, + .devs_max = 1, + .devs_min = 1, + .tolerated_failures = 0, + .devs_increment = 1, + .ncopies = 1, + .raid_name = "single", + .bg_flag = 0, + .mindev_error = 0, + }, + [BTRFS_RAID_RAID5] = { + .sub_stripes = 1, + .dev_stripes = 1, + .devs_max = 0, + .devs_min = 2, + .tolerated_failures = 1, + .devs_increment = 1, + .ncopies = 1, + .raid_name = "raid5", + .bg_flag = BTRFS_BLOCK_GROUP_RAID5, + .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, + }, + [BTRFS_RAID_RAID6] = { + .sub_stripes = 1, + .dev_stripes = 1, + .devs_max = 0, + .devs_min = 3, + .tolerated_failures = 2, + .devs_increment = 1, + .ncopies = 1, + .raid_name = "raid6", + .bg_flag = BTRFS_BLOCK_GROUP_RAID6, + .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, + }, +}; + +const char *get_raid_name(enum btrfs_raid_types type) +{ + if (type >= BTRFS_NR_RAID_TYPES) + return NULL; + + return btrfs_raid_array[type].raid_name; +} + +static int init_first_rw_device(struct btrfs_trans_handle *trans, + struct btrfs_fs_info *fs_info); +static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); +static void __btrfs_reset_dev_stats(struct btrfs_device *dev); +static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); +static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); +static int __btrfs_map_block(struct btrfs_fs_info *fs_info, + enum btrfs_map_op op, + u64 logical, u64 *length, + struct btrfs_bio **bbio_ret, + int mirror_num, int need_raid_map); + +/* + * Device locking + * ============== + * + * There are several mutexes that protect manipulation of devices and low-level + * structures like chunks but not block groups, extents or files + * + * uuid_mutex (global lock) + * ------------------------ + * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from + * the SCAN_DEV ioctl registration or from mount either implicitly (the first + * device) or requested by the device= mount option + * + * the mutex can be very coarse and can cover long-running operations + * + * protects: updates to fs_devices counters like missing devices, rw devices, + * seeding, structure cloning, openning/closing devices at mount/umount time + * + * global::fs_devs - add, remove, updates to the global list + * + * does not protect: manipulation of the fs_devices::devices list in general + * but in mount context it could be used to exclude list modifications by eg. + * scan ioctl + * + * btrfs_device::name - renames (write side), read is RCU + * + * fs_devices::device_list_mutex (per-fs, with RCU) + * ------------------------------------------------ + * protects updates to fs_devices::devices, ie. adding and deleting + * + * simple list traversal with read-only actions can be done with RCU protection + * + * may be used to exclude some operations from running concurrently without any + * modifications to the list (see write_all_supers) + * + * Is not required at mount and close times, because our device list is + * protected by the uuid_mutex at that point. + * + * balance_mutex + * ------------- + * protects balance structures (status, state) and context accessed from + * several places (internally, ioctl) + * + * chunk_mutex + * ----------- + * protects chunks, adding or removing during allocation, trim or when a new + * device is added/removed + * + * cleaner_mutex + * ------------- + * a big lock that is held by the cleaner thread and prevents running subvolume + * cleaning together with relocation or delayed iputs + * + * + * Lock nesting + * ============ + * + * uuid_mutex + * volume_mutex + * device_list_mutex + * chunk_mutex + * balance_mutex + * + * + * Exclusive operations, BTRFS_FS_EXCL_OP + * ====================================== + * + * Maintains the exclusivity of the following operations that apply to the + * whole filesystem and cannot run in parallel. + * + * - Balance (*) + * - Device add + * - Device remove + * - Device replace (*) + * - Resize + * + * The device operations (as above) can be in one of the following states: + * + * - Running state + * - Paused state + * - Completed state + * + * Only device operations marked with (*) can go into the Paused state for the + * following reasons: + * + * - ioctl (only Balance can be Paused through ioctl) + * - filesystem remounted as read-only + * - filesystem unmounted and mounted as read-only + * - system power-cycle and filesystem mounted as read-only + * - filesystem or device errors leading to forced read-only + * + * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations. + * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set. + * A device operation in Paused or Running state can be canceled or resumed + * either by ioctl (Balance only) or when remounted as read-write. + * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or + * completed. + */ + +DEFINE_MUTEX(uuid_mutex); +static LIST_HEAD(fs_uuids); +struct list_head *btrfs_get_fs_uuids(void) +{ + return &fs_uuids; +} + +/* + * alloc_fs_devices - allocate struct btrfs_fs_devices + * @fsid: if not NULL, copy the uuid to fs_devices::fsid + * + * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). + * The returned struct is not linked onto any lists and can be destroyed with + * kfree() right away. + */ +static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) +{ + struct btrfs_fs_devices *fs_devs; + + fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); + if (!fs_devs) + return ERR_PTR(-ENOMEM); + + mutex_init(&fs_devs->device_list_mutex); + + INIT_LIST_HEAD(&fs_devs->devices); + INIT_LIST_HEAD(&fs_devs->resized_devices); + INIT_LIST_HEAD(&fs_devs->alloc_list); + INIT_LIST_HEAD(&fs_devs->fs_list); + if (fsid) + memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); + + return fs_devs; +} + +void btrfs_free_device(struct btrfs_device *device) +{ + rcu_string_free(device->name); + bio_put(device->flush_bio); + kfree(device); +} + +static void free_fs_devices(struct btrfs_fs_devices *fs_devices) +{ + struct btrfs_device *device; + WARN_ON(fs_devices->opened); + while (!list_empty(&fs_devices->devices)) { + device = list_entry(fs_devices->devices.next, + struct btrfs_device, dev_list); + list_del(&device->dev_list); + btrfs_free_device(device); + } + kfree(fs_devices); +} + +static void btrfs_kobject_uevent(struct block_device *bdev, + enum kobject_action action) +{ + int ret; + + ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); + if (ret) + pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", + action, + kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), + &disk_to_dev(bdev->bd_disk)->kobj); +} + +void __exit btrfs_cleanup_fs_uuids(void) +{ + struct btrfs_fs_devices *fs_devices; + + while (!list_empty(&fs_uuids)) { + fs_devices = list_entry(fs_uuids.next, + struct btrfs_fs_devices, fs_list); + list_del(&fs_devices->fs_list); + free_fs_devices(fs_devices); + } +} + +/* + * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. + * Returned struct is not linked onto any lists and must be destroyed using + * btrfs_free_device. + */ +static struct btrfs_device *__alloc_device(void) +{ + struct btrfs_device *dev; + + dev = kzalloc(sizeof(*dev), GFP_KERNEL); + if (!dev) + return ERR_PTR(-ENOMEM); + + /* + * Preallocate a bio that's always going to be used for flushing device + * barriers and matches the device lifespan + */ + dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); + if (!dev->flush_bio) { + kfree(dev); + return ERR_PTR(-ENOMEM); + } + + INIT_LIST_HEAD(&dev->dev_list); + INIT_LIST_HEAD(&dev->dev_alloc_list); + INIT_LIST_HEAD(&dev->resized_list); + + spin_lock_init(&dev->io_lock); + + atomic_set(&dev->reada_in_flight, 0); + atomic_set(&dev->dev_stats_ccnt, 0); + btrfs_device_data_ordered_init(dev); + INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); + INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); + + return dev; +} + +static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) +{ + struct btrfs_fs_devices *fs_devices; + + list_for_each_entry(fs_devices, &fs_uuids, fs_list) { + if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) + return fs_devices; + } + return NULL; +} + +static int +btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, + int flush, struct block_device **bdev, + struct buffer_head **bh) +{ + int ret; + + *bdev = blkdev_get_by_path(device_path, flags, holder); + + if (IS_ERR(*bdev)) { + ret = PTR_ERR(*bdev); + goto error; + } + + if (flush) + filemap_write_and_wait((*bdev)->bd_inode->i_mapping); + ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); + if (ret) { + blkdev_put(*bdev, flags); + goto error; + } + invalidate_bdev(*bdev); + *bh = btrfs_read_dev_super(*bdev); + if (IS_ERR(*bh)) { + ret = PTR_ERR(*bh); + blkdev_put(*bdev, flags); + goto error; + } + + return 0; + +error: + *bdev = NULL; + *bh = NULL; + return ret; +} + +static void requeue_list(struct btrfs_pending_bios *pending_bios, + struct bio *head, struct bio *tail) +{ + + struct bio *old_head; + + old_head = pending_bios->head; + pending_bios->head = head; + if (pending_bios->tail) + tail->bi_next = old_head; + else + pending_bios->tail = tail; +} + +/* + * we try to collect pending bios for a device so we don't get a large + * number of procs sending bios down to the same device. This greatly + * improves the schedulers ability to collect and merge the bios. + * + * But, it also turns into a long list of bios to process and that is sure + * to eventually make the worker thread block. The solution here is to + * make some progress and then put this work struct back at the end of + * the list if the block device is congested. This way, multiple devices + * can make progress from a single worker thread. + */ +static noinline void run_scheduled_bios(struct btrfs_device *device) +{ + struct btrfs_fs_info *fs_info = device->fs_info; + struct bio *pending; + struct backing_dev_info *bdi; + struct btrfs_pending_bios *pending_bios; + struct bio *tail; + struct bio *cur; + int again = 0; + unsigned long num_run; + unsigned long batch_run = 0; + unsigned long last_waited = 0; + int force_reg = 0; + int sync_pending = 0; + struct blk_plug plug; + + /* + * this function runs all the bios we've collected for + * a particular device. We don't want to wander off to + * another device without first sending all of these down. + * So, setup a plug here and finish it off before we return + */ + blk_start_plug(&plug); + + bdi = device->bdev->bd_bdi; + +loop: + spin_lock(&device->io_lock); + +loop_lock: + num_run = 0; + + /* take all the bios off the list at once and process them + * later on (without the lock held). But, remember the + * tail and other pointers so the bios can be properly reinserted + * into the list if we hit congestion + */ + if (!force_reg && device->pending_sync_bios.head) { + pending_bios = &device->pending_sync_bios; + force_reg = 1; + } else { + pending_bios = &device->pending_bios; + force_reg = 0; + } + + pending = pending_bios->head; + tail = pending_bios->tail; + WARN_ON(pending && !tail); + + /* + * if pending was null this time around, no bios need processing + * at all and we can stop. Otherwise it'll loop back up again + * and do an additional check so no bios are missed. + * + * device->running_pending is used to synchronize with the + * schedule_bio code. + */ + if (device->pending_sync_bios.head == NULL && + device->pending_bios.head == NULL) { + again = 0; + device->running_pending = 0; + } else { + again = 1; + device->running_pending = 1; + } + + pending_bios->head = NULL; + pending_bios->tail = NULL; + + spin_unlock(&device->io_lock); + + while (pending) { + + rmb(); + /* we want to work on both lists, but do more bios on the + * sync list than the regular list + */ + if ((num_run > 32 && + pending_bios != &device->pending_sync_bios && + device->pending_sync_bios.head) || + (num_run > 64 && pending_bios == &device->pending_sync_bios && + device->pending_bios.head)) { + spin_lock(&device->io_lock); + requeue_list(pending_bios, pending, tail); + goto loop_lock; + } + + cur = pending; + pending = pending->bi_next; + cur->bi_next = NULL; + + BUG_ON(atomic_read(&cur->__bi_cnt) == 0); + + /* + * if we're doing the sync list, record that our + * plug has some sync requests on it + * + * If we're doing the regular list and there are + * sync requests sitting around, unplug before + * we add more + */ + if (pending_bios == &device->pending_sync_bios) { + sync_pending = 1; + } else if (sync_pending) { + blk_finish_plug(&plug); + blk_start_plug(&plug); + sync_pending = 0; + } + + btrfsic_submit_bio(cur); + num_run++; + batch_run++; + + cond_resched(); + + /* + * we made progress, there is more work to do and the bdi + * is now congested. Back off and let other work structs + * run instead + */ + if (pending && bdi_write_congested(bdi) && batch_run > 8 && + fs_info->fs_devices->open_devices > 1) { + struct io_context *ioc; + + ioc = current->io_context; + + /* + * the main goal here is that we don't want to + * block if we're going to be able to submit + * more requests without blocking. + * + * This code does two great things, it pokes into + * the elevator code from a filesystem _and_ + * it makes assumptions about how batching works. + */ + if (ioc && ioc->nr_batch_requests > 0 && + time_before(jiffies, ioc->last_waited + HZ/50UL) && + (last_waited == 0 || + ioc->last_waited == last_waited)) { + /* + * we want to go through our batch of + * requests and stop. So, we copy out + * the ioc->last_waited time and test + * against it before looping + */ + last_waited = ioc->last_waited; + cond_resched(); + continue; + } + spin_lock(&device->io_lock); + requeue_list(pending_bios, pending, tail); + device->running_pending = 1; + + spin_unlock(&device->io_lock); + btrfs_queue_work(fs_info->submit_workers, + &device->work); + goto done; + } + } + + cond_resched(); + if (again) + goto loop; + + spin_lock(&device->io_lock); + if (device->pending_bios.head || device->pending_sync_bios.head) + goto loop_lock; + spin_unlock(&device->io_lock); + +done: + blk_finish_plug(&plug); +} + +static void pending_bios_fn(struct btrfs_work *work) +{ + struct btrfs_device *device; + + device = container_of(work, struct btrfs_device, work); + run_scheduled_bios(device); +} + +/* + * Search and remove all stale (devices which are not mounted) devices. + * When both inputs are NULL, it will search and release all stale devices. + * path: Optional. When provided will it release all unmounted devices + * matching this path only. + * skip_dev: Optional. Will skip this device when searching for the stale + * devices. + */ +static void btrfs_free_stale_devices(const char *path, + struct btrfs_device *skip_device) +{ + struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; + struct btrfs_device *device, *tmp_device; + + list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { + mutex_lock(&fs_devices->device_list_mutex); + if (fs_devices->opened) { + mutex_unlock(&fs_devices->device_list_mutex); + continue; + } + + list_for_each_entry_safe(device, tmp_device, + &fs_devices->devices, dev_list) { + int not_found = 0; + + if (skip_device && skip_device == device) + continue; + if (path && !device->name) + continue; + + rcu_read_lock(); + if (path) + not_found = strcmp(rcu_str_deref(device->name), + path); + rcu_read_unlock(); + if (not_found) + continue; + + /* delete the stale device */ + fs_devices->num_devices--; + list_del(&device->dev_list); + btrfs_free_device(device); + + if (fs_devices->num_devices == 0) + break; + } + mutex_unlock(&fs_devices->device_list_mutex); + if (fs_devices->num_devices == 0) { + btrfs_sysfs_remove_fsid(fs_devices); + list_del(&fs_devices->fs_list); + free_fs_devices(fs_devices); + } + } +} + +/* + * This is only used on mount, and we are protected from competing things + * messing with our fs_devices by the uuid_mutex, thus we do not need the + * fs_devices->device_list_mutex here. + */ +static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, + struct btrfs_device *device, fmode_t flags, + void *holder) +{ + struct request_queue *q; + struct block_device *bdev; + struct buffer_head *bh; + struct btrfs_super_block *disk_super; + u64 devid; + int ret; + + if (device->bdev) + return -EINVAL; + if (!device->name) + return -EINVAL; + + ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, + &bdev, &bh); + if (ret) + return ret; + + disk_super = (struct btrfs_super_block *)bh->b_data; + devid = btrfs_stack_device_id(&disk_super->dev_item); + if (devid != device->devid) + goto error_brelse; + + if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) + goto error_brelse; + + device->generation = btrfs_super_generation(disk_super); + + if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { + clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); + fs_devices->seeding = 1; + } else { + if (bdev_read_only(bdev)) + clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); + else + set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); + } + + q = bdev_get_queue(bdev); + if (!blk_queue_nonrot(q)) + fs_devices->rotating = 1; + + device->bdev = bdev; + clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); + device->mode = flags; + + fs_devices->open_devices++; + if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && + device->devid != BTRFS_DEV_REPLACE_DEVID) { + fs_devices->rw_devices++; + list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); + } + brelse(bh); + + return 0; + +error_brelse: + brelse(bh); + blkdev_put(bdev, flags); + + return -EINVAL; +} + +/* + * Add new device to list of registered devices + * + * Returns: + * device pointer which was just added or updated when successful + * error pointer when failed + */ +static noinline struct btrfs_device *device_list_add(const char *path, + struct btrfs_super_block *disk_super, + bool *new_device_added) +{ + struct btrfs_device *device; + struct btrfs_fs_devices *fs_devices; + struct rcu_string *name; + u64 found_transid = btrfs_super_generation(disk_super); + u64 devid = btrfs_stack_device_id(&disk_super->dev_item); + + fs_devices = find_fsid(disk_super->fsid); + if (!fs_devices) { + fs_devices = alloc_fs_devices(disk_super->fsid); + if (IS_ERR(fs_devices)) + return ERR_CAST(fs_devices); + + mutex_lock(&fs_devices->device_list_mutex); + list_add(&fs_devices->fs_list, &fs_uuids); + + device = NULL; + } else { + mutex_lock(&fs_devices->device_list_mutex); + device = btrfs_find_device(fs_devices, devid, + disk_super->dev_item.uuid, NULL, false); + } + + if (!device) { + if (fs_devices->opened) { + mutex_unlock(&fs_devices->device_list_mutex); + return ERR_PTR(-EBUSY); + } + + device = btrfs_alloc_device(NULL, &devid, + disk_super->dev_item.uuid); + if (IS_ERR(device)) { + mutex_unlock(&fs_devices->device_list_mutex); + /* we can safely leave the fs_devices entry around */ + return device; + } + + name = rcu_string_strdup(path, GFP_NOFS); + if (!name) { + btrfs_free_device(device); + mutex_unlock(&fs_devices->device_list_mutex); + return ERR_PTR(-ENOMEM); + } + rcu_assign_pointer(device->name, name); + + list_add_rcu(&device->dev_list, &fs_devices->devices); + fs_devices->num_devices++; + + device->fs_devices = fs_devices; + *new_device_added = true; + + if (disk_super->label[0]) + pr_info("BTRFS: device label %s devid %llu transid %llu %s\n", + disk_super->label, devid, found_transid, path); + else + pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n", + disk_super->fsid, devid, found_transid, path); + + } else if (!device->name || strcmp(device->name->str, path)) { + /* + * When FS is already mounted. + * 1. If you are here and if the device->name is NULL that + * means this device was missing at time of FS mount. + * 2. If you are here and if the device->name is different + * from 'path' that means either + * a. The same device disappeared and reappeared with + * different name. or + * b. The missing-disk-which-was-replaced, has + * reappeared now. + * + * We must allow 1 and 2a above. But 2b would be a spurious + * and unintentional. + * + * Further in case of 1 and 2a above, the disk at 'path' + * would have missed some transaction when it was away and + * in case of 2a the stale bdev has to be updated as well. + * 2b must not be allowed at all time. + */ + + /* + * For now, we do allow update to btrfs_fs_device through the + * btrfs dev scan cli after FS has been mounted. We're still + * tracking a problem where systems fail mount by subvolume id + * when we reject replacement on a mounted FS. + */ + if (!fs_devices->opened && found_transid < device->generation) { + /* + * That is if the FS is _not_ mounted and if you + * are here, that means there is more than one + * disk with same uuid and devid.We keep the one + * with larger generation number or the last-in if + * generation are equal. + */ + mutex_unlock(&fs_devices->device_list_mutex); + return ERR_PTR(-EEXIST); + } + + /* + * We are going to replace the device path for a given devid, + * make sure it's the same device if the device is mounted + */ + if (device->bdev) { + struct block_device *path_bdev; + + path_bdev = lookup_bdev(path); + if (IS_ERR(path_bdev)) { + mutex_unlock(&fs_devices->device_list_mutex); + return ERR_CAST(path_bdev); + } + + if (device->bdev != path_bdev) { + bdput(path_bdev); + mutex_unlock(&fs_devices->device_list_mutex); + /* + * device->fs_info may not be reliable here, so + * pass in a NULL instead. This avoids a + * possible use-after-free when the fs_info and + * fs_info->sb are already torn down. + */ + btrfs_warn_in_rcu(NULL, + "duplicate device %s devid %llu generation %llu scanned by %s (%d)", + path, devid, found_transid, + current->comm, + task_pid_nr(current)); + return ERR_PTR(-EEXIST); + } + bdput(path_bdev); + btrfs_info_in_rcu(device->fs_info, + "devid %llu device path %s changed to %s scanned by %s (%d)", + devid, rcu_str_deref(device->name), + path, current->comm, + task_pid_nr(current)); + } + + name = rcu_string_strdup(path, GFP_NOFS); + if (!name) { + mutex_unlock(&fs_devices->device_list_mutex); + return ERR_PTR(-ENOMEM); + } + rcu_string_free(device->name); + rcu_assign_pointer(device->name, name); + if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { + fs_devices->missing_devices--; + clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); + } + } + + /* + * Unmount does not free the btrfs_device struct but would zero + * generation along with most of the other members. So just update + * it back. We need it to pick the disk with largest generation + * (as above). + */ + if (!fs_devices->opened) + device->generation = found_transid; + + fs_devices->total_devices = btrfs_super_num_devices(disk_super); + + mutex_unlock(&fs_devices->device_list_mutex); + return device; +} + +static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) +{ + struct btrfs_fs_devices *fs_devices; + struct btrfs_device *device; + struct btrfs_device *orig_dev; + + fs_devices = alloc_fs_devices(orig->fsid); + if (IS_ERR(fs_devices)) + return fs_devices; + + mutex_lock(&orig->device_list_mutex); + fs_devices->total_devices = orig->total_devices; + + /* We have held the volume lock, it is safe to get the devices. */ + list_for_each_entry(orig_dev, &orig->devices, dev_list) { + struct rcu_string *name; + + device = btrfs_alloc_device(NULL, &orig_dev->devid, + orig_dev->uuid); + if (IS_ERR(device)) + goto error; + + /* + * This is ok to do without rcu read locked because we hold the + * uuid mutex so nothing we touch in here is going to disappear. + */ + if (orig_dev->name) { + name = rcu_string_strdup(orig_dev->name->str, + GFP_KERNEL); + if (!name) { + btrfs_free_device(device); + goto error; + } + rcu_assign_pointer(device->name, name); + } + + list_add(&device->dev_list, &fs_devices->devices); + device->fs_devices = fs_devices; + fs_devices->num_devices++; + } + mutex_unlock(&orig->device_list_mutex); + return fs_devices; +error: + mutex_unlock(&orig->device_list_mutex); + free_fs_devices(fs_devices); + return ERR_PTR(-ENOMEM); +} + +/* + * After we have read the system tree and know devids belonging to + * this filesystem, remove the device which does not belong there. + */ +void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) +{ + struct btrfs_device *device, *next; + struct btrfs_device *latest_dev = NULL; + + mutex_lock(&uuid_mutex); +again: + /* This is the initialized path, it is safe to release the devices. */ + list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { + if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, + &device->dev_state)) { + if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, + &device->dev_state) && + !test_bit(BTRFS_DEV_STATE_MISSING, + &device->dev_state) && + (!latest_dev || + device->generation > latest_dev->generation)) { + latest_dev = device; + } + continue; + } + + /* + * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, + * in btrfs_init_dev_replace() so just continue. + */ + if (device->devid == BTRFS_DEV_REPLACE_DEVID) + continue; + + if (device->bdev) { + blkdev_put(device->bdev, device->mode); + device->bdev = NULL; + fs_devices->open_devices--; + } + if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { + list_del_init(&device->dev_alloc_list); + clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); + fs_devices->rw_devices--; + } + list_del_init(&device->dev_list); + fs_devices->num_devices--; + btrfs_free_device(device); + } + + if (fs_devices->seed) { + fs_devices = fs_devices->seed; + goto again; + } + + fs_devices->latest_bdev = latest_dev->bdev; + + mutex_unlock(&uuid_mutex); +} + +static void free_device_rcu(struct rcu_head *head) +{ + struct btrfs_device *device; + + device = container_of(head, struct btrfs_device, rcu); + btrfs_free_device(device); +} + +static void btrfs_close_bdev(struct btrfs_device *device) +{ + if (!device->bdev) + return; + + if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { + sync_blockdev(device->bdev); + invalidate_bdev(device->bdev); + } + + blkdev_put(device->bdev, device->mode); +} + +static void btrfs_close_one_device(struct btrfs_device *device) +{ + struct btrfs_fs_devices *fs_devices = device->fs_devices; + struct btrfs_device *new_device; + struct rcu_string *name; + + if (device->bdev) + fs_devices->open_devices--; + + if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && + device->devid != BTRFS_DEV_REPLACE_DEVID) { + list_del_init(&device->dev_alloc_list); + fs_devices->rw_devices--; + } + + if (device->devid == BTRFS_DEV_REPLACE_DEVID) + clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); + + if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { + clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); + fs_devices->missing_devices--; + } + + btrfs_close_bdev(device); + + new_device = btrfs_alloc_device(NULL, &device->devid, + device->uuid); + BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ + + /* Safe because we are under uuid_mutex */ + if (device->name) { + name = rcu_string_strdup(device->name->str, GFP_NOFS); + BUG_ON(!name); /* -ENOMEM */ + rcu_assign_pointer(new_device->name, name); + } + + list_replace_rcu(&device->dev_list, &new_device->dev_list); + new_device->fs_devices = device->fs_devices; + + call_rcu(&device->rcu, free_device_rcu); +} + +static int close_fs_devices(struct btrfs_fs_devices *fs_devices) +{ + struct btrfs_device *device, *tmp; + + if (--fs_devices->opened > 0) + return 0; + + mutex_lock(&fs_devices->device_list_mutex); + list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) { + btrfs_close_one_device(device); + } + mutex_unlock(&fs_devices->device_list_mutex); + + WARN_ON(fs_devices->open_devices); + WARN_ON(fs_devices->rw_devices); + fs_devices->opened = 0; + fs_devices->seeding = 0; + + return 0; +} + +int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) +{ + struct btrfs_fs_devices *seed_devices = NULL; + int ret; + + mutex_lock(&uuid_mutex); + ret = close_fs_devices(fs_devices); + if (!fs_devices->opened) { + seed_devices = fs_devices->seed; + fs_devices->seed = NULL; + } + mutex_unlock(&uuid_mutex); + + while (seed_devices) { + fs_devices = seed_devices; + seed_devices = fs_devices->seed; + close_fs_devices(fs_devices); + free_fs_devices(fs_devices); + } + return ret; +} + +static int open_fs_devices(struct btrfs_fs_devices *fs_devices, + fmode_t flags, void *holder) +{ + struct btrfs_device *device; + struct btrfs_device *latest_dev = NULL; + int ret = 0; + + flags |= FMODE_EXCL; + + list_for_each_entry(device, &fs_devices->devices, dev_list) { + /* Just open everything we can; ignore failures here */ + if (btrfs_open_one_device(fs_devices, device, flags, holder)) + continue; + + if (!latest_dev || + device->generation > latest_dev->generation) + latest_dev = device; + } + if (fs_devices->open_devices == 0) { + ret = -EINVAL; + goto out; + } + fs_devices->opened = 1; + fs_devices->latest_bdev = latest_dev->bdev; + fs_devices->total_rw_bytes = 0; +out: + return ret; +} + +static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) +{ + struct btrfs_device *dev1, *dev2; + + dev1 = list_entry(a, struct btrfs_device, dev_list); + dev2 = list_entry(b, struct btrfs_device, dev_list); + + if (dev1->devid < dev2->devid) + return -1; + else if (dev1->devid > dev2->devid) + return 1; + return 0; +} + +int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, + fmode_t flags, void *holder) +{ + int ret; + + lockdep_assert_held(&uuid_mutex); + /* + * The device_list_mutex cannot be taken here in case opening the + * underlying device takes further locks like bd_mutex. + * + * We also don't need the lock here as this is called during mount and + * exclusion is provided by uuid_mutex + */ + + if (fs_devices->opened) { + fs_devices->opened++; + ret = 0; + } else { + list_sort(NULL, &fs_devices->devices, devid_cmp); + ret = open_fs_devices(fs_devices, flags, holder); + } + + return ret; +} + +static void btrfs_release_disk_super(struct page *page) +{ + kunmap(page); + put_page(page); +} + +static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr, + struct page **page, + struct btrfs_super_block **disk_super) +{ + void *p; + pgoff_t index; + + /* make sure our super fits in the device */ + if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) + return 1; + + /* make sure our super fits in the page */ + if (sizeof(**disk_super) > PAGE_SIZE) + return 1; + + /* make sure our super doesn't straddle pages on disk */ + index = bytenr >> PAGE_SHIFT; + if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index) + return 1; + + /* pull in the page with our super */ + *page = read_cache_page_gfp(bdev->bd_inode->i_mapping, + index, GFP_KERNEL); + + if (IS_ERR_OR_NULL(*page)) + return 1; + + p = kmap(*page); + + /* align our pointer to the offset of the super block */ + *disk_super = p + (bytenr & ~PAGE_MASK); + + if (btrfs_super_bytenr(*disk_super) != bytenr || + btrfs_super_magic(*disk_super) != BTRFS_MAGIC) { + btrfs_release_disk_super(*page); + return 1; + } + + if ((*disk_super)->label[0] && + (*disk_super)->label[BTRFS_LABEL_SIZE - 1]) + (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0'; + + return 0; +} + +/* + * Look for a btrfs signature on a device. This may be called out of the mount path + * and we are not allowed to call set_blocksize during the scan. The superblock + * is read via pagecache + */ +struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, + void *holder) +{ + struct btrfs_super_block *disk_super; + bool new_device_added = false; + struct btrfs_device *device = NULL; + struct block_device *bdev; + struct page *page; + u64 bytenr; + + lockdep_assert_held(&uuid_mutex); + + /* + * we would like to check all the supers, but that would make + * a btrfs mount succeed after a mkfs from a different FS. + * So, we need to add a special mount option to scan for + * later supers, using BTRFS_SUPER_MIRROR_MAX instead + */ + bytenr = btrfs_sb_offset(0); + flags |= FMODE_EXCL; + + bdev = blkdev_get_by_path(path, flags, holder); + if (IS_ERR(bdev)) + return ERR_CAST(bdev); + + if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) { + device = ERR_PTR(-EINVAL); + goto error_bdev_put; + } + + device = device_list_add(path, disk_super, &new_device_added); + if (!IS_ERR(device)) { + if (new_device_added) + btrfs_free_stale_devices(path, device); + } + + btrfs_release_disk_super(page); + +error_bdev_put: + blkdev_put(bdev, flags); + + return device; +} + +static int contains_pending_extent(struct btrfs_transaction *transaction, + struct btrfs_device *device, + u64 *start, u64 len) +{ + struct btrfs_fs_info *fs_info = device->fs_info; + struct extent_map *em; + struct list_head *search_list = &fs_info->pinned_chunks; + int ret = 0; + u64 physical_start = *start; + + if (transaction) + search_list = &transaction->pending_chunks; +again: + list_for_each_entry(em, search_list, list) { + struct map_lookup *map; + int i; + + map = em->map_lookup; + for (i = 0; i < map->num_stripes; i++) { + u64 end; + + if (map->stripes[i].dev != device) + continue; + if (map->stripes[i].physical >= physical_start + len || + map->stripes[i].physical + em->orig_block_len <= + physical_start) + continue; + /* + * Make sure that while processing the pinned list we do + * not override our *start with a lower value, because + * we can have pinned chunks that fall within this + * device hole and that have lower physical addresses + * than the pending chunks we processed before. If we + * do not take this special care we can end up getting + * 2 pending chunks that start at the same physical + * device offsets because the end offset of a pinned + * chunk can be equal to the start offset of some + * pending chunk. + */ + end = map->stripes[i].physical + em->orig_block_len; + if (end > *start) { + *start = end; + ret = 1; + } + } + } + if (search_list != &fs_info->pinned_chunks) { + search_list = &fs_info->pinned_chunks; + goto again; + } + + return ret; +} + + +/* + * find_free_dev_extent_start - find free space in the specified device + * @device: the device which we search the free space in + * @num_bytes: the size of the free space that we need + * @search_start: the position from which to begin the search + * @start: store the start of the free space. + * @len: the size of the free space. that we find, or the size + * of the max free space if we don't find suitable free space + * + * this uses a pretty simple search, the expectation is that it is + * called very infrequently and that a given device has a small number + * of extents + * + * @start is used to store the start of the free space if we find. But if we + * don't find suitable free space, it will be used to store the start position + * of the max free space. + * + * @len is used to store the size of the free space that we find. + * But if we don't find suitable free space, it is used to store the size of + * the max free space. + */ +int find_free_dev_extent_start(struct btrfs_transaction *transaction, + struct btrfs_device *device, u64 num_bytes, + u64 search_start, u64 *start, u64 *len) +{ + struct btrfs_fs_info *fs_info = device->fs_info; + struct btrfs_root *root = fs_info->dev_root; + struct btrfs_key key; + struct btrfs_dev_extent *dev_extent; + struct btrfs_path *path; + u64 hole_size; + u64 max_hole_start; + u64 max_hole_size; + u64 extent_end; + u64 search_end = device->total_bytes; + int ret; + int slot; + struct extent_buffer *l; + + /* + * We don't want to overwrite the superblock on the drive nor any area + * used by the boot loader (grub for example), so we make sure to start + * at an offset of at least 1MB. + */ + search_start = max_t(u64, search_start, SZ_1M); + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + max_hole_start = search_start; + max_hole_size = 0; + +again: + if (search_start >= search_end || + test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { + ret = -ENOSPC; + goto out; + } + + path->reada = READA_FORWARD; + path->search_commit_root = 1; + path->skip_locking = 1; + + key.objectid = device->devid; + key.offset = search_start; + key.type = BTRFS_DEV_EXTENT_KEY; + + ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); + if (ret < 0) + goto out; + if (ret > 0) { + ret = btrfs_previous_item(root, path, key.objectid, key.type); + if (ret < 0) + goto out; + } + + while (1) { + l = path->nodes[0]; + slot = path->slots[0]; + if (slot >= btrfs_header_nritems(l)) { + ret = btrfs_next_leaf(root, path); + if (ret == 0) + continue; + if (ret < 0) + goto out; + + break; + } + btrfs_item_key_to_cpu(l, &key, slot); + + if (key.objectid < device->devid) + goto next; + + if (key.objectid > device->devid) + break; + + if (key.type != BTRFS_DEV_EXTENT_KEY) + goto next; + + if (key.offset > search_start) { + hole_size = key.offset - search_start; + + /* + * Have to check before we set max_hole_start, otherwise + * we could end up sending back this offset anyway. + */ + if (contains_pending_extent(transaction, device, + &search_start, + hole_size)) { + if (key.offset >= search_start) { + hole_size = key.offset - search_start; + } else { + WARN_ON_ONCE(1); + hole_size = 0; + } + } + + if (hole_size > max_hole_size) { + max_hole_start = search_start; + max_hole_size = hole_size; + } + + /* + * If this free space is greater than which we need, + * it must be the max free space that we have found + * until now, so max_hole_start must point to the start + * of this free space and the length of this free space + * is stored in max_hole_size. Thus, we return + * max_hole_start and max_hole_size and go back to the + * caller. + */ + if (hole_size >= num_bytes) { + ret = 0; + goto out; + } + } + + dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); + extent_end = key.offset + btrfs_dev_extent_length(l, + dev_extent); + if (extent_end > search_start) + search_start = extent_end; +next: + path->slots[0]++; + cond_resched(); + } + + /* + * At this point, search_start should be the end of + * allocated dev extents, and when shrinking the device, + * search_end may be smaller than search_start. + */ + if (search_end > search_start) { + hole_size = search_end - search_start; + + if (contains_pending_extent(transaction, device, &search_start, + hole_size)) { + btrfs_release_path(path); + goto again; + } + + if (hole_size > max_hole_size) { + max_hole_start = search_start; + max_hole_size = hole_size; + } + } + + /* See above. */ + if (max_hole_size < num_bytes) + ret = -ENOSPC; + else + ret = 0; + +out: + btrfs_free_path(path); + *start = max_hole_start; + if (len) + *len = max_hole_size; + return ret; +} + +int find_free_dev_extent(struct btrfs_trans_handle *trans, + struct btrfs_device *device, u64 num_bytes, + u64 *start, u64 *len) +{ + /* FIXME use last free of some kind */ + return find_free_dev_extent_start(trans->transaction, device, + num_bytes, 0, start, len); +} + +static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, + struct btrfs_device *device, + u64 start, u64 *dev_extent_len) +{ + struct btrfs_fs_info *fs_info = device->fs_info; + struct btrfs_root *root = fs_info->dev_root; + int ret; + struct btrfs_path *path; + struct btrfs_key key; + struct btrfs_key found_key; + struct extent_buffer *leaf = NULL; + struct btrfs_dev_extent *extent = NULL; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + key.objectid = device->devid; + key.offset = start; + key.type = BTRFS_DEV_EXTENT_KEY; +again: + ret = btrfs_search_slot(trans, root, &key, path, -1, 1); + if (ret > 0) { + ret = btrfs_previous_item(root, path, key.objectid, + BTRFS_DEV_EXTENT_KEY); + if (ret) + goto out; + leaf = path->nodes[0]; + btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); + extent = btrfs_item_ptr(leaf, path->slots[0], + struct btrfs_dev_extent); + BUG_ON(found_key.offset > start || found_key.offset + + btrfs_dev_extent_length(leaf, extent) < start); + key = found_key; + btrfs_release_path(path); + goto again; + } else if (ret == 0) { + leaf = path->nodes[0]; + extent = btrfs_item_ptr(leaf, path->slots[0], + struct btrfs_dev_extent); + } else { + btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); + goto out; + } + + *dev_extent_len = btrfs_dev_extent_length(leaf, extent); + + ret = btrfs_del_item(trans, root, path); + if (ret) { + btrfs_handle_fs_error(fs_info, ret, + "Failed to remove dev extent item"); + } else { + set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); + } +out: + btrfs_free_path(path); + return ret; +} + +static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, + struct btrfs_device *device, + u64 chunk_offset, u64 start, u64 num_bytes) +{ + int ret; + struct btrfs_path *path; + struct btrfs_fs_info *fs_info = device->fs_info; + struct btrfs_root *root = fs_info->dev_root; + struct btrfs_dev_extent *extent; + struct extent_buffer *leaf; + struct btrfs_key key; + + WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); + WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + key.objectid = device->devid; + key.offset = start; + key.type = BTRFS_DEV_EXTENT_KEY; + ret = btrfs_insert_empty_item(trans, root, path, &key, + sizeof(*extent)); + if (ret) + goto out; + + leaf = path->nodes[0]; + extent = btrfs_item_ptr(leaf, path->slots[0], + struct btrfs_dev_extent); + btrfs_set_dev_extent_chunk_tree(leaf, extent, + BTRFS_CHUNK_TREE_OBJECTID); + btrfs_set_dev_extent_chunk_objectid(leaf, extent, + BTRFS_FIRST_CHUNK_TREE_OBJECTID); + btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); + + btrfs_set_dev_extent_length(leaf, extent, num_bytes); + btrfs_mark_buffer_dirty(leaf); +out: + btrfs_free_path(path); + return ret; +} + +static u64 find_next_chunk(struct btrfs_fs_info *fs_info) +{ + struct extent_map_tree *em_tree; + struct extent_map *em; + struct rb_node *n; + u64 ret = 0; + + em_tree = &fs_info->mapping_tree.map_tree; + read_lock(&em_tree->lock); + n = rb_last(&em_tree->map); + if (n) { + em = rb_entry(n, struct extent_map, rb_node); + ret = em->start + em->len; + } + read_unlock(&em_tree->lock); + + return ret; +} + +static noinline int find_next_devid(struct btrfs_fs_info *fs_info, + u64 *devid_ret) +{ + int ret; + struct btrfs_key key; + struct btrfs_key found_key; + struct btrfs_path *path; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + key.objectid = BTRFS_DEV_ITEMS_OBJECTID; + key.type = BTRFS_DEV_ITEM_KEY; + key.offset = (u64)-1; + + ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); + if (ret < 0) + goto error; + + BUG_ON(ret == 0); /* Corruption */ + + ret = btrfs_previous_item(fs_info->chunk_root, path, + BTRFS_DEV_ITEMS_OBJECTID, + BTRFS_DEV_ITEM_KEY); + if (ret) { + *devid_ret = 1; + } else { + btrfs_item_key_to_cpu(path->nodes[0], &found_key, + path->slots[0]); + *devid_ret = found_key.offset + 1; + } + ret = 0; +error: + btrfs_free_path(path); + return ret; +} + +/* + * the device information is stored in the chunk root + * the btrfs_device struct should be fully filled in + */ +static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, + struct btrfs_device *device) +{ + int ret; + struct btrfs_path *path; + struct btrfs_dev_item *dev_item; + struct extent_buffer *leaf; + struct btrfs_key key; + unsigned long ptr; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + key.objectid = BTRFS_DEV_ITEMS_OBJECTID; + key.type = BTRFS_DEV_ITEM_KEY; + key.offset = device->devid; + + ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, + &key, sizeof(*dev_item)); + if (ret) + goto out; + + leaf = path->nodes[0]; + dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); + + btrfs_set_device_id(leaf, dev_item, device->devid); + btrfs_set_device_generation(leaf, dev_item, 0); + btrfs_set_device_type(leaf, dev_item, device->type); + btrfs_set_device_io_align(leaf, dev_item, device->io_align); + btrfs_set_device_io_width(leaf, dev_item, device->io_width); + btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); + btrfs_set_device_total_bytes(leaf, dev_item, + btrfs_device_get_disk_total_bytes(device)); + btrfs_set_device_bytes_used(leaf, dev_item, + btrfs_device_get_bytes_used(device)); + btrfs_set_device_group(leaf, dev_item, 0); + btrfs_set_device_seek_speed(leaf, dev_item, 0); + btrfs_set_device_bandwidth(leaf, dev_item, 0); + btrfs_set_device_start_offset(leaf, dev_item, 0); + + ptr = btrfs_device_uuid(dev_item); + write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); + ptr = btrfs_device_fsid(dev_item); + write_extent_buffer(leaf, trans->fs_info->fsid, ptr, BTRFS_FSID_SIZE); + btrfs_mark_buffer_dirty(leaf); + + ret = 0; +out: + btrfs_free_path(path); + return ret; +} + +/* + * Function to update ctime/mtime for a given device path. + * Mainly used for ctime/mtime based probe like libblkid. + */ +static void update_dev_time(const char *path_name) +{ + struct file *filp; + + filp = filp_open(path_name, O_RDWR, 0); + if (IS_ERR(filp)) + return; + file_update_time(filp); + filp_close(filp, NULL); +} + +static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info, + struct btrfs_device *device) +{ + struct btrfs_root *root = fs_info->chunk_root; + int ret; + struct btrfs_path *path; + struct btrfs_key key; + struct btrfs_trans_handle *trans; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + trans = btrfs_start_transaction(root, 0); + if (IS_ERR(trans)) { + btrfs_free_path(path); + return PTR_ERR(trans); + } + key.objectid = BTRFS_DEV_ITEMS_OBJECTID; + key.type = BTRFS_DEV_ITEM_KEY; + key.offset = device->devid; + + ret = btrfs_search_slot(trans, root, &key, path, -1, 1); + if (ret) { + if (ret > 0) + ret = -ENOENT; + btrfs_abort_transaction(trans, ret); + btrfs_end_transaction(trans); + goto out; + } + + ret = btrfs_del_item(trans, root, path); + if (ret) { + btrfs_abort_transaction(trans, ret); + btrfs_end_transaction(trans); + } + +out: + btrfs_free_path(path); + if (!ret) + ret = btrfs_commit_transaction(trans); + return ret; +} + +/* + * Verify that @num_devices satisfies the RAID profile constraints in the whole + * filesystem. It's up to the caller to adjust that number regarding eg. device + * replace. + */ +static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, + u64 num_devices) +{ + u64 all_avail; + unsigned seq; + int i; + + do { + seq = read_seqbegin(&fs_info->profiles_lock); + + all_avail = fs_info->avail_data_alloc_bits | + fs_info->avail_system_alloc_bits | + fs_info->avail_metadata_alloc_bits; + } while (read_seqretry(&fs_info->profiles_lock, seq)); + + for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { + if (!(all_avail & btrfs_raid_array[i].bg_flag)) + continue; + + if (num_devices < btrfs_raid_array[i].devs_min) { + int ret = btrfs_raid_array[i].mindev_error; + + if (ret) + return ret; + } + } + + return 0; +} + +static struct btrfs_device * btrfs_find_next_active_device( + struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) +{ + struct btrfs_device *next_device; + + list_for_each_entry(next_device, &fs_devs->devices, dev_list) { + if (next_device != device && + !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) + && next_device->bdev) + return next_device; + } + + return NULL; +} + +/* + * Helper function to check if the given device is part of s_bdev / latest_bdev + * and replace it with the provided or the next active device, in the context + * where this function called, there should be always be another device (or + * this_dev) which is active. + */ +void btrfs_assign_next_active_device(struct btrfs_device *device, + struct btrfs_device *this_dev) +{ + struct btrfs_fs_info *fs_info = device->fs_info; + struct btrfs_device *next_device; + + if (this_dev) + next_device = this_dev; + else + next_device = btrfs_find_next_active_device(fs_info->fs_devices, + device); + ASSERT(next_device); + + if (fs_info->sb->s_bdev && + (fs_info->sb->s_bdev == device->bdev)) + fs_info->sb->s_bdev = next_device->bdev; + + if (fs_info->fs_devices->latest_bdev == device->bdev) + fs_info->fs_devices->latest_bdev = next_device->bdev; +} + +int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, + u64 devid) +{ + struct btrfs_device *device; + struct btrfs_fs_devices *cur_devices; + struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; + u64 num_devices; + int ret = 0; + + mutex_lock(&uuid_mutex); + + num_devices = fs_devices->num_devices; + btrfs_dev_replace_read_lock(&fs_info->dev_replace); + if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { + WARN_ON(num_devices < 1); + num_devices--; + } + btrfs_dev_replace_read_unlock(&fs_info->dev_replace); + + ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); + if (ret) + goto out; + + ret = btrfs_find_device_by_devspec(fs_info, devid, device_path, + &device); + if (ret) + goto out; + + if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { + ret = BTRFS_ERROR_DEV_TGT_REPLACE; + goto out; + } + + if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && + fs_info->fs_devices->rw_devices == 1) { + ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; + goto out; + } + + if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { + mutex_lock(&fs_info->chunk_mutex); + list_del_init(&device->dev_alloc_list); + device->fs_devices->rw_devices--; + mutex_unlock(&fs_info->chunk_mutex); + } + + mutex_unlock(&uuid_mutex); + ret = btrfs_shrink_device(device, 0); + mutex_lock(&uuid_mutex); + if (ret) + goto error_undo; + + /* + * TODO: the superblock still includes this device in its num_devices + * counter although write_all_supers() is not locked out. This + * could give a filesystem state which requires a degraded mount. + */ + ret = btrfs_rm_dev_item(fs_info, device); + if (ret) + goto error_undo; + + clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); + btrfs_scrub_cancel_dev(fs_info, device); + + /* + * the device list mutex makes sure that we don't change + * the device list while someone else is writing out all + * the device supers. Whoever is writing all supers, should + * lock the device list mutex before getting the number of + * devices in the super block (super_copy). Conversely, + * whoever updates the number of devices in the super block + * (super_copy) should hold the device list mutex. + */ + + /* + * In normal cases the cur_devices == fs_devices. But in case + * of deleting a seed device, the cur_devices should point to + * its own fs_devices listed under the fs_devices->seed. + */ + cur_devices = device->fs_devices; + mutex_lock(&fs_devices->device_list_mutex); + list_del_rcu(&device->dev_list); + + cur_devices->num_devices--; + cur_devices->total_devices--; + /* Update total_devices of the parent fs_devices if it's seed */ + if (cur_devices != fs_devices) + fs_devices->total_devices--; + + if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) + cur_devices->missing_devices--; + + btrfs_assign_next_active_device(device, NULL); + + if (device->bdev) { + cur_devices->open_devices--; + /* remove sysfs entry */ + btrfs_sysfs_rm_device_link(fs_devices, device); + } + + num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; + btrfs_set_super_num_devices(fs_info->super_copy, num_devices); + mutex_unlock(&fs_devices->device_list_mutex); + + /* + * at this point, the device is zero sized and detached from + * the devices list. All that's left is to zero out the old + * supers and free the device. + */ + if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) + btrfs_scratch_superblocks(device->bdev, device->name->str); + + btrfs_close_bdev(device); + call_rcu(&device->rcu, free_device_rcu); + + if (cur_devices->open_devices == 0) { + while (fs_devices) { + if (fs_devices->seed == cur_devices) { + fs_devices->seed = cur_devices->seed; + break; + } + fs_devices = fs_devices->seed; + } + cur_devices->seed = NULL; + close_fs_devices(cur_devices); + free_fs_devices(cur_devices); + } + +out: + mutex_unlock(&uuid_mutex); + return ret; + +error_undo: + if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { + mutex_lock(&fs_info->chunk_mutex); + list_add(&device->dev_alloc_list, + &fs_devices->alloc_list); + device->fs_devices->rw_devices++; + mutex_unlock(&fs_info->chunk_mutex); + } + goto out; +} + +void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) +{ + struct btrfs_fs_devices *fs_devices; + + lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); + + /* + * in case of fs with no seed, srcdev->fs_devices will point + * to fs_devices of fs_info. However when the dev being replaced is + * a seed dev it will point to the seed's local fs_devices. In short + * srcdev will have its correct fs_devices in both the cases. + */ + fs_devices = srcdev->fs_devices; + + list_del_rcu(&srcdev->dev_list); + list_del(&srcdev->dev_alloc_list); + fs_devices->num_devices--; + if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) + fs_devices->missing_devices--; + + if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) + fs_devices->rw_devices--; + + if (srcdev->bdev) + fs_devices->open_devices--; +} + +void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info, + struct btrfs_device *srcdev) +{ + struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; + + if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) { + /* zero out the old super if it is writable */ + btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str); + } + + btrfs_close_bdev(srcdev); + call_rcu(&srcdev->rcu, free_device_rcu); + + /* if this is no devs we rather delete the fs_devices */ + if (!fs_devices->num_devices) { + struct btrfs_fs_devices *tmp_fs_devices; + + /* + * On a mounted FS, num_devices can't be zero unless it's a + * seed. In case of a seed device being replaced, the replace + * target added to the sprout FS, so there will be no more + * device left under the seed FS. + */ + ASSERT(fs_devices->seeding); + + tmp_fs_devices = fs_info->fs_devices; + while (tmp_fs_devices) { + if (tmp_fs_devices->seed == fs_devices) { + tmp_fs_devices->seed = fs_devices->seed; + break; + } + tmp_fs_devices = tmp_fs_devices->seed; + } + fs_devices->seed = NULL; + close_fs_devices(fs_devices); + free_fs_devices(fs_devices); + } +} + +void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) +{ + struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; + + WARN_ON(!tgtdev); + mutex_lock(&fs_devices->device_list_mutex); + + btrfs_sysfs_rm_device_link(fs_devices, tgtdev); + + if (tgtdev->bdev) + fs_devices->open_devices--; + + fs_devices->num_devices--; + + btrfs_assign_next_active_device(tgtdev, NULL); + + list_del_rcu(&tgtdev->dev_list); + + mutex_unlock(&fs_devices->device_list_mutex); + + /* + * The update_dev_time() with in btrfs_scratch_superblocks() + * may lead to a call to btrfs_show_devname() which will try + * to hold device_list_mutex. And here this device + * is already out of device list, so we don't have to hold + * the device_list_mutex lock. + */ + btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str); + + btrfs_close_bdev(tgtdev); + call_rcu(&tgtdev->rcu, free_device_rcu); +} + +static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info, + const char *device_path, + struct btrfs_device **device) +{ + int ret = 0; + struct btrfs_super_block *disk_super; + u64 devid; + u8 *dev_uuid; + struct block_device *bdev; + struct buffer_head *bh; + + *device = NULL; + ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, + fs_info->bdev_holder, 0, &bdev, &bh); + if (ret) + return ret; + disk_super = (struct btrfs_super_block *)bh->b_data; + devid = btrfs_stack_device_id(&disk_super->dev_item); + dev_uuid = disk_super->dev_item.uuid; + *device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, + disk_super->fsid, true); + brelse(bh); + if (!*device) + ret = -ENOENT; + blkdev_put(bdev, FMODE_READ); + return ret; +} + +int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info, + const char *device_path, + struct btrfs_device **device) +{ + *device = NULL; + if (strcmp(device_path, "missing") == 0) { + struct list_head *devices; + struct btrfs_device *tmp; + + devices = &fs_info->fs_devices->devices; + list_for_each_entry(tmp, devices, dev_list) { + if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, + &tmp->dev_state) && !tmp->bdev) { + *device = tmp; + break; + } + } + + if (!*device) + return BTRFS_ERROR_DEV_MISSING_NOT_FOUND; + + return 0; + } else { + return btrfs_find_device_by_path(fs_info, device_path, device); + } +} + +/* + * Lookup a device given by device id, or the path if the id is 0. + */ +int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid, + const char *devpath, + struct btrfs_device **device) +{ + int ret; + + if (devid) { + ret = 0; + *device = btrfs_find_device(fs_info->fs_devices, devid, + NULL, NULL, true); + if (!*device) + ret = -ENOENT; + } else { + if (!devpath || !devpath[0]) + return -EINVAL; + + ret = btrfs_find_device_missing_or_by_path(fs_info, devpath, + device); + } + return ret; +} + +/* + * does all the dirty work required for changing file system's UUID. + */ +static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) +{ + struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; + struct btrfs_fs_devices *old_devices; + struct btrfs_fs_devices *seed_devices; + struct btrfs_super_block *disk_super = fs_info->super_copy; + struct btrfs_device *device; + u64 super_flags; + + lockdep_assert_held(&uuid_mutex); + if (!fs_devices->seeding) + return -EINVAL; + + seed_devices = alloc_fs_devices(NULL); + if (IS_ERR(seed_devices)) + return PTR_ERR(seed_devices); + + old_devices = clone_fs_devices(fs_devices); + if (IS_ERR(old_devices)) { + kfree(seed_devices); + return PTR_ERR(old_devices); + } + + list_add(&old_devices->fs_list, &fs_uuids); + + memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); + seed_devices->opened = 1; + INIT_LIST_HEAD(&seed_devices->devices); + INIT_LIST_HEAD(&seed_devices->alloc_list); + mutex_init(&seed_devices->device_list_mutex); + + mutex_lock(&fs_devices->device_list_mutex); + list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, + synchronize_rcu); + list_for_each_entry(device, &seed_devices->devices, dev_list) + device->fs_devices = seed_devices; + + mutex_lock(&fs_info->chunk_mutex); + list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); + mutex_unlock(&fs_info->chunk_mutex); + + fs_devices->seeding = 0; + fs_devices->num_devices = 0; + fs_devices->open_devices = 0; + fs_devices->missing_devices = 0; + fs_devices->rotating = 0; + fs_devices->seed = seed_devices; + + generate_random_uuid(fs_devices->fsid); + memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); + memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); + mutex_unlock(&fs_devices->device_list_mutex); + + super_flags = btrfs_super_flags(disk_super) & + ~BTRFS_SUPER_FLAG_SEEDING; + btrfs_set_super_flags(disk_super, super_flags); + + return 0; +} + +/* + * Store the expected generation for seed devices in device items. + */ +static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, + struct btrfs_fs_info *fs_info) +{ + struct btrfs_root *root = fs_info->chunk_root; + struct btrfs_path *path; + struct extent_buffer *leaf; + struct btrfs_dev_item *dev_item; + struct btrfs_device *device; + struct btrfs_key key; + u8 fs_uuid[BTRFS_FSID_SIZE]; + u8 dev_uuid[BTRFS_UUID_SIZE]; + u64 devid; + int ret; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + key.objectid = BTRFS_DEV_ITEMS_OBJECTID; + key.offset = 0; + key.type = BTRFS_DEV_ITEM_KEY; + + while (1) { + ret = btrfs_search_slot(trans, root, &key, path, 0, 1); + if (ret < 0) + goto error; + + leaf = path->nodes[0]; +next_slot: + if (path->slots[0] >= btrfs_header_nritems(leaf)) { + ret = btrfs_next_leaf(root, path); + if (ret > 0) + break; + if (ret < 0) + goto error; + leaf = path->nodes[0]; + btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); + btrfs_release_path(path); + continue; + } + + btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); + if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || + key.type != BTRFS_DEV_ITEM_KEY) + break; + + dev_item = btrfs_item_ptr(leaf, path->slots[0], + struct btrfs_dev_item); + devid = btrfs_device_id(leaf, dev_item); + read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), + BTRFS_UUID_SIZE); + read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), + BTRFS_FSID_SIZE); + device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, + fs_uuid, true); + BUG_ON(!device); /* Logic error */ + + if (device->fs_devices->seeding) { + btrfs_set_device_generation(leaf, dev_item, + device->generation); + btrfs_mark_buffer_dirty(leaf); + } + + path->slots[0]++; + goto next_slot; + } + ret = 0; +error: + btrfs_free_path(path); + return ret; +} + +int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) +{ + struct btrfs_root *root = fs_info->dev_root; + struct request_queue *q; + struct btrfs_trans_handle *trans; + struct btrfs_device *device; + struct block_device *bdev; + struct super_block *sb = fs_info->sb; + struct rcu_string *name; + struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; + u64 orig_super_total_bytes; + u64 orig_super_num_devices; + int seeding_dev = 0; + int ret = 0; + bool unlocked = false; + + if (sb_rdonly(sb) && !fs_devices->seeding) + return -EROFS; + + bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, + fs_info->bdev_holder); + if (IS_ERR(bdev)) + return PTR_ERR(bdev); + + if (fs_devices->seeding) { + seeding_dev = 1; + down_write(&sb->s_umount); + mutex_lock(&uuid_mutex); + } + + filemap_write_and_wait(bdev->bd_inode->i_mapping); + + mutex_lock(&fs_devices->device_list_mutex); + list_for_each_entry(device, &fs_devices->devices, dev_list) { + if (device->bdev == bdev) { + ret = -EEXIST; + mutex_unlock( + &fs_devices->device_list_mutex); + goto error; + } + } + mutex_unlock(&fs_devices->device_list_mutex); + + device = btrfs_alloc_device(fs_info, NULL, NULL); + if (IS_ERR(device)) { + /* we can safely leave the fs_devices entry around */ + ret = PTR_ERR(device); + goto error; + } + + name = rcu_string_strdup(device_path, GFP_KERNEL); + if (!name) { + ret = -ENOMEM; + goto error_free_device; + } + rcu_assign_pointer(device->name, name); + + trans = btrfs_start_transaction(root, 0); + if (IS_ERR(trans)) { + ret = PTR_ERR(trans); + goto error_free_device; + } + + q = bdev_get_queue(bdev); + set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); + device->generation = trans->transid; + device->io_width = fs_info->sectorsize; + device->io_align = fs_info->sectorsize; + device->sector_size = fs_info->sectorsize; + device->total_bytes = round_down(i_size_read(bdev->bd_inode), + fs_info->sectorsize); + device->disk_total_bytes = device->total_bytes; + device->commit_total_bytes = device->total_bytes; + device->fs_info = fs_info; + device->bdev = bdev; + set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); + clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); + device->mode = FMODE_EXCL; + device->dev_stats_valid = 1; + set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); + + if (seeding_dev) { + sb->s_flags &= ~SB_RDONLY; + ret = btrfs_prepare_sprout(fs_info); + if (ret) { + btrfs_abort_transaction(trans, ret); + goto error_trans; + } + } + + device->fs_devices = fs_devices; + + mutex_lock(&fs_devices->device_list_mutex); + mutex_lock(&fs_info->chunk_mutex); + list_add_rcu(&device->dev_list, &fs_devices->devices); + list_add(&device->dev_alloc_list, &fs_devices->alloc_list); + fs_devices->num_devices++; + fs_devices->open_devices++; + fs_devices->rw_devices++; + fs_devices->total_devices++; + fs_devices->total_rw_bytes += device->total_bytes; + + atomic64_add(device->total_bytes, &fs_info->free_chunk_space); + + if (!blk_queue_nonrot(q)) + fs_devices->rotating = 1; + + orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); + btrfs_set_super_total_bytes(fs_info->super_copy, + round_down(orig_super_total_bytes + device->total_bytes, + fs_info->sectorsize)); + + orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); + btrfs_set_super_num_devices(fs_info->super_copy, + orig_super_num_devices + 1); + + /* + * we've got more storage, clear any full flags on the space + * infos + */ + btrfs_clear_space_info_full(fs_info); + + mutex_unlock(&fs_info->chunk_mutex); + + /* Add sysfs device entry */ + btrfs_sysfs_add_device_link(fs_devices, device); + + mutex_unlock(&fs_devices->device_list_mutex); + + if (seeding_dev) { + mutex_lock(&fs_info->chunk_mutex); + ret = init_first_rw_device(trans, fs_info); + mutex_unlock(&fs_info->chunk_mutex); + if (ret) { + btrfs_abort_transaction(trans, ret); + goto error_sysfs; + } + } + + ret = btrfs_add_dev_item(trans, device); + if (ret) { + btrfs_abort_transaction(trans, ret); + goto error_sysfs; + } + + if (seeding_dev) { + char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; + + ret = btrfs_finish_sprout(trans, fs_info); + if (ret) { + btrfs_abort_transaction(trans, ret); + goto error_sysfs; + } + + /* Sprouting would change fsid of the mounted root, + * so rename the fsid on the sysfs + */ + snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", + fs_info->fsid); + if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf)) + btrfs_warn(fs_info, + "sysfs: failed to create fsid for sprout"); + } + + ret = btrfs_commit_transaction(trans); + + if (seeding_dev) { + mutex_unlock(&uuid_mutex); + up_write(&sb->s_umount); + unlocked = true; + + if (ret) /* transaction commit */ + return ret; + + ret = btrfs_relocate_sys_chunks(fs_info); + if (ret < 0) + btrfs_handle_fs_error(fs_info, ret, + "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); + trans = btrfs_attach_transaction(root); + if (IS_ERR(trans)) { + if (PTR_ERR(trans) == -ENOENT) + return 0; + ret = PTR_ERR(trans); + trans = NULL; + goto error_sysfs; + } + ret = btrfs_commit_transaction(trans); + } + + /* Update ctime/mtime for libblkid */ + update_dev_time(device_path); + return ret; + +error_sysfs: + btrfs_sysfs_rm_device_link(fs_devices, device); + mutex_lock(&fs_info->fs_devices->device_list_mutex); + mutex_lock(&fs_info->chunk_mutex); + list_del_rcu(&device->dev_list); + list_del(&device->dev_alloc_list); + fs_info->fs_devices->num_devices--; + fs_info->fs_devices->open_devices--; + fs_info->fs_devices->rw_devices--; + fs_info->fs_devices->total_devices--; + fs_info->fs_devices->total_rw_bytes -= device->total_bytes; + atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); + btrfs_set_super_total_bytes(fs_info->super_copy, + orig_super_total_bytes); + btrfs_set_super_num_devices(fs_info->super_copy, + orig_super_num_devices); + mutex_unlock(&fs_info->chunk_mutex); + mutex_unlock(&fs_info->fs_devices->device_list_mutex); +error_trans: + if (seeding_dev) + sb->s_flags |= SB_RDONLY; + if (trans) + btrfs_end_transaction(trans); +error_free_device: + btrfs_free_device(device); +error: + blkdev_put(bdev, FMODE_EXCL); + if (seeding_dev && !unlocked) { + mutex_unlock(&uuid_mutex); + up_write(&sb->s_umount); + } + return ret; +} + +static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, + struct btrfs_device *device) +{ + int ret; + struct btrfs_path *path; + struct btrfs_root *root = device->fs_info->chunk_root; + struct btrfs_dev_item *dev_item; + struct extent_buffer *leaf; + struct btrfs_key key; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + key.objectid = BTRFS_DEV_ITEMS_OBJECTID; + key.type = BTRFS_DEV_ITEM_KEY; + key.offset = device->devid; + + ret = btrfs_search_slot(trans, root, &key, path, 0, 1); + if (ret < 0) + goto out; + + if (ret > 0) { + ret = -ENOENT; + goto out; + } + + leaf = path->nodes[0]; + dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); + + btrfs_set_device_id(leaf, dev_item, device->devid); + btrfs_set_device_type(leaf, dev_item, device->type); + btrfs_set_device_io_align(leaf, dev_item, device->io_align); + btrfs_set_device_io_width(leaf, dev_item, device->io_width); + btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); + btrfs_set_device_total_bytes(leaf, dev_item, + btrfs_device_get_disk_total_bytes(device)); + btrfs_set_device_bytes_used(leaf, dev_item, + btrfs_device_get_bytes_used(device)); + btrfs_mark_buffer_dirty(leaf); + +out: + btrfs_free_path(path); + return ret; +} + +int btrfs_grow_device(struct btrfs_trans_handle *trans, + struct btrfs_device *device, u64 new_size) +{ + struct btrfs_fs_info *fs_info = device->fs_info; + struct btrfs_super_block *super_copy = fs_info->super_copy; + struct btrfs_fs_devices *fs_devices; + u64 old_total; + u64 diff; + + if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) + return -EACCES; + + new_size = round_down(new_size, fs_info->sectorsize); + + mutex_lock(&fs_info->chunk_mutex); + old_total = btrfs_super_total_bytes(super_copy); + diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); + + if (new_size <= device->total_bytes || + test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { + mutex_unlock(&fs_info->chunk_mutex); + return -EINVAL; + } + + fs_devices = fs_info->fs_devices; + + btrfs_set_super_total_bytes(super_copy, + round_down(old_total + diff, fs_info->sectorsize)); + device->fs_devices->total_rw_bytes += diff; + + btrfs_device_set_total_bytes(device, new_size); + btrfs_device_set_disk_total_bytes(device, new_size); + btrfs_clear_space_info_full(device->fs_info); + if (list_empty(&device->resized_list)) + list_add_tail(&device->resized_list, + &fs_devices->resized_devices); + mutex_unlock(&fs_info->chunk_mutex); + + return btrfs_update_device(trans, device); +} + +static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) +{ + struct btrfs_fs_info *fs_info = trans->fs_info; + struct btrfs_root *root = fs_info->chunk_root; + int ret; + struct btrfs_path *path; + struct btrfs_key key; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; + key.offset = chunk_offset; + key.type = BTRFS_CHUNK_ITEM_KEY; + + ret = btrfs_search_slot(trans, root, &key, path, -1, 1); + if (ret < 0) + goto out; + else if (ret > 0) { /* Logic error or corruption */ + btrfs_handle_fs_error(fs_info, -ENOENT, + "Failed lookup while freeing chunk."); + ret = -ENOENT; + goto out; + } + + ret = btrfs_del_item(trans, root, path); + if (ret < 0) + btrfs_handle_fs_error(fs_info, ret, + "Failed to delete chunk item."); +out: + btrfs_free_path(path); + return ret; +} + +static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) +{ + struct btrfs_super_block *super_copy = fs_info->super_copy; + struct btrfs_disk_key *disk_key; + struct btrfs_chunk *chunk; + u8 *ptr; + int ret = 0; + u32 num_stripes; + u32 array_size; + u32 len = 0; + u32 cur; + struct btrfs_key key; + + mutex_lock(&fs_info->chunk_mutex); + array_size = btrfs_super_sys_array_size(super_copy); + + ptr = super_copy->sys_chunk_array; + cur = 0; + + while (cur < array_size) { + disk_key = (struct btrfs_disk_key *)ptr; + btrfs_disk_key_to_cpu(&key, disk_key); + + len = sizeof(*disk_key); + + if (key.type == BTRFS_CHUNK_ITEM_KEY) { + chunk = (struct btrfs_chunk *)(ptr + len); + num_stripes = btrfs_stack_chunk_num_stripes(chunk); + len += btrfs_chunk_item_size(num_stripes); + } else { + ret = -EIO; + break; + } + if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && + key.offset == chunk_offset) { + memmove(ptr, ptr + len, array_size - (cur + len)); + array_size -= len; + btrfs_set_super_sys_array_size(super_copy, array_size); + } else { + ptr += len; + cur += len; + } + } + mutex_unlock(&fs_info->chunk_mutex); + return ret; +} + +static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info, + u64 logical, u64 length) +{ + struct extent_map_tree *em_tree; + struct extent_map *em; + + em_tree = &fs_info->mapping_tree.map_tree; + read_lock(&em_tree->lock); + em = lookup_extent_mapping(em_tree, logical, length); + read_unlock(&em_tree->lock); + + if (!em) { + btrfs_crit(fs_info, "unable to find logical %llu length %llu", + logical, length); + return ERR_PTR(-EINVAL); + } + + if (em->start > logical || em->start + em->len < logical) { + btrfs_crit(fs_info, + "found a bad mapping, wanted %llu-%llu, found %llu-%llu", + logical, length, em->start, em->start + em->len); + free_extent_map(em); + return ERR_PTR(-EINVAL); + } + + /* callers are responsible for dropping em's ref. */ + return em; +} + +int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) +{ + struct btrfs_fs_info *fs_info = trans->fs_info; + struct extent_map *em; + struct map_lookup *map; + u64 dev_extent_len = 0; + int i, ret = 0; + struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; + + em = get_chunk_map(fs_info, chunk_offset, 1); + if (IS_ERR(em)) { + /* + * This is a logic error, but we don't want to just rely on the + * user having built with ASSERT enabled, so if ASSERT doesn't + * do anything we still error out. + */ + ASSERT(0); + return PTR_ERR(em); + } + map = em->map_lookup; + mutex_lock(&fs_info->chunk_mutex); + check_system_chunk(trans, map->type); + mutex_unlock(&fs_info->chunk_mutex); + + /* + * Take the device list mutex to prevent races with the final phase of + * a device replace operation that replaces the device object associated + * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). + */ + mutex_lock(&fs_devices->device_list_mutex); + for (i = 0; i < map->num_stripes; i++) { + struct btrfs_device *device = map->stripes[i].dev; + ret = btrfs_free_dev_extent(trans, device, + map->stripes[i].physical, + &dev_extent_len); + if (ret) { + mutex_unlock(&fs_devices->device_list_mutex); + btrfs_abort_transaction(trans, ret); + goto out; + } + + if (device->bytes_used > 0) { + mutex_lock(&fs_info->chunk_mutex); + btrfs_device_set_bytes_used(device, + device->bytes_used - dev_extent_len); + atomic64_add(dev_extent_len, &fs_info->free_chunk_space); + btrfs_clear_space_info_full(fs_info); + mutex_unlock(&fs_info->chunk_mutex); + } + + if (map->stripes[i].dev) { + ret = btrfs_update_device(trans, map->stripes[i].dev); + if (ret) { + mutex_unlock(&fs_devices->device_list_mutex); + btrfs_abort_transaction(trans, ret); + goto out; + } + } + } + mutex_unlock(&fs_devices->device_list_mutex); + + ret = btrfs_free_chunk(trans, chunk_offset); + if (ret) { + btrfs_abort_transaction(trans, ret); + goto out; + } + + trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); + + if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { + ret = btrfs_del_sys_chunk(fs_info, chunk_offset); + if (ret) { + btrfs_abort_transaction(trans, ret); + goto out; + } + } + + ret = btrfs_remove_block_group(trans, chunk_offset, em); + if (ret) { + btrfs_abort_transaction(trans, ret); + goto out; + } + +out: + /* once for us */ + free_extent_map(em); + return ret; +} + +static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) +{ + struct btrfs_root *root = fs_info->chunk_root; + struct btrfs_trans_handle *trans; + int ret; + + /* + * Prevent races with automatic removal of unused block groups. + * After we relocate and before we remove the chunk with offset + * chunk_offset, automatic removal of the block group can kick in, + * resulting in a failure when calling btrfs_remove_chunk() below. + * + * Make sure to acquire this mutex before doing a tree search (dev + * or chunk trees) to find chunks. Otherwise the cleaner kthread might + * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after + * we release the path used to search the chunk/dev tree and before + * the current task acquires this mutex and calls us. + */ + lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); + + ret = btrfs_can_relocate(fs_info, chunk_offset); + if (ret) + return -ENOSPC; + + /* step one, relocate all the extents inside this chunk */ + btrfs_scrub_pause(fs_info); + ret = btrfs_relocate_block_group(fs_info, chunk_offset); + btrfs_scrub_continue(fs_info); + if (ret) + return ret; + + /* + * We add the kobjects here (and after forcing data chunk creation) + * since relocation is the only place we'll create chunks of a new + * type at runtime. The only place where we'll remove the last + * chunk of a type is the call immediately below this one. Even + * so, we're protected against races with the cleaner thread since + * we're covered by the delete_unused_bgs_mutex. + */ + btrfs_add_raid_kobjects(fs_info); + + trans = btrfs_start_trans_remove_block_group(root->fs_info, + chunk_offset); + if (IS_ERR(trans)) { + ret = PTR_ERR(trans); + btrfs_handle_fs_error(root->fs_info, ret, NULL); + return ret; + } + + /* + * step two, delete the device extents and the + * chunk tree entries + */ + ret = btrfs_remove_chunk(trans, chunk_offset); + btrfs_end_transaction(trans); + return ret; +} + +static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) +{ + struct btrfs_root *chunk_root = fs_info->chunk_root; + struct btrfs_path *path; + struct extent_buffer *leaf; + struct btrfs_chunk *chunk; + struct btrfs_key key; + struct btrfs_key found_key; + u64 chunk_type; + bool retried = false; + int failed = 0; + int ret; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + +again: + key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; + key.offset = (u64)-1; + key.type = BTRFS_CHUNK_ITEM_KEY; + + while (1) { + mutex_lock(&fs_info->delete_unused_bgs_mutex); + ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); + if (ret < 0) { + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + goto error; + } + BUG_ON(ret == 0); /* Corruption */ + + ret = btrfs_previous_item(chunk_root, path, key.objectid, + key.type); + if (ret) + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + if (ret < 0) + goto error; + if (ret > 0) + break; + + leaf = path->nodes[0]; + btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); + + chunk = btrfs_item_ptr(leaf, path->slots[0], + struct btrfs_chunk); + chunk_type = btrfs_chunk_type(leaf, chunk); + btrfs_release_path(path); + + if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { + ret = btrfs_relocate_chunk(fs_info, found_key.offset); + if (ret == -ENOSPC) + failed++; + else + BUG_ON(ret); + } + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + + if (found_key.offset == 0) + break; + key.offset = found_key.offset - 1; + } + ret = 0; + if (failed && !retried) { + failed = 0; + retried = true; + goto again; + } else if (WARN_ON(failed && retried)) { + ret = -ENOSPC; + } +error: + btrfs_free_path(path); + return ret; +} + +/* + * return 1 : allocate a data chunk successfully, + * return <0: errors during allocating a data chunk, + * return 0 : no need to allocate a data chunk. + */ +static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, + u64 chunk_offset) +{ + struct btrfs_block_group_cache *cache; + u64 bytes_used; + u64 chunk_type; + + cache = btrfs_lookup_block_group(fs_info, chunk_offset); + ASSERT(cache); + chunk_type = cache->flags; + btrfs_put_block_group(cache); + + if (chunk_type & BTRFS_BLOCK_GROUP_DATA) { + spin_lock(&fs_info->data_sinfo->lock); + bytes_used = fs_info->data_sinfo->bytes_used; + spin_unlock(&fs_info->data_sinfo->lock); + + if (!bytes_used) { + struct btrfs_trans_handle *trans; + int ret; + + trans = btrfs_join_transaction(fs_info->tree_root); + if (IS_ERR(trans)) + return PTR_ERR(trans); + + ret = btrfs_force_chunk_alloc(trans, + BTRFS_BLOCK_GROUP_DATA); + btrfs_end_transaction(trans); + if (ret < 0) + return ret; + + btrfs_add_raid_kobjects(fs_info); + + return 1; + } + } + return 0; +} + +static int insert_balance_item(struct btrfs_fs_info *fs_info, + struct btrfs_balance_control *bctl) +{ + struct btrfs_root *root = fs_info->tree_root; + struct btrfs_trans_handle *trans; + struct btrfs_balance_item *item; + struct btrfs_disk_balance_args disk_bargs; + struct btrfs_path *path; + struct extent_buffer *leaf; + struct btrfs_key key; + int ret, err; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + trans = btrfs_start_transaction(root, 0); + if (IS_ERR(trans)) { + btrfs_free_path(path); + return PTR_ERR(trans); + } + + key.objectid = BTRFS_BALANCE_OBJECTID; + key.type = BTRFS_TEMPORARY_ITEM_KEY; + key.offset = 0; + + ret = btrfs_insert_empty_item(trans, root, path, &key, + sizeof(*item)); + if (ret) + goto out; + + leaf = path->nodes[0]; + item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); + + memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); + + btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); + btrfs_set_balance_data(leaf, item, &disk_bargs); + btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); + btrfs_set_balance_meta(leaf, item, &disk_bargs); + btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); + btrfs_set_balance_sys(leaf, item, &disk_bargs); + + btrfs_set_balance_flags(leaf, item, bctl->flags); + + btrfs_mark_buffer_dirty(leaf); +out: + btrfs_free_path(path); + err = btrfs_commit_transaction(trans); + if (err && !ret) + ret = err; + return ret; +} + +static int del_balance_item(struct btrfs_fs_info *fs_info) +{ + struct btrfs_root *root = fs_info->tree_root; + struct btrfs_trans_handle *trans; + struct btrfs_path *path; + struct btrfs_key key; + int ret, err; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + trans = btrfs_start_transaction(root, 0); + if (IS_ERR(trans)) { + btrfs_free_path(path); + return PTR_ERR(trans); + } + + key.objectid = BTRFS_BALANCE_OBJECTID; + key.type = BTRFS_TEMPORARY_ITEM_KEY; + key.offset = 0; + + ret = btrfs_search_slot(trans, root, &key, path, -1, 1); + if (ret < 0) + goto out; + if (ret > 0) { + ret = -ENOENT; + goto out; + } + + ret = btrfs_del_item(trans, root, path); +out: + btrfs_free_path(path); + err = btrfs_commit_transaction(trans); + if (err && !ret) + ret = err; + return ret; +} + +/* + * This is a heuristic used to reduce the number of chunks balanced on + * resume after balance was interrupted. + */ +static void update_balance_args(struct btrfs_balance_control *bctl) +{ + /* + * Turn on soft mode for chunk types that were being converted. + */ + if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) + bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; + if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) + bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; + if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) + bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; + + /* + * Turn on usage filter if is not already used. The idea is + * that chunks that we have already balanced should be + * reasonably full. Don't do it for chunks that are being + * converted - that will keep us from relocating unconverted + * (albeit full) chunks. + */ + if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && + !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && + !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { + bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; + bctl->data.usage = 90; + } + if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && + !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && + !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { + bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; + bctl->sys.usage = 90; + } + if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && + !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && + !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { + bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; + bctl->meta.usage = 90; + } +} + +/* + * Clear the balance status in fs_info and delete the balance item from disk. + */ +static void reset_balance_state(struct btrfs_fs_info *fs_info) +{ + struct btrfs_balance_control *bctl = fs_info->balance_ctl; + int ret; + + BUG_ON(!fs_info->balance_ctl); + + spin_lock(&fs_info->balance_lock); + fs_info->balance_ctl = NULL; + spin_unlock(&fs_info->balance_lock); + + kfree(bctl); + ret = del_balance_item(fs_info); + if (ret) + btrfs_handle_fs_error(fs_info, ret, NULL); +} + +/* + * Balance filters. Return 1 if chunk should be filtered out + * (should not be balanced). + */ +static int chunk_profiles_filter(u64 chunk_type, + struct btrfs_balance_args *bargs) +{ + chunk_type = chunk_to_extended(chunk_type) & + BTRFS_EXTENDED_PROFILE_MASK; + + if (bargs->profiles & chunk_type) + return 0; + + return 1; +} + +static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, + struct btrfs_balance_args *bargs) +{ + struct btrfs_block_group_cache *cache; + u64 chunk_used; + u64 user_thresh_min; + u64 user_thresh_max; + int ret = 1; + + cache = btrfs_lookup_block_group(fs_info, chunk_offset); + chunk_used = btrfs_block_group_used(&cache->item); + + if (bargs->usage_min == 0) + user_thresh_min = 0; + else + user_thresh_min = div_factor_fine(cache->key.offset, + bargs->usage_min); + + if (bargs->usage_max == 0) + user_thresh_max = 1; + else if (bargs->usage_max > 100) + user_thresh_max = cache->key.offset; + else + user_thresh_max = div_factor_fine(cache->key.offset, + bargs->usage_max); + + if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) + ret = 0; + + btrfs_put_block_group(cache); + return ret; +} + +static int chunk_usage_filter(struct btrfs_fs_info *fs_info, + u64 chunk_offset, struct btrfs_balance_args *bargs) +{ + struct btrfs_block_group_cache *cache; + u64 chunk_used, user_thresh; + int ret = 1; + + cache = btrfs_lookup_block_group(fs_info, chunk_offset); + chunk_used = btrfs_block_group_used(&cache->item); + + if (bargs->usage_min == 0) + user_thresh = 1; + else if (bargs->usage > 100) + user_thresh = cache->key.offset; + else + user_thresh = div_factor_fine(cache->key.offset, + bargs->usage); + + if (chunk_used < user_thresh) + ret = 0; + + btrfs_put_block_group(cache); + return ret; +} + +static int chunk_devid_filter(struct extent_buffer *leaf, + struct btrfs_chunk *chunk, + struct btrfs_balance_args *bargs) +{ + struct btrfs_stripe *stripe; + int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); + int i; + + for (i = 0; i < num_stripes; i++) { + stripe = btrfs_stripe_nr(chunk, i); + if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) + return 0; + } + + return 1; +} + +/* [pstart, pend) */ +static int chunk_drange_filter(struct extent_buffer *leaf, + struct btrfs_chunk *chunk, + struct btrfs_balance_args *bargs) +{ + struct btrfs_stripe *stripe; + int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); + u64 stripe_offset; + u64 stripe_length; + int factor; + int i; + + if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) + return 0; + + if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | + BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { + factor = num_stripes / 2; + } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { + factor = num_stripes - 1; + } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { + factor = num_stripes - 2; + } else { + factor = num_stripes; + } + + for (i = 0; i < num_stripes; i++) { + stripe = btrfs_stripe_nr(chunk, i); + if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) + continue; + + stripe_offset = btrfs_stripe_offset(leaf, stripe); + stripe_length = btrfs_chunk_length(leaf, chunk); + stripe_length = div_u64(stripe_length, factor); + + if (stripe_offset < bargs->pend && + stripe_offset + stripe_length > bargs->pstart) + return 0; + } + + return 1; +} + +/* [vstart, vend) */ +static int chunk_vrange_filter(struct extent_buffer *leaf, + struct btrfs_chunk *chunk, + u64 chunk_offset, + struct btrfs_balance_args *bargs) +{ + if (chunk_offset < bargs->vend && + chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) + /* at least part of the chunk is inside this vrange */ + return 0; + + return 1; +} + +static int chunk_stripes_range_filter(struct extent_buffer *leaf, + struct btrfs_chunk *chunk, + struct btrfs_balance_args *bargs) +{ + int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); + + if (bargs->stripes_min <= num_stripes + && num_stripes <= bargs->stripes_max) + return 0; + + return 1; +} + +static int chunk_soft_convert_filter(u64 chunk_type, + struct btrfs_balance_args *bargs) +{ + if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) + return 0; + + chunk_type = chunk_to_extended(chunk_type) & + BTRFS_EXTENDED_PROFILE_MASK; + + if (bargs->target == chunk_type) + return 1; + + return 0; +} + +static int should_balance_chunk(struct btrfs_fs_info *fs_info, + struct extent_buffer *leaf, + struct btrfs_chunk *chunk, u64 chunk_offset) +{ + struct btrfs_balance_control *bctl = fs_info->balance_ctl; + struct btrfs_balance_args *bargs = NULL; + u64 chunk_type = btrfs_chunk_type(leaf, chunk); + + /* type filter */ + if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & + (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { + return 0; + } + + if (chunk_type & BTRFS_BLOCK_GROUP_DATA) + bargs = &bctl->data; + else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) + bargs = &bctl->sys; + else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) + bargs = &bctl->meta; + + /* profiles filter */ + if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && + chunk_profiles_filter(chunk_type, bargs)) { + return 0; + } + + /* usage filter */ + if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && + chunk_usage_filter(fs_info, chunk_offset, bargs)) { + return 0; + } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && + chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { + return 0; + } + + /* devid filter */ + if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && + chunk_devid_filter(leaf, chunk, bargs)) { + return 0; + } + + /* drange filter, makes sense only with devid filter */ + if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && + chunk_drange_filter(leaf, chunk, bargs)) { + return 0; + } + + /* vrange filter */ + if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && + chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { + return 0; + } + + /* stripes filter */ + if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && + chunk_stripes_range_filter(leaf, chunk, bargs)) { + return 0; + } + + /* soft profile changing mode */ + if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && + chunk_soft_convert_filter(chunk_type, bargs)) { + return 0; + } + + /* + * limited by count, must be the last filter + */ + if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { + if (bargs->limit == 0) + return 0; + else + bargs->limit--; + } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { + /* + * Same logic as the 'limit' filter; the minimum cannot be + * determined here because we do not have the global information + * about the count of all chunks that satisfy the filters. + */ + if (bargs->limit_max == 0) + return 0; + else + bargs->limit_max--; + } + + return 1; +} + +static int __btrfs_balance(struct btrfs_fs_info *fs_info) +{ + struct btrfs_balance_control *bctl = fs_info->balance_ctl; + struct btrfs_root *chunk_root = fs_info->chunk_root; + struct btrfs_root *dev_root = fs_info->dev_root; + struct list_head *devices; + struct btrfs_device *device; + u64 old_size; + u64 size_to_free; + u64 chunk_type; + struct btrfs_chunk *chunk; + struct btrfs_path *path = NULL; + struct btrfs_key key; + struct btrfs_key found_key; + struct btrfs_trans_handle *trans; + struct extent_buffer *leaf; + int slot; + int ret; + int enospc_errors = 0; + bool counting = true; + /* The single value limit and min/max limits use the same bytes in the */ + u64 limit_data = bctl->data.limit; + u64 limit_meta = bctl->meta.limit; + u64 limit_sys = bctl->sys.limit; + u32 count_data = 0; + u32 count_meta = 0; + u32 count_sys = 0; + int chunk_reserved = 0; + + /* step one make some room on all the devices */ + devices = &fs_info->fs_devices->devices; + list_for_each_entry(device, devices, dev_list) { + old_size = btrfs_device_get_total_bytes(device); + size_to_free = div_factor(old_size, 1); + size_to_free = min_t(u64, size_to_free, SZ_1M); + if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) || + btrfs_device_get_total_bytes(device) - + btrfs_device_get_bytes_used(device) > size_to_free || + test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) + continue; + + ret = btrfs_shrink_device(device, old_size - size_to_free); + if (ret == -ENOSPC) + break; + if (ret) { + /* btrfs_shrink_device never returns ret > 0 */ + WARN_ON(ret > 0); + goto error; + } + + trans = btrfs_start_transaction(dev_root, 0); + if (IS_ERR(trans)) { + ret = PTR_ERR(trans); + btrfs_info_in_rcu(fs_info, + "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu", + rcu_str_deref(device->name), ret, + old_size, old_size - size_to_free); + goto error; + } + + ret = btrfs_grow_device(trans, device, old_size); + if (ret) { + btrfs_end_transaction(trans); + /* btrfs_grow_device never returns ret > 0 */ + WARN_ON(ret > 0); + btrfs_info_in_rcu(fs_info, + "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu", + rcu_str_deref(device->name), ret, + old_size, old_size - size_to_free); + goto error; + } + + btrfs_end_transaction(trans); + } + + /* step two, relocate all the chunks */ + path = btrfs_alloc_path(); + if (!path) { + ret = -ENOMEM; + goto error; + } + + /* zero out stat counters */ + spin_lock(&fs_info->balance_lock); + memset(&bctl->stat, 0, sizeof(bctl->stat)); + spin_unlock(&fs_info->balance_lock); +again: + if (!counting) { + /* + * The single value limit and min/max limits use the same bytes + * in the + */ + bctl->data.limit = limit_data; + bctl->meta.limit = limit_meta; + bctl->sys.limit = limit_sys; + } + key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; + key.offset = (u64)-1; + key.type = BTRFS_CHUNK_ITEM_KEY; + + while (1) { + if ((!counting && atomic_read(&fs_info->balance_pause_req)) || + atomic_read(&fs_info->balance_cancel_req)) { + ret = -ECANCELED; + goto error; + } + + mutex_lock(&fs_info->delete_unused_bgs_mutex); + ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); + if (ret < 0) { + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + goto error; + } + + /* + * this shouldn't happen, it means the last relocate + * failed + */ + if (ret == 0) + BUG(); /* FIXME break ? */ + + ret = btrfs_previous_item(chunk_root, path, 0, + BTRFS_CHUNK_ITEM_KEY); + if (ret) { + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + ret = 0; + break; + } + + leaf = path->nodes[0]; + slot = path->slots[0]; + btrfs_item_key_to_cpu(leaf, &found_key, slot); + + if (found_key.objectid != key.objectid) { + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + break; + } + + chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); + chunk_type = btrfs_chunk_type(leaf, chunk); + + if (!counting) { + spin_lock(&fs_info->balance_lock); + bctl->stat.considered++; + spin_unlock(&fs_info->balance_lock); + } + + ret = should_balance_chunk(fs_info, leaf, chunk, + found_key.offset); + + btrfs_release_path(path); + if (!ret) { + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + goto loop; + } + + if (counting) { + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + spin_lock(&fs_info->balance_lock); + bctl->stat.expected++; + spin_unlock(&fs_info->balance_lock); + + if (chunk_type & BTRFS_BLOCK_GROUP_DATA) + count_data++; + else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) + count_sys++; + else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) + count_meta++; + + goto loop; + } + + /* + * Apply limit_min filter, no need to check if the LIMITS + * filter is used, limit_min is 0 by default + */ + if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && + count_data < bctl->data.limit_min) + || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && + count_meta < bctl->meta.limit_min) + || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && + count_sys < bctl->sys.limit_min)) { + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + goto loop; + } + + if (!chunk_reserved) { + /* + * We may be relocating the only data chunk we have, + * which could potentially end up with losing data's + * raid profile, so lets allocate an empty one in + * advance. + */ + ret = btrfs_may_alloc_data_chunk(fs_info, + found_key.offset); + if (ret < 0) { + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + goto error; + } else if (ret == 1) { + chunk_reserved = 1; + } + } + + ret = btrfs_relocate_chunk(fs_info, found_key.offset); + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + if (ret && ret != -ENOSPC) + goto error; + if (ret == -ENOSPC) { + enospc_errors++; + } else { + spin_lock(&fs_info->balance_lock); + bctl->stat.completed++; + spin_unlock(&fs_info->balance_lock); + } +loop: + if (found_key.offset == 0) + break; + key.offset = found_key.offset - 1; + } + + if (counting) { + btrfs_release_path(path); + counting = false; + goto again; + } +error: + btrfs_free_path(path); + if (enospc_errors) { + btrfs_info(fs_info, "%d enospc errors during balance", + enospc_errors); + if (!ret) + ret = -ENOSPC; + } + + return ret; +} + +/** + * alloc_profile_is_valid - see if a given profile is valid and reduced + * @flags: profile to validate + * @extended: if true @flags is treated as an extended profile + */ +static int alloc_profile_is_valid(u64 flags, int extended) +{ + u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : + BTRFS_BLOCK_GROUP_PROFILE_MASK); + + flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; + + /* 1) check that all other bits are zeroed */ + if (flags & ~mask) + return 0; + + /* 2) see if profile is reduced */ + if (flags == 0) + return !extended; /* "0" is valid for usual profiles */ + + /* true if exactly one bit set */ + return (flags & (flags - 1)) == 0; +} + +static inline int balance_need_close(struct btrfs_fs_info *fs_info) +{ + /* cancel requested || normal exit path */ + return atomic_read(&fs_info->balance_cancel_req) || + (atomic_read(&fs_info->balance_pause_req) == 0 && + atomic_read(&fs_info->balance_cancel_req) == 0); +} + +/* Non-zero return value signifies invalidity */ +static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg, + u64 allowed) +{ + return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) && + (!alloc_profile_is_valid(bctl_arg->target, 1) || + (bctl_arg->target & ~allowed))); +} + +/* + * Should be called with balance mutexe held + */ +int btrfs_balance(struct btrfs_fs_info *fs_info, + struct btrfs_balance_control *bctl, + struct btrfs_ioctl_balance_args *bargs) +{ + u64 meta_target, data_target; + u64 allowed; + int mixed = 0; + int ret; + u64 num_devices; + unsigned seq; + bool reducing_integrity; + + if (btrfs_fs_closing(fs_info) || + atomic_read(&fs_info->balance_pause_req) || + atomic_read(&fs_info->balance_cancel_req)) { + ret = -EINVAL; + goto out; + } + + allowed = btrfs_super_incompat_flags(fs_info->super_copy); + if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) + mixed = 1; + + /* + * In case of mixed groups both data and meta should be picked, + * and identical options should be given for both of them. + */ + allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; + if (mixed && (bctl->flags & allowed)) { + if (!(bctl->flags & BTRFS_BALANCE_DATA) || + !(bctl->flags & BTRFS_BALANCE_METADATA) || + memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { + btrfs_err(fs_info, + "balance: mixed groups data and metadata options must be the same"); + ret = -EINVAL; + goto out; + } + } + + num_devices = fs_info->fs_devices->num_devices; + btrfs_dev_replace_read_lock(&fs_info->dev_replace); + if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { + BUG_ON(num_devices < 1); + num_devices--; + } + btrfs_dev_replace_read_unlock(&fs_info->dev_replace); + allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP; + if (num_devices > 1) + allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); + if (num_devices > 2) + allowed |= BTRFS_BLOCK_GROUP_RAID5; + if (num_devices > 3) + allowed |= (BTRFS_BLOCK_GROUP_RAID10 | + BTRFS_BLOCK_GROUP_RAID6); + if (validate_convert_profile(&bctl->data, allowed)) { + int index = btrfs_bg_flags_to_raid_index(bctl->data.target); + + btrfs_err(fs_info, + "balance: invalid convert data profile %s", + get_raid_name(index)); + ret = -EINVAL; + goto out; + } + if (validate_convert_profile(&bctl->meta, allowed)) { + int index = btrfs_bg_flags_to_raid_index(bctl->meta.target); + + btrfs_err(fs_info, + "balance: invalid convert metadata profile %s", + get_raid_name(index)); + ret = -EINVAL; + goto out; + } + if (validate_convert_profile(&bctl->sys, allowed)) { + int index = btrfs_bg_flags_to_raid_index(bctl->sys.target); + + btrfs_err(fs_info, + "balance: invalid convert system profile %s", + get_raid_name(index)); + ret = -EINVAL; + goto out; + } + + /* allow to reduce meta or sys integrity only if force set */ + allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | + BTRFS_BLOCK_GROUP_RAID10 | + BTRFS_BLOCK_GROUP_RAID5 | + BTRFS_BLOCK_GROUP_RAID6; + do { + seq = read_seqbegin(&fs_info->profiles_lock); + + if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && + (fs_info->avail_system_alloc_bits & allowed) && + !(bctl->sys.target & allowed)) || + ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && + (fs_info->avail_metadata_alloc_bits & allowed) && + !(bctl->meta.target & allowed))) + reducing_integrity = true; + else + reducing_integrity = false; + + /* if we're not converting, the target field is uninitialized */ + meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? + bctl->meta.target : fs_info->avail_metadata_alloc_bits; + data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? + bctl->data.target : fs_info->avail_data_alloc_bits; + } while (read_seqretry(&fs_info->profiles_lock, seq)); + + if (reducing_integrity) { + if (bctl->flags & BTRFS_BALANCE_FORCE) { + btrfs_info(fs_info, + "balance: force reducing metadata integrity"); + } else { + btrfs_err(fs_info, + "balance: reduces metadata integrity, use --force if you want this"); + ret = -EINVAL; + goto out; + } + } + + if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < + btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { + int meta_index = btrfs_bg_flags_to_raid_index(meta_target); + int data_index = btrfs_bg_flags_to_raid_index(data_target); + + btrfs_warn(fs_info, + "balance: metadata profile %s has lower redundancy than data profile %s", + get_raid_name(meta_index), get_raid_name(data_index)); + } + + ret = insert_balance_item(fs_info, bctl); + if (ret && ret != -EEXIST) + goto out; + + if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { + BUG_ON(ret == -EEXIST); + BUG_ON(fs_info->balance_ctl); + spin_lock(&fs_info->balance_lock); + fs_info->balance_ctl = bctl; + spin_unlock(&fs_info->balance_lock); + } else { + BUG_ON(ret != -EEXIST); + spin_lock(&fs_info->balance_lock); + update_balance_args(bctl); + spin_unlock(&fs_info->balance_lock); + } + + ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); + set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); + mutex_unlock(&fs_info->balance_mutex); + + ret = __btrfs_balance(fs_info); + + mutex_lock(&fs_info->balance_mutex); + clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); + + if (bargs) { + memset(bargs, 0, sizeof(*bargs)); + btrfs_update_ioctl_balance_args(fs_info, bargs); + } + + if ((ret && ret != -ECANCELED && ret != -ENOSPC) || + balance_need_close(fs_info)) { + reset_balance_state(fs_info); + clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); + } + + wake_up(&fs_info->balance_wait_q); + + return ret; +out: + if (bctl->flags & BTRFS_BALANCE_RESUME) + reset_balance_state(fs_info); + else + kfree(bctl); + clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); + + return ret; +} + +static int balance_kthread(void *data) +{ + struct btrfs_fs_info *fs_info = data; + int ret = 0; + + mutex_lock(&fs_info->balance_mutex); + if (fs_info->balance_ctl) { + btrfs_info(fs_info, "balance: resuming"); + ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); + } + mutex_unlock(&fs_info->balance_mutex); + + return ret; +} + +int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) +{ + struct task_struct *tsk; + + mutex_lock(&fs_info->balance_mutex); + if (!fs_info->balance_ctl) { + mutex_unlock(&fs_info->balance_mutex); + return 0; + } + mutex_unlock(&fs_info->balance_mutex); + + if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { + btrfs_info(fs_info, "balance: resume skipped"); + return 0; + } + + /* + * A ro->rw remount sequence should continue with the paused balance + * regardless of who pauses it, system or the user as of now, so set + * the resume flag. + */ + spin_lock(&fs_info->balance_lock); + fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; + spin_unlock(&fs_info->balance_lock); + + tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); + return PTR_ERR_OR_ZERO(tsk); +} + +int btrfs_recover_balance(struct btrfs_fs_info *fs_info) +{ + struct btrfs_balance_control *bctl; + struct btrfs_balance_item *item; + struct btrfs_disk_balance_args disk_bargs; + struct btrfs_path *path; + struct extent_buffer *leaf; + struct btrfs_key key; + int ret; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + key.objectid = BTRFS_BALANCE_OBJECTID; + key.type = BTRFS_TEMPORARY_ITEM_KEY; + key.offset = 0; + + ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); + if (ret < 0) + goto out; + if (ret > 0) { /* ret = -ENOENT; */ + ret = 0; + goto out; + } + + bctl = kzalloc(sizeof(*bctl), GFP_NOFS); + if (!bctl) { + ret = -ENOMEM; + goto out; + } + + leaf = path->nodes[0]; + item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); + + bctl->flags = btrfs_balance_flags(leaf, item); + bctl->flags |= BTRFS_BALANCE_RESUME; + + btrfs_balance_data(leaf, item, &disk_bargs); + btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); + btrfs_balance_meta(leaf, item, &disk_bargs); + btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); + btrfs_balance_sys(leaf, item, &disk_bargs); + btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); + + /* + * This should never happen, as the paused balance state is recovered + * during mount without any chance of other exclusive ops to collide. + * + * This gives the exclusive op status to balance and keeps in paused + * state until user intervention (cancel or umount). If the ownership + * cannot be assigned, show a message but do not fail. The balance + * is in a paused state and must have fs_info::balance_ctl properly + * set up. + */ + if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) + btrfs_warn(fs_info, + "balance: cannot set exclusive op status, resume manually"); + + btrfs_release_path(path); + + mutex_lock(&fs_info->balance_mutex); + BUG_ON(fs_info->balance_ctl); + spin_lock(&fs_info->balance_lock); + fs_info->balance_ctl = bctl; + spin_unlock(&fs_info->balance_lock); + mutex_unlock(&fs_info->balance_mutex); +out: + btrfs_free_path(path); + return ret; +} + +int btrfs_pause_balance(struct btrfs_fs_info *fs_info) +{ + int ret = 0; + + mutex_lock(&fs_info->balance_mutex); + if (!fs_info->balance_ctl) { + mutex_unlock(&fs_info->balance_mutex); + return -ENOTCONN; + } + + if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { + atomic_inc(&fs_info->balance_pause_req); + mutex_unlock(&fs_info->balance_mutex); + + wait_event(fs_info->balance_wait_q, + !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); + + mutex_lock(&fs_info->balance_mutex); + /* we are good with balance_ctl ripped off from under us */ + BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); + atomic_dec(&fs_info->balance_pause_req); + } else { + ret = -ENOTCONN; + } + + mutex_unlock(&fs_info->balance_mutex); + return ret; +} + +int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) +{ + mutex_lock(&fs_info->balance_mutex); + if (!fs_info->balance_ctl) { + mutex_unlock(&fs_info->balance_mutex); + return -ENOTCONN; + } + + /* + * A paused balance with the item stored on disk can be resumed at + * mount time if the mount is read-write. Otherwise it's still paused + * and we must not allow cancelling as it deletes the item. + */ + if (sb_rdonly(fs_info->sb)) { + mutex_unlock(&fs_info->balance_mutex); + return -EROFS; + } + + atomic_inc(&fs_info->balance_cancel_req); + /* + * if we are running just wait and return, balance item is + * deleted in btrfs_balance in this case + */ + if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { + mutex_unlock(&fs_info->balance_mutex); + wait_event(fs_info->balance_wait_q, + !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); + mutex_lock(&fs_info->balance_mutex); + } else { + mutex_unlock(&fs_info->balance_mutex); + /* + * Lock released to allow other waiters to continue, we'll + * reexamine the status again. + */ + mutex_lock(&fs_info->balance_mutex); + + if (fs_info->balance_ctl) { + reset_balance_state(fs_info); + clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); + btrfs_info(fs_info, "balance: canceled"); + } + } + + BUG_ON(fs_info->balance_ctl || + test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); + atomic_dec(&fs_info->balance_cancel_req); + mutex_unlock(&fs_info->balance_mutex); + return 0; +} + +static int btrfs_uuid_scan_kthread(void *data) +{ + struct btrfs_fs_info *fs_info = data; + struct btrfs_root *root = fs_info->tree_root; + struct btrfs_key key; + struct btrfs_path *path = NULL; + int ret = 0; + struct extent_buffer *eb; + int slot; + struct btrfs_root_item root_item; + u32 item_size; + struct btrfs_trans_handle *trans = NULL; + + path = btrfs_alloc_path(); + if (!path) { + ret = -ENOMEM; + goto out; + } + + key.objectid = 0; + key.type = BTRFS_ROOT_ITEM_KEY; + key.offset = 0; + + while (1) { + ret = btrfs_search_forward(root, &key, path, + BTRFS_OLDEST_GENERATION); + if (ret) { + if (ret > 0) + ret = 0; + break; + } + + if (key.type != BTRFS_ROOT_ITEM_KEY || + (key.objectid < BTRFS_FIRST_FREE_OBJECTID && + key.objectid != BTRFS_FS_TREE_OBJECTID) || + key.objectid > BTRFS_LAST_FREE_OBJECTID) + goto skip; + + eb = path->nodes[0]; + slot = path->slots[0]; + item_size = btrfs_item_size_nr(eb, slot); + if (item_size < sizeof(root_item)) + goto skip; + + read_extent_buffer(eb, &root_item, + btrfs_item_ptr_offset(eb, slot), + (int)sizeof(root_item)); + if (btrfs_root_refs(&root_item) == 0) + goto skip; + + if (!btrfs_is_empty_uuid(root_item.uuid) || + !btrfs_is_empty_uuid(root_item.received_uuid)) { + if (trans) + goto update_tree; + + btrfs_release_path(path); + /* + * 1 - subvol uuid item + * 1 - received_subvol uuid item + */ + trans = btrfs_start_transaction(fs_info->uuid_root, 2); + if (IS_ERR(trans)) { + ret = PTR_ERR(trans); + break; + } + continue; + } else { + goto skip; + } +update_tree: + btrfs_release_path(path); + if (!btrfs_is_empty_uuid(root_item.uuid)) { + ret = btrfs_uuid_tree_add(trans, root_item.uuid, + BTRFS_UUID_KEY_SUBVOL, + key.objectid); + if (ret < 0) { + btrfs_warn(fs_info, "uuid_tree_add failed %d", + ret); + break; + } + } + + if (!btrfs_is_empty_uuid(root_item.received_uuid)) { + ret = btrfs_uuid_tree_add(trans, + root_item.received_uuid, + BTRFS_UUID_KEY_RECEIVED_SUBVOL, + key.objectid); + if (ret < 0) { + btrfs_warn(fs_info, "uuid_tree_add failed %d", + ret); + break; + } + } + +skip: + btrfs_release_path(path); + if (trans) { + ret = btrfs_end_transaction(trans); + trans = NULL; + if (ret) + break; + } + + if (key.offset < (u64)-1) { + key.offset++; + } else if (key.type < BTRFS_ROOT_ITEM_KEY) { + key.offset = 0; + key.type = BTRFS_ROOT_ITEM_KEY; + } else if (key.objectid < (u64)-1) { + key.offset = 0; + key.type = BTRFS_ROOT_ITEM_KEY; + key.objectid++; + } else { + break; + } + cond_resched(); + } + +out: + btrfs_free_path(path); + if (trans && !IS_ERR(trans)) + btrfs_end_transaction(trans); + if (ret) + btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); + else + set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); + up(&fs_info->uuid_tree_rescan_sem); + return 0; +} + +/* + * Callback for btrfs_uuid_tree_iterate(). + * returns: + * 0 check succeeded, the entry is not outdated. + * < 0 if an error occurred. + * > 0 if the check failed, which means the caller shall remove the entry. + */ +static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, + u8 *uuid, u8 type, u64 subid) +{ + struct btrfs_key key; + int ret = 0; + struct btrfs_root *subvol_root; + + if (type != BTRFS_UUID_KEY_SUBVOL && + type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) + goto out; + + key.objectid = subid; + key.type = BTRFS_ROOT_ITEM_KEY; + key.offset = (u64)-1; + subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); + if (IS_ERR(subvol_root)) { + ret = PTR_ERR(subvol_root); + if (ret == -ENOENT) + ret = 1; + goto out; + } + + switch (type) { + case BTRFS_UUID_KEY_SUBVOL: + if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) + ret = 1; + break; + case BTRFS_UUID_KEY_RECEIVED_SUBVOL: + if (memcmp(uuid, subvol_root->root_item.received_uuid, + BTRFS_UUID_SIZE)) + ret = 1; + break; + } + +out: + return ret; +} + +static int btrfs_uuid_rescan_kthread(void *data) +{ + struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; + int ret; + + /* + * 1st step is to iterate through the existing UUID tree and + * to delete all entries that contain outdated data. + * 2nd step is to add all missing entries to the UUID tree. + */ + ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); + if (ret < 0) { + btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); + up(&fs_info->uuid_tree_rescan_sem); + return ret; + } + return btrfs_uuid_scan_kthread(data); +} + +int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) +{ + struct btrfs_trans_handle *trans; + struct btrfs_root *tree_root = fs_info->tree_root; + struct btrfs_root *uuid_root; + struct task_struct *task; + int ret; + + /* + * 1 - root node + * 1 - root item + */ + trans = btrfs_start_transaction(tree_root, 2); + if (IS_ERR(trans)) + return PTR_ERR(trans); + + uuid_root = btrfs_create_tree(trans, fs_info, + BTRFS_UUID_TREE_OBJECTID); + if (IS_ERR(uuid_root)) { + ret = PTR_ERR(uuid_root); + btrfs_abort_transaction(trans, ret); + btrfs_end_transaction(trans); + return ret; + } + + fs_info->uuid_root = uuid_root; + + ret = btrfs_commit_transaction(trans); + if (ret) + return ret; + + down(&fs_info->uuid_tree_rescan_sem); + task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); + if (IS_ERR(task)) { + /* fs_info->update_uuid_tree_gen remains 0 in all error case */ + btrfs_warn(fs_info, "failed to start uuid_scan task"); + up(&fs_info->uuid_tree_rescan_sem); + return PTR_ERR(task); + } + + return 0; +} + +int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) +{ + struct task_struct *task; + + down(&fs_info->uuid_tree_rescan_sem); + task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); + if (IS_ERR(task)) { + /* fs_info->update_uuid_tree_gen remains 0 in all error case */ + btrfs_warn(fs_info, "failed to start uuid_rescan task"); + up(&fs_info->uuid_tree_rescan_sem); + return PTR_ERR(task); + } + + return 0; +} + +/* + * shrinking a device means finding all of the device extents past + * the new size, and then following the back refs to the chunks. + * The chunk relocation code actually frees the device extent + */ +int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) +{ + struct btrfs_fs_info *fs_info = device->fs_info; + struct btrfs_root *root = fs_info->dev_root; + struct btrfs_trans_handle *trans; + struct btrfs_dev_extent *dev_extent = NULL; + struct btrfs_path *path; + u64 length; + u64 chunk_offset; + int ret; + int slot; + int failed = 0; + bool retried = false; + bool checked_pending_chunks = false; + struct extent_buffer *l; + struct btrfs_key key; + struct btrfs_super_block *super_copy = fs_info->super_copy; + u64 old_total = btrfs_super_total_bytes(super_copy); + u64 old_size = btrfs_device_get_total_bytes(device); + u64 diff; + + new_size = round_down(new_size, fs_info->sectorsize); + diff = round_down(old_size - new_size, fs_info->sectorsize); + + if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) + return -EINVAL; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + path->reada = READA_BACK; + + mutex_lock(&fs_info->chunk_mutex); + + btrfs_device_set_total_bytes(device, new_size); + if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { + device->fs_devices->total_rw_bytes -= diff; + atomic64_sub(diff, &fs_info->free_chunk_space); + } + mutex_unlock(&fs_info->chunk_mutex); + +again: + key.objectid = device->devid; + key.offset = (u64)-1; + key.type = BTRFS_DEV_EXTENT_KEY; + + do { + mutex_lock(&fs_info->delete_unused_bgs_mutex); + ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); + if (ret < 0) { + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + goto done; + } + + ret = btrfs_previous_item(root, path, 0, key.type); + if (ret) + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + if (ret < 0) + goto done; + if (ret) { + ret = 0; + btrfs_release_path(path); + break; + } + + l = path->nodes[0]; + slot = path->slots[0]; + btrfs_item_key_to_cpu(l, &key, path->slots[0]); + + if (key.objectid != device->devid) { + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + btrfs_release_path(path); + break; + } + + dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); + length = btrfs_dev_extent_length(l, dev_extent); + + if (key.offset + length <= new_size) { + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + btrfs_release_path(path); + break; + } + + chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); + btrfs_release_path(path); + + /* + * We may be relocating the only data chunk we have, + * which could potentially end up with losing data's + * raid profile, so lets allocate an empty one in + * advance. + */ + ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); + if (ret < 0) { + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + goto done; + } + + ret = btrfs_relocate_chunk(fs_info, chunk_offset); + mutex_unlock(&fs_info->delete_unused_bgs_mutex); + if (ret && ret != -ENOSPC) + goto done; + if (ret == -ENOSPC) + failed++; + } while (key.offset-- > 0); + + if (failed && !retried) { + failed = 0; + retried = true; + goto again; + } else if (failed && retried) { + ret = -ENOSPC; + goto done; + } + + /* Shrinking succeeded, else we would be at "done". */ + trans = btrfs_start_transaction(root, 0); + if (IS_ERR(trans)) { + ret = PTR_ERR(trans); + goto done; + } + + mutex_lock(&fs_info->chunk_mutex); + + /* + * We checked in the above loop all device extents that were already in + * the device tree. However before we have updated the device's + * total_bytes to the new size, we might have had chunk allocations that + * have not complete yet (new block groups attached to transaction + * handles), and therefore their device extents were not yet in the + * device tree and we missed them in the loop above. So if we have any + * pending chunk using a device extent that overlaps the device range + * that we can not use anymore, commit the current transaction and + * repeat the search on the device tree - this way we guarantee we will + * not have chunks using device extents that end beyond 'new_size'. + */ + if (!checked_pending_chunks) { + u64 start = new_size; + u64 len = old_size - new_size; + + if (contains_pending_extent(trans->transaction, device, + &start, len)) { + mutex_unlock(&fs_info->chunk_mutex); + checked_pending_chunks = true; + failed = 0; + retried = false; + ret = btrfs_commit_transaction(trans); + if (ret) + goto done; + goto again; + } + } + + btrfs_device_set_disk_total_bytes(device, new_size); + if (list_empty(&device->resized_list)) + list_add_tail(&device->resized_list, + &fs_info->fs_devices->resized_devices); + + WARN_ON(diff > old_total); + btrfs_set_super_total_bytes(super_copy, + round_down(old_total - diff, fs_info->sectorsize)); + mutex_unlock(&fs_info->chunk_mutex); + + /* Now btrfs_update_device() will change the on-disk size. */ + ret = btrfs_update_device(trans, device); + if (ret < 0) { + btrfs_abort_transaction(trans, ret); + btrfs_end_transaction(trans); + } else { + ret = btrfs_commit_transaction(trans); + } +done: + btrfs_free_path(path); + if (ret) { + mutex_lock(&fs_info->chunk_mutex); + btrfs_device_set_total_bytes(device, old_size); + if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) + device->fs_devices->total_rw_bytes += diff; + atomic64_add(diff, &fs_info->free_chunk_space); + mutex_unlock(&fs_info->chunk_mutex); + } + return ret; +} + +static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, + struct btrfs_key *key, + struct btrfs_chunk *chunk, int item_size) +{ + struct btrfs_super_block *super_copy = fs_info->super_copy; + struct btrfs_disk_key disk_key; + u32 array_size; + u8 *ptr; + + mutex_lock(&fs_info->chunk_mutex); + array_size = btrfs_super_sys_array_size(super_copy); + if (array_size + item_size + sizeof(disk_key) + > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { + mutex_unlock(&fs_info->chunk_mutex); + return -EFBIG; + } + + ptr = super_copy->sys_chunk_array + array_size; + btrfs_cpu_key_to_disk(&disk_key, key); + memcpy(ptr, &disk_key, sizeof(disk_key)); + ptr += sizeof(disk_key); + memcpy(ptr, chunk, item_size); + item_size += sizeof(disk_key); + btrfs_set_super_sys_array_size(super_copy, array_size + item_size); + mutex_unlock(&fs_info->chunk_mutex); + + return 0; +} + +/* + * sort the devices in descending order by max_avail, total_avail + */ +static int btrfs_cmp_device_info(const void *a, const void *b) +{ + const struct btrfs_device_info *di_a = a; + const struct btrfs_device_info *di_b = b; + + if (di_a->max_avail > di_b->max_avail) + return -1; + if (di_a->max_avail < di_b->max_avail) + return 1; + if (di_a->total_avail > di_b->total_avail) + return -1; + if (di_a->total_avail < di_b->total_avail) + return 1; + return 0; +} + +static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) +{ + if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) + return; + + btrfs_set_fs_incompat(info, RAID56); +} + +static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, + u64 start, u64 type) +{ + struct btrfs_fs_info *info = trans->fs_info; + struct btrfs_fs_devices *fs_devices = info->fs_devices; + struct btrfs_device *device; + struct map_lookup *map = NULL; + struct extent_map_tree *em_tree; + struct extent_map *em; + struct btrfs_device_info *devices_info = NULL; + u64 total_avail; + int num_stripes; /* total number of stripes to allocate */ + int data_stripes; /* number of stripes that count for + block group size */ + int sub_stripes; /* sub_stripes info for map */ + int dev_stripes; /* stripes per dev */ + int devs_max; /* max devs to use */ + int devs_min; /* min devs needed */ + int devs_increment; /* ndevs has to be a multiple of this */ + int ncopies; /* how many copies to data has */ + int ret; + u64 max_stripe_size; + u64 max_chunk_size; + u64 stripe_size; + u64 num_bytes; + int ndevs; + int i; + int j; + int index; + + BUG_ON(!alloc_profile_is_valid(type, 0)); + + if (list_empty(&fs_devices->alloc_list)) { + if (btrfs_test_opt(info, ENOSPC_DEBUG)) + btrfs_debug(info, "%s: no writable device", __func__); + return -ENOSPC; + } + + index = btrfs_bg_flags_to_raid_index(type); + + sub_stripes = btrfs_raid_array[index].sub_stripes; + dev_stripes = btrfs_raid_array[index].dev_stripes; + devs_max = btrfs_raid_array[index].devs_max; + devs_min = btrfs_raid_array[index].devs_min; + devs_increment = btrfs_raid_array[index].devs_increment; + ncopies = btrfs_raid_array[index].ncopies; + + if (type & BTRFS_BLOCK_GROUP_DATA) { + max_stripe_size = SZ_1G; + max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; + if (!devs_max) + devs_max = BTRFS_MAX_DEVS(info); + } else if (type & BTRFS_BLOCK_GROUP_METADATA) { + /* for larger filesystems, use larger metadata chunks */ + if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) + max_stripe_size = SZ_1G; + else + max_stripe_size = SZ_256M; + max_chunk_size = max_stripe_size; + if (!devs_max) + devs_max = BTRFS_MAX_DEVS(info); + } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { + max_stripe_size = SZ_32M; + max_chunk_size = 2 * max_stripe_size; + if (!devs_max) + devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; + } else { + btrfs_err(info, "invalid chunk type 0x%llx requested", + type); + BUG_ON(1); + } + + /* we don't want a chunk larger than 10% of writeable space */ + max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), + max_chunk_size); + + devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), + GFP_NOFS); + if (!devices_info) + return -ENOMEM; + + /* + * in the first pass through the devices list, we gather information + * about the available holes on each device. + */ + ndevs = 0; + list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { + u64 max_avail; + u64 dev_offset; + + if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { + WARN(1, KERN_ERR + "BTRFS: read-only device in alloc_list\n"); + continue; + } + + if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, + &device->dev_state) || + test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) + continue; + + if (device->total_bytes > device->bytes_used) + total_avail = device->total_bytes - device->bytes_used; + else + total_avail = 0; + + /* If there is no space on this device, skip it. */ + if (total_avail == 0) + continue; + + ret = find_free_dev_extent(trans, device, + max_stripe_size * dev_stripes, + &dev_offset, &max_avail); + if (ret && ret != -ENOSPC) + goto error; + + if (ret == 0) + max_avail = max_stripe_size * dev_stripes; + + if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) { + if (btrfs_test_opt(info, ENOSPC_DEBUG)) + btrfs_debug(info, + "%s: devid %llu has no free space, have=%llu want=%u", + __func__, device->devid, max_avail, + BTRFS_STRIPE_LEN * dev_stripes); + continue; + } + + if (ndevs == fs_devices->rw_devices) { + WARN(1, "%s: found more than %llu devices\n", + __func__, fs_devices->rw_devices); + break; + } + devices_info[ndevs].dev_offset = dev_offset; + devices_info[ndevs].max_avail = max_avail; + devices_info[ndevs].total_avail = total_avail; + devices_info[ndevs].dev = device; + ++ndevs; + } + + /* + * now sort the devices by hole size / available space + */ + sort(devices_info, ndevs, sizeof(struct btrfs_device_info), + btrfs_cmp_device_info, NULL); + + /* round down to number of usable stripes */ + ndevs = round_down(ndevs, devs_increment); + + if (ndevs < devs_min) { + ret = -ENOSPC; + if (btrfs_test_opt(info, ENOSPC_DEBUG)) { + btrfs_debug(info, + "%s: not enough devices with free space: have=%d minimum required=%d", + __func__, ndevs, devs_min); + } + goto error; + } + + ndevs = min(ndevs, devs_max); + + /* + * The primary goal is to maximize the number of stripes, so use as + * many devices as possible, even if the stripes are not maximum sized. + * + * The DUP profile stores more than one stripe per device, the + * max_avail is the total size so we have to adjust. + */ + stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes); + num_stripes = ndevs * dev_stripes; + + /* + * this will have to be fixed for RAID1 and RAID10 over + * more drives + */ + data_stripes = num_stripes / ncopies; + + if (type & BTRFS_BLOCK_GROUP_RAID5) + data_stripes = num_stripes - 1; + + if (type & BTRFS_BLOCK_GROUP_RAID6) + data_stripes = num_stripes - 2; + + /* + * Use the number of data stripes to figure out how big this chunk + * is really going to be in terms of logical address space, + * and compare that answer with the max chunk size. If it's higher, + * we try to reduce stripe_size. + */ + if (stripe_size * data_stripes > max_chunk_size) { + /* + * Reduce stripe_size, round it up to a 16MB boundary again and + * then use it, unless it ends up being even bigger than the + * previous value we had already. + */ + stripe_size = min(round_up(div_u64(max_chunk_size, + data_stripes), SZ_16M), + stripe_size); + } + + /* align to BTRFS_STRIPE_LEN */ + stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN); + + map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); + if (!map) { + ret = -ENOMEM; + goto error; + } + map->num_stripes = num_stripes; + + for (i = 0; i < ndevs; ++i) { + for (j = 0; j < dev_stripes; ++j) { + int s = i * dev_stripes + j; + map->stripes[s].dev = devices_info[i].dev; + map->stripes[s].physical = devices_info[i].dev_offset + + j * stripe_size; + } + } + map->stripe_len = BTRFS_STRIPE_LEN; + map->io_align = BTRFS_STRIPE_LEN; + map->io_width = BTRFS_STRIPE_LEN; + map->type = type; + map->sub_stripes = sub_stripes; + + num_bytes = stripe_size * data_stripes; + + trace_btrfs_chunk_alloc(info, map, start, num_bytes); + + em = alloc_extent_map(); + if (!em) { + kfree(map); + ret = -ENOMEM; + goto error; + } + set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); + em->map_lookup = map; + em->start = start; + em->len = num_bytes; + em->block_start = 0; + em->block_len = em->len; + em->orig_block_len = stripe_size; + + em_tree = &info->mapping_tree.map_tree; + write_lock(&em_tree->lock); + ret = add_extent_mapping(em_tree, em, 0); + if (ret) { + write_unlock(&em_tree->lock); + free_extent_map(em); + goto error; + } + + list_add_tail(&em->list, &trans->transaction->pending_chunks); + refcount_inc(&em->refs); + write_unlock(&em_tree->lock); + + ret = btrfs_make_block_group(trans, 0, type, start, num_bytes); + if (ret) + goto error_del_extent; + + for (i = 0; i < map->num_stripes; i++) { + num_bytes = map->stripes[i].dev->bytes_used + stripe_size; + btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes); + map->stripes[i].dev->has_pending_chunks = true; + } + + atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space); + + free_extent_map(em); + check_raid56_incompat_flag(info, type); + + kfree(devices_info); + return 0; + +error_del_extent: + write_lock(&em_tree->lock); + remove_extent_mapping(em_tree, em); + write_unlock(&em_tree->lock); + + /* One for our allocation */ + free_extent_map(em); + /* One for the tree reference */ + free_extent_map(em); + /* One for the pending_chunks list reference */ + free_extent_map(em); +error: + kfree(devices_info); + return ret; +} + +int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, + u64 chunk_offset, u64 chunk_size) +{ + struct btrfs_fs_info *fs_info = trans->fs_info; + struct btrfs_root *extent_root = fs_info->extent_root; + struct btrfs_root *chunk_root = fs_info->chunk_root; + struct btrfs_key key; + struct btrfs_device *device; + struct btrfs_chunk *chunk; + struct btrfs_stripe *stripe; + struct extent_map *em; + struct map_lookup *map; + size_t item_size; + u64 dev_offset; + u64 stripe_size; + int i = 0; + int ret = 0; + + em = get_chunk_map(fs_info, chunk_offset, chunk_size); + if (IS_ERR(em)) + return PTR_ERR(em); + + map = em->map_lookup; + item_size = btrfs_chunk_item_size(map->num_stripes); + stripe_size = em->orig_block_len; + + chunk = kzalloc(item_size, GFP_NOFS); + if (!chunk) { + ret = -ENOMEM; + goto out; + } + + /* + * Take the device list mutex to prevent races with the final phase of + * a device replace operation that replaces the device object associated + * with the map's stripes, because the device object's id can change + * at any time during that final phase of the device replace operation + * (dev-replace.c:btrfs_dev_replace_finishing()). + */ + mutex_lock(&fs_info->fs_devices->device_list_mutex); + for (i = 0; i < map->num_stripes; i++) { + device = map->stripes[i].dev; + dev_offset = map->stripes[i].physical; + + ret = btrfs_update_device(trans, device); + if (ret) + break; + ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, + dev_offset, stripe_size); + if (ret) + break; + } + if (ret) { + mutex_unlock(&fs_info->fs_devices->device_list_mutex); + goto out; + } + + stripe = &chunk->stripe; + for (i = 0; i < map->num_stripes; i++) { + device = map->stripes[i].dev; + dev_offset = map->stripes[i].physical; + + btrfs_set_stack_stripe_devid(stripe, device->devid); + btrfs_set_stack_stripe_offset(stripe, dev_offset); + memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); + stripe++; + } + mutex_unlock(&fs_info->fs_devices->device_list_mutex); + + btrfs_set_stack_chunk_length(chunk, chunk_size); + btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); + btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); + btrfs_set_stack_chunk_type(chunk, map->type); + btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); + btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); + btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); + btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); + btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); + + key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; + key.type = BTRFS_CHUNK_ITEM_KEY; + key.offset = chunk_offset; + + ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); + if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { + /* + * TODO: Cleanup of inserted chunk root in case of + * failure. + */ + ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); + } + +out: + kfree(chunk); + free_extent_map(em); + return ret; +} + +/* + * Chunk allocation falls into two parts. The first part does works + * that make the new allocated chunk useable, but not do any operation + * that modifies the chunk tree. The second part does the works that + * require modifying the chunk tree. This division is important for the + * bootstrap process of adding storage to a seed btrfs. + */ +int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) +{ + u64 chunk_offset; + + lockdep_assert_held(&trans->fs_info->chunk_mutex); + chunk_offset = find_next_chunk(trans->fs_info); + return __btrfs_alloc_chunk(trans, chunk_offset, type); +} + +static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, + struct btrfs_fs_info *fs_info) +{ + u64 chunk_offset; + u64 sys_chunk_offset; + u64 alloc_profile; + int ret; + + chunk_offset = find_next_chunk(fs_info); + alloc_profile = btrfs_metadata_alloc_profile(fs_info); + ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile); + if (ret) + return ret; + + sys_chunk_offset = find_next_chunk(fs_info); + alloc_profile = btrfs_system_alloc_profile(fs_info); + ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile); + return ret; +} + +static inline int btrfs_chunk_max_errors(struct map_lookup *map) +{ + int max_errors; + + if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | + BTRFS_BLOCK_GROUP_RAID10 | + BTRFS_BLOCK_GROUP_RAID5)) { + max_errors = 1; + } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { + max_errors = 2; + } else { + max_errors = 0; + } + + return max_errors; +} + +int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) +{ + struct extent_map *em; + struct map_lookup *map; + int readonly = 0; + int miss_ndevs = 0; + int i; + + em = get_chunk_map(fs_info, chunk_offset, 1); + if (IS_ERR(em)) + return 1; + + map = em->map_lookup; + for (i = 0; i < map->num_stripes; i++) { + if (test_bit(BTRFS_DEV_STATE_MISSING, + &map->stripes[i].dev->dev_state)) { + miss_ndevs++; + continue; + } + if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, + &map->stripes[i].dev->dev_state)) { + readonly = 1; + goto end; + } + } + + /* + * If the number of missing devices is larger than max errors, + * we can not write the data into that chunk successfully, so + * set it readonly. + */ + if (miss_ndevs > btrfs_chunk_max_errors(map)) + readonly = 1; +end: + free_extent_map(em); + return readonly; +} + +void btrfs_mapping_init(struct btrfs_mapping_tree *tree) +{ + extent_map_tree_init(&tree->map_tree); +} + +void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) +{ + struct extent_map *em; + + while (1) { + write_lock(&tree->map_tree.lock); + em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); + if (em) + remove_extent_mapping(&tree->map_tree, em); + write_unlock(&tree->map_tree.lock); + if (!em) + break; + /* once for us */ + free_extent_map(em); + /* once for the tree */ + free_extent_map(em); + } +} + +int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) +{ + struct extent_map *em; + struct map_lookup *map; + int ret; + + em = get_chunk_map(fs_info, logical, len); + if (IS_ERR(em)) + /* + * We could return errors for these cases, but that could get + * ugly and we'd probably do the same thing which is just not do + * anything else and exit, so return 1 so the callers don't try + * to use other copies. + */ + return 1; + + map = em->map_lookup; + if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) + ret = map->num_stripes; + else if (map->type & BTRFS_BLOCK_GROUP_RAID10) + ret = map->sub_stripes; + else if (map->type & BTRFS_BLOCK_GROUP_RAID5) + ret = 2; + else if (map->type & BTRFS_BLOCK_GROUP_RAID6) + /* + * There could be two corrupted data stripes, we need + * to loop retry in order to rebuild the correct data. + * + * Fail a stripe at a time on every retry except the + * stripe under reconstruction. + */ + ret = map->num_stripes; + else + ret = 1; + free_extent_map(em); + + btrfs_dev_replace_read_lock(&fs_info->dev_replace); + if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && + fs_info->dev_replace.tgtdev) + ret++; + btrfs_dev_replace_read_unlock(&fs_info->dev_replace); + + return ret; +} + +unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, + u64 logical) +{ + struct extent_map *em; + struct map_lookup *map; + unsigned long len = fs_info->sectorsize; + + em = get_chunk_map(fs_info, logical, len); + + if (!WARN_ON(IS_ERR(em))) { + map = em->map_lookup; + if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) + len = map->stripe_len * nr_data_stripes(map); + free_extent_map(em); + } + return len; +} + +int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) +{ + struct extent_map *em; + struct map_lookup *map; + int ret = 0; + + em = get_chunk_map(fs_info, logical, len); + + if(!WARN_ON(IS_ERR(em))) { + map = em->map_lookup; + if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) + ret = 1; + free_extent_map(em); + } + return ret; +} + +static int find_live_mirror(struct btrfs_fs_info *fs_info, + struct map_lookup *map, int first, + int dev_replace_is_ongoing) +{ + int i; + int num_stripes; + int preferred_mirror; + int tolerance; + struct btrfs_device *srcdev; + + ASSERT((map->type & + (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))); + + if (map->type & BTRFS_BLOCK_GROUP_RAID10) + num_stripes = map->sub_stripes; + else + num_stripes = map->num_stripes; + + preferred_mirror = first + current->pid % num_stripes; + + if (dev_replace_is_ongoing && + fs_info->dev_replace.cont_reading_from_srcdev_mode == + BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) + srcdev = fs_info->dev_replace.srcdev; + else + srcdev = NULL; + + /* + * try to avoid the drive that is the source drive for a + * dev-replace procedure, only choose it if no other non-missing + * mirror is available + */ + for (tolerance = 0; tolerance < 2; tolerance++) { + if (map->stripes[preferred_mirror].dev->bdev && + (tolerance || map->stripes[preferred_mirror].dev != srcdev)) + return preferred_mirror; + for (i = first; i < first + num_stripes; i++) { + if (map->stripes[i].dev->bdev && + (tolerance || map->stripes[i].dev != srcdev)) + return i; + } + } + + /* we couldn't find one that doesn't fail. Just return something + * and the io error handling code will clean up eventually + */ + return preferred_mirror; +} + +static inline int parity_smaller(u64 a, u64 b) +{ + return a > b; +} + +/* Bubble-sort the stripe set to put the parity/syndrome stripes last */ +static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) +{ + struct btrfs_bio_stripe s; + int i; + u64 l; + int again = 1; + + while (again) { + again = 0; + for (i = 0; i < num_stripes - 1; i++) { + if (parity_smaller(bbio->raid_map[i], + bbio->raid_map[i+1])) { + s = bbio->stripes[i]; + l = bbio->raid_map[i]; + bbio->stripes[i] = bbio->stripes[i+1]; + bbio->raid_map[i] = bbio->raid_map[i+1]; + bbio->stripes[i+1] = s; + bbio->raid_map[i+1] = l; + + again = 1; + } + } + } +} + +static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) +{ + struct btrfs_bio *bbio = kzalloc( + /* the size of the btrfs_bio */ + sizeof(struct btrfs_bio) + + /* plus the variable array for the stripes */ + sizeof(struct btrfs_bio_stripe) * (total_stripes) + + /* plus the variable array for the tgt dev */ + sizeof(int) * (real_stripes) + + /* + * plus the raid_map, which includes both the tgt dev + * and the stripes + */ + sizeof(u64) * (total_stripes), + GFP_NOFS|__GFP_NOFAIL); + + atomic_set(&bbio->error, 0); + refcount_set(&bbio->refs, 1); + + return bbio; +} + +void btrfs_get_bbio(struct btrfs_bio *bbio) +{ + WARN_ON(!refcount_read(&bbio->refs)); + refcount_inc(&bbio->refs); +} + +void btrfs_put_bbio(struct btrfs_bio *bbio) +{ + if (!bbio) + return; + if (refcount_dec_and_test(&bbio->refs)) + kfree(bbio); +} + +/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ +/* + * Please note that, discard won't be sent to target device of device + * replace. + */ +static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, + u64 logical, u64 length, + struct btrfs_bio **bbio_ret) +{ + struct extent_map *em; + struct map_lookup *map; + struct btrfs_bio *bbio; + u64 offset; + u64 stripe_nr; + u64 stripe_nr_end; + u64 stripe_end_offset; + u64 stripe_cnt; + u64 stripe_len; + u64 stripe_offset; + u64 num_stripes; + u32 stripe_index; + u32 factor = 0; + u32 sub_stripes = 0; + u64 stripes_per_dev = 0; + u32 remaining_stripes = 0; + u32 last_stripe = 0; + int ret = 0; + int i; + + /* discard always return a bbio */ + ASSERT(bbio_ret); + + em = get_chunk_map(fs_info, logical, length); + if (IS_ERR(em)) + return PTR_ERR(em); + + map = em->map_lookup; + /* we don't discard raid56 yet */ + if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { + ret = -EOPNOTSUPP; + goto out; + } + + offset = logical - em->start; + length = min_t(u64, em->len - offset, length); + + stripe_len = map->stripe_len; + /* + * stripe_nr counts the total number of stripes we have to stride + * to get to this block + */ + stripe_nr = div64_u64(offset, stripe_len); + + /* stripe_offset is the offset of this block in its stripe */ + stripe_offset = offset - stripe_nr * stripe_len; + + stripe_nr_end = round_up(offset + length, map->stripe_len); + stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); + stripe_cnt = stripe_nr_end - stripe_nr; + stripe_end_offset = stripe_nr_end * map->stripe_len - + (offset + length); + /* + * after this, stripe_nr is the number of stripes on this + * device we have to walk to find the data, and stripe_index is + * the number of our device in the stripe array + */ + num_stripes = 1; + stripe_index = 0; + if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | + BTRFS_BLOCK_GROUP_RAID10)) { + if (map->type & BTRFS_BLOCK_GROUP_RAID0) + sub_stripes = 1; + else + sub_stripes = map->sub_stripes; + + factor = map->num_stripes / sub_stripes; + num_stripes = min_t(u64, map->num_stripes, + sub_stripes * stripe_cnt); + stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); + stripe_index *= sub_stripes; + stripes_per_dev = div_u64_rem(stripe_cnt, factor, + &remaining_stripes); + div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); + last_stripe *= sub_stripes; + } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | + BTRFS_BLOCK_GROUP_DUP)) { + num_stripes = map->num_stripes; + } else { + stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, + &stripe_index); + } + + bbio = alloc_btrfs_bio(num_stripes, 0); + if (!bbio) { + ret = -ENOMEM; + goto out; + } + + for (i = 0; i < num_stripes; i++) { + bbio->stripes[i].physical = + map->stripes[stripe_index].physical + + stripe_offset + stripe_nr * map->stripe_len; + bbio->stripes[i].dev = map->stripes[stripe_index].dev; + + if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | + BTRFS_BLOCK_GROUP_RAID10)) { + bbio->stripes[i].length = stripes_per_dev * + map->stripe_len; + + if (i / sub_stripes < remaining_stripes) + bbio->stripes[i].length += + map->stripe_len; + + /* + * Special for the first stripe and + * the last stripe: + * + * |-------|...|-------| + * |----------| + * off end_off + */ + if (i < sub_stripes) + bbio->stripes[i].length -= + stripe_offset; + + if (stripe_index >= last_stripe && + stripe_index <= (last_stripe + + sub_stripes - 1)) + bbio->stripes[i].length -= + stripe_end_offset; + + if (i == sub_stripes - 1) + stripe_offset = 0; + } else { + bbio->stripes[i].length = length; + } + + stripe_index++; + if (stripe_index == map->num_stripes) { + stripe_index = 0; + stripe_nr++; + } + } + + *bbio_ret = bbio; + bbio->map_type = map->type; + bbio->num_stripes = num_stripes; +out: + free_extent_map(em); + return ret; +} + +/* + * In dev-replace case, for repair case (that's the only case where the mirror + * is selected explicitly when calling btrfs_map_block), blocks left of the + * left cursor can also be read from the target drive. + * + * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the + * array of stripes. + * For READ, it also needs to be supported using the same mirror number. + * + * If the requested block is not left of the left cursor, EIO is returned. This + * can happen because btrfs_num_copies() returns one more in the dev-replace + * case. + */ +static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, + u64 logical, u64 length, + u64 srcdev_devid, int *mirror_num, + u64 *physical) +{ + struct btrfs_bio *bbio = NULL; + int num_stripes; + int index_srcdev = 0; + int found = 0; + u64 physical_of_found = 0; + int i; + int ret = 0; + + ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, + logical, &length, &bbio, 0, 0); + if (ret) { + ASSERT(bbio == NULL); + return ret; + } + + num_stripes = bbio->num_stripes; + if (*mirror_num > num_stripes) { + /* + * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, + * that means that the requested area is not left of the left + * cursor + */ + btrfs_put_bbio(bbio); + return -EIO; + } + + /* + * process the rest of the function using the mirror_num of the source + * drive. Therefore look it up first. At the end, patch the device + * pointer to the one of the target drive. + */ + for (i = 0; i < num_stripes; i++) { + if (bbio->stripes[i].dev->devid != srcdev_devid) + continue; + + /* + * In case of DUP, in order to keep it simple, only add the + * mirror with the lowest physical address + */ + if (found && + physical_of_found <= bbio->stripes[i].physical) + continue; + + index_srcdev = i; + found = 1; + physical_of_found = bbio->stripes[i].physical; + } + + btrfs_put_bbio(bbio); + + ASSERT(found); + if (!found) + return -EIO; + + *mirror_num = index_srcdev + 1; + *physical = physical_of_found; + return ret; +} + +static void handle_ops_on_dev_replace(enum btrfs_map_op op, + struct btrfs_bio **bbio_ret, + struct btrfs_dev_replace *dev_replace, + int *num_stripes_ret, int *max_errors_ret) +{ + struct btrfs_bio *bbio = *bbio_ret; + u64 srcdev_devid = dev_replace->srcdev->devid; + int tgtdev_indexes = 0; + int num_stripes = *num_stripes_ret; + int max_errors = *max_errors_ret; + int i; + + if (op == BTRFS_MAP_WRITE) { + int index_where_to_add; + + /* + * duplicate the write operations while the dev replace + * procedure is running. Since the copying of the old disk to + * the new disk takes place at run time while the filesystem is + * mounted writable, the regular write operations to the old + * disk have to be duplicated to go to the new disk as well. + * + * Note that device->missing is handled by the caller, and that + * the write to the old disk is already set up in the stripes + * array. + */ + index_where_to_add = num_stripes; + for (i = 0; i < num_stripes; i++) { + if (bbio->stripes[i].dev->devid == srcdev_devid) { + /* write to new disk, too */ + struct btrfs_bio_stripe *new = + bbio->stripes + index_where_to_add; + struct btrfs_bio_stripe *old = + bbio->stripes + i; + + new->physical = old->physical; + new->length = old->length; + new->dev = dev_replace->tgtdev; + bbio->tgtdev_map[i] = index_where_to_add; + index_where_to_add++; + max_errors++; + tgtdev_indexes++; + } + } + num_stripes = index_where_to_add; + } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { + int index_srcdev = 0; + int found = 0; + u64 physical_of_found = 0; + + /* + * During the dev-replace procedure, the target drive can also + * be used to read data in case it is needed to repair a corrupt + * block elsewhere. This is possible if the requested area is + * left of the left cursor. In this area, the target drive is a + * full copy of the source drive. + */ + for (i = 0; i < num_stripes; i++) { + if (bbio->stripes[i].dev->devid == srcdev_devid) { + /* + * In case of DUP, in order to keep it simple, + * only add the mirror with the lowest physical + * address + */ + if (found && + physical_of_found <= + bbio->stripes[i].physical) + continue; + index_srcdev = i; + found = 1; + physical_of_found = bbio->stripes[i].physical; + } + } + if (found) { + struct btrfs_bio_stripe *tgtdev_stripe = + bbio->stripes + num_stripes; + + tgtdev_stripe->physical = physical_of_found; + tgtdev_stripe->length = + bbio->stripes[index_srcdev].length; + tgtdev_stripe->dev = dev_replace->tgtdev; + bbio->tgtdev_map[index_srcdev] = num_stripes; + + tgtdev_indexes++; + num_stripes++; + } + } + + *num_stripes_ret = num_stripes; + *max_errors_ret = max_errors; + bbio->num_tgtdevs = tgtdev_indexes; + *bbio_ret = bbio; +} + +static bool need_full_stripe(enum btrfs_map_op op) +{ + return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); +} + +static int __btrfs_map_block(struct btrfs_fs_info *fs_info, + enum btrfs_map_op op, + u64 logical, u64 *length, + struct btrfs_bio **bbio_ret, + int mirror_num, int need_raid_map) +{ + struct extent_map *em; + struct map_lookup *map; + u64 offset; + u64 stripe_offset; + u64 stripe_nr; + u64 stripe_len; + u32 stripe_index; + int i; + int ret = 0; + int num_stripes; + int max_errors = 0; + int tgtdev_indexes = 0; + struct btrfs_bio *bbio = NULL; + struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; + int dev_replace_is_ongoing = 0; + int num_alloc_stripes; + int patch_the_first_stripe_for_dev_replace = 0; + u64 physical_to_patch_in_first_stripe = 0; + u64 raid56_full_stripe_start = (u64)-1; + + if (op == BTRFS_MAP_DISCARD) + return __btrfs_map_block_for_discard(fs_info, logical, + *length, bbio_ret); + + em = get_chunk_map(fs_info, logical, *length); + if (IS_ERR(em)) + return PTR_ERR(em); + + map = em->map_lookup; + offset = logical - em->start; + + stripe_len = map->stripe_len; + stripe_nr = offset; + /* + * stripe_nr counts the total number of stripes we have to stride + * to get to this block + */ + stripe_nr = div64_u64(stripe_nr, stripe_len); + + stripe_offset = stripe_nr * stripe_len; + if (offset < stripe_offset) { + btrfs_crit(fs_info, + "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu", + stripe_offset, offset, em->start, logical, + stripe_len); + free_extent_map(em); + return -EINVAL; + } + + /* stripe_offset is the offset of this block in its stripe*/ + stripe_offset = offset - stripe_offset; + + /* if we're here for raid56, we need to know the stripe aligned start */ + if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { + unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); + raid56_full_stripe_start = offset; + + /* allow a write of a full stripe, but make sure we don't + * allow straddling of stripes + */ + raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, + full_stripe_len); + raid56_full_stripe_start *= full_stripe_len; + } + + if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { + u64 max_len; + /* For writes to RAID[56], allow a full stripeset across all disks. + For other RAID types and for RAID[56] reads, just allow a single + stripe (on a single disk). */ + if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && + (op == BTRFS_MAP_WRITE)) { + max_len = stripe_len * nr_data_stripes(map) - + (offset - raid56_full_stripe_start); + } else { + /* we limit the length of each bio to what fits in a stripe */ + max_len = stripe_len - stripe_offset; + } + *length = min_t(u64, em->len - offset, max_len); + } else { + *length = em->len - offset; + } + + /* This is for when we're called from btrfs_merge_bio_hook() and all + it cares about is the length */ + if (!bbio_ret) + goto out; + + btrfs_dev_replace_read_lock(dev_replace); + dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); + if (!dev_replace_is_ongoing) + btrfs_dev_replace_read_unlock(dev_replace); + else + btrfs_dev_replace_set_lock_blocking(dev_replace); + + if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && + !need_full_stripe(op) && dev_replace->tgtdev != NULL) { + ret = get_extra_mirror_from_replace(fs_info, logical, *length, + dev_replace->srcdev->devid, + &mirror_num, + &physical_to_patch_in_first_stripe); + if (ret) + goto out; + else + patch_the_first_stripe_for_dev_replace = 1; + } else if (mirror_num > map->num_stripes) { + mirror_num = 0; + } + + num_stripes = 1; + stripe_index = 0; + if (map->type & BTRFS_BLOCK_GROUP_RAID0) { + stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, + &stripe_index); + if (!need_full_stripe(op)) + mirror_num = 1; + } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { + if (need_full_stripe(op)) + num_stripes = map->num_stripes; + else if (mirror_num) + stripe_index = mirror_num - 1; + else { + stripe_index = find_live_mirror(fs_info, map, 0, + dev_replace_is_ongoing); + mirror_num = stripe_index + 1; + } + + } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { + if (need_full_stripe(op)) { + num_stripes = map->num_stripes; + } else if (mirror_num) { + stripe_index = mirror_num - 1; + } else { + mirror_num = 1; + } + + } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { + u32 factor = map->num_stripes / map->sub_stripes; + + stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); + stripe_index *= map->sub_stripes; + + if (need_full_stripe(op)) + num_stripes = map->sub_stripes; + else if (mirror_num) + stripe_index += mirror_num - 1; + else { + int old_stripe_index = stripe_index; + stripe_index = find_live_mirror(fs_info, map, + stripe_index, + dev_replace_is_ongoing); + mirror_num = stripe_index - old_stripe_index + 1; + } + + } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { + if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { + /* push stripe_nr back to the start of the full stripe */ + stripe_nr = div64_u64(raid56_full_stripe_start, + stripe_len * nr_data_stripes(map)); + + /* RAID[56] write or recovery. Return all stripes */ + num_stripes = map->num_stripes; + max_errors = nr_parity_stripes(map); + + *length = map->stripe_len; + stripe_index = 0; + stripe_offset = 0; + } else { + /* + * Mirror #0 or #1 means the original data block. + * Mirror #2 is RAID5 parity block. + * Mirror #3 is RAID6 Q block. + */ + stripe_nr = div_u64_rem(stripe_nr, + nr_data_stripes(map), &stripe_index); + if (mirror_num > 1) + stripe_index = nr_data_stripes(map) + + mirror_num - 2; + + /* We distribute the parity blocks across stripes */ + div_u64_rem(stripe_nr + stripe_index, map->num_stripes, + &stripe_index); + if (!need_full_stripe(op) && mirror_num <= 1) + mirror_num = 1; + } + } else { + /* + * after this, stripe_nr is the number of stripes on this + * device we have to walk to find the data, and stripe_index is + * the number of our device in the stripe array + */ + stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, + &stripe_index); + mirror_num = stripe_index + 1; + } + if (stripe_index >= map->num_stripes) { + btrfs_crit(fs_info, + "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", + stripe_index, map->num_stripes); + ret = -EINVAL; + goto out; + } + + num_alloc_stripes = num_stripes; + if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { + if (op == BTRFS_MAP_WRITE) + num_alloc_stripes <<= 1; + if (op == BTRFS_MAP_GET_READ_MIRRORS) + num_alloc_stripes++; + tgtdev_indexes = num_stripes; + } + + bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); + if (!bbio) { + ret = -ENOMEM; + goto out; + } + if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) + bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes); + + /* build raid_map */ + if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && + (need_full_stripe(op) || mirror_num > 1)) { + u64 tmp; + unsigned rot; + + bbio->raid_map = (u64 *)((void *)bbio->stripes + + sizeof(struct btrfs_bio_stripe) * + num_alloc_stripes + + sizeof(int) * tgtdev_indexes); + + /* Work out the disk rotation on this stripe-set */ + div_u64_rem(stripe_nr, num_stripes, &rot); + + /* Fill in the logical address of each stripe */ + tmp = stripe_nr * nr_data_stripes(map); + for (i = 0; i < nr_data_stripes(map); i++) + bbio->raid_map[(i+rot) % num_stripes] = + em->start + (tmp + i) * map->stripe_len; + + bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; + if (map->type & BTRFS_BLOCK_GROUP_RAID6) + bbio->raid_map[(i+rot+1) % num_stripes] = + RAID6_Q_STRIPE; + } + + + for (i = 0; i < num_stripes; i++) { + bbio->stripes[i].physical = + map->stripes[stripe_index].physical + + stripe_offset + + stripe_nr * map->stripe_len; + bbio->stripes[i].dev = + map->stripes[stripe_index].dev; + stripe_index++; + } + + if (need_full_stripe(op)) + max_errors = btrfs_chunk_max_errors(map); + + if (bbio->raid_map) + sort_parity_stripes(bbio, num_stripes); + + if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && + need_full_stripe(op)) { + handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, + &max_errors); + } + + *bbio_ret = bbio; + bbio->map_type = map->type; + bbio->num_stripes = num_stripes; + bbio->max_errors = max_errors; + bbio->mirror_num = mirror_num; + + /* + * this is the case that REQ_READ && dev_replace_is_ongoing && + * mirror_num == num_stripes + 1 && dev_replace target drive is + * available as a mirror + */ + if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { + WARN_ON(num_stripes > 1); + bbio->stripes[0].dev = dev_replace->tgtdev; + bbio->stripes[0].physical = physical_to_patch_in_first_stripe; + bbio->mirror_num = map->num_stripes + 1; + } +out: + if (dev_replace_is_ongoing) { + btrfs_dev_replace_clear_lock_blocking(dev_replace); + btrfs_dev_replace_read_unlock(dev_replace); + } + free_extent_map(em); + return ret; +} + +int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, + u64 logical, u64 *length, + struct btrfs_bio **bbio_ret, int mirror_num) +{ + return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, + mirror_num, 0); +} + +/* For Scrub/replace */ +int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, + u64 logical, u64 *length, + struct btrfs_bio **bbio_ret) +{ + return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); +} + +int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start, + u64 physical, u64 **logical, int *naddrs, int *stripe_len) +{ + struct extent_map *em; + struct map_lookup *map; + u64 *buf; + u64 bytenr; + u64 length; + u64 stripe_nr; + u64 rmap_len; + int i, j, nr = 0; + + em = get_chunk_map(fs_info, chunk_start, 1); + if (IS_ERR(em)) + return -EIO; + + map = em->map_lookup; + length = em->len; + rmap_len = map->stripe_len; + + if (map->type & BTRFS_BLOCK_GROUP_RAID10) + length = div_u64(length, map->num_stripes / map->sub_stripes); + else if (map->type & BTRFS_BLOCK_GROUP_RAID0) + length = div_u64(length, map->num_stripes); + else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { + length = div_u64(length, nr_data_stripes(map)); + rmap_len = map->stripe_len * nr_data_stripes(map); + } + + buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS); + BUG_ON(!buf); /* -ENOMEM */ + + for (i = 0; i < map->num_stripes; i++) { + if (map->stripes[i].physical > physical || + map->stripes[i].physical + length <= physical) + continue; + + stripe_nr = physical - map->stripes[i].physical; + stripe_nr = div64_u64(stripe_nr, map->stripe_len); + + if (map->type & BTRFS_BLOCK_GROUP_RAID10) { + stripe_nr = stripe_nr * map->num_stripes + i; + stripe_nr = div_u64(stripe_nr, map->sub_stripes); + } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { + stripe_nr = stripe_nr * map->num_stripes + i; + } /* else if RAID[56], multiply by nr_data_stripes(). + * Alternatively, just use rmap_len below instead of + * map->stripe_len */ + + bytenr = chunk_start + stripe_nr * rmap_len; + WARN_ON(nr >= map->num_stripes); + for (j = 0; j < nr; j++) { + if (buf[j] == bytenr) + break; + } + if (j == nr) { + WARN_ON(nr >= map->num_stripes); + buf[nr++] = bytenr; + } + } + + *logical = buf; + *naddrs = nr; + *stripe_len = rmap_len; + + free_extent_map(em); + return 0; +} + +static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) +{ + bio->bi_private = bbio->private; + bio->bi_end_io = bbio->end_io; + bio_endio(bio); + + btrfs_put_bbio(bbio); +} + +static void btrfs_end_bio(struct bio *bio) +{ + struct btrfs_bio *bbio = bio->bi_private; + int is_orig_bio = 0; + + if (bio->bi_status) { + atomic_inc(&bbio->error); + if (bio->bi_status == BLK_STS_IOERR || + bio->bi_status == BLK_STS_TARGET) { + unsigned int stripe_index = + btrfs_io_bio(bio)->stripe_index; + struct btrfs_device *dev; + + BUG_ON(stripe_index >= bbio->num_stripes); + dev = bbio->stripes[stripe_index].dev; + if (dev->bdev) { + if (bio_op(bio) == REQ_OP_WRITE) + btrfs_dev_stat_inc_and_print(dev, + BTRFS_DEV_STAT_WRITE_ERRS); + else if (!(bio->bi_opf & REQ_RAHEAD)) + btrfs_dev_stat_inc_and_print(dev, + BTRFS_DEV_STAT_READ_ERRS); + if (bio->bi_opf & REQ_PREFLUSH) + btrfs_dev_stat_inc_and_print(dev, + BTRFS_DEV_STAT_FLUSH_ERRS); + } + } + } + + if (bio == bbio->orig_bio) + is_orig_bio = 1; + + btrfs_bio_counter_dec(bbio->fs_info); + + if (atomic_dec_and_test(&bbio->stripes_pending)) { + if (!is_orig_bio) { + bio_put(bio); + bio = bbio->orig_bio; + } + + btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; + /* only send an error to the higher layers if it is + * beyond the tolerance of the btrfs bio + */ + if (atomic_read(&bbio->error) > bbio->max_errors) { + bio->bi_status = BLK_STS_IOERR; + } else { + /* + * this bio is actually up to date, we didn't + * go over the max number of errors + */ + bio->bi_status = BLK_STS_OK; + } + + btrfs_end_bbio(bbio, bio); + } else if (!is_orig_bio) { + bio_put(bio); + } +} + +/* + * see run_scheduled_bios for a description of why bios are collected for + * async submit. + * + * This will add one bio to the pending list for a device and make sure + * the work struct is scheduled. + */ +static noinline void btrfs_schedule_bio(struct btrfs_device *device, + struct bio *bio) +{ + struct btrfs_fs_info *fs_info = device->fs_info; + int should_queue = 1; + struct btrfs_pending_bios *pending_bios; + + /* don't bother with additional async steps for reads, right now */ + if (bio_op(bio) == REQ_OP_READ) { + btrfsic_submit_bio(bio); + return; + } + + WARN_ON(bio->bi_next); + bio->bi_next = NULL; + + spin_lock(&device->io_lock); + if (op_is_sync(bio->bi_opf)) + pending_bios = &device->pending_sync_bios; + else + pending_bios = &device->pending_bios; + + if (pending_bios->tail) + pending_bios->tail->bi_next = bio; + + pending_bios->tail = bio; + if (!pending_bios->head) + pending_bios->head = bio; + if (device->running_pending) + should_queue = 0; + + spin_unlock(&device->io_lock); + + if (should_queue) + btrfs_queue_work(fs_info->submit_workers, &device->work); +} + +static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, + u64 physical, int dev_nr, int async) +{ + struct btrfs_device *dev = bbio->stripes[dev_nr].dev; + struct btrfs_fs_info *fs_info = bbio->fs_info; + + bio->bi_private = bbio; + btrfs_io_bio(bio)->stripe_index = dev_nr; + bio->bi_end_io = btrfs_end_bio; + bio->bi_iter.bi_sector = physical >> 9; + btrfs_debug_in_rcu(fs_info, + "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", + bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, + (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid, + bio->bi_iter.bi_size); + bio_set_dev(bio, dev->bdev); + + btrfs_bio_counter_inc_noblocked(fs_info); + + if (async) + btrfs_schedule_bio(dev, bio); + else + btrfsic_submit_bio(bio); +} + +static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) +{ + atomic_inc(&bbio->error); + if (atomic_dec_and_test(&bbio->stripes_pending)) { + /* Should be the original bio. */ + WARN_ON(bio != bbio->orig_bio); + + btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; + bio->bi_iter.bi_sector = logical >> 9; + if (atomic_read(&bbio->error) > bbio->max_errors) + bio->bi_status = BLK_STS_IOERR; + else + bio->bi_status = BLK_STS_OK; + btrfs_end_bbio(bbio, bio); + } +} + +blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, + int mirror_num, int async_submit) +{ + struct btrfs_device *dev; + struct bio *first_bio = bio; + u64 logical = (u64)bio->bi_iter.bi_sector << 9; + u64 length = 0; + u64 map_length; + int ret; + int dev_nr; + int total_devs; + struct btrfs_bio *bbio = NULL; + + length = bio->bi_iter.bi_size; + map_length = length; + + btrfs_bio_counter_inc_blocked(fs_info); + ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, + &map_length, &bbio, mirror_num, 1); + if (ret) { + btrfs_bio_counter_dec(fs_info); + return errno_to_blk_status(ret); + } + + total_devs = bbio->num_stripes; + bbio->orig_bio = first_bio; + bbio->private = first_bio->bi_private; + bbio->end_io = first_bio->bi_end_io; + bbio->fs_info = fs_info; + atomic_set(&bbio->stripes_pending, bbio->num_stripes); + + if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && + ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { + /* In this case, map_length has been set to the length of + a single stripe; not the whole write */ + if (bio_op(bio) == REQ_OP_WRITE) { + ret = raid56_parity_write(fs_info, bio, bbio, + map_length); + } else { + ret = raid56_parity_recover(fs_info, bio, bbio, + map_length, mirror_num, 1); + } + + btrfs_bio_counter_dec(fs_info); + return errno_to_blk_status(ret); + } + + if (map_length < length) { + btrfs_crit(fs_info, + "mapping failed logical %llu bio len %llu len %llu", + logical, length, map_length); + BUG(); + } + + for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { + dev = bbio->stripes[dev_nr].dev; + if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, + &dev->dev_state) || + (bio_op(first_bio) == REQ_OP_WRITE && + !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { + bbio_error(bbio, first_bio, logical); + continue; + } + + if (dev_nr < total_devs - 1) + bio = btrfs_bio_clone(first_bio); + else + bio = first_bio; + + submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, + dev_nr, async_submit); + } + btrfs_bio_counter_dec(fs_info); + return BLK_STS_OK; +} + +/* + * Find a device specified by @devid or @uuid in the list of @fs_devices, or + * return NULL. + * + * If devid and uuid are both specified, the match must be exact, otherwise + * only devid is used. + * + * If @seed is true, traverse through the seed devices. + */ +struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, + u64 devid, u8 *uuid, u8 *fsid, + bool seed) +{ + struct btrfs_device *device; + + while (fs_devices) { + if (!fsid || + !memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) { + list_for_each_entry(device, &fs_devices->devices, + dev_list) { + if (device->devid == devid && + (!uuid || memcmp(device->uuid, uuid, + BTRFS_UUID_SIZE) == 0)) + return device; + } + } + if (seed) + fs_devices = fs_devices->seed; + else + return NULL; + } + return NULL; +} + +static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, + u64 devid, u8 *dev_uuid) +{ + struct btrfs_device *device; + unsigned int nofs_flag; + + /* + * We call this under the chunk_mutex, so we want to use NOFS for this + * allocation, however we don't want to change btrfs_alloc_device() to + * always do NOFS because we use it in a lot of other GFP_KERNEL safe + * places. + */ + nofs_flag = memalloc_nofs_save(); + device = btrfs_alloc_device(NULL, &devid, dev_uuid); + memalloc_nofs_restore(nofs_flag); + if (IS_ERR(device)) + return device; + + list_add(&device->dev_list, &fs_devices->devices); + device->fs_devices = fs_devices; + fs_devices->num_devices++; + + set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); + fs_devices->missing_devices++; + + return device; +} + +/** + * btrfs_alloc_device - allocate struct btrfs_device + * @fs_info: used only for generating a new devid, can be NULL if + * devid is provided (i.e. @devid != NULL). + * @devid: a pointer to devid for this device. If NULL a new devid + * is generated. + * @uuid: a pointer to UUID for this device. If NULL a new UUID + * is generated. + * + * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() + * on error. Returned struct is not linked onto any lists and must be + * destroyed with btrfs_free_device. + */ +struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, + const u64 *devid, + const u8 *uuid) +{ + struct btrfs_device *dev; + u64 tmp; + + if (WARN_ON(!devid && !fs_info)) + return ERR_PTR(-EINVAL); + + dev = __alloc_device(); + if (IS_ERR(dev)) + return dev; + + if (devid) + tmp = *devid; + else { + int ret; + + ret = find_next_devid(fs_info, &tmp); + if (ret) { + btrfs_free_device(dev); + return ERR_PTR(ret); + } + } + dev->devid = tmp; + + if (uuid) + memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); + else + generate_random_uuid(dev->uuid); + + btrfs_init_work(&dev->work, btrfs_submit_helper, + pending_bios_fn, NULL, NULL); + + return dev; +} + +static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, + u64 devid, u8 *uuid, bool error) +{ + if (error) + btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", + devid, uuid); + else + btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", + devid, uuid); +} + +static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key, + struct extent_buffer *leaf, + struct btrfs_chunk *chunk) +{ + struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; + struct map_lookup *map; + struct extent_map *em; + u64 logical; + u64 length; + u64 devid; + u8 uuid[BTRFS_UUID_SIZE]; + int num_stripes; + int ret; + int i; + + logical = key->offset; + length = btrfs_chunk_length(leaf, chunk); + num_stripes = btrfs_chunk_num_stripes(leaf, chunk); + + /* + * Only need to verify chunk item if we're reading from sys chunk array, + * as chunk item in tree block is already verified by tree-checker. + */ + if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { + ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical); + if (ret) + return ret; + } + + read_lock(&map_tree->map_tree.lock); + em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); + read_unlock(&map_tree->map_tree.lock); + + /* already mapped? */ + if (em && em->start <= logical && em->start + em->len > logical) { + free_extent_map(em); + return 0; + } else if (em) { + free_extent_map(em); + } + + em = alloc_extent_map(); + if (!em) + return -ENOMEM; + map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); + if (!map) { + free_extent_map(em); + return -ENOMEM; + } + + set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); + em->map_lookup = map; + em->start = logical; + em->len = length; + em->orig_start = 0; + em->block_start = 0; + em->block_len = em->len; + + map->num_stripes = num_stripes; + map->io_width = btrfs_chunk_io_width(leaf, chunk); + map->io_align = btrfs_chunk_io_align(leaf, chunk); + map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); + map->type = btrfs_chunk_type(leaf, chunk); + map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); + map->verified_stripes = 0; + for (i = 0; i < num_stripes; i++) { + map->stripes[i].physical = + btrfs_stripe_offset_nr(leaf, chunk, i); + devid = btrfs_stripe_devid_nr(leaf, chunk, i); + read_extent_buffer(leaf, uuid, (unsigned long) + btrfs_stripe_dev_uuid_nr(chunk, i), + BTRFS_UUID_SIZE); + map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, + devid, uuid, NULL, true); + if (!map->stripes[i].dev && + !btrfs_test_opt(fs_info, DEGRADED)) { + free_extent_map(em); + btrfs_report_missing_device(fs_info, devid, uuid, true); + return -ENOENT; + } + if (!map->stripes[i].dev) { + map->stripes[i].dev = + add_missing_dev(fs_info->fs_devices, devid, + uuid); + if (IS_ERR(map->stripes[i].dev)) { + free_extent_map(em); + btrfs_err(fs_info, + "failed to init missing dev %llu: %ld", + devid, PTR_ERR(map->stripes[i].dev)); + return PTR_ERR(map->stripes[i].dev); + } + btrfs_report_missing_device(fs_info, devid, uuid, false); + } + set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, + &(map->stripes[i].dev->dev_state)); + + } + + write_lock(&map_tree->map_tree.lock); + ret = add_extent_mapping(&map_tree->map_tree, em, 0); + write_unlock(&map_tree->map_tree.lock); + if (ret < 0) { + btrfs_err(fs_info, + "failed to add chunk map, start=%llu len=%llu: %d", + em->start, em->len, ret); + } + free_extent_map(em); + + return ret; +} + +static void fill_device_from_item(struct extent_buffer *leaf, + struct btrfs_dev_item *dev_item, + struct btrfs_device *device) +{ + unsigned long ptr; + + device->devid = btrfs_device_id(leaf, dev_item); + device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); + device->total_bytes = device->disk_total_bytes; + device->commit_total_bytes = device->disk_total_bytes; + device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); + device->commit_bytes_used = device->bytes_used; + device->type = btrfs_device_type(leaf, dev_item); + device->io_align = btrfs_device_io_align(leaf, dev_item); + device->io_width = btrfs_device_io_width(leaf, dev_item); + device->sector_size = btrfs_device_sector_size(leaf, dev_item); + WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); + clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); + + ptr = btrfs_device_uuid(dev_item); + read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); +} + +static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, + u8 *fsid) +{ + struct btrfs_fs_devices *fs_devices; + int ret; + + lockdep_assert_held(&uuid_mutex); + ASSERT(fsid); + + fs_devices = fs_info->fs_devices->seed; + while (fs_devices) { + if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) + return fs_devices; + + fs_devices = fs_devices->seed; + } + + fs_devices = find_fsid(fsid); + if (!fs_devices) { + if (!btrfs_test_opt(fs_info, DEGRADED)) + return ERR_PTR(-ENOENT); + + fs_devices = alloc_fs_devices(fsid); + if (IS_ERR(fs_devices)) + return fs_devices; + + fs_devices->seeding = 1; + fs_devices->opened = 1; + return fs_devices; + } + + fs_devices = clone_fs_devices(fs_devices); + if (IS_ERR(fs_devices)) + return fs_devices; + + ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); + if (ret) { + free_fs_devices(fs_devices); + fs_devices = ERR_PTR(ret); + goto out; + } + + if (!fs_devices->seeding) { + close_fs_devices(fs_devices); + free_fs_devices(fs_devices); + fs_devices = ERR_PTR(-EINVAL); + goto out; + } + + fs_devices->seed = fs_info->fs_devices->seed; + fs_info->fs_devices->seed = fs_devices; +out: + return fs_devices; +} + +static int read_one_dev(struct btrfs_fs_info *fs_info, + struct extent_buffer *leaf, + struct btrfs_dev_item *dev_item) +{ + struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; + struct btrfs_device *device; + u64 devid; + int ret; + u8 fs_uuid[BTRFS_FSID_SIZE]; + u8 dev_uuid[BTRFS_UUID_SIZE]; + + devid = btrfs_device_id(leaf, dev_item); + read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), + BTRFS_UUID_SIZE); + read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), + BTRFS_FSID_SIZE); + + if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) { + fs_devices = open_seed_devices(fs_info, fs_uuid); + if (IS_ERR(fs_devices)) + return PTR_ERR(fs_devices); + } + + device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, + fs_uuid, true); + if (!device) { + if (!btrfs_test_opt(fs_info, DEGRADED)) { + btrfs_report_missing_device(fs_info, devid, + dev_uuid, true); + return -ENOENT; + } + + device = add_missing_dev(fs_devices, devid, dev_uuid); + if (IS_ERR(device)) { + btrfs_err(fs_info, + "failed to add missing dev %llu: %ld", + devid, PTR_ERR(device)); + return PTR_ERR(device); + } + btrfs_report_missing_device(fs_info, devid, dev_uuid, false); + } else { + if (!device->bdev) { + if (!btrfs_test_opt(fs_info, DEGRADED)) { + btrfs_report_missing_device(fs_info, + devid, dev_uuid, true); + return -ENOENT; + } + btrfs_report_missing_device(fs_info, devid, + dev_uuid, false); + } + + if (!device->bdev && + !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { + /* + * this happens when a device that was properly setup + * in the device info lists suddenly goes bad. + * device->bdev is NULL, and so we have to set + * device->missing to one here + */ + device->fs_devices->missing_devices++; + set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); + } + + /* Move the device to its own fs_devices */ + if (device->fs_devices != fs_devices) { + ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, + &device->dev_state)); + + list_move(&device->dev_list, &fs_devices->devices); + device->fs_devices->num_devices--; + fs_devices->num_devices++; + + device->fs_devices->missing_devices--; + fs_devices->missing_devices++; + + device->fs_devices = fs_devices; + } + } + + if (device->fs_devices != fs_info->fs_devices) { + BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); + if (device->generation != + btrfs_device_generation(leaf, dev_item)) + return -EINVAL; + } + + fill_device_from_item(leaf, dev_item, device); + set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); + if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && + !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { + device->fs_devices->total_rw_bytes += device->total_bytes; + atomic64_add(device->total_bytes - device->bytes_used, + &fs_info->free_chunk_space); + } + ret = 0; + return ret; +} + +int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) +{ + struct btrfs_root *root = fs_info->tree_root; + struct btrfs_super_block *super_copy = fs_info->super_copy; + struct extent_buffer *sb; + struct btrfs_disk_key *disk_key; + struct btrfs_chunk *chunk; + u8 *array_ptr; + unsigned long sb_array_offset; + int ret = 0; + u32 num_stripes; + u32 array_size; + u32 len = 0; + u32 cur_offset; + u64 type; + struct btrfs_key key; + + ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); + /* + * This will create extent buffer of nodesize, superblock size is + * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will + * overallocate but we can keep it as-is, only the first page is used. + */ + sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); + if (IS_ERR(sb)) + return PTR_ERR(sb); + set_extent_buffer_uptodate(sb); + btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); + /* + * The sb extent buffer is artificial and just used to read the system array. + * set_extent_buffer_uptodate() call does not properly mark all it's + * pages up-to-date when the page is larger: extent does not cover the + * whole page and consequently check_page_uptodate does not find all + * the page's extents up-to-date (the hole beyond sb), + * write_extent_buffer then triggers a WARN_ON. + * + * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, + * but sb spans only this function. Add an explicit SetPageUptodate call + * to silence the warning eg. on PowerPC 64. + */ + if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) + SetPageUptodate(sb->pages[0]); + + write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); + array_size = btrfs_super_sys_array_size(super_copy); + + array_ptr = super_copy->sys_chunk_array; + sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); + cur_offset = 0; + + while (cur_offset < array_size) { + disk_key = (struct btrfs_disk_key *)array_ptr; + len = sizeof(*disk_key); + if (cur_offset + len > array_size) + goto out_short_read; + + btrfs_disk_key_to_cpu(&key, disk_key); + + array_ptr += len; + sb_array_offset += len; + cur_offset += len; + + if (key.type == BTRFS_CHUNK_ITEM_KEY) { + chunk = (struct btrfs_chunk *)sb_array_offset; + /* + * At least one btrfs_chunk with one stripe must be + * present, exact stripe count check comes afterwards + */ + len = btrfs_chunk_item_size(1); + if (cur_offset + len > array_size) + goto out_short_read; + + num_stripes = btrfs_chunk_num_stripes(sb, chunk); + if (!num_stripes) { + btrfs_err(fs_info, + "invalid number of stripes %u in sys_array at offset %u", + num_stripes, cur_offset); + ret = -EIO; + break; + } + + type = btrfs_chunk_type(sb, chunk); + if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { + btrfs_err(fs_info, + "invalid chunk type %llu in sys_array at offset %u", + type, cur_offset); + ret = -EIO; + break; + } + + len = btrfs_chunk_item_size(num_stripes); + if (cur_offset + len > array_size) + goto out_short_read; + + ret = read_one_chunk(fs_info, &key, sb, chunk); + if (ret) + break; + } else { + btrfs_err(fs_info, + "unexpected item type %u in sys_array at offset %u", + (u32)key.type, cur_offset); + ret = -EIO; + break; + } + array_ptr += len; + sb_array_offset += len; + cur_offset += len; + } + clear_extent_buffer_uptodate(sb); + free_extent_buffer_stale(sb); + return ret; + +out_short_read: + btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", + len, cur_offset); + clear_extent_buffer_uptodate(sb); + free_extent_buffer_stale(sb); + return -EIO; +} + +/* + * Check if all chunks in the fs are OK for read-write degraded mount + * + * If the @failing_dev is specified, it's accounted as missing. + * + * Return true if all chunks meet the minimal RW mount requirements. + * Return false if any chunk doesn't meet the minimal RW mount requirements. + */ +bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, + struct btrfs_device *failing_dev) +{ + struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; + struct extent_map *em; + u64 next_start = 0; + bool ret = true; + + read_lock(&map_tree->map_tree.lock); + em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1); + read_unlock(&map_tree->map_tree.lock); + /* No chunk at all? Return false anyway */ + if (!em) { + ret = false; + goto out; + } + while (em) { + struct map_lookup *map; + int missing = 0; + int max_tolerated; + int i; + + map = em->map_lookup; + max_tolerated = + btrfs_get_num_tolerated_disk_barrier_failures( + map->type); + for (i = 0; i < map->num_stripes; i++) { + struct btrfs_device *dev = map->stripes[i].dev; + + if (!dev || !dev->bdev || + test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || + dev->last_flush_error) + missing++; + else if (failing_dev && failing_dev == dev) + missing++; + } + if (missing > max_tolerated) { + if (!failing_dev) + btrfs_warn(fs_info, + "chunk %llu missing %d devices, max tolerance is %d for writeable mount", + em->start, missing, max_tolerated); + free_extent_map(em); + ret = false; + goto out; + } + next_start = extent_map_end(em); + free_extent_map(em); + + read_lock(&map_tree->map_tree.lock); + em = lookup_extent_mapping(&map_tree->map_tree, next_start, + (u64)(-1) - next_start); + read_unlock(&map_tree->map_tree.lock); + } +out: + return ret; +} + +int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) +{ + struct btrfs_root *root = fs_info->chunk_root; + struct btrfs_path *path; + struct extent_buffer *leaf; + struct btrfs_key key; + struct btrfs_key found_key; + int ret; + int slot; + u64 total_dev = 0; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + /* + * uuid_mutex is needed only if we are mounting a sprout FS + * otherwise we don't need it. + */ + mutex_lock(&uuid_mutex); + mutex_lock(&fs_info->chunk_mutex); + + /* + * It is possible for mount and umount to race in such a way that + * we execute this code path, but open_fs_devices failed to clear + * total_rw_bytes. We certainly want it cleared before reading the + * device items, so clear it here. + */ + fs_info->fs_devices->total_rw_bytes = 0; + + /* + * Read all device items, and then all the chunk items. All + * device items are found before any chunk item (their object id + * is smaller than the lowest possible object id for a chunk + * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). + */ + key.objectid = BTRFS_DEV_ITEMS_OBJECTID; + key.offset = 0; + key.type = 0; + ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); + if (ret < 0) + goto error; + while (1) { + leaf = path->nodes[0]; + slot = path->slots[0]; + if (slot >= btrfs_header_nritems(leaf)) { + ret = btrfs_next_leaf(root, path); + if (ret == 0) + continue; + if (ret < 0) + goto error; + break; + } + btrfs_item_key_to_cpu(leaf, &found_key, slot); + if (found_key.type == BTRFS_DEV_ITEM_KEY) { + struct btrfs_dev_item *dev_item; + dev_item = btrfs_item_ptr(leaf, slot, + struct btrfs_dev_item); + ret = read_one_dev(fs_info, leaf, dev_item); + if (ret) + goto error; + total_dev++; + } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { + struct btrfs_chunk *chunk; + chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); + ret = read_one_chunk(fs_info, &found_key, leaf, chunk); + if (ret) + goto error; + } + path->slots[0]++; + } + + /* + * After loading chunk tree, we've got all device information, + * do another round of validation checks. + */ + if (total_dev != fs_info->fs_devices->total_devices) { + btrfs_warn(fs_info, +"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", + btrfs_super_num_devices(fs_info->super_copy), + total_dev); + fs_info->fs_devices->total_devices = total_dev; + btrfs_set_super_num_devices(fs_info->super_copy, total_dev); + } + if (btrfs_super_total_bytes(fs_info->super_copy) < + fs_info->fs_devices->total_rw_bytes) { + btrfs_err(fs_info, + "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", + btrfs_super_total_bytes(fs_info->super_copy), + fs_info->fs_devices->total_rw_bytes); + ret = -EINVAL; + goto error; + } + ret = 0; +error: + mutex_unlock(&fs_info->chunk_mutex); + mutex_unlock(&uuid_mutex); + + btrfs_free_path(path); + return ret; +} + +void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) +{ + struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; + struct btrfs_device *device; + + while (fs_devices) { + mutex_lock(&fs_devices->device_list_mutex); + list_for_each_entry(device, &fs_devices->devices, dev_list) + device->fs_info = fs_info; + mutex_unlock(&fs_devices->device_list_mutex); + + fs_devices = fs_devices->seed; + } +} + +static void __btrfs_reset_dev_stats(struct btrfs_device *dev) +{ + int i; + + for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) + btrfs_dev_stat_reset(dev, i); +} + +int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) +{ + struct btrfs_key key; + struct btrfs_key found_key; + struct btrfs_root *dev_root = fs_info->dev_root; + struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; + struct extent_buffer *eb; + int slot; + int ret = 0; + struct btrfs_device *device; + struct btrfs_path *path = NULL; + int i; + + path = btrfs_alloc_path(); + if (!path) { + ret = -ENOMEM; + goto out; + } + + mutex_lock(&fs_devices->device_list_mutex); + list_for_each_entry(device, &fs_devices->devices, dev_list) { + int item_size; + struct btrfs_dev_stats_item *ptr; + + key.objectid = BTRFS_DEV_STATS_OBJECTID; + key.type = BTRFS_PERSISTENT_ITEM_KEY; + key.offset = device->devid; + ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); + if (ret) { + __btrfs_reset_dev_stats(device); + device->dev_stats_valid = 1; + btrfs_release_path(path); + continue; + } + slot = path->slots[0]; + eb = path->nodes[0]; + btrfs_item_key_to_cpu(eb, &found_key, slot); + item_size = btrfs_item_size_nr(eb, slot); + + ptr = btrfs_item_ptr(eb, slot, + struct btrfs_dev_stats_item); + + for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { + if (item_size >= (1 + i) * sizeof(__le64)) + btrfs_dev_stat_set(device, i, + btrfs_dev_stats_value(eb, ptr, i)); + else + btrfs_dev_stat_reset(device, i); + } + + device->dev_stats_valid = 1; + btrfs_dev_stat_print_on_load(device); + btrfs_release_path(path); + } + mutex_unlock(&fs_devices->device_list_mutex); + +out: + btrfs_free_path(path); + return ret < 0 ? ret : 0; +} + +static int update_dev_stat_item(struct btrfs_trans_handle *trans, + struct btrfs_device *device) +{ + struct btrfs_fs_info *fs_info = trans->fs_info; + struct btrfs_root *dev_root = fs_info->dev_root; + struct btrfs_path *path; + struct btrfs_key key; + struct extent_buffer *eb; + struct btrfs_dev_stats_item *ptr; + int ret; + int i; + + key.objectid = BTRFS_DEV_STATS_OBJECTID; + key.type = BTRFS_PERSISTENT_ITEM_KEY; + key.offset = device->devid; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); + if (ret < 0) { + btrfs_warn_in_rcu(fs_info, + "error %d while searching for dev_stats item for device %s", + ret, rcu_str_deref(device->name)); + goto out; + } + + if (ret == 0 && + btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { + /* need to delete old one and insert a new one */ + ret = btrfs_del_item(trans, dev_root, path); + if (ret != 0) { + btrfs_warn_in_rcu(fs_info, + "delete too small dev_stats item for device %s failed %d", + rcu_str_deref(device->name), ret); + goto out; + } + ret = 1; + } + + if (ret == 1) { + /* need to insert a new item */ + btrfs_release_path(path); + ret = btrfs_insert_empty_item(trans, dev_root, path, + &key, sizeof(*ptr)); + if (ret < 0) { + btrfs_warn_in_rcu(fs_info, + "insert dev_stats item for device %s failed %d", + rcu_str_deref(device->name), ret); + goto out; + } + } + + eb = path->nodes[0]; + ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); + for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) + btrfs_set_dev_stats_value(eb, ptr, i, + btrfs_dev_stat_read(device, i)); + btrfs_mark_buffer_dirty(eb); + +out: + btrfs_free_path(path); + return ret; +} + +/* + * called from commit_transaction. Writes all changed device stats to disk. + */ +int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, + struct btrfs_fs_info *fs_info) +{ + struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; + struct btrfs_device *device; + int stats_cnt; + int ret = 0; + + mutex_lock(&fs_devices->device_list_mutex); + list_for_each_entry(device, &fs_devices->devices, dev_list) { + stats_cnt = atomic_read(&device->dev_stats_ccnt); + if (!device->dev_stats_valid || stats_cnt == 0) + continue; + + + /* + * There is a LOAD-LOAD control dependency between the value of + * dev_stats_ccnt and updating the on-disk values which requires + * reading the in-memory counters. Such control dependencies + * require explicit read memory barriers. + * + * This memory barriers pairs with smp_mb__before_atomic in + * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full + * barrier implied by atomic_xchg in + * btrfs_dev_stats_read_and_reset + */ + smp_rmb(); + + ret = update_dev_stat_item(trans, device); + if (!ret) + atomic_sub(stats_cnt, &device->dev_stats_ccnt); + } + mutex_unlock(&fs_devices->device_list_mutex); + + return ret; +} + +void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) +{ + btrfs_dev_stat_inc(dev, index); + btrfs_dev_stat_print_on_error(dev); +} + +static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) +{ + if (!dev->dev_stats_valid) + return; + btrfs_err_rl_in_rcu(dev->fs_info, + "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", + rcu_str_deref(dev->name), + btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), + btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), + btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), + btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), + btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); +} + +static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) +{ + int i; + + for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) + if (btrfs_dev_stat_read(dev, i) != 0) + break; + if (i == BTRFS_DEV_STAT_VALUES_MAX) + return; /* all values == 0, suppress message */ + + btrfs_info_in_rcu(dev->fs_info, + "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", + rcu_str_deref(dev->name), + btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), + btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), + btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), + btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), + btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); +} + +int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, + struct btrfs_ioctl_get_dev_stats *stats) +{ + struct btrfs_device *dev; + struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; + int i; + + mutex_lock(&fs_devices->device_list_mutex); + dev = btrfs_find_device(fs_info->fs_devices, stats->devid, + NULL, NULL, true); + mutex_unlock(&fs_devices->device_list_mutex); + + if (!dev) { + btrfs_warn(fs_info, "get dev_stats failed, device not found"); + return -ENODEV; + } else if (!dev->dev_stats_valid) { + btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); + return -ENODEV; + } else if (stats->flags & BTRFS_DEV_STATS_RESET) { + for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { + if (stats->nr_items > i) + stats->values[i] = + btrfs_dev_stat_read_and_reset(dev, i); + else + btrfs_dev_stat_reset(dev, i); + } + btrfs_info(fs_info, "device stats zeroed by %s (%d)", + current->comm, task_pid_nr(current)); + } else { + for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) + if (stats->nr_items > i) + stats->values[i] = btrfs_dev_stat_read(dev, i); + } + if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) + stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; + return 0; +} + +void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path) +{ + struct buffer_head *bh; + struct btrfs_super_block *disk_super; + int copy_num; + + if (!bdev) + return; + + for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; + copy_num++) { + + if (btrfs_read_dev_one_super(bdev, copy_num, &bh)) + continue; + + disk_super = (struct btrfs_super_block *)bh->b_data; + + memset(&disk_super->magic, 0, sizeof(disk_super->magic)); + set_buffer_dirty(bh); + sync_dirty_buffer(bh); + brelse(bh); + } + + /* Notify udev that device has changed */ + btrfs_kobject_uevent(bdev, KOBJ_CHANGE); + + /* Update ctime/mtime for device path for libblkid */ + update_dev_time(device_path); +} + +/* + * Update the size of all devices, which is used for writing out the + * super blocks. + */ +void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info) +{ + struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; + struct btrfs_device *curr, *next; + + if (list_empty(&fs_devices->resized_devices)) + return; + + mutex_lock(&fs_devices->device_list_mutex); + mutex_lock(&fs_info->chunk_mutex); + list_for_each_entry_safe(curr, next, &fs_devices->resized_devices, + resized_list) { + list_del_init(&curr->resized_list); + curr->commit_total_bytes = curr->disk_total_bytes; + } + mutex_unlock(&fs_info->chunk_mutex); + mutex_unlock(&fs_devices->device_list_mutex); +} + +/* Must be invoked during the transaction commit */ +void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans) +{ + struct btrfs_fs_info *fs_info = trans->fs_info; + struct extent_map *em; + struct map_lookup *map; + struct btrfs_device *dev; + int i; + + if (list_empty(&trans->pending_chunks)) + return; + + /* In order to kick the device replace finish process */ + mutex_lock(&fs_info->chunk_mutex); + list_for_each_entry(em, &trans->pending_chunks, list) { + map = em->map_lookup; + + for (i = 0; i < map->num_stripes; i++) { + dev = map->stripes[i].dev; + dev->commit_bytes_used = dev->bytes_used; + dev->has_pending_chunks = false; + } + } + mutex_unlock(&fs_info->chunk_mutex); +} + +void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info) +{ + struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; + while (fs_devices) { + fs_devices->fs_info = fs_info; + fs_devices = fs_devices->seed; + } +} + +void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info) +{ + struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; + while (fs_devices) { + fs_devices->fs_info = NULL; + fs_devices = fs_devices->seed; + } +} + +/* + * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. + */ +int btrfs_bg_type_to_factor(u64 flags) +{ + if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | + BTRFS_BLOCK_GROUP_RAID10)) + return 2; + return 1; +} + + +static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) +{ + int index = btrfs_bg_flags_to_raid_index(type); + int ncopies = btrfs_raid_array[index].ncopies; + int data_stripes; + + switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { + case BTRFS_BLOCK_GROUP_RAID5: + data_stripes = num_stripes - 1; + break; + case BTRFS_BLOCK_GROUP_RAID6: + data_stripes = num_stripes - 2; + break; + default: + data_stripes = num_stripes / ncopies; + break; + } + return div_u64(chunk_len, data_stripes); +} + +static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, + u64 chunk_offset, u64 devid, + u64 physical_offset, u64 physical_len) +{ + struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; + struct extent_map *em; + struct map_lookup *map; + struct btrfs_device *dev; + u64 stripe_len; + bool found = false; + int ret = 0; + int i; + + read_lock(&em_tree->lock); + em = lookup_extent_mapping(em_tree, chunk_offset, 1); + read_unlock(&em_tree->lock); + + if (!em) { + btrfs_err(fs_info, +"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", + physical_offset, devid); + ret = -EUCLEAN; + goto out; + } + + map = em->map_lookup; + stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); + if (physical_len != stripe_len) { + btrfs_err(fs_info, +"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", + physical_offset, devid, em->start, physical_len, + stripe_len); + ret = -EUCLEAN; + goto out; + } + + for (i = 0; i < map->num_stripes; i++) { + if (map->stripes[i].dev->devid == devid && + map->stripes[i].physical == physical_offset) { + found = true; + if (map->verified_stripes >= map->num_stripes) { + btrfs_err(fs_info, + "too many dev extents for chunk %llu found", + em->start); + ret = -EUCLEAN; + goto out; + } + map->verified_stripes++; + break; + } + } + if (!found) { + btrfs_err(fs_info, + "dev extent physical offset %llu devid %llu has no corresponding chunk", + physical_offset, devid); + ret = -EUCLEAN; + } + + /* Make sure no dev extent is beyond device bondary */ + dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); + if (!dev) { + btrfs_err(fs_info, "failed to find devid %llu", devid); + ret = -EUCLEAN; + goto out; + } + + /* It's possible this device is a dummy for seed device */ + if (dev->disk_total_bytes == 0) { + dev = btrfs_find_device(fs_info->fs_devices->seed, devid, + NULL, NULL, false); + if (!dev) { + btrfs_err(fs_info, "failed to find seed devid %llu", + devid); + ret = -EUCLEAN; + goto out; + } + } + + if (physical_offset + physical_len > dev->disk_total_bytes) { + btrfs_err(fs_info, +"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", + devid, physical_offset, physical_len, + dev->disk_total_bytes); + ret = -EUCLEAN; + goto out; + } +out: + free_extent_map(em); + return ret; +} + +static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) +{ + struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; + struct extent_map *em; + struct rb_node *node; + int ret = 0; + + read_lock(&em_tree->lock); + for (node = rb_first(&em_tree->map); node; node = rb_next(node)) { + em = rb_entry(node, struct extent_map, rb_node); + if (em->map_lookup->num_stripes != + em->map_lookup->verified_stripes) { + btrfs_err(fs_info, + "chunk %llu has missing dev extent, have %d expect %d", + em->start, em->map_lookup->verified_stripes, + em->map_lookup->num_stripes); + ret = -EUCLEAN; + goto out; + } + } +out: + read_unlock(&em_tree->lock); + return ret; +} + +/* + * Ensure that all dev extents are mapped to correct chunk, otherwise + * later chunk allocation/free would cause unexpected behavior. + * + * NOTE: This will iterate through the whole device tree, which should be of + * the same size level as the chunk tree. This slightly increases mount time. + */ +int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) +{ + struct btrfs_path *path; + struct btrfs_root *root = fs_info->dev_root; + struct btrfs_key key; + u64 prev_devid = 0; + u64 prev_dev_ext_end = 0; + int ret = 0; + + key.objectid = 1; + key.type = BTRFS_DEV_EXTENT_KEY; + key.offset = 0; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + path->reada = READA_FORWARD; + ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); + if (ret < 0) + goto out; + + if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { + ret = btrfs_next_item(root, path); + if (ret < 0) + goto out; + /* No dev extents at all? Not good */ + if (ret > 0) { + ret = -EUCLEAN; + goto out; + } + } + while (1) { + struct extent_buffer *leaf = path->nodes[0]; + struct btrfs_dev_extent *dext; + int slot = path->slots[0]; + u64 chunk_offset; + u64 physical_offset; + u64 physical_len; + u64 devid; + + btrfs_item_key_to_cpu(leaf, &key, slot); + if (key.type != BTRFS_DEV_EXTENT_KEY) + break; + devid = key.objectid; + physical_offset = key.offset; + + dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); + chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); + physical_len = btrfs_dev_extent_length(leaf, dext); + + /* Check if this dev extent overlaps with the previous one */ + if (devid == prev_devid && physical_offset < prev_dev_ext_end) { + btrfs_err(fs_info, +"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", + devid, physical_offset, prev_dev_ext_end); + ret = -EUCLEAN; + goto out; + } + + ret = verify_one_dev_extent(fs_info, chunk_offset, devid, + physical_offset, physical_len); + if (ret < 0) + goto out; + prev_devid = devid; + prev_dev_ext_end = physical_offset + physical_len; + + ret = btrfs_next_item(root, path); + if (ret < 0) + goto out; + if (ret > 0) { + ret = 0; + break; + } + } + + /* Ensure all chunks have corresponding dev extents */ + ret = verify_chunk_dev_extent_mapping(fs_info); +out: + btrfs_free_path(path); + return ret; +} |