diff options
Diffstat (limited to 'fs/xfs/xfs_inode.c')
-rw-r--r-- | fs/xfs/xfs_inode.c | 3611 |
1 files changed, 3611 insertions, 0 deletions
diff --git a/fs/xfs/xfs_inode.c b/fs/xfs/xfs_inode.c new file mode 100644 index 000000000..cd81d6d98 --- /dev/null +++ b/fs/xfs/xfs_inode.c @@ -0,0 +1,3611 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2000-2006 Silicon Graphics, Inc. + * All Rights Reserved. + */ +#include <linux/log2.h> +#include <linux/iversion.h> + +#include "xfs.h" +#include "xfs_fs.h" +#include "xfs_shared.h" +#include "xfs_format.h" +#include "xfs_log_format.h" +#include "xfs_trans_resv.h" +#include "xfs_sb.h" +#include "xfs_mount.h" +#include "xfs_defer.h" +#include "xfs_inode.h" +#include "xfs_da_format.h" +#include "xfs_da_btree.h" +#include "xfs_dir2.h" +#include "xfs_attr_sf.h" +#include "xfs_attr.h" +#include "xfs_trans_space.h" +#include "xfs_trans.h" +#include "xfs_buf_item.h" +#include "xfs_inode_item.h" +#include "xfs_ialloc.h" +#include "xfs_bmap.h" +#include "xfs_bmap_util.h" +#include "xfs_errortag.h" +#include "xfs_error.h" +#include "xfs_quota.h" +#include "xfs_filestream.h" +#include "xfs_cksum.h" +#include "xfs_trace.h" +#include "xfs_icache.h" +#include "xfs_symlink.h" +#include "xfs_trans_priv.h" +#include "xfs_log.h" +#include "xfs_bmap_btree.h" +#include "xfs_reflink.h" +#include "xfs_dir2_priv.h" + +kmem_zone_t *xfs_inode_zone; + +/* + * Used in xfs_itruncate_extents(). This is the maximum number of extents + * freed from a file in a single transaction. + */ +#define XFS_ITRUNC_MAX_EXTENTS 2 + +STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); +STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); +STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); + +/* + * helper function to extract extent size hint from inode + */ +xfs_extlen_t +xfs_get_extsz_hint( + struct xfs_inode *ip) +{ + if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) + return ip->i_d.di_extsize; + if (XFS_IS_REALTIME_INODE(ip)) + return ip->i_mount->m_sb.sb_rextsize; + return 0; +} + +/* + * Helper function to extract CoW extent size hint from inode. + * Between the extent size hint and the CoW extent size hint, we + * return the greater of the two. If the value is zero (automatic), + * use the default size. + */ +xfs_extlen_t +xfs_get_cowextsz_hint( + struct xfs_inode *ip) +{ + xfs_extlen_t a, b; + + a = 0; + if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) + a = ip->i_d.di_cowextsize; + b = xfs_get_extsz_hint(ip); + + a = max(a, b); + if (a == 0) + return XFS_DEFAULT_COWEXTSZ_HINT; + return a; +} + +/* + * These two are wrapper routines around the xfs_ilock() routine used to + * centralize some grungy code. They are used in places that wish to lock the + * inode solely for reading the extents. The reason these places can't just + * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to + * bringing in of the extents from disk for a file in b-tree format. If the + * inode is in b-tree format, then we need to lock the inode exclusively until + * the extents are read in. Locking it exclusively all the time would limit + * our parallelism unnecessarily, though. What we do instead is check to see + * if the extents have been read in yet, and only lock the inode exclusively + * if they have not. + * + * The functions return a value which should be given to the corresponding + * xfs_iunlock() call. + */ +uint +xfs_ilock_data_map_shared( + struct xfs_inode *ip) +{ + uint lock_mode = XFS_ILOCK_SHARED; + + if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && + (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) + lock_mode = XFS_ILOCK_EXCL; + xfs_ilock(ip, lock_mode); + return lock_mode; +} + +uint +xfs_ilock_attr_map_shared( + struct xfs_inode *ip) +{ + uint lock_mode = XFS_ILOCK_SHARED; + + if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && + (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) + lock_mode = XFS_ILOCK_EXCL; + xfs_ilock(ip, lock_mode); + return lock_mode; +} + +/* + * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 + * multi-reader locks: i_mmap_lock and the i_lock. This routine allows + * various combinations of the locks to be obtained. + * + * The 3 locks should always be ordered so that the IO lock is obtained first, + * the mmap lock second and the ilock last in order to prevent deadlock. + * + * Basic locking order: + * + * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock + * + * mmap_sem locking order: + * + * i_rwsem -> page lock -> mmap_sem + * mmap_sem -> i_mmap_lock -> page_lock + * + * The difference in mmap_sem locking order mean that we cannot hold the + * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can + * fault in pages during copy in/out (for buffered IO) or require the mmap_sem + * in get_user_pages() to map the user pages into the kernel address space for + * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because + * page faults already hold the mmap_sem. + * + * Hence to serialise fully against both syscall and mmap based IO, we need to + * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both + * taken in places where we need to invalidate the page cache in a race + * free manner (e.g. truncate, hole punch and other extent manipulation + * functions). + */ +void +xfs_ilock( + xfs_inode_t *ip, + uint lock_flags) +{ + trace_xfs_ilock(ip, lock_flags, _RET_IP_); + + /* + * You can't set both SHARED and EXCL for the same lock, + * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, + * and XFS_ILOCK_EXCL are valid values to set in lock_flags. + */ + ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != + (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); + ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != + (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); + ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != + (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); + ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); + + if (lock_flags & XFS_IOLOCK_EXCL) { + down_write_nested(&VFS_I(ip)->i_rwsem, + XFS_IOLOCK_DEP(lock_flags)); + } else if (lock_flags & XFS_IOLOCK_SHARED) { + down_read_nested(&VFS_I(ip)->i_rwsem, + XFS_IOLOCK_DEP(lock_flags)); + } + + if (lock_flags & XFS_MMAPLOCK_EXCL) + mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); + else if (lock_flags & XFS_MMAPLOCK_SHARED) + mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); + + if (lock_flags & XFS_ILOCK_EXCL) + mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); + else if (lock_flags & XFS_ILOCK_SHARED) + mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); +} + +/* + * This is just like xfs_ilock(), except that the caller + * is guaranteed not to sleep. It returns 1 if it gets + * the requested locks and 0 otherwise. If the IO lock is + * obtained but the inode lock cannot be, then the IO lock + * is dropped before returning. + * + * ip -- the inode being locked + * lock_flags -- this parameter indicates the inode's locks to be + * to be locked. See the comment for xfs_ilock() for a list + * of valid values. + */ +int +xfs_ilock_nowait( + xfs_inode_t *ip, + uint lock_flags) +{ + trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); + + /* + * You can't set both SHARED and EXCL for the same lock, + * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, + * and XFS_ILOCK_EXCL are valid values to set in lock_flags. + */ + ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != + (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); + ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != + (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); + ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != + (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); + ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); + + if (lock_flags & XFS_IOLOCK_EXCL) { + if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) + goto out; + } else if (lock_flags & XFS_IOLOCK_SHARED) { + if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) + goto out; + } + + if (lock_flags & XFS_MMAPLOCK_EXCL) { + if (!mrtryupdate(&ip->i_mmaplock)) + goto out_undo_iolock; + } else if (lock_flags & XFS_MMAPLOCK_SHARED) { + if (!mrtryaccess(&ip->i_mmaplock)) + goto out_undo_iolock; + } + + if (lock_flags & XFS_ILOCK_EXCL) { + if (!mrtryupdate(&ip->i_lock)) + goto out_undo_mmaplock; + } else if (lock_flags & XFS_ILOCK_SHARED) { + if (!mrtryaccess(&ip->i_lock)) + goto out_undo_mmaplock; + } + return 1; + +out_undo_mmaplock: + if (lock_flags & XFS_MMAPLOCK_EXCL) + mrunlock_excl(&ip->i_mmaplock); + else if (lock_flags & XFS_MMAPLOCK_SHARED) + mrunlock_shared(&ip->i_mmaplock); +out_undo_iolock: + if (lock_flags & XFS_IOLOCK_EXCL) + up_write(&VFS_I(ip)->i_rwsem); + else if (lock_flags & XFS_IOLOCK_SHARED) + up_read(&VFS_I(ip)->i_rwsem); +out: + return 0; +} + +/* + * xfs_iunlock() is used to drop the inode locks acquired with + * xfs_ilock() and xfs_ilock_nowait(). The caller must pass + * in the flags given to xfs_ilock() or xfs_ilock_nowait() so + * that we know which locks to drop. + * + * ip -- the inode being unlocked + * lock_flags -- this parameter indicates the inode's locks to be + * to be unlocked. See the comment for xfs_ilock() for a list + * of valid values for this parameter. + * + */ +void +xfs_iunlock( + xfs_inode_t *ip, + uint lock_flags) +{ + /* + * You can't set both SHARED and EXCL for the same lock, + * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, + * and XFS_ILOCK_EXCL are valid values to set in lock_flags. + */ + ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != + (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); + ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != + (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); + ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != + (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); + ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); + ASSERT(lock_flags != 0); + + if (lock_flags & XFS_IOLOCK_EXCL) + up_write(&VFS_I(ip)->i_rwsem); + else if (lock_flags & XFS_IOLOCK_SHARED) + up_read(&VFS_I(ip)->i_rwsem); + + if (lock_flags & XFS_MMAPLOCK_EXCL) + mrunlock_excl(&ip->i_mmaplock); + else if (lock_flags & XFS_MMAPLOCK_SHARED) + mrunlock_shared(&ip->i_mmaplock); + + if (lock_flags & XFS_ILOCK_EXCL) + mrunlock_excl(&ip->i_lock); + else if (lock_flags & XFS_ILOCK_SHARED) + mrunlock_shared(&ip->i_lock); + + trace_xfs_iunlock(ip, lock_flags, _RET_IP_); +} + +/* + * give up write locks. the i/o lock cannot be held nested + * if it is being demoted. + */ +void +xfs_ilock_demote( + xfs_inode_t *ip, + uint lock_flags) +{ + ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); + ASSERT((lock_flags & + ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); + + if (lock_flags & XFS_ILOCK_EXCL) + mrdemote(&ip->i_lock); + if (lock_flags & XFS_MMAPLOCK_EXCL) + mrdemote(&ip->i_mmaplock); + if (lock_flags & XFS_IOLOCK_EXCL) + downgrade_write(&VFS_I(ip)->i_rwsem); + + trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); +} + +#if defined(DEBUG) || defined(XFS_WARN) +int +xfs_isilocked( + xfs_inode_t *ip, + uint lock_flags) +{ + if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { + if (!(lock_flags & XFS_ILOCK_SHARED)) + return !!ip->i_lock.mr_writer; + return rwsem_is_locked(&ip->i_lock.mr_lock); + } + + if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { + if (!(lock_flags & XFS_MMAPLOCK_SHARED)) + return !!ip->i_mmaplock.mr_writer; + return rwsem_is_locked(&ip->i_mmaplock.mr_lock); + } + + if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { + if (!(lock_flags & XFS_IOLOCK_SHARED)) + return !debug_locks || + lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); + return rwsem_is_locked(&VFS_I(ip)->i_rwsem); + } + + ASSERT(0); + return 0; +} +#endif + +/* + * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when + * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined + * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build + * errors and warnings. + */ +#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) +static bool +xfs_lockdep_subclass_ok( + int subclass) +{ + return subclass < MAX_LOCKDEP_SUBCLASSES; +} +#else +#define xfs_lockdep_subclass_ok(subclass) (true) +#endif + +/* + * Bump the subclass so xfs_lock_inodes() acquires each lock with a different + * value. This can be called for any type of inode lock combination, including + * parent locking. Care must be taken to ensure we don't overrun the subclass + * storage fields in the class mask we build. + */ +static inline int +xfs_lock_inumorder(int lock_mode, int subclass) +{ + int class = 0; + + ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | + XFS_ILOCK_RTSUM))); + ASSERT(xfs_lockdep_subclass_ok(subclass)); + + if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { + ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); + class += subclass << XFS_IOLOCK_SHIFT; + } + + if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { + ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); + class += subclass << XFS_MMAPLOCK_SHIFT; + } + + if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { + ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); + class += subclass << XFS_ILOCK_SHIFT; + } + + return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; +} + +/* + * The following routine will lock n inodes in exclusive mode. We assume the + * caller calls us with the inodes in i_ino order. + * + * We need to detect deadlock where an inode that we lock is in the AIL and we + * start waiting for another inode that is locked by a thread in a long running + * transaction (such as truncate). This can result in deadlock since the long + * running trans might need to wait for the inode we just locked in order to + * push the tail and free space in the log. + * + * xfs_lock_inodes() can only be used to lock one type of lock at a time - + * the iolock, the mmaplock or the ilock, but not more than one at a time. If we + * lock more than one at a time, lockdep will report false positives saying we + * have violated locking orders. + */ +static void +xfs_lock_inodes( + xfs_inode_t **ips, + int inodes, + uint lock_mode) +{ + int attempts = 0, i, j, try_lock; + xfs_log_item_t *lp; + + /* + * Currently supports between 2 and 5 inodes with exclusive locking. We + * support an arbitrary depth of locking here, but absolute limits on + * inodes depend on the the type of locking and the limits placed by + * lockdep annotations in xfs_lock_inumorder. These are all checked by + * the asserts. + */ + ASSERT(ips && inodes >= 2 && inodes <= 5); + ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | + XFS_ILOCK_EXCL)); + ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | + XFS_ILOCK_SHARED))); + ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || + inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); + ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || + inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); + + if (lock_mode & XFS_IOLOCK_EXCL) { + ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); + } else if (lock_mode & XFS_MMAPLOCK_EXCL) + ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); + + try_lock = 0; + i = 0; +again: + for (; i < inodes; i++) { + ASSERT(ips[i]); + + if (i && (ips[i] == ips[i - 1])) /* Already locked */ + continue; + + /* + * If try_lock is not set yet, make sure all locked inodes are + * not in the AIL. If any are, set try_lock to be used later. + */ + if (!try_lock) { + for (j = (i - 1); j >= 0 && !try_lock; j--) { + lp = (xfs_log_item_t *)ips[j]->i_itemp; + if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) + try_lock++; + } + } + + /* + * If any of the previous locks we have locked is in the AIL, + * we must TRY to get the second and subsequent locks. If + * we can't get any, we must release all we have + * and try again. + */ + if (!try_lock) { + xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); + continue; + } + + /* try_lock means we have an inode locked that is in the AIL. */ + ASSERT(i != 0); + if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) + continue; + + /* + * Unlock all previous guys and try again. xfs_iunlock will try + * to push the tail if the inode is in the AIL. + */ + attempts++; + for (j = i - 1; j >= 0; j--) { + /* + * Check to see if we've already unlocked this one. Not + * the first one going back, and the inode ptr is the + * same. + */ + if (j != (i - 1) && ips[j] == ips[j + 1]) + continue; + + xfs_iunlock(ips[j], lock_mode); + } + + if ((attempts % 5) == 0) { + delay(1); /* Don't just spin the CPU */ + } + i = 0; + try_lock = 0; + goto again; + } +} + +/* + * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - + * the mmaplock or the ilock, but not more than one type at a time. If we lock + * more than one at a time, lockdep will report false positives saying we have + * violated locking orders. The iolock must be double-locked separately since + * we use i_rwsem for that. We now support taking one lock EXCL and the other + * SHARED. + */ +void +xfs_lock_two_inodes( + struct xfs_inode *ip0, + uint ip0_mode, + struct xfs_inode *ip1, + uint ip1_mode) +{ + struct xfs_inode *temp; + uint mode_temp; + int attempts = 0; + xfs_log_item_t *lp; + + ASSERT(hweight32(ip0_mode) == 1); + ASSERT(hweight32(ip1_mode) == 1); + ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); + ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); + ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || + !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); + ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || + !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); + ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || + !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); + ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || + !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); + + ASSERT(ip0->i_ino != ip1->i_ino); + + if (ip0->i_ino > ip1->i_ino) { + temp = ip0; + ip0 = ip1; + ip1 = temp; + mode_temp = ip0_mode; + ip0_mode = ip1_mode; + ip1_mode = mode_temp; + } + + again: + xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); + + /* + * If the first lock we have locked is in the AIL, we must TRY to get + * the second lock. If we can't get it, we must release the first one + * and try again. + */ + lp = (xfs_log_item_t *)ip0->i_itemp; + if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { + if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { + xfs_iunlock(ip0, ip0_mode); + if ((++attempts % 5) == 0) + delay(1); /* Don't just spin the CPU */ + goto again; + } + } else { + xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); + } +} + +void +__xfs_iflock( + struct xfs_inode *ip) +{ + wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); + DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); + + do { + prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); + if (xfs_isiflocked(ip)) + io_schedule(); + } while (!xfs_iflock_nowait(ip)); + + finish_wait(wq, &wait.wq_entry); +} + +STATIC uint +_xfs_dic2xflags( + uint16_t di_flags, + uint64_t di_flags2, + bool has_attr) +{ + uint flags = 0; + + if (di_flags & XFS_DIFLAG_ANY) { + if (di_flags & XFS_DIFLAG_REALTIME) + flags |= FS_XFLAG_REALTIME; + if (di_flags & XFS_DIFLAG_PREALLOC) + flags |= FS_XFLAG_PREALLOC; + if (di_flags & XFS_DIFLAG_IMMUTABLE) + flags |= FS_XFLAG_IMMUTABLE; + if (di_flags & XFS_DIFLAG_APPEND) + flags |= FS_XFLAG_APPEND; + if (di_flags & XFS_DIFLAG_SYNC) + flags |= FS_XFLAG_SYNC; + if (di_flags & XFS_DIFLAG_NOATIME) + flags |= FS_XFLAG_NOATIME; + if (di_flags & XFS_DIFLAG_NODUMP) + flags |= FS_XFLAG_NODUMP; + if (di_flags & XFS_DIFLAG_RTINHERIT) + flags |= FS_XFLAG_RTINHERIT; + if (di_flags & XFS_DIFLAG_PROJINHERIT) + flags |= FS_XFLAG_PROJINHERIT; + if (di_flags & XFS_DIFLAG_NOSYMLINKS) + flags |= FS_XFLAG_NOSYMLINKS; + if (di_flags & XFS_DIFLAG_EXTSIZE) + flags |= FS_XFLAG_EXTSIZE; + if (di_flags & XFS_DIFLAG_EXTSZINHERIT) + flags |= FS_XFLAG_EXTSZINHERIT; + if (di_flags & XFS_DIFLAG_NODEFRAG) + flags |= FS_XFLAG_NODEFRAG; + if (di_flags & XFS_DIFLAG_FILESTREAM) + flags |= FS_XFLAG_FILESTREAM; + } + + if (di_flags2 & XFS_DIFLAG2_ANY) { + if (di_flags2 & XFS_DIFLAG2_DAX) + flags |= FS_XFLAG_DAX; + if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) + flags |= FS_XFLAG_COWEXTSIZE; + } + + if (has_attr) + flags |= FS_XFLAG_HASATTR; + + return flags; +} + +uint +xfs_ip2xflags( + struct xfs_inode *ip) +{ + struct xfs_icdinode *dic = &ip->i_d; + + return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); +} + +/* + * Lookups up an inode from "name". If ci_name is not NULL, then a CI match + * is allowed, otherwise it has to be an exact match. If a CI match is found, + * ci_name->name will point to a the actual name (caller must free) or + * will be set to NULL if an exact match is found. + */ +int +xfs_lookup( + xfs_inode_t *dp, + struct xfs_name *name, + xfs_inode_t **ipp, + struct xfs_name *ci_name) +{ + xfs_ino_t inum; + int error; + + trace_xfs_lookup(dp, name); + + if (XFS_FORCED_SHUTDOWN(dp->i_mount)) + return -EIO; + + error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); + if (error) + goto out_unlock; + + error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); + if (error) + goto out_free_name; + + return 0; + +out_free_name: + if (ci_name) + kmem_free(ci_name->name); +out_unlock: + *ipp = NULL; + return error; +} + +/* + * Allocate an inode on disk and return a copy of its in-core version. + * The in-core inode is locked exclusively. Set mode, nlink, and rdev + * appropriately within the inode. The uid and gid for the inode are + * set according to the contents of the given cred structure. + * + * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() + * has a free inode available, call xfs_iget() to obtain the in-core + * version of the allocated inode. Finally, fill in the inode and + * log its initial contents. In this case, ialloc_context would be + * set to NULL. + * + * If xfs_dialloc() does not have an available inode, it will replenish + * its supply by doing an allocation. Since we can only do one + * allocation within a transaction without deadlocks, we must commit + * the current transaction before returning the inode itself. + * In this case, therefore, we will set ialloc_context and return. + * The caller should then commit the current transaction, start a new + * transaction, and call xfs_ialloc() again to actually get the inode. + * + * To ensure that some other process does not grab the inode that + * was allocated during the first call to xfs_ialloc(), this routine + * also returns the [locked] bp pointing to the head of the freelist + * as ialloc_context. The caller should hold this buffer across + * the commit and pass it back into this routine on the second call. + * + * If we are allocating quota inodes, we do not have a parent inode + * to attach to or associate with (i.e. pip == NULL) because they + * are not linked into the directory structure - they are attached + * directly to the superblock - and so have no parent. + */ +static int +xfs_ialloc( + xfs_trans_t *tp, + xfs_inode_t *pip, + umode_t mode, + xfs_nlink_t nlink, + dev_t rdev, + prid_t prid, + xfs_buf_t **ialloc_context, + xfs_inode_t **ipp) +{ + struct xfs_mount *mp = tp->t_mountp; + xfs_ino_t ino; + xfs_inode_t *ip; + uint flags; + int error; + struct timespec64 tv; + struct inode *inode; + + /* + * Call the space management code to pick + * the on-disk inode to be allocated. + */ + error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, + ialloc_context, &ino); + if (error) + return error; + if (*ialloc_context || ino == NULLFSINO) { + *ipp = NULL; + return 0; + } + ASSERT(*ialloc_context == NULL); + + /* + * Protect against obviously corrupt allocation btree records. Later + * xfs_iget checks will catch re-allocation of other active in-memory + * and on-disk inodes. If we don't catch reallocating the parent inode + * here we will deadlock in xfs_iget() so we have to do these checks + * first. + */ + if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { + xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); + return -EFSCORRUPTED; + } + + /* + * Get the in-core inode with the lock held exclusively. + * This is because we're setting fields here we need + * to prevent others from looking at until we're done. + */ + error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, + XFS_ILOCK_EXCL, &ip); + if (error) + return error; + ASSERT(ip != NULL); + inode = VFS_I(ip); + + /* + * We always convert v1 inodes to v2 now - we only support filesystems + * with >= v2 inode capability, so there is no reason for ever leaving + * an inode in v1 format. + */ + if (ip->i_d.di_version == 1) + ip->i_d.di_version = 2; + + inode->i_mode = mode; + set_nlink(inode, nlink); + ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); + ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); + inode->i_rdev = rdev; + xfs_set_projid(ip, prid); + + if (pip && XFS_INHERIT_GID(pip)) { + ip->i_d.di_gid = pip->i_d.di_gid; + if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) + inode->i_mode |= S_ISGID; + } + + /* + * If the group ID of the new file does not match the effective group + * ID or one of the supplementary group IDs, the S_ISGID bit is cleared + * (and only if the irix_sgid_inherit compatibility variable is set). + */ + if ((irix_sgid_inherit) && + (inode->i_mode & S_ISGID) && + (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) + inode->i_mode &= ~S_ISGID; + + ip->i_d.di_size = 0; + ip->i_d.di_nextents = 0; + ASSERT(ip->i_d.di_nblocks == 0); + + tv = current_time(inode); + inode->i_mtime = tv; + inode->i_atime = tv; + inode->i_ctime = tv; + + ip->i_d.di_extsize = 0; + ip->i_d.di_dmevmask = 0; + ip->i_d.di_dmstate = 0; + ip->i_d.di_flags = 0; + + if (ip->i_d.di_version == 3) { + inode_set_iversion(inode, 1); + ip->i_d.di_flags2 = 0; + ip->i_d.di_cowextsize = 0; + ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec; + ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec; + } + + + flags = XFS_ILOG_CORE; + switch (mode & S_IFMT) { + case S_IFIFO: + case S_IFCHR: + case S_IFBLK: + case S_IFSOCK: + ip->i_d.di_format = XFS_DINODE_FMT_DEV; + ip->i_df.if_flags = 0; + flags |= XFS_ILOG_DEV; + break; + case S_IFREG: + case S_IFDIR: + if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { + uint di_flags = 0; + + if (S_ISDIR(mode)) { + if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) + di_flags |= XFS_DIFLAG_RTINHERIT; + if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { + di_flags |= XFS_DIFLAG_EXTSZINHERIT; + ip->i_d.di_extsize = pip->i_d.di_extsize; + } + if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) + di_flags |= XFS_DIFLAG_PROJINHERIT; + } else if (S_ISREG(mode)) { + if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) + di_flags |= XFS_DIFLAG_REALTIME; + if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { + di_flags |= XFS_DIFLAG_EXTSIZE; + ip->i_d.di_extsize = pip->i_d.di_extsize; + } + } + if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && + xfs_inherit_noatime) + di_flags |= XFS_DIFLAG_NOATIME; + if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && + xfs_inherit_nodump) + di_flags |= XFS_DIFLAG_NODUMP; + if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && + xfs_inherit_sync) + di_flags |= XFS_DIFLAG_SYNC; + if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && + xfs_inherit_nosymlinks) + di_flags |= XFS_DIFLAG_NOSYMLINKS; + if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && + xfs_inherit_nodefrag) + di_flags |= XFS_DIFLAG_NODEFRAG; + if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) + di_flags |= XFS_DIFLAG_FILESTREAM; + + ip->i_d.di_flags |= di_flags; + } + if (pip && + (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && + pip->i_d.di_version == 3 && + ip->i_d.di_version == 3) { + uint64_t di_flags2 = 0; + + if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { + di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; + ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; + } + if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) + di_flags2 |= XFS_DIFLAG2_DAX; + + ip->i_d.di_flags2 |= di_flags2; + } + /* FALLTHROUGH */ + case S_IFLNK: + ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; + ip->i_df.if_flags = XFS_IFEXTENTS; + ip->i_df.if_bytes = 0; + ip->i_df.if_u1.if_root = NULL; + break; + default: + ASSERT(0); + } + /* + * Attribute fork settings for new inode. + */ + ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; + ip->i_d.di_anextents = 0; + + /* + * Log the new values stuffed into the inode. + */ + xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); + xfs_trans_log_inode(tp, ip, flags); + + /* now that we have an i_mode we can setup the inode structure */ + xfs_setup_inode(ip); + + *ipp = ip; + return 0; +} + +/* + * Allocates a new inode from disk and return a pointer to the + * incore copy. This routine will internally commit the current + * transaction and allocate a new one if the Space Manager needed + * to do an allocation to replenish the inode free-list. + * + * This routine is designed to be called from xfs_create and + * xfs_create_dir. + * + */ +int +xfs_dir_ialloc( + xfs_trans_t **tpp, /* input: current transaction; + output: may be a new transaction. */ + xfs_inode_t *dp, /* directory within whose allocate + the inode. */ + umode_t mode, + xfs_nlink_t nlink, + dev_t rdev, + prid_t prid, /* project id */ + xfs_inode_t **ipp) /* pointer to inode; it will be + locked. */ +{ + xfs_trans_t *tp; + xfs_inode_t *ip; + xfs_buf_t *ialloc_context = NULL; + int code; + void *dqinfo; + uint tflags; + + tp = *tpp; + ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); + + /* + * xfs_ialloc will return a pointer to an incore inode if + * the Space Manager has an available inode on the free + * list. Otherwise, it will do an allocation and replenish + * the freelist. Since we can only do one allocation per + * transaction without deadlocks, we will need to commit the + * current transaction and start a new one. We will then + * need to call xfs_ialloc again to get the inode. + * + * If xfs_ialloc did an allocation to replenish the freelist, + * it returns the bp containing the head of the freelist as + * ialloc_context. We will hold a lock on it across the + * transaction commit so that no other process can steal + * the inode(s) that we've just allocated. + */ + code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, + &ip); + + /* + * Return an error if we were unable to allocate a new inode. + * This should only happen if we run out of space on disk or + * encounter a disk error. + */ + if (code) { + *ipp = NULL; + return code; + } + if (!ialloc_context && !ip) { + *ipp = NULL; + return -ENOSPC; + } + + /* + * If the AGI buffer is non-NULL, then we were unable to get an + * inode in one operation. We need to commit the current + * transaction and call xfs_ialloc() again. It is guaranteed + * to succeed the second time. + */ + if (ialloc_context) { + /* + * Normally, xfs_trans_commit releases all the locks. + * We call bhold to hang on to the ialloc_context across + * the commit. Holding this buffer prevents any other + * processes from doing any allocations in this + * allocation group. + */ + xfs_trans_bhold(tp, ialloc_context); + + /* + * We want the quota changes to be associated with the next + * transaction, NOT this one. So, detach the dqinfo from this + * and attach it to the next transaction. + */ + dqinfo = NULL; + tflags = 0; + if (tp->t_dqinfo) { + dqinfo = (void *)tp->t_dqinfo; + tp->t_dqinfo = NULL; + tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; + tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); + } + + code = xfs_trans_roll(&tp); + + /* + * Re-attach the quota info that we detached from prev trx. + */ + if (dqinfo) { + tp->t_dqinfo = dqinfo; + tp->t_flags |= tflags; + } + + if (code) { + xfs_buf_relse(ialloc_context); + *tpp = tp; + *ipp = NULL; + return code; + } + xfs_trans_bjoin(tp, ialloc_context); + + /* + * Call ialloc again. Since we've locked out all + * other allocations in this allocation group, + * this call should always succeed. + */ + code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, + &ialloc_context, &ip); + + /* + * If we get an error at this point, return to the caller + * so that the current transaction can be aborted. + */ + if (code) { + *tpp = tp; + *ipp = NULL; + return code; + } + ASSERT(!ialloc_context && ip); + + } + + *ipp = ip; + *tpp = tp; + + return 0; +} + +/* + * Decrement the link count on an inode & log the change. If this causes the + * link count to go to zero, move the inode to AGI unlinked list so that it can + * be freed when the last active reference goes away via xfs_inactive(). + */ +static int /* error */ +xfs_droplink( + xfs_trans_t *tp, + xfs_inode_t *ip) +{ + xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); + + drop_nlink(VFS_I(ip)); + xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); + + if (VFS_I(ip)->i_nlink) + return 0; + + return xfs_iunlink(tp, ip); +} + +/* + * Increment the link count on an inode & log the change. + */ +static int +xfs_bumplink( + xfs_trans_t *tp, + xfs_inode_t *ip) +{ + xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); + + ASSERT(ip->i_d.di_version > 1); + inc_nlink(VFS_I(ip)); + xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); + return 0; +} + +int +xfs_create( + xfs_inode_t *dp, + struct xfs_name *name, + umode_t mode, + dev_t rdev, + xfs_inode_t **ipp) +{ + int is_dir = S_ISDIR(mode); + struct xfs_mount *mp = dp->i_mount; + struct xfs_inode *ip = NULL; + struct xfs_trans *tp = NULL; + int error; + bool unlock_dp_on_error = false; + prid_t prid; + struct xfs_dquot *udqp = NULL; + struct xfs_dquot *gdqp = NULL; + struct xfs_dquot *pdqp = NULL; + struct xfs_trans_res *tres; + uint resblks; + + trace_xfs_create(dp, name); + + if (XFS_FORCED_SHUTDOWN(mp)) + return -EIO; + + prid = xfs_get_initial_prid(dp); + + /* + * Make sure that we have allocated dquot(s) on disk. + */ + error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), + xfs_kgid_to_gid(current_fsgid()), prid, + XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, + &udqp, &gdqp, &pdqp); + if (error) + return error; + + if (is_dir) { + resblks = XFS_MKDIR_SPACE_RES(mp, name->len); + tres = &M_RES(mp)->tr_mkdir; + } else { + resblks = XFS_CREATE_SPACE_RES(mp, name->len); + tres = &M_RES(mp)->tr_create; + } + + /* + * Initially assume that the file does not exist and + * reserve the resources for that case. If that is not + * the case we'll drop the one we have and get a more + * appropriate transaction later. + */ + error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); + if (error == -ENOSPC) { + /* flush outstanding delalloc blocks and retry */ + xfs_flush_inodes(mp); + error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); + } + if (error) + goto out_release_inode; + + xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); + unlock_dp_on_error = true; + + /* + * Reserve disk quota and the inode. + */ + error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, + pdqp, resblks, 1, 0); + if (error) + goto out_trans_cancel; + + /* + * A newly created regular or special file just has one directory + * entry pointing to them, but a directory also the "." entry + * pointing to itself. + */ + error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); + if (error) + goto out_trans_cancel; + + /* + * Now we join the directory inode to the transaction. We do not do it + * earlier because xfs_dir_ialloc might commit the previous transaction + * (and release all the locks). An error from here on will result in + * the transaction cancel unlocking dp so don't do it explicitly in the + * error path. + */ + xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); + unlock_dp_on_error = false; + + error = xfs_dir_createname(tp, dp, name, ip->i_ino, + resblks ? + resblks - XFS_IALLOC_SPACE_RES(mp) : 0); + if (error) { + ASSERT(error != -ENOSPC); + goto out_trans_cancel; + } + xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); + xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); + + if (is_dir) { + error = xfs_dir_init(tp, ip, dp); + if (error) + goto out_trans_cancel; + + error = xfs_bumplink(tp, dp); + if (error) + goto out_trans_cancel; + } + + /* + * If this is a synchronous mount, make sure that the + * create transaction goes to disk before returning to + * the user. + */ + if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) + xfs_trans_set_sync(tp); + + /* + * Attach the dquot(s) to the inodes and modify them incore. + * These ids of the inode couldn't have changed since the new + * inode has been locked ever since it was created. + */ + xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); + + error = xfs_trans_commit(tp); + if (error) + goto out_release_inode; + + xfs_qm_dqrele(udqp); + xfs_qm_dqrele(gdqp); + xfs_qm_dqrele(pdqp); + + *ipp = ip; + return 0; + + out_trans_cancel: + xfs_trans_cancel(tp); + out_release_inode: + /* + * Wait until after the current transaction is aborted to finish the + * setup of the inode and release the inode. This prevents recursive + * transactions and deadlocks from xfs_inactive. + */ + if (ip) { + xfs_finish_inode_setup(ip); + xfs_irele(ip); + } + + xfs_qm_dqrele(udqp); + xfs_qm_dqrele(gdqp); + xfs_qm_dqrele(pdqp); + + if (unlock_dp_on_error) + xfs_iunlock(dp, XFS_ILOCK_EXCL); + return error; +} + +int +xfs_create_tmpfile( + struct xfs_inode *dp, + umode_t mode, + struct xfs_inode **ipp) +{ + struct xfs_mount *mp = dp->i_mount; + struct xfs_inode *ip = NULL; + struct xfs_trans *tp = NULL; + int error; + prid_t prid; + struct xfs_dquot *udqp = NULL; + struct xfs_dquot *gdqp = NULL; + struct xfs_dquot *pdqp = NULL; + struct xfs_trans_res *tres; + uint resblks; + + if (XFS_FORCED_SHUTDOWN(mp)) + return -EIO; + + prid = xfs_get_initial_prid(dp); + + /* + * Make sure that we have allocated dquot(s) on disk. + */ + error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), + xfs_kgid_to_gid(current_fsgid()), prid, + XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, + &udqp, &gdqp, &pdqp); + if (error) + return error; + + resblks = XFS_IALLOC_SPACE_RES(mp); + tres = &M_RES(mp)->tr_create_tmpfile; + + error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); + if (error) + goto out_release_inode; + + error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, + pdqp, resblks, 1, 0); + if (error) + goto out_trans_cancel; + + error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip); + if (error) + goto out_trans_cancel; + + if (mp->m_flags & XFS_MOUNT_WSYNC) + xfs_trans_set_sync(tp); + + /* + * Attach the dquot(s) to the inodes and modify them incore. + * These ids of the inode couldn't have changed since the new + * inode has been locked ever since it was created. + */ + xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); + + error = xfs_iunlink(tp, ip); + if (error) + goto out_trans_cancel; + + error = xfs_trans_commit(tp); + if (error) + goto out_release_inode; + + xfs_qm_dqrele(udqp); + xfs_qm_dqrele(gdqp); + xfs_qm_dqrele(pdqp); + + *ipp = ip; + return 0; + + out_trans_cancel: + xfs_trans_cancel(tp); + out_release_inode: + /* + * Wait until after the current transaction is aborted to finish the + * setup of the inode and release the inode. This prevents recursive + * transactions and deadlocks from xfs_inactive. + */ + if (ip) { + xfs_finish_inode_setup(ip); + xfs_irele(ip); + } + + xfs_qm_dqrele(udqp); + xfs_qm_dqrele(gdqp); + xfs_qm_dqrele(pdqp); + + return error; +} + +int +xfs_link( + xfs_inode_t *tdp, + xfs_inode_t *sip, + struct xfs_name *target_name) +{ + xfs_mount_t *mp = tdp->i_mount; + xfs_trans_t *tp; + int error; + int resblks; + + trace_xfs_link(tdp, target_name); + + ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); + + if (XFS_FORCED_SHUTDOWN(mp)) + return -EIO; + + error = xfs_qm_dqattach(sip); + if (error) + goto std_return; + + error = xfs_qm_dqattach(tdp); + if (error) + goto std_return; + + resblks = XFS_LINK_SPACE_RES(mp, target_name->len); + error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); + if (error == -ENOSPC) { + resblks = 0; + error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); + } + if (error) + goto std_return; + + xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); + + xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); + xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); + + /* + * If we are using project inheritance, we only allow hard link + * creation in our tree when the project IDs are the same; else + * the tree quota mechanism could be circumvented. + */ + if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && + (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { + error = -EXDEV; + goto error_return; + } + + if (!resblks) { + error = xfs_dir_canenter(tp, tdp, target_name); + if (error) + goto error_return; + } + + /* + * Handle initial link state of O_TMPFILE inode + */ + if (VFS_I(sip)->i_nlink == 0) { + error = xfs_iunlink_remove(tp, sip); + if (error) + goto error_return; + } + + error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, + resblks); + if (error) + goto error_return; + xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); + xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); + + error = xfs_bumplink(tp, sip); + if (error) + goto error_return; + + /* + * If this is a synchronous mount, make sure that the + * link transaction goes to disk before returning to + * the user. + */ + if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) + xfs_trans_set_sync(tp); + + return xfs_trans_commit(tp); + + error_return: + xfs_trans_cancel(tp); + std_return: + return error; +} + +/* Clear the reflink flag and the cowblocks tag if possible. */ +static void +xfs_itruncate_clear_reflink_flags( + struct xfs_inode *ip) +{ + struct xfs_ifork *dfork; + struct xfs_ifork *cfork; + + if (!xfs_is_reflink_inode(ip)) + return; + dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); + cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); + if (dfork->if_bytes == 0 && cfork->if_bytes == 0) + ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; + if (cfork->if_bytes == 0) + xfs_inode_clear_cowblocks_tag(ip); +} + +/* + * Free up the underlying blocks past new_size. The new size must be smaller + * than the current size. This routine can be used both for the attribute and + * data fork, and does not modify the inode size, which is left to the caller. + * + * The transaction passed to this routine must have made a permanent log + * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the + * given transaction and start new ones, so make sure everything involved in + * the transaction is tidy before calling here. Some transaction will be + * returned to the caller to be committed. The incoming transaction must + * already include the inode, and both inode locks must be held exclusively. + * The inode must also be "held" within the transaction. On return the inode + * will be "held" within the returned transaction. This routine does NOT + * require any disk space to be reserved for it within the transaction. + * + * If we get an error, we must return with the inode locked and linked into the + * current transaction. This keeps things simple for the higher level code, + * because it always knows that the inode is locked and held in the transaction + * that returns to it whether errors occur or not. We don't mark the inode + * dirty on error so that transactions can be easily aborted if possible. + */ +int +xfs_itruncate_extents_flags( + struct xfs_trans **tpp, + struct xfs_inode *ip, + int whichfork, + xfs_fsize_t new_size, + int flags) +{ + struct xfs_mount *mp = ip->i_mount; + struct xfs_trans *tp = *tpp; + xfs_fileoff_t first_unmap_block; + xfs_fileoff_t last_block; + xfs_filblks_t unmap_len; + int error = 0; + int done = 0; + + ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); + ASSERT(!atomic_read(&VFS_I(ip)->i_count) || + xfs_isilocked(ip, XFS_IOLOCK_EXCL)); + ASSERT(new_size <= XFS_ISIZE(ip)); + ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); + ASSERT(ip->i_itemp != NULL); + ASSERT(ip->i_itemp->ili_lock_flags == 0); + ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); + + trace_xfs_itruncate_extents_start(ip, new_size); + + flags |= xfs_bmapi_aflag(whichfork); + + /* + * Since it is possible for space to become allocated beyond + * the end of the file (in a crash where the space is allocated + * but the inode size is not yet updated), simply remove any + * blocks which show up between the new EOF and the maximum + * possible file size. If the first block to be removed is + * beyond the maximum file size (ie it is the same as last_block), + * then there is nothing to do. + */ + first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); + last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); + if (first_unmap_block == last_block) + return 0; + + ASSERT(first_unmap_block < last_block); + unmap_len = last_block - first_unmap_block + 1; + while (!done) { + ASSERT(tp->t_firstblock == NULLFSBLOCK); + error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags, + XFS_ITRUNC_MAX_EXTENTS, &done); + if (error) + goto out; + + /* + * Duplicate the transaction that has the permanent + * reservation and commit the old transaction. + */ + error = xfs_defer_finish(&tp); + if (error) + goto out; + + error = xfs_trans_roll_inode(&tp, ip); + if (error) + goto out; + } + + if (whichfork == XFS_DATA_FORK) { + /* Remove all pending CoW reservations. */ + error = xfs_reflink_cancel_cow_blocks(ip, &tp, + first_unmap_block, last_block, true); + if (error) + goto out; + + xfs_itruncate_clear_reflink_flags(ip); + } + + /* + * Always re-log the inode so that our permanent transaction can keep + * on rolling it forward in the log. + */ + xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); + + trace_xfs_itruncate_extents_end(ip, new_size); + +out: + *tpp = tp; + return error; +} + +int +xfs_release( + xfs_inode_t *ip) +{ + xfs_mount_t *mp = ip->i_mount; + int error; + + if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) + return 0; + + /* If this is a read-only mount, don't do this (would generate I/O) */ + if (mp->m_flags & XFS_MOUNT_RDONLY) + return 0; + + if (!XFS_FORCED_SHUTDOWN(mp)) { + int truncated; + + /* + * If we previously truncated this file and removed old data + * in the process, we want to initiate "early" writeout on + * the last close. This is an attempt to combat the notorious + * NULL files problem which is particularly noticeable from a + * truncate down, buffered (re-)write (delalloc), followed by + * a crash. What we are effectively doing here is + * significantly reducing the time window where we'd otherwise + * be exposed to that problem. + */ + truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); + if (truncated) { + xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); + if (ip->i_delayed_blks > 0) { + error = filemap_flush(VFS_I(ip)->i_mapping); + if (error) + return error; + } + } + } + + if (VFS_I(ip)->i_nlink == 0) + return 0; + + if (xfs_can_free_eofblocks(ip, false)) { + + /* + * Check if the inode is being opened, written and closed + * frequently and we have delayed allocation blocks outstanding + * (e.g. streaming writes from the NFS server), truncating the + * blocks past EOF will cause fragmentation to occur. + * + * In this case don't do the truncation, but we have to be + * careful how we detect this case. Blocks beyond EOF show up as + * i_delayed_blks even when the inode is clean, so we need to + * truncate them away first before checking for a dirty release. + * Hence on the first dirty close we will still remove the + * speculative allocation, but after that we will leave it in + * place. + */ + if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) + return 0; + /* + * If we can't get the iolock just skip truncating the blocks + * past EOF because we could deadlock with the mmap_sem + * otherwise. We'll get another chance to drop them once the + * last reference to the inode is dropped, so we'll never leak + * blocks permanently. + */ + if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { + error = xfs_free_eofblocks(ip); + xfs_iunlock(ip, XFS_IOLOCK_EXCL); + if (error) + return error; + } + + /* delalloc blocks after truncation means it really is dirty */ + if (ip->i_delayed_blks) + xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); + } + return 0; +} + +/* + * xfs_inactive_truncate + * + * Called to perform a truncate when an inode becomes unlinked. + */ +STATIC int +xfs_inactive_truncate( + struct xfs_inode *ip) +{ + struct xfs_mount *mp = ip->i_mount; + struct xfs_trans *tp; + int error; + + error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); + if (error) { + ASSERT(XFS_FORCED_SHUTDOWN(mp)); + return error; + } + xfs_ilock(ip, XFS_ILOCK_EXCL); + xfs_trans_ijoin(tp, ip, 0); + + /* + * Log the inode size first to prevent stale data exposure in the event + * of a system crash before the truncate completes. See the related + * comment in xfs_vn_setattr_size() for details. + */ + ip->i_d.di_size = 0; + xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); + + error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); + if (error) + goto error_trans_cancel; + + ASSERT(ip->i_d.di_nextents == 0); + + error = xfs_trans_commit(tp); + if (error) + goto error_unlock; + + xfs_iunlock(ip, XFS_ILOCK_EXCL); + return 0; + +error_trans_cancel: + xfs_trans_cancel(tp); +error_unlock: + xfs_iunlock(ip, XFS_ILOCK_EXCL); + return error; +} + +/* + * xfs_inactive_ifree() + * + * Perform the inode free when an inode is unlinked. + */ +STATIC int +xfs_inactive_ifree( + struct xfs_inode *ip) +{ + struct xfs_mount *mp = ip->i_mount; + struct xfs_trans *tp; + int error; + + /* + * We try to use a per-AG reservation for any block needed by the finobt + * tree, but as the finobt feature predates the per-AG reservation + * support a degraded file system might not have enough space for the + * reservation at mount time. In that case try to dip into the reserved + * pool and pray. + * + * Send a warning if the reservation does happen to fail, as the inode + * now remains allocated and sits on the unlinked list until the fs is + * repaired. + */ + if (unlikely(mp->m_finobt_nores)) { + error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, + XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, + &tp); + } else { + error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); + } + if (error) { + if (error == -ENOSPC) { + xfs_warn_ratelimited(mp, + "Failed to remove inode(s) from unlinked list. " + "Please free space, unmount and run xfs_repair."); + } else { + ASSERT(XFS_FORCED_SHUTDOWN(mp)); + } + return error; + } + + /* + * We do not hold the inode locked across the entire rolling transaction + * here. We only need to hold it for the first transaction that + * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the + * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode + * here breaks the relationship between cluster buffer invalidation and + * stale inode invalidation on cluster buffer item journal commit + * completion, and can result in leaving dirty stale inodes hanging + * around in memory. + * + * We have no need for serialising this inode operation against other + * operations - we freed the inode and hence reallocation is required + * and that will serialise on reallocating the space the deferops need + * to free. Hence we can unlock the inode on the first commit of + * the transaction rather than roll it right through the deferops. This + * avoids relogging the XFS_ISTALE inode. + * + * We check that xfs_ifree() hasn't grown an internal transaction roll + * by asserting that the inode is still locked when it returns. + */ + xfs_ilock(ip, XFS_ILOCK_EXCL); + xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); + + error = xfs_ifree(tp, ip); + ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); + if (error) { + /* + * If we fail to free the inode, shut down. The cancel + * might do that, we need to make sure. Otherwise the + * inode might be lost for a long time or forever. + */ + if (!XFS_FORCED_SHUTDOWN(mp)) { + xfs_notice(mp, "%s: xfs_ifree returned error %d", + __func__, error); + xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); + } + xfs_trans_cancel(tp); + return error; + } + + /* + * Credit the quota account(s). The inode is gone. + */ + xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); + + /* + * Just ignore errors at this point. There is nothing we can do except + * to try to keep going. Make sure it's not a silent error. + */ + error = xfs_trans_commit(tp); + if (error) + xfs_notice(mp, "%s: xfs_trans_commit returned error %d", + __func__, error); + + return 0; +} + +/* + * xfs_inactive + * + * This is called when the vnode reference count for the vnode + * goes to zero. If the file has been unlinked, then it must + * now be truncated. Also, we clear all of the read-ahead state + * kept for the inode here since the file is now closed. + */ +void +xfs_inactive( + xfs_inode_t *ip) +{ + struct xfs_mount *mp; + int error; + int truncate = 0; + + /* + * If the inode is already free, then there can be nothing + * to clean up here. + */ + if (VFS_I(ip)->i_mode == 0) { + ASSERT(ip->i_df.if_broot_bytes == 0); + return; + } + + mp = ip->i_mount; + ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); + + /* If this is a read-only mount, don't do this (would generate I/O) */ + if (mp->m_flags & XFS_MOUNT_RDONLY) + return; + + /* Try to clean out the cow blocks if there are any. */ + if (xfs_inode_has_cow_data(ip)) + xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); + + if (VFS_I(ip)->i_nlink != 0) { + /* + * force is true because we are evicting an inode from the + * cache. Post-eof blocks must be freed, lest we end up with + * broken free space accounting. + * + * Note: don't bother with iolock here since lockdep complains + * about acquiring it in reclaim context. We have the only + * reference to the inode at this point anyways. + */ + if (xfs_can_free_eofblocks(ip, true)) + xfs_free_eofblocks(ip); + + return; + } + + if (S_ISREG(VFS_I(ip)->i_mode) && + (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || + ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) + truncate = 1; + + error = xfs_qm_dqattach(ip); + if (error) + return; + + if (S_ISLNK(VFS_I(ip)->i_mode)) + error = xfs_inactive_symlink(ip); + else if (truncate) + error = xfs_inactive_truncate(ip); + if (error) + return; + + /* + * If there are attributes associated with the file then blow them away + * now. The code calls a routine that recursively deconstructs the + * attribute fork. If also blows away the in-core attribute fork. + */ + if (XFS_IFORK_Q(ip)) { + error = xfs_attr_inactive(ip); + if (error) + return; + } + + ASSERT(!ip->i_afp); + ASSERT(ip->i_d.di_anextents == 0); + ASSERT(ip->i_d.di_forkoff == 0); + + /* + * Free the inode. + */ + error = xfs_inactive_ifree(ip); + if (error) + return; + + /* + * Release the dquots held by inode, if any. + */ + xfs_qm_dqdetach(ip); +} + +/* + * This is called when the inode's link count has gone to 0 or we are creating + * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0. + * + * We place the on-disk inode on a list in the AGI. It will be pulled from this + * list when the inode is freed. + */ +STATIC int +xfs_iunlink( + struct xfs_trans *tp, + struct xfs_inode *ip) +{ + xfs_mount_t *mp = tp->t_mountp; + xfs_agi_t *agi; + xfs_dinode_t *dip; + xfs_buf_t *agibp; + xfs_buf_t *ibp; + xfs_agino_t agino; + short bucket_index; + int offset; + int error; + + ASSERT(VFS_I(ip)->i_nlink == 0); + ASSERT(VFS_I(ip)->i_mode != 0); + + /* + * Get the agi buffer first. It ensures lock ordering + * on the list. + */ + error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); + if (error) + return error; + agi = XFS_BUF_TO_AGI(agibp); + + /* + * Get the index into the agi hash table for the + * list this inode will go on. + */ + agino = XFS_INO_TO_AGINO(mp, ip->i_ino); + ASSERT(agino != 0); + bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; + ASSERT(agi->agi_unlinked[bucket_index]); + ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); + + if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { + /* + * There is already another inode in the bucket we need + * to add ourselves to. Add us at the front of the list. + * Here we put the head pointer into our next pointer, + * and then we fall through to point the head at us. + */ + error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, + 0, 0); + if (error) + return error; + + ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); + dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; + offset = ip->i_imap.im_boffset + + offsetof(xfs_dinode_t, di_next_unlinked); + + /* need to recalc the inode CRC if appropriate */ + xfs_dinode_calc_crc(mp, dip); + + xfs_trans_inode_buf(tp, ibp); + xfs_trans_log_buf(tp, ibp, offset, + (offset + sizeof(xfs_agino_t) - 1)); + xfs_inobp_check(mp, ibp); + } + + /* + * Point the bucket head pointer at the inode being inserted. + */ + ASSERT(agino != 0); + agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); + offset = offsetof(xfs_agi_t, agi_unlinked) + + (sizeof(xfs_agino_t) * bucket_index); + xfs_trans_log_buf(tp, agibp, offset, + (offset + sizeof(xfs_agino_t) - 1)); + return 0; +} + +/* + * Pull the on-disk inode from the AGI unlinked list. + */ +STATIC int +xfs_iunlink_remove( + xfs_trans_t *tp, + xfs_inode_t *ip) +{ + xfs_ino_t next_ino; + xfs_mount_t *mp; + xfs_agi_t *agi; + xfs_dinode_t *dip; + xfs_buf_t *agibp; + xfs_buf_t *ibp; + xfs_agnumber_t agno; + xfs_agino_t agino; + xfs_agino_t next_agino; + xfs_buf_t *last_ibp; + xfs_dinode_t *last_dip = NULL; + short bucket_index; + int offset, last_offset = 0; + int error; + + mp = tp->t_mountp; + agno = XFS_INO_TO_AGNO(mp, ip->i_ino); + + /* + * Get the agi buffer first. It ensures lock ordering + * on the list. + */ + error = xfs_read_agi(mp, tp, agno, &agibp); + if (error) + return error; + + agi = XFS_BUF_TO_AGI(agibp); + + /* + * Get the index into the agi hash table for the + * list this inode will go on. + */ + agino = XFS_INO_TO_AGINO(mp, ip->i_ino); + if (!xfs_verify_agino(mp, agno, agino)) + return -EFSCORRUPTED; + bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; + if (!xfs_verify_agino(mp, agno, + be32_to_cpu(agi->agi_unlinked[bucket_index]))) { + XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, + agi, sizeof(*agi)); + return -EFSCORRUPTED; + } + + if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { + /* + * We're at the head of the list. Get the inode's on-disk + * buffer to see if there is anyone after us on the list. + * Only modify our next pointer if it is not already NULLAGINO. + * This saves us the overhead of dealing with the buffer when + * there is no need to change it. + */ + error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, + 0, 0); + if (error) { + xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", + __func__, error); + return error; + } + next_agino = be32_to_cpu(dip->di_next_unlinked); + ASSERT(next_agino != 0); + if (next_agino != NULLAGINO) { + dip->di_next_unlinked = cpu_to_be32(NULLAGINO); + offset = ip->i_imap.im_boffset + + offsetof(xfs_dinode_t, di_next_unlinked); + + /* need to recalc the inode CRC if appropriate */ + xfs_dinode_calc_crc(mp, dip); + + xfs_trans_inode_buf(tp, ibp); + xfs_trans_log_buf(tp, ibp, offset, + (offset + sizeof(xfs_agino_t) - 1)); + xfs_inobp_check(mp, ibp); + } else { + xfs_trans_brelse(tp, ibp); + } + /* + * Point the bucket head pointer at the next inode. + */ + ASSERT(next_agino != 0); + ASSERT(next_agino != agino); + agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); + offset = offsetof(xfs_agi_t, agi_unlinked) + + (sizeof(xfs_agino_t) * bucket_index); + xfs_trans_log_buf(tp, agibp, offset, + (offset + sizeof(xfs_agino_t) - 1)); + } else { + /* + * We need to search the list for the inode being freed. + */ + next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); + last_ibp = NULL; + while (next_agino != agino) { + struct xfs_imap imap; + + if (last_ibp) + xfs_trans_brelse(tp, last_ibp); + + imap.im_blkno = 0; + next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); + + error = xfs_imap(mp, tp, next_ino, &imap, 0); + if (error) { + xfs_warn(mp, + "%s: xfs_imap returned error %d.", + __func__, error); + return error; + } + + error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, + &last_ibp, 0, 0); + if (error) { + xfs_warn(mp, + "%s: xfs_imap_to_bp returned error %d.", + __func__, error); + return error; + } + + last_offset = imap.im_boffset; + next_agino = be32_to_cpu(last_dip->di_next_unlinked); + if (!xfs_verify_agino(mp, agno, next_agino)) { + XFS_CORRUPTION_ERROR(__func__, + XFS_ERRLEVEL_LOW, mp, + last_dip, sizeof(*last_dip)); + return -EFSCORRUPTED; + } + } + + /* + * Now last_ibp points to the buffer previous to us on the + * unlinked list. Pull us from the list. + */ + error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, + 0, 0); + if (error) { + xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", + __func__, error); + return error; + } + next_agino = be32_to_cpu(dip->di_next_unlinked); + ASSERT(next_agino != 0); + ASSERT(next_agino != agino); + if (next_agino != NULLAGINO) { + dip->di_next_unlinked = cpu_to_be32(NULLAGINO); + offset = ip->i_imap.im_boffset + + offsetof(xfs_dinode_t, di_next_unlinked); + + /* need to recalc the inode CRC if appropriate */ + xfs_dinode_calc_crc(mp, dip); + + xfs_trans_inode_buf(tp, ibp); + xfs_trans_log_buf(tp, ibp, offset, + (offset + sizeof(xfs_agino_t) - 1)); + xfs_inobp_check(mp, ibp); + } else { + xfs_trans_brelse(tp, ibp); + } + /* + * Point the previous inode on the list to the next inode. + */ + last_dip->di_next_unlinked = cpu_to_be32(next_agino); + ASSERT(next_agino != 0); + offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); + + /* need to recalc the inode CRC if appropriate */ + xfs_dinode_calc_crc(mp, last_dip); + + xfs_trans_inode_buf(tp, last_ibp); + xfs_trans_log_buf(tp, last_ibp, offset, + (offset + sizeof(xfs_agino_t) - 1)); + xfs_inobp_check(mp, last_ibp); + } + return 0; +} + +/* + * A big issue when freeing the inode cluster is that we _cannot_ skip any + * inodes that are in memory - they all must be marked stale and attached to + * the cluster buffer. + */ +STATIC int +xfs_ifree_cluster( + xfs_inode_t *free_ip, + xfs_trans_t *tp, + struct xfs_icluster *xic) +{ + xfs_mount_t *mp = free_ip->i_mount; + int blks_per_cluster; + int inodes_per_cluster; + int nbufs; + int i, j; + int ioffset; + xfs_daddr_t blkno; + xfs_buf_t *bp; + xfs_inode_t *ip; + xfs_inode_log_item_t *iip; + struct xfs_log_item *lip; + struct xfs_perag *pag; + xfs_ino_t inum; + + inum = xic->first_ino; + pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); + blks_per_cluster = xfs_icluster_size_fsb(mp); + inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; + nbufs = mp->m_ialloc_blks / blks_per_cluster; + + for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { + /* + * The allocation bitmap tells us which inodes of the chunk were + * physically allocated. Skip the cluster if an inode falls into + * a sparse region. + */ + ioffset = inum - xic->first_ino; + if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { + ASSERT(ioffset % inodes_per_cluster == 0); + continue; + } + + blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), + XFS_INO_TO_AGBNO(mp, inum)); + + /* + * We obtain and lock the backing buffer first in the process + * here, as we have to ensure that any dirty inode that we + * can't get the flush lock on is attached to the buffer. + * If we scan the in-memory inodes first, then buffer IO can + * complete before we get a lock on it, and hence we may fail + * to mark all the active inodes on the buffer stale. + */ + bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, + mp->m_bsize * blks_per_cluster, + XBF_UNMAPPED); + + if (!bp) + return -ENOMEM; + + /* + * This buffer may not have been correctly initialised as we + * didn't read it from disk. That's not important because we are + * only using to mark the buffer as stale in the log, and to + * attach stale cached inodes on it. That means it will never be + * dispatched for IO. If it is, we want to know about it, and we + * want it to fail. We can acheive this by adding a write + * verifier to the buffer. + */ + bp->b_ops = &xfs_inode_buf_ops; + + /* + * Walk the inodes already attached to the buffer and mark them + * stale. These will all have the flush locks held, so an + * in-memory inode walk can't lock them. By marking them all + * stale first, we will not attempt to lock them in the loop + * below as the XFS_ISTALE flag will be set. + */ + list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { + if (lip->li_type == XFS_LI_INODE) { + iip = (xfs_inode_log_item_t *)lip; + ASSERT(iip->ili_logged == 1); + lip->li_cb = xfs_istale_done; + xfs_trans_ail_copy_lsn(mp->m_ail, + &iip->ili_flush_lsn, + &iip->ili_item.li_lsn); + xfs_iflags_set(iip->ili_inode, XFS_ISTALE); + } + } + + + /* + * For each inode in memory attempt to add it to the inode + * buffer and set it up for being staled on buffer IO + * completion. This is safe as we've locked out tail pushing + * and flushing by locking the buffer. + * + * We have already marked every inode that was part of a + * transaction stale above, which means there is no point in + * even trying to lock them. + */ + for (i = 0; i < inodes_per_cluster; i++) { +retry: + rcu_read_lock(); + ip = radix_tree_lookup(&pag->pag_ici_root, + XFS_INO_TO_AGINO(mp, (inum + i))); + + /* Inode not in memory, nothing to do */ + if (!ip) { + rcu_read_unlock(); + continue; + } + + /* + * because this is an RCU protected lookup, we could + * find a recently freed or even reallocated inode + * during the lookup. We need to check under the + * i_flags_lock for a valid inode here. Skip it if it + * is not valid, the wrong inode or stale. + */ + spin_lock(&ip->i_flags_lock); + if (ip->i_ino != inum + i || + __xfs_iflags_test(ip, XFS_ISTALE)) { + spin_unlock(&ip->i_flags_lock); + rcu_read_unlock(); + continue; + } + spin_unlock(&ip->i_flags_lock); + + /* + * Don't try to lock/unlock the current inode, but we + * _cannot_ skip the other inodes that we did not find + * in the list attached to the buffer and are not + * already marked stale. If we can't lock it, back off + * and retry. + */ + if (ip != free_ip) { + if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { + rcu_read_unlock(); + delay(1); + goto retry; + } + + /* + * Check the inode number again in case we're + * racing with freeing in xfs_reclaim_inode(). + * See the comments in that function for more + * information as to why the initial check is + * not sufficient. + */ + if (ip->i_ino != inum + i) { + xfs_iunlock(ip, XFS_ILOCK_EXCL); + rcu_read_unlock(); + continue; + } + } + rcu_read_unlock(); + + xfs_iflock(ip); + xfs_iflags_set(ip, XFS_ISTALE); + + /* + * we don't need to attach clean inodes or those only + * with unlogged changes (which we throw away, anyway). + */ + iip = ip->i_itemp; + if (!iip || xfs_inode_clean(ip)) { + ASSERT(ip != free_ip); + xfs_ifunlock(ip); + xfs_iunlock(ip, XFS_ILOCK_EXCL); + continue; + } + + iip->ili_last_fields = iip->ili_fields; + iip->ili_fields = 0; + iip->ili_fsync_fields = 0; + iip->ili_logged = 1; + xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, + &iip->ili_item.li_lsn); + + xfs_buf_attach_iodone(bp, xfs_istale_done, + &iip->ili_item); + + if (ip != free_ip) + xfs_iunlock(ip, XFS_ILOCK_EXCL); + } + + xfs_trans_stale_inode_buf(tp, bp); + xfs_trans_binval(tp, bp); + } + + xfs_perag_put(pag); + return 0; +} + +/* + * Free any local-format buffers sitting around before we reset to + * extents format. + */ +static inline void +xfs_ifree_local_data( + struct xfs_inode *ip, + int whichfork) +{ + struct xfs_ifork *ifp; + + if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL) + return; + + ifp = XFS_IFORK_PTR(ip, whichfork); + xfs_idata_realloc(ip, -ifp->if_bytes, whichfork); +} + +/* + * This is called to return an inode to the inode free list. + * The inode should already be truncated to 0 length and have + * no pages associated with it. This routine also assumes that + * the inode is already a part of the transaction. + * + * The on-disk copy of the inode will have been added to the list + * of unlinked inodes in the AGI. We need to remove the inode from + * that list atomically with respect to freeing it here. + */ +int +xfs_ifree( + struct xfs_trans *tp, + struct xfs_inode *ip) +{ + int error; + struct xfs_icluster xic = { 0 }; + + ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); + ASSERT(VFS_I(ip)->i_nlink == 0); + ASSERT(ip->i_d.di_nextents == 0); + ASSERT(ip->i_d.di_anextents == 0); + ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); + ASSERT(ip->i_d.di_nblocks == 0); + + /* + * Pull the on-disk inode from the AGI unlinked list. + */ + error = xfs_iunlink_remove(tp, ip); + if (error) + return error; + + error = xfs_difree(tp, ip->i_ino, &xic); + if (error) + return error; + + xfs_ifree_local_data(ip, XFS_DATA_FORK); + xfs_ifree_local_data(ip, XFS_ATTR_FORK); + + VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ + ip->i_d.di_flags = 0; + ip->i_d.di_flags2 = 0; + ip->i_d.di_dmevmask = 0; + ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ + ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; + ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; + + /* Don't attempt to replay owner changes for a deleted inode */ + ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER); + + /* + * Bump the generation count so no one will be confused + * by reincarnations of this inode. + */ + VFS_I(ip)->i_generation++; + xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); + + if (xic.deleted) + error = xfs_ifree_cluster(ip, tp, &xic); + + return error; +} + +/* + * This is called to unpin an inode. The caller must have the inode locked + * in at least shared mode so that the buffer cannot be subsequently pinned + * once someone is waiting for it to be unpinned. + */ +static void +xfs_iunpin( + struct xfs_inode *ip) +{ + ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); + + trace_xfs_inode_unpin_nowait(ip, _RET_IP_); + + /* Give the log a push to start the unpinning I/O */ + xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); + +} + +static void +__xfs_iunpin_wait( + struct xfs_inode *ip) +{ + wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); + DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); + + xfs_iunpin(ip); + + do { + prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); + if (xfs_ipincount(ip)) + io_schedule(); + } while (xfs_ipincount(ip)); + finish_wait(wq, &wait.wq_entry); +} + +void +xfs_iunpin_wait( + struct xfs_inode *ip) +{ + if (xfs_ipincount(ip)) + __xfs_iunpin_wait(ip); +} + +/* + * Removing an inode from the namespace involves removing the directory entry + * and dropping the link count on the inode. Removing the directory entry can + * result in locking an AGF (directory blocks were freed) and removing a link + * count can result in placing the inode on an unlinked list which results in + * locking an AGI. + * + * The big problem here is that we have an ordering constraint on AGF and AGI + * locking - inode allocation locks the AGI, then can allocate a new extent for + * new inodes, locking the AGF after the AGI. Similarly, freeing the inode + * removes the inode from the unlinked list, requiring that we lock the AGI + * first, and then freeing the inode can result in an inode chunk being freed + * and hence freeing disk space requiring that we lock an AGF. + * + * Hence the ordering that is imposed by other parts of the code is AGI before + * AGF. This means we cannot remove the directory entry before we drop the inode + * reference count and put it on the unlinked list as this results in a lock + * order of AGF then AGI, and this can deadlock against inode allocation and + * freeing. Therefore we must drop the link counts before we remove the + * directory entry. + * + * This is still safe from a transactional point of view - it is not until we + * get to xfs_defer_finish() that we have the possibility of multiple + * transactions in this operation. Hence as long as we remove the directory + * entry and drop the link count in the first transaction of the remove + * operation, there are no transactional constraints on the ordering here. + */ +int +xfs_remove( + xfs_inode_t *dp, + struct xfs_name *name, + xfs_inode_t *ip) +{ + xfs_mount_t *mp = dp->i_mount; + xfs_trans_t *tp = NULL; + int is_dir = S_ISDIR(VFS_I(ip)->i_mode); + int error = 0; + uint resblks; + + trace_xfs_remove(dp, name); + + if (XFS_FORCED_SHUTDOWN(mp)) + return -EIO; + + error = xfs_qm_dqattach(dp); + if (error) + goto std_return; + + error = xfs_qm_dqattach(ip); + if (error) + goto std_return; + + /* + * We try to get the real space reservation first, + * allowing for directory btree deletion(s) implying + * possible bmap insert(s). If we can't get the space + * reservation then we use 0 instead, and avoid the bmap + * btree insert(s) in the directory code by, if the bmap + * insert tries to happen, instead trimming the LAST + * block from the directory. + */ + resblks = XFS_REMOVE_SPACE_RES(mp); + error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); + if (error == -ENOSPC) { + resblks = 0; + error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, + &tp); + } + if (error) { + ASSERT(error != -ENOSPC); + goto std_return; + } + + xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); + + xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); + xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); + + /* + * If we're removing a directory perform some additional validation. + */ + if (is_dir) { + ASSERT(VFS_I(ip)->i_nlink >= 2); + if (VFS_I(ip)->i_nlink != 2) { + error = -ENOTEMPTY; + goto out_trans_cancel; + } + if (!xfs_dir_isempty(ip)) { + error = -ENOTEMPTY; + goto out_trans_cancel; + } + + /* Drop the link from ip's "..". */ + error = xfs_droplink(tp, dp); + if (error) + goto out_trans_cancel; + + /* Drop the "." link from ip to self. */ + error = xfs_droplink(tp, ip); + if (error) + goto out_trans_cancel; + } else { + /* + * When removing a non-directory we need to log the parent + * inode here. For a directory this is done implicitly + * by the xfs_droplink call for the ".." entry. + */ + xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); + } + xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); + + /* Drop the link from dp to ip. */ + error = xfs_droplink(tp, ip); + if (error) + goto out_trans_cancel; + + error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); + if (error) { + ASSERT(error != -ENOENT); + goto out_trans_cancel; + } + + /* + * If this is a synchronous mount, make sure that the + * remove transaction goes to disk before returning to + * the user. + */ + if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) + xfs_trans_set_sync(tp); + + error = xfs_trans_commit(tp); + if (error) + goto std_return; + + if (is_dir && xfs_inode_is_filestream(ip)) + xfs_filestream_deassociate(ip); + + return 0; + + out_trans_cancel: + xfs_trans_cancel(tp); + std_return: + return error; +} + +/* + * Enter all inodes for a rename transaction into a sorted array. + */ +#define __XFS_SORT_INODES 5 +STATIC void +xfs_sort_for_rename( + struct xfs_inode *dp1, /* in: old (source) directory inode */ + struct xfs_inode *dp2, /* in: new (target) directory inode */ + struct xfs_inode *ip1, /* in: inode of old entry */ + struct xfs_inode *ip2, /* in: inode of new entry */ + struct xfs_inode *wip, /* in: whiteout inode */ + struct xfs_inode **i_tab,/* out: sorted array of inodes */ + int *num_inodes) /* in/out: inodes in array */ +{ + int i, j; + + ASSERT(*num_inodes == __XFS_SORT_INODES); + memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); + + /* + * i_tab contains a list of pointers to inodes. We initialize + * the table here & we'll sort it. We will then use it to + * order the acquisition of the inode locks. + * + * Note that the table may contain duplicates. e.g., dp1 == dp2. + */ + i = 0; + i_tab[i++] = dp1; + i_tab[i++] = dp2; + i_tab[i++] = ip1; + if (ip2) + i_tab[i++] = ip2; + if (wip) + i_tab[i++] = wip; + *num_inodes = i; + + /* + * Sort the elements via bubble sort. (Remember, there are at + * most 5 elements to sort, so this is adequate.) + */ + for (i = 0; i < *num_inodes; i++) { + for (j = 1; j < *num_inodes; j++) { + if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { + struct xfs_inode *temp = i_tab[j]; + i_tab[j] = i_tab[j-1]; + i_tab[j-1] = temp; + } + } + } +} + +static int +xfs_finish_rename( + struct xfs_trans *tp) +{ + /* + * If this is a synchronous mount, make sure that the rename transaction + * goes to disk before returning to the user. + */ + if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) + xfs_trans_set_sync(tp); + + return xfs_trans_commit(tp); +} + +/* + * xfs_cross_rename() + * + * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall + */ +STATIC int +xfs_cross_rename( + struct xfs_trans *tp, + struct xfs_inode *dp1, + struct xfs_name *name1, + struct xfs_inode *ip1, + struct xfs_inode *dp2, + struct xfs_name *name2, + struct xfs_inode *ip2, + int spaceres) +{ + int error = 0; + int ip1_flags = 0; + int ip2_flags = 0; + int dp2_flags = 0; + + /* Swap inode number for dirent in first parent */ + error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); + if (error) + goto out_trans_abort; + + /* Swap inode number for dirent in second parent */ + error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); + if (error) + goto out_trans_abort; + + /* + * If we're renaming one or more directories across different parents, + * update the respective ".." entries (and link counts) to match the new + * parents. + */ + if (dp1 != dp2) { + dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; + + if (S_ISDIR(VFS_I(ip2)->i_mode)) { + error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, + dp1->i_ino, spaceres); + if (error) + goto out_trans_abort; + + /* transfer ip2 ".." reference to dp1 */ + if (!S_ISDIR(VFS_I(ip1)->i_mode)) { + error = xfs_droplink(tp, dp2); + if (error) + goto out_trans_abort; + error = xfs_bumplink(tp, dp1); + if (error) + goto out_trans_abort; + } + + /* + * Although ip1 isn't changed here, userspace needs + * to be warned about the change, so that applications + * relying on it (like backup ones), will properly + * notify the change + */ + ip1_flags |= XFS_ICHGTIME_CHG; + ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; + } + + if (S_ISDIR(VFS_I(ip1)->i_mode)) { + error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, + dp2->i_ino, spaceres); + if (error) + goto out_trans_abort; + + /* transfer ip1 ".." reference to dp2 */ + if (!S_ISDIR(VFS_I(ip2)->i_mode)) { + error = xfs_droplink(tp, dp1); + if (error) + goto out_trans_abort; + error = xfs_bumplink(tp, dp2); + if (error) + goto out_trans_abort; + } + + /* + * Although ip2 isn't changed here, userspace needs + * to be warned about the change, so that applications + * relying on it (like backup ones), will properly + * notify the change + */ + ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; + ip2_flags |= XFS_ICHGTIME_CHG; + } + } + + if (ip1_flags) { + xfs_trans_ichgtime(tp, ip1, ip1_flags); + xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); + } + if (ip2_flags) { + xfs_trans_ichgtime(tp, ip2, ip2_flags); + xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); + } + if (dp2_flags) { + xfs_trans_ichgtime(tp, dp2, dp2_flags); + xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); + } + xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); + xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); + return xfs_finish_rename(tp); + +out_trans_abort: + xfs_trans_cancel(tp); + return error; +} + +/* + * xfs_rename_alloc_whiteout() + * + * Return a referenced, unlinked, unlocked inode that that can be used as a + * whiteout in a rename transaction. We use a tmpfile inode here so that if we + * crash between allocating the inode and linking it into the rename transaction + * recovery will free the inode and we won't leak it. + */ +static int +xfs_rename_alloc_whiteout( + struct xfs_inode *dp, + struct xfs_inode **wip) +{ + struct xfs_inode *tmpfile; + int error; + + error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); + if (error) + return error; + + /* + * Prepare the tmpfile inode as if it were created through the VFS. + * Complete the inode setup and flag it as linkable. nlink is already + * zero, so we can skip the drop_nlink. + */ + xfs_setup_iops(tmpfile); + xfs_finish_inode_setup(tmpfile); + VFS_I(tmpfile)->i_state |= I_LINKABLE; + + *wip = tmpfile; + return 0; +} + +/* + * xfs_rename + */ +int +xfs_rename( + struct xfs_inode *src_dp, + struct xfs_name *src_name, + struct xfs_inode *src_ip, + struct xfs_inode *target_dp, + struct xfs_name *target_name, + struct xfs_inode *target_ip, + unsigned int flags) +{ + struct xfs_mount *mp = src_dp->i_mount; + struct xfs_trans *tp; + struct xfs_inode *wip = NULL; /* whiteout inode */ + struct xfs_inode *inodes[__XFS_SORT_INODES]; + int num_inodes = __XFS_SORT_INODES; + bool new_parent = (src_dp != target_dp); + bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); + int spaceres; + int error; + + trace_xfs_rename(src_dp, target_dp, src_name, target_name); + + if ((flags & RENAME_EXCHANGE) && !target_ip) + return -EINVAL; + + /* + * If we are doing a whiteout operation, allocate the whiteout inode + * we will be placing at the target and ensure the type is set + * appropriately. + */ + if (flags & RENAME_WHITEOUT) { + ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); + error = xfs_rename_alloc_whiteout(target_dp, &wip); + if (error) + return error; + + /* setup target dirent info as whiteout */ + src_name->type = XFS_DIR3_FT_CHRDEV; + } + + xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, + inodes, &num_inodes); + + spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); + error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); + if (error == -ENOSPC) { + spaceres = 0; + error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, + &tp); + } + if (error) + goto out_release_wip; + + /* + * Attach the dquots to the inodes + */ + error = xfs_qm_vop_rename_dqattach(inodes); + if (error) + goto out_trans_cancel; + + /* + * Lock all the participating inodes. Depending upon whether + * the target_name exists in the target directory, and + * whether the target directory is the same as the source + * directory, we can lock from 2 to 4 inodes. + */ + xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); + + /* + * Join all the inodes to the transaction. From this point on, + * we can rely on either trans_commit or trans_cancel to unlock + * them. + */ + xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); + if (new_parent) + xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); + xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); + if (target_ip) + xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); + if (wip) + xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); + + /* + * If we are using project inheritance, we only allow renames + * into our tree when the project IDs are the same; else the + * tree quota mechanism would be circumvented. + */ + if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && + (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { + error = -EXDEV; + goto out_trans_cancel; + } + + /* RENAME_EXCHANGE is unique from here on. */ + if (flags & RENAME_EXCHANGE) + return xfs_cross_rename(tp, src_dp, src_name, src_ip, + target_dp, target_name, target_ip, + spaceres); + + /* + * Check for expected errors before we dirty the transaction + * so we can return an error without a transaction abort. + */ + if (target_ip == NULL) { + /* + * If there's no space reservation, check the entry will + * fit before actually inserting it. + */ + if (!spaceres) { + error = xfs_dir_canenter(tp, target_dp, target_name); + if (error) + goto out_trans_cancel; + } + } else { + /* + * If target exists and it's a directory, check that whether + * it can be destroyed. + */ + if (S_ISDIR(VFS_I(target_ip)->i_mode) && + (!xfs_dir_isempty(target_ip) || + (VFS_I(target_ip)->i_nlink > 2))) { + error = -EEXIST; + goto out_trans_cancel; + } + } + + /* + * Directory entry creation below may acquire the AGF. Remove + * the whiteout from the unlinked list first to preserve correct + * AGI/AGF locking order. This dirties the transaction so failures + * after this point will abort and log recovery will clean up the + * mess. + * + * For whiteouts, we need to bump the link count on the whiteout + * inode. After this point, we have a real link, clear the tmpfile + * state flag from the inode so it doesn't accidentally get misused + * in future. + */ + if (wip) { + ASSERT(VFS_I(wip)->i_nlink == 0); + error = xfs_iunlink_remove(tp, wip); + if (error) + goto out_trans_cancel; + + xfs_bumplink(tp, wip); + xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); + VFS_I(wip)->i_state &= ~I_LINKABLE; + } + + /* + * Set up the target. + */ + if (target_ip == NULL) { + /* + * If target does not exist and the rename crosses + * directories, adjust the target directory link count + * to account for the ".." reference from the new entry. + */ + error = xfs_dir_createname(tp, target_dp, target_name, + src_ip->i_ino, spaceres); + if (error) + goto out_trans_cancel; + + xfs_trans_ichgtime(tp, target_dp, + XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); + + if (new_parent && src_is_directory) { + error = xfs_bumplink(tp, target_dp); + if (error) + goto out_trans_cancel; + } + } else { /* target_ip != NULL */ + /* + * Link the source inode under the target name. + * If the source inode is a directory and we are moving + * it across directories, its ".." entry will be + * inconsistent until we replace that down below. + * + * In case there is already an entry with the same + * name at the destination directory, remove it first. + */ + error = xfs_dir_replace(tp, target_dp, target_name, + src_ip->i_ino, spaceres); + if (error) + goto out_trans_cancel; + + xfs_trans_ichgtime(tp, target_dp, + XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); + + /* + * Decrement the link count on the target since the target + * dir no longer points to it. + */ + error = xfs_droplink(tp, target_ip); + if (error) + goto out_trans_cancel; + + if (src_is_directory) { + /* + * Drop the link from the old "." entry. + */ + error = xfs_droplink(tp, target_ip); + if (error) + goto out_trans_cancel; + } + } /* target_ip != NULL */ + + /* + * Remove the source. + */ + if (new_parent && src_is_directory) { + /* + * Rewrite the ".." entry to point to the new + * directory. + */ + error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, + target_dp->i_ino, spaceres); + ASSERT(error != -EEXIST); + if (error) + goto out_trans_cancel; + } + + /* + * We always want to hit the ctime on the source inode. + * + * This isn't strictly required by the standards since the source + * inode isn't really being changed, but old unix file systems did + * it and some incremental backup programs won't work without it. + */ + xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); + xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); + + /* + * Adjust the link count on src_dp. This is necessary when + * renaming a directory, either within one parent when + * the target existed, or across two parent directories. + */ + if (src_is_directory && (new_parent || target_ip != NULL)) { + + /* + * Decrement link count on src_directory since the + * entry that's moved no longer points to it. + */ + error = xfs_droplink(tp, src_dp); + if (error) + goto out_trans_cancel; + } + + /* + * For whiteouts, we only need to update the source dirent with the + * inode number of the whiteout inode rather than removing it + * altogether. + */ + if (wip) { + error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, + spaceres); + } else + error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, + spaceres); + if (error) + goto out_trans_cancel; + + xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); + xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); + if (new_parent) + xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); + + error = xfs_finish_rename(tp); + if (wip) + xfs_irele(wip); + return error; + +out_trans_cancel: + xfs_trans_cancel(tp); +out_release_wip: + if (wip) + xfs_irele(wip); + return error; +} + +STATIC int +xfs_iflush_cluster( + struct xfs_inode *ip, + struct xfs_buf *bp) +{ + struct xfs_mount *mp = ip->i_mount; + struct xfs_perag *pag; + unsigned long first_index, mask; + unsigned long inodes_per_cluster; + int cilist_size; + struct xfs_inode **cilist; + struct xfs_inode *cip; + int nr_found; + int clcount = 0; + int i; + + pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); + + inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; + cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); + cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); + if (!cilist) + goto out_put; + + mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); + first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; + rcu_read_lock(); + /* really need a gang lookup range call here */ + nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, + first_index, inodes_per_cluster); + if (nr_found == 0) + goto out_free; + + for (i = 0; i < nr_found; i++) { + cip = cilist[i]; + if (cip == ip) + continue; + + /* + * because this is an RCU protected lookup, we could find a + * recently freed or even reallocated inode during the lookup. + * We need to check under the i_flags_lock for a valid inode + * here. Skip it if it is not valid or the wrong inode. + */ + spin_lock(&cip->i_flags_lock); + if (!cip->i_ino || + __xfs_iflags_test(cip, XFS_ISTALE)) { + spin_unlock(&cip->i_flags_lock); + continue; + } + + /* + * Once we fall off the end of the cluster, no point checking + * any more inodes in the list because they will also all be + * outside the cluster. + */ + if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { + spin_unlock(&cip->i_flags_lock); + break; + } + spin_unlock(&cip->i_flags_lock); + + /* + * Do an un-protected check to see if the inode is dirty and + * is a candidate for flushing. These checks will be repeated + * later after the appropriate locks are acquired. + */ + if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) + continue; + + /* + * Try to get locks. If any are unavailable or it is pinned, + * then this inode cannot be flushed and is skipped. + */ + + if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) + continue; + if (!xfs_iflock_nowait(cip)) { + xfs_iunlock(cip, XFS_ILOCK_SHARED); + continue; + } + if (xfs_ipincount(cip)) { + xfs_ifunlock(cip); + xfs_iunlock(cip, XFS_ILOCK_SHARED); + continue; + } + + + /* + * Check the inode number again, just to be certain we are not + * racing with freeing in xfs_reclaim_inode(). See the comments + * in that function for more information as to why the initial + * check is not sufficient. + */ + if (!cip->i_ino) { + xfs_ifunlock(cip); + xfs_iunlock(cip, XFS_ILOCK_SHARED); + continue; + } + + /* + * arriving here means that this inode can be flushed. First + * re-check that it's dirty before flushing. + */ + if (!xfs_inode_clean(cip)) { + int error; + error = xfs_iflush_int(cip, bp); + if (error) { + xfs_iunlock(cip, XFS_ILOCK_SHARED); + goto cluster_corrupt_out; + } + clcount++; + } else { + xfs_ifunlock(cip); + } + xfs_iunlock(cip, XFS_ILOCK_SHARED); + } + + if (clcount) { + XFS_STATS_INC(mp, xs_icluster_flushcnt); + XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); + } + +out_free: + rcu_read_unlock(); + kmem_free(cilist); +out_put: + xfs_perag_put(pag); + return 0; + + +cluster_corrupt_out: + /* + * Corruption detected in the clustering loop. Invalidate the + * inode buffer and shut down the filesystem. + */ + rcu_read_unlock(); + xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); + + /* + * We'll always have an inode attached to the buffer for completion + * process by the time we are called from xfs_iflush(). Hence we have + * always need to do IO completion processing to abort the inodes + * attached to the buffer. handle them just like the shutdown case in + * xfs_buf_submit(). + */ + ASSERT(bp->b_iodone); + bp->b_flags &= ~XBF_DONE; + xfs_buf_stale(bp); + xfs_buf_ioerror(bp, -EIO); + xfs_buf_ioend(bp); + + /* abort the corrupt inode, as it was not attached to the buffer */ + xfs_iflush_abort(cip, false); + kmem_free(cilist); + xfs_perag_put(pag); + return -EFSCORRUPTED; +} + +/* + * Flush dirty inode metadata into the backing buffer. + * + * The caller must have the inode lock and the inode flush lock held. The + * inode lock will still be held upon return to the caller, and the inode + * flush lock will be released after the inode has reached the disk. + * + * The caller must write out the buffer returned in *bpp and release it. + */ +int +xfs_iflush( + struct xfs_inode *ip, + struct xfs_buf **bpp) +{ + struct xfs_mount *mp = ip->i_mount; + struct xfs_buf *bp = NULL; + struct xfs_dinode *dip; + int error; + + XFS_STATS_INC(mp, xs_iflush_count); + + ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); + ASSERT(xfs_isiflocked(ip)); + ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || + ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); + + *bpp = NULL; + + xfs_iunpin_wait(ip); + + /* + * For stale inodes we cannot rely on the backing buffer remaining + * stale in cache for the remaining life of the stale inode and so + * xfs_imap_to_bp() below may give us a buffer that no longer contains + * inodes below. We have to check this after ensuring the inode is + * unpinned so that it is safe to reclaim the stale inode after the + * flush call. + */ + if (xfs_iflags_test(ip, XFS_ISTALE)) { + xfs_ifunlock(ip); + return 0; + } + + /* + * This may have been unpinned because the filesystem is shutting + * down forcibly. If that's the case we must not write this inode + * to disk, because the log record didn't make it to disk. + * + * We also have to remove the log item from the AIL in this case, + * as we wait for an empty AIL as part of the unmount process. + */ + if (XFS_FORCED_SHUTDOWN(mp)) { + error = -EIO; + goto abort_out; + } + + /* + * Get the buffer containing the on-disk inode. We are doing a try-lock + * operation here, so we may get an EAGAIN error. In that case, we + * simply want to return with the inode still dirty. + * + * If we get any other error, we effectively have a corruption situation + * and we cannot flush the inode, so we treat it the same as failing + * xfs_iflush_int(). + */ + error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, + 0); + if (error == -EAGAIN) { + xfs_ifunlock(ip); + return error; + } + if (error) + goto corrupt_out; + + /* + * First flush out the inode that xfs_iflush was called with. + */ + error = xfs_iflush_int(ip, bp); + if (error) + goto corrupt_out; + + /* + * If the buffer is pinned then push on the log now so we won't + * get stuck waiting in the write for too long. + */ + if (xfs_buf_ispinned(bp)) + xfs_log_force(mp, 0); + + /* + * inode clustering: try to gather other inodes into this write + * + * Note: Any error during clustering will result in the filesystem + * being shut down and completion callbacks run on the cluster buffer. + * As we have already flushed and attached this inode to the buffer, + * it has already been aborted and released by xfs_iflush_cluster() and + * so we have no further error handling to do here. + */ + error = xfs_iflush_cluster(ip, bp); + if (error) + return error; + + *bpp = bp; + return 0; + +corrupt_out: + if (bp) + xfs_buf_relse(bp); + xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); +abort_out: + /* abort the corrupt inode, as it was not attached to the buffer */ + xfs_iflush_abort(ip, false); + return error; +} + +/* + * If there are inline format data / attr forks attached to this inode, + * make sure they're not corrupt. + */ +bool +xfs_inode_verify_forks( + struct xfs_inode *ip) +{ + struct xfs_ifork *ifp; + xfs_failaddr_t fa; + + fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops); + if (fa) { + ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); + xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", + ifp->if_u1.if_data, ifp->if_bytes, fa); + return false; + } + + fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops); + if (fa) { + ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); + xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", + ifp ? ifp->if_u1.if_data : NULL, + ifp ? ifp->if_bytes : 0, fa); + return false; + } + return true; +} + +STATIC int +xfs_iflush_int( + struct xfs_inode *ip, + struct xfs_buf *bp) +{ + struct xfs_inode_log_item *iip = ip->i_itemp; + struct xfs_dinode *dip; + struct xfs_mount *mp = ip->i_mount; + + ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); + ASSERT(xfs_isiflocked(ip)); + ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || + ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); + ASSERT(iip != NULL && iip->ili_fields != 0); + ASSERT(ip->i_d.di_version > 1); + + /* set *dip = inode's place in the buffer */ + dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); + + if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), + mp, XFS_ERRTAG_IFLUSH_1)) { + xfs_alert_tag(mp, XFS_PTAG_IFLUSH, + "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, + __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); + goto corrupt_out; + } + if (S_ISREG(VFS_I(ip)->i_mode)) { + if (XFS_TEST_ERROR( + (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && + (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), + mp, XFS_ERRTAG_IFLUSH_3)) { + xfs_alert_tag(mp, XFS_PTAG_IFLUSH, + "%s: Bad regular inode %Lu, ptr "PTR_FMT, + __func__, ip->i_ino, ip); + goto corrupt_out; + } + } else if (S_ISDIR(VFS_I(ip)->i_mode)) { + if (XFS_TEST_ERROR( + (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && + (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && + (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), + mp, XFS_ERRTAG_IFLUSH_4)) { + xfs_alert_tag(mp, XFS_PTAG_IFLUSH, + "%s: Bad directory inode %Lu, ptr "PTR_FMT, + __func__, ip->i_ino, ip); + goto corrupt_out; + } + } + if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > + ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { + xfs_alert_tag(mp, XFS_PTAG_IFLUSH, + "%s: detected corrupt incore inode %Lu, " + "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, + __func__, ip->i_ino, + ip->i_d.di_nextents + ip->i_d.di_anextents, + ip->i_d.di_nblocks, ip); + goto corrupt_out; + } + if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, + mp, XFS_ERRTAG_IFLUSH_6)) { + xfs_alert_tag(mp, XFS_PTAG_IFLUSH, + "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, + __func__, ip->i_ino, ip->i_d.di_forkoff, ip); + goto corrupt_out; + } + + /* + * Inode item log recovery for v2 inodes are dependent on the + * di_flushiter count for correct sequencing. We bump the flush + * iteration count so we can detect flushes which postdate a log record + * during recovery. This is redundant as we now log every change and + * hence this can't happen but we need to still do it to ensure + * backwards compatibility with old kernels that predate logging all + * inode changes. + */ + if (ip->i_d.di_version < 3) + ip->i_d.di_flushiter++; + + /* Check the inline fork data before we write out. */ + if (!xfs_inode_verify_forks(ip)) + goto corrupt_out; + + /* + * Copy the dirty parts of the inode into the on-disk inode. We always + * copy out the core of the inode, because if the inode is dirty at all + * the core must be. + */ + xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); + + /* Wrap, we never let the log put out DI_MAX_FLUSH */ + if (ip->i_d.di_flushiter == DI_MAX_FLUSH) + ip->i_d.di_flushiter = 0; + + xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); + if (XFS_IFORK_Q(ip)) + xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); + xfs_inobp_check(mp, bp); + + /* + * We've recorded everything logged in the inode, so we'd like to clear + * the ili_fields bits so we don't log and flush things unnecessarily. + * However, we can't stop logging all this information until the data + * we've copied into the disk buffer is written to disk. If we did we + * might overwrite the copy of the inode in the log with all the data + * after re-logging only part of it, and in the face of a crash we + * wouldn't have all the data we need to recover. + * + * What we do is move the bits to the ili_last_fields field. When + * logging the inode, these bits are moved back to the ili_fields field. + * In the xfs_iflush_done() routine we clear ili_last_fields, since we + * know that the information those bits represent is permanently on + * disk. As long as the flush completes before the inode is logged + * again, then both ili_fields and ili_last_fields will be cleared. + * + * We can play with the ili_fields bits here, because the inode lock + * must be held exclusively in order to set bits there and the flush + * lock protects the ili_last_fields bits. Set ili_logged so the flush + * done routine can tell whether or not to look in the AIL. Also, store + * the current LSN of the inode so that we can tell whether the item has + * moved in the AIL from xfs_iflush_done(). In order to read the lsn we + * need the AIL lock, because it is a 64 bit value that cannot be read + * atomically. + */ + iip->ili_last_fields = iip->ili_fields; + iip->ili_fields = 0; + iip->ili_fsync_fields = 0; + iip->ili_logged = 1; + + xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, + &iip->ili_item.li_lsn); + + /* + * Attach the function xfs_iflush_done to the inode's + * buffer. This will remove the inode from the AIL + * and unlock the inode's flush lock when the inode is + * completely written to disk. + */ + xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); + + /* generate the checksum. */ + xfs_dinode_calc_crc(mp, dip); + + ASSERT(!list_empty(&bp->b_li_list)); + ASSERT(bp->b_iodone != NULL); + return 0; + +corrupt_out: + return -EFSCORRUPTED; +} + +/* Release an inode. */ +void +xfs_irele( + struct xfs_inode *ip) +{ + trace_xfs_irele(ip, _RET_IP_); + iput(VFS_I(ip)); +} |