diff options
Diffstat (limited to 'kernel/locking/rtmutex.c')
-rw-r--r-- | kernel/locking/rtmutex.c | 1923 |
1 files changed, 1923 insertions, 0 deletions
diff --git a/kernel/locking/rtmutex.c b/kernel/locking/rtmutex.c new file mode 100644 index 000000000..a5ec4f685 --- /dev/null +++ b/kernel/locking/rtmutex.c @@ -0,0 +1,1923 @@ +/* + * RT-Mutexes: simple blocking mutual exclusion locks with PI support + * + * started by Ingo Molnar and Thomas Gleixner. + * + * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> + * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> + * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt + * Copyright (C) 2006 Esben Nielsen + * + * See Documentation/locking/rt-mutex-design.txt for details. + */ +#include <linux/spinlock.h> +#include <linux/export.h> +#include <linux/sched/signal.h> +#include <linux/sched/rt.h> +#include <linux/sched/deadline.h> +#include <linux/sched/wake_q.h> +#include <linux/sched/debug.h> +#include <linux/timer.h> + +#include "rtmutex_common.h" + +/* + * lock->owner state tracking: + * + * lock->owner holds the task_struct pointer of the owner. Bit 0 + * is used to keep track of the "lock has waiters" state. + * + * owner bit0 + * NULL 0 lock is free (fast acquire possible) + * NULL 1 lock is free and has waiters and the top waiter + * is going to take the lock* + * taskpointer 0 lock is held (fast release possible) + * taskpointer 1 lock is held and has waiters** + * + * The fast atomic compare exchange based acquire and release is only + * possible when bit 0 of lock->owner is 0. + * + * (*) It also can be a transitional state when grabbing the lock + * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock, + * we need to set the bit0 before looking at the lock, and the owner may be + * NULL in this small time, hence this can be a transitional state. + * + * (**) There is a small time when bit 0 is set but there are no + * waiters. This can happen when grabbing the lock in the slow path. + * To prevent a cmpxchg of the owner releasing the lock, we need to + * set this bit before looking at the lock. + */ + +static void +rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner) +{ + unsigned long val = (unsigned long)owner; + + if (rt_mutex_has_waiters(lock)) + val |= RT_MUTEX_HAS_WAITERS; + + lock->owner = (struct task_struct *)val; +} + +static inline void clear_rt_mutex_waiters(struct rt_mutex *lock) +{ + lock->owner = (struct task_struct *) + ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS); +} + +static void fixup_rt_mutex_waiters(struct rt_mutex *lock) +{ + unsigned long owner, *p = (unsigned long *) &lock->owner; + + if (rt_mutex_has_waiters(lock)) + return; + + /* + * The rbtree has no waiters enqueued, now make sure that the + * lock->owner still has the waiters bit set, otherwise the + * following can happen: + * + * CPU 0 CPU 1 CPU2 + * l->owner=T1 + * rt_mutex_lock(l) + * lock(l->lock) + * l->owner = T1 | HAS_WAITERS; + * enqueue(T2) + * boost() + * unlock(l->lock) + * block() + * + * rt_mutex_lock(l) + * lock(l->lock) + * l->owner = T1 | HAS_WAITERS; + * enqueue(T3) + * boost() + * unlock(l->lock) + * block() + * signal(->T2) signal(->T3) + * lock(l->lock) + * dequeue(T2) + * deboost() + * unlock(l->lock) + * lock(l->lock) + * dequeue(T3) + * ==> wait list is empty + * deboost() + * unlock(l->lock) + * lock(l->lock) + * fixup_rt_mutex_waiters() + * if (wait_list_empty(l) { + * l->owner = owner + * owner = l->owner & ~HAS_WAITERS; + * ==> l->owner = T1 + * } + * lock(l->lock) + * rt_mutex_unlock(l) fixup_rt_mutex_waiters() + * if (wait_list_empty(l) { + * owner = l->owner & ~HAS_WAITERS; + * cmpxchg(l->owner, T1, NULL) + * ===> Success (l->owner = NULL) + * + * l->owner = owner + * ==> l->owner = T1 + * } + * + * With the check for the waiter bit in place T3 on CPU2 will not + * overwrite. All tasks fiddling with the waiters bit are + * serialized by l->lock, so nothing else can modify the waiters + * bit. If the bit is set then nothing can change l->owner either + * so the simple RMW is safe. The cmpxchg() will simply fail if it + * happens in the middle of the RMW because the waiters bit is + * still set. + */ + owner = READ_ONCE(*p); + if (owner & RT_MUTEX_HAS_WAITERS) + WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS); +} + +/* + * We can speed up the acquire/release, if there's no debugging state to be + * set up. + */ +#ifndef CONFIG_DEBUG_RT_MUTEXES +# define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c) +# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c) +# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c) + +/* + * Callers must hold the ->wait_lock -- which is the whole purpose as we force + * all future threads that attempt to [Rmw] the lock to the slowpath. As such + * relaxed semantics suffice. + */ +static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) +{ + unsigned long owner, *p = (unsigned long *) &lock->owner; + + do { + owner = *p; + } while (cmpxchg_relaxed(p, owner, + owner | RT_MUTEX_HAS_WAITERS) != owner); +} + +/* + * Safe fastpath aware unlock: + * 1) Clear the waiters bit + * 2) Drop lock->wait_lock + * 3) Try to unlock the lock with cmpxchg + */ +static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock, + unsigned long flags) + __releases(lock->wait_lock) +{ + struct task_struct *owner = rt_mutex_owner(lock); + + clear_rt_mutex_waiters(lock); + raw_spin_unlock_irqrestore(&lock->wait_lock, flags); + /* + * If a new waiter comes in between the unlock and the cmpxchg + * we have two situations: + * + * unlock(wait_lock); + * lock(wait_lock); + * cmpxchg(p, owner, 0) == owner + * mark_rt_mutex_waiters(lock); + * acquire(lock); + * or: + * + * unlock(wait_lock); + * lock(wait_lock); + * mark_rt_mutex_waiters(lock); + * + * cmpxchg(p, owner, 0) != owner + * enqueue_waiter(); + * unlock(wait_lock); + * lock(wait_lock); + * wake waiter(); + * unlock(wait_lock); + * lock(wait_lock); + * acquire(lock); + */ + return rt_mutex_cmpxchg_release(lock, owner, NULL); +} + +#else +# define rt_mutex_cmpxchg_relaxed(l,c,n) (0) +# define rt_mutex_cmpxchg_acquire(l,c,n) (0) +# define rt_mutex_cmpxchg_release(l,c,n) (0) + +static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) +{ + lock->owner = (struct task_struct *) + ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS); +} + +/* + * Simple slow path only version: lock->owner is protected by lock->wait_lock. + */ +static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock, + unsigned long flags) + __releases(lock->wait_lock) +{ + lock->owner = NULL; + raw_spin_unlock_irqrestore(&lock->wait_lock, flags); + return true; +} +#endif + +/* + * Only use with rt_mutex_waiter_{less,equal}() + */ +#define task_to_waiter(p) \ + &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline } + +static inline int +rt_mutex_waiter_less(struct rt_mutex_waiter *left, + struct rt_mutex_waiter *right) +{ + if (left->prio < right->prio) + return 1; + + /* + * If both waiters have dl_prio(), we check the deadlines of the + * associated tasks. + * If left waiter has a dl_prio(), and we didn't return 1 above, + * then right waiter has a dl_prio() too. + */ + if (dl_prio(left->prio)) + return dl_time_before(left->deadline, right->deadline); + + return 0; +} + +static inline int +rt_mutex_waiter_equal(struct rt_mutex_waiter *left, + struct rt_mutex_waiter *right) +{ + if (left->prio != right->prio) + return 0; + + /* + * If both waiters have dl_prio(), we check the deadlines of the + * associated tasks. + * If left waiter has a dl_prio(), and we didn't return 0 above, + * then right waiter has a dl_prio() too. + */ + if (dl_prio(left->prio)) + return left->deadline == right->deadline; + + return 1; +} + +static void +rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) +{ + struct rb_node **link = &lock->waiters.rb_root.rb_node; + struct rb_node *parent = NULL; + struct rt_mutex_waiter *entry; + bool leftmost = true; + + while (*link) { + parent = *link; + entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry); + if (rt_mutex_waiter_less(waiter, entry)) { + link = &parent->rb_left; + } else { + link = &parent->rb_right; + leftmost = false; + } + } + + rb_link_node(&waiter->tree_entry, parent, link); + rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost); +} + +static void +rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) +{ + if (RB_EMPTY_NODE(&waiter->tree_entry)) + return; + + rb_erase_cached(&waiter->tree_entry, &lock->waiters); + RB_CLEAR_NODE(&waiter->tree_entry); +} + +static void +rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) +{ + struct rb_node **link = &task->pi_waiters.rb_root.rb_node; + struct rb_node *parent = NULL; + struct rt_mutex_waiter *entry; + bool leftmost = true; + + while (*link) { + parent = *link; + entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry); + if (rt_mutex_waiter_less(waiter, entry)) { + link = &parent->rb_left; + } else { + link = &parent->rb_right; + leftmost = false; + } + } + + rb_link_node(&waiter->pi_tree_entry, parent, link); + rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost); +} + +static void +rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) +{ + if (RB_EMPTY_NODE(&waiter->pi_tree_entry)) + return; + + rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters); + RB_CLEAR_NODE(&waiter->pi_tree_entry); +} + +static void rt_mutex_adjust_prio(struct task_struct *p) +{ + struct task_struct *pi_task = NULL; + + lockdep_assert_held(&p->pi_lock); + + if (task_has_pi_waiters(p)) + pi_task = task_top_pi_waiter(p)->task; + + rt_mutex_setprio(p, pi_task); +} + +/* + * Deadlock detection is conditional: + * + * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted + * if the detect argument is == RT_MUTEX_FULL_CHAINWALK. + * + * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always + * conducted independent of the detect argument. + * + * If the waiter argument is NULL this indicates the deboost path and + * deadlock detection is disabled independent of the detect argument + * and the config settings. + */ +static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter, + enum rtmutex_chainwalk chwalk) +{ + /* + * This is just a wrapper function for the following call, + * because debug_rt_mutex_detect_deadlock() smells like a magic + * debug feature and I wanted to keep the cond function in the + * main source file along with the comments instead of having + * two of the same in the headers. + */ + return debug_rt_mutex_detect_deadlock(waiter, chwalk); +} + +/* + * Max number of times we'll walk the boosting chain: + */ +int max_lock_depth = 1024; + +static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p) +{ + return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL; +} + +/* + * Adjust the priority chain. Also used for deadlock detection. + * Decreases task's usage by one - may thus free the task. + * + * @task: the task owning the mutex (owner) for which a chain walk is + * probably needed + * @chwalk: do we have to carry out deadlock detection? + * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck + * things for a task that has just got its priority adjusted, and + * is waiting on a mutex) + * @next_lock: the mutex on which the owner of @orig_lock was blocked before + * we dropped its pi_lock. Is never dereferenced, only used for + * comparison to detect lock chain changes. + * @orig_waiter: rt_mutex_waiter struct for the task that has just donated + * its priority to the mutex owner (can be NULL in the case + * depicted above or if the top waiter is gone away and we are + * actually deboosting the owner) + * @top_task: the current top waiter + * + * Returns 0 or -EDEADLK. + * + * Chain walk basics and protection scope + * + * [R] refcount on task + * [P] task->pi_lock held + * [L] rtmutex->wait_lock held + * + * Step Description Protected by + * function arguments: + * @task [R] + * @orig_lock if != NULL @top_task is blocked on it + * @next_lock Unprotected. Cannot be + * dereferenced. Only used for + * comparison. + * @orig_waiter if != NULL @top_task is blocked on it + * @top_task current, or in case of proxy + * locking protected by calling + * code + * again: + * loop_sanity_check(); + * retry: + * [1] lock(task->pi_lock); [R] acquire [P] + * [2] waiter = task->pi_blocked_on; [P] + * [3] check_exit_conditions_1(); [P] + * [4] lock = waiter->lock; [P] + * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L] + * unlock(task->pi_lock); release [P] + * goto retry; + * } + * [6] check_exit_conditions_2(); [P] + [L] + * [7] requeue_lock_waiter(lock, waiter); [P] + [L] + * [8] unlock(task->pi_lock); release [P] + * put_task_struct(task); release [R] + * [9] check_exit_conditions_3(); [L] + * [10] task = owner(lock); [L] + * get_task_struct(task); [L] acquire [R] + * lock(task->pi_lock); [L] acquire [P] + * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L] + * [12] check_exit_conditions_4(); [P] + [L] + * [13] unlock(task->pi_lock); release [P] + * unlock(lock->wait_lock); release [L] + * goto again; + */ +static int rt_mutex_adjust_prio_chain(struct task_struct *task, + enum rtmutex_chainwalk chwalk, + struct rt_mutex *orig_lock, + struct rt_mutex *next_lock, + struct rt_mutex_waiter *orig_waiter, + struct task_struct *top_task) +{ + struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter; + struct rt_mutex_waiter *prerequeue_top_waiter; + int ret = 0, depth = 0; + struct rt_mutex *lock; + bool detect_deadlock; + bool requeue = true; + + detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk); + + /* + * The (de)boosting is a step by step approach with a lot of + * pitfalls. We want this to be preemptible and we want hold a + * maximum of two locks per step. So we have to check + * carefully whether things change under us. + */ + again: + /* + * We limit the lock chain length for each invocation. + */ + if (++depth > max_lock_depth) { + static int prev_max; + + /* + * Print this only once. If the admin changes the limit, + * print a new message when reaching the limit again. + */ + if (prev_max != max_lock_depth) { + prev_max = max_lock_depth; + printk(KERN_WARNING "Maximum lock depth %d reached " + "task: %s (%d)\n", max_lock_depth, + top_task->comm, task_pid_nr(top_task)); + } + put_task_struct(task); + + return -EDEADLK; + } + + /* + * We are fully preemptible here and only hold the refcount on + * @task. So everything can have changed under us since the + * caller or our own code below (goto retry/again) dropped all + * locks. + */ + retry: + /* + * [1] Task cannot go away as we did a get_task() before ! + */ + raw_spin_lock_irq(&task->pi_lock); + + /* + * [2] Get the waiter on which @task is blocked on. + */ + waiter = task->pi_blocked_on; + + /* + * [3] check_exit_conditions_1() protected by task->pi_lock. + */ + + /* + * Check whether the end of the boosting chain has been + * reached or the state of the chain has changed while we + * dropped the locks. + */ + if (!waiter) + goto out_unlock_pi; + + /* + * Check the orig_waiter state. After we dropped the locks, + * the previous owner of the lock might have released the lock. + */ + if (orig_waiter && !rt_mutex_owner(orig_lock)) + goto out_unlock_pi; + + /* + * We dropped all locks after taking a refcount on @task, so + * the task might have moved on in the lock chain or even left + * the chain completely and blocks now on an unrelated lock or + * on @orig_lock. + * + * We stored the lock on which @task was blocked in @next_lock, + * so we can detect the chain change. + */ + if (next_lock != waiter->lock) + goto out_unlock_pi; + + /* + * Drop out, when the task has no waiters. Note, + * top_waiter can be NULL, when we are in the deboosting + * mode! + */ + if (top_waiter) { + if (!task_has_pi_waiters(task)) + goto out_unlock_pi; + /* + * If deadlock detection is off, we stop here if we + * are not the top pi waiter of the task. If deadlock + * detection is enabled we continue, but stop the + * requeueing in the chain walk. + */ + if (top_waiter != task_top_pi_waiter(task)) { + if (!detect_deadlock) + goto out_unlock_pi; + else + requeue = false; + } + } + + /* + * If the waiter priority is the same as the task priority + * then there is no further priority adjustment necessary. If + * deadlock detection is off, we stop the chain walk. If its + * enabled we continue, but stop the requeueing in the chain + * walk. + */ + if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) { + if (!detect_deadlock) + goto out_unlock_pi; + else + requeue = false; + } + + /* + * [4] Get the next lock + */ + lock = waiter->lock; + /* + * [5] We need to trylock here as we are holding task->pi_lock, + * which is the reverse lock order versus the other rtmutex + * operations. + */ + if (!raw_spin_trylock(&lock->wait_lock)) { + raw_spin_unlock_irq(&task->pi_lock); + cpu_relax(); + goto retry; + } + + /* + * [6] check_exit_conditions_2() protected by task->pi_lock and + * lock->wait_lock. + * + * Deadlock detection. If the lock is the same as the original + * lock which caused us to walk the lock chain or if the + * current lock is owned by the task which initiated the chain + * walk, we detected a deadlock. + */ + if (lock == orig_lock || rt_mutex_owner(lock) == top_task) { + debug_rt_mutex_deadlock(chwalk, orig_waiter, lock); + raw_spin_unlock(&lock->wait_lock); + ret = -EDEADLK; + goto out_unlock_pi; + } + + /* + * If we just follow the lock chain for deadlock detection, no + * need to do all the requeue operations. To avoid a truckload + * of conditionals around the various places below, just do the + * minimum chain walk checks. + */ + if (!requeue) { + /* + * No requeue[7] here. Just release @task [8] + */ + raw_spin_unlock(&task->pi_lock); + put_task_struct(task); + + /* + * [9] check_exit_conditions_3 protected by lock->wait_lock. + * If there is no owner of the lock, end of chain. + */ + if (!rt_mutex_owner(lock)) { + raw_spin_unlock_irq(&lock->wait_lock); + return 0; + } + + /* [10] Grab the next task, i.e. owner of @lock */ + task = rt_mutex_owner(lock); + get_task_struct(task); + raw_spin_lock(&task->pi_lock); + + /* + * No requeue [11] here. We just do deadlock detection. + * + * [12] Store whether owner is blocked + * itself. Decision is made after dropping the locks + */ + next_lock = task_blocked_on_lock(task); + /* + * Get the top waiter for the next iteration + */ + top_waiter = rt_mutex_top_waiter(lock); + + /* [13] Drop locks */ + raw_spin_unlock(&task->pi_lock); + raw_spin_unlock_irq(&lock->wait_lock); + + /* If owner is not blocked, end of chain. */ + if (!next_lock) + goto out_put_task; + goto again; + } + + /* + * Store the current top waiter before doing the requeue + * operation on @lock. We need it for the boost/deboost + * decision below. + */ + prerequeue_top_waiter = rt_mutex_top_waiter(lock); + + /* [7] Requeue the waiter in the lock waiter tree. */ + rt_mutex_dequeue(lock, waiter); + + /* + * Update the waiter prio fields now that we're dequeued. + * + * These values can have changed through either: + * + * sys_sched_set_scheduler() / sys_sched_setattr() + * + * or + * + * DL CBS enforcement advancing the effective deadline. + * + * Even though pi_waiters also uses these fields, and that tree is only + * updated in [11], we can do this here, since we hold [L], which + * serializes all pi_waiters access and rb_erase() does not care about + * the values of the node being removed. + */ + waiter->prio = task->prio; + waiter->deadline = task->dl.deadline; + + rt_mutex_enqueue(lock, waiter); + + /* [8] Release the task */ + raw_spin_unlock(&task->pi_lock); + put_task_struct(task); + + /* + * [9] check_exit_conditions_3 protected by lock->wait_lock. + * + * We must abort the chain walk if there is no lock owner even + * in the dead lock detection case, as we have nothing to + * follow here. This is the end of the chain we are walking. + */ + if (!rt_mutex_owner(lock)) { + /* + * If the requeue [7] above changed the top waiter, + * then we need to wake the new top waiter up to try + * to get the lock. + */ + if (prerequeue_top_waiter != rt_mutex_top_waiter(lock)) + wake_up_process(rt_mutex_top_waiter(lock)->task); + raw_spin_unlock_irq(&lock->wait_lock); + return 0; + } + + /* [10] Grab the next task, i.e. the owner of @lock */ + task = rt_mutex_owner(lock); + get_task_struct(task); + raw_spin_lock(&task->pi_lock); + + /* [11] requeue the pi waiters if necessary */ + if (waiter == rt_mutex_top_waiter(lock)) { + /* + * The waiter became the new top (highest priority) + * waiter on the lock. Replace the previous top waiter + * in the owner tasks pi waiters tree with this waiter + * and adjust the priority of the owner. + */ + rt_mutex_dequeue_pi(task, prerequeue_top_waiter); + rt_mutex_enqueue_pi(task, waiter); + rt_mutex_adjust_prio(task); + + } else if (prerequeue_top_waiter == waiter) { + /* + * The waiter was the top waiter on the lock, but is + * no longer the top prority waiter. Replace waiter in + * the owner tasks pi waiters tree with the new top + * (highest priority) waiter and adjust the priority + * of the owner. + * The new top waiter is stored in @waiter so that + * @waiter == @top_waiter evaluates to true below and + * we continue to deboost the rest of the chain. + */ + rt_mutex_dequeue_pi(task, waiter); + waiter = rt_mutex_top_waiter(lock); + rt_mutex_enqueue_pi(task, waiter); + rt_mutex_adjust_prio(task); + } else { + /* + * Nothing changed. No need to do any priority + * adjustment. + */ + } + + /* + * [12] check_exit_conditions_4() protected by task->pi_lock + * and lock->wait_lock. The actual decisions are made after we + * dropped the locks. + * + * Check whether the task which owns the current lock is pi + * blocked itself. If yes we store a pointer to the lock for + * the lock chain change detection above. After we dropped + * task->pi_lock next_lock cannot be dereferenced anymore. + */ + next_lock = task_blocked_on_lock(task); + /* + * Store the top waiter of @lock for the end of chain walk + * decision below. + */ + top_waiter = rt_mutex_top_waiter(lock); + + /* [13] Drop the locks */ + raw_spin_unlock(&task->pi_lock); + raw_spin_unlock_irq(&lock->wait_lock); + + /* + * Make the actual exit decisions [12], based on the stored + * values. + * + * We reached the end of the lock chain. Stop right here. No + * point to go back just to figure that out. + */ + if (!next_lock) + goto out_put_task; + + /* + * If the current waiter is not the top waiter on the lock, + * then we can stop the chain walk here if we are not in full + * deadlock detection mode. + */ + if (!detect_deadlock && waiter != top_waiter) + goto out_put_task; + + goto again; + + out_unlock_pi: + raw_spin_unlock_irq(&task->pi_lock); + out_put_task: + put_task_struct(task); + + return ret; +} + +/* + * Try to take an rt-mutex + * + * Must be called with lock->wait_lock held and interrupts disabled + * + * @lock: The lock to be acquired. + * @task: The task which wants to acquire the lock + * @waiter: The waiter that is queued to the lock's wait tree if the + * callsite called task_blocked_on_lock(), otherwise NULL + */ +static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, + struct rt_mutex_waiter *waiter) +{ + lockdep_assert_held(&lock->wait_lock); + + /* + * Before testing whether we can acquire @lock, we set the + * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all + * other tasks which try to modify @lock into the slow path + * and they serialize on @lock->wait_lock. + * + * The RT_MUTEX_HAS_WAITERS bit can have a transitional state + * as explained at the top of this file if and only if: + * + * - There is a lock owner. The caller must fixup the + * transient state if it does a trylock or leaves the lock + * function due to a signal or timeout. + * + * - @task acquires the lock and there are no other + * waiters. This is undone in rt_mutex_set_owner(@task) at + * the end of this function. + */ + mark_rt_mutex_waiters(lock); + + /* + * If @lock has an owner, give up. + */ + if (rt_mutex_owner(lock)) + return 0; + + /* + * If @waiter != NULL, @task has already enqueued the waiter + * into @lock waiter tree. If @waiter == NULL then this is a + * trylock attempt. + */ + if (waiter) { + /* + * If waiter is not the highest priority waiter of + * @lock, give up. + */ + if (waiter != rt_mutex_top_waiter(lock)) + return 0; + + /* + * We can acquire the lock. Remove the waiter from the + * lock waiters tree. + */ + rt_mutex_dequeue(lock, waiter); + + } else { + /* + * If the lock has waiters already we check whether @task is + * eligible to take over the lock. + * + * If there are no other waiters, @task can acquire + * the lock. @task->pi_blocked_on is NULL, so it does + * not need to be dequeued. + */ + if (rt_mutex_has_waiters(lock)) { + /* + * If @task->prio is greater than or equal to + * the top waiter priority (kernel view), + * @task lost. + */ + if (!rt_mutex_waiter_less(task_to_waiter(task), + rt_mutex_top_waiter(lock))) + return 0; + + /* + * The current top waiter stays enqueued. We + * don't have to change anything in the lock + * waiters order. + */ + } else { + /* + * No waiters. Take the lock without the + * pi_lock dance.@task->pi_blocked_on is NULL + * and we have no waiters to enqueue in @task + * pi waiters tree. + */ + goto takeit; + } + } + + /* + * Clear @task->pi_blocked_on. Requires protection by + * @task->pi_lock. Redundant operation for the @waiter == NULL + * case, but conditionals are more expensive than a redundant + * store. + */ + raw_spin_lock(&task->pi_lock); + task->pi_blocked_on = NULL; + /* + * Finish the lock acquisition. @task is the new owner. If + * other waiters exist we have to insert the highest priority + * waiter into @task->pi_waiters tree. + */ + if (rt_mutex_has_waiters(lock)) + rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock)); + raw_spin_unlock(&task->pi_lock); + +takeit: + /* We got the lock. */ + debug_rt_mutex_lock(lock); + + /* + * This either preserves the RT_MUTEX_HAS_WAITERS bit if there + * are still waiters or clears it. + */ + rt_mutex_set_owner(lock, task); + + return 1; +} + +/* + * Task blocks on lock. + * + * Prepare waiter and propagate pi chain + * + * This must be called with lock->wait_lock held and interrupts disabled + */ +static int task_blocks_on_rt_mutex(struct rt_mutex *lock, + struct rt_mutex_waiter *waiter, + struct task_struct *task, + enum rtmutex_chainwalk chwalk) +{ + struct task_struct *owner = rt_mutex_owner(lock); + struct rt_mutex_waiter *top_waiter = waiter; + struct rt_mutex *next_lock; + int chain_walk = 0, res; + + lockdep_assert_held(&lock->wait_lock); + + /* + * Early deadlock detection. We really don't want the task to + * enqueue on itself just to untangle the mess later. It's not + * only an optimization. We drop the locks, so another waiter + * can come in before the chain walk detects the deadlock. So + * the other will detect the deadlock and return -EDEADLOCK, + * which is wrong, as the other waiter is not in a deadlock + * situation. + */ + if (owner == task) + return -EDEADLK; + + raw_spin_lock(&task->pi_lock); + waiter->task = task; + waiter->lock = lock; + waiter->prio = task->prio; + waiter->deadline = task->dl.deadline; + + /* Get the top priority waiter on the lock */ + if (rt_mutex_has_waiters(lock)) + top_waiter = rt_mutex_top_waiter(lock); + rt_mutex_enqueue(lock, waiter); + + task->pi_blocked_on = waiter; + + raw_spin_unlock(&task->pi_lock); + + if (!owner) + return 0; + + raw_spin_lock(&owner->pi_lock); + if (waiter == rt_mutex_top_waiter(lock)) { + rt_mutex_dequeue_pi(owner, top_waiter); + rt_mutex_enqueue_pi(owner, waiter); + + rt_mutex_adjust_prio(owner); + if (owner->pi_blocked_on) + chain_walk = 1; + } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) { + chain_walk = 1; + } + + /* Store the lock on which owner is blocked or NULL */ + next_lock = task_blocked_on_lock(owner); + + raw_spin_unlock(&owner->pi_lock); + /* + * Even if full deadlock detection is on, if the owner is not + * blocked itself, we can avoid finding this out in the chain + * walk. + */ + if (!chain_walk || !next_lock) + return 0; + + /* + * The owner can't disappear while holding a lock, + * so the owner struct is protected by wait_lock. + * Gets dropped in rt_mutex_adjust_prio_chain()! + */ + get_task_struct(owner); + + raw_spin_unlock_irq(&lock->wait_lock); + + res = rt_mutex_adjust_prio_chain(owner, chwalk, lock, + next_lock, waiter, task); + + raw_spin_lock_irq(&lock->wait_lock); + + return res; +} + +/* + * Remove the top waiter from the current tasks pi waiter tree and + * queue it up. + * + * Called with lock->wait_lock held and interrupts disabled. + */ +static void mark_wakeup_next_waiter(struct wake_q_head *wake_q, + struct rt_mutex *lock) +{ + struct rt_mutex_waiter *waiter; + + raw_spin_lock(¤t->pi_lock); + + waiter = rt_mutex_top_waiter(lock); + + /* + * Remove it from current->pi_waiters and deboost. + * + * We must in fact deboost here in order to ensure we call + * rt_mutex_setprio() to update p->pi_top_task before the + * task unblocks. + */ + rt_mutex_dequeue_pi(current, waiter); + rt_mutex_adjust_prio(current); + + /* + * As we are waking up the top waiter, and the waiter stays + * queued on the lock until it gets the lock, this lock + * obviously has waiters. Just set the bit here and this has + * the added benefit of forcing all new tasks into the + * slow path making sure no task of lower priority than + * the top waiter can steal this lock. + */ + lock->owner = (void *) RT_MUTEX_HAS_WAITERS; + + /* + * We deboosted before waking the top waiter task such that we don't + * run two tasks with the 'same' priority (and ensure the + * p->pi_top_task pointer points to a blocked task). This however can + * lead to priority inversion if we would get preempted after the + * deboost but before waking our donor task, hence the preempt_disable() + * before unlock. + * + * Pairs with preempt_enable() in rt_mutex_postunlock(); + */ + preempt_disable(); + wake_q_add(wake_q, waiter->task); + raw_spin_unlock(¤t->pi_lock); +} + +/* + * Remove a waiter from a lock and give up + * + * Must be called with lock->wait_lock held and interrupts disabled. I must + * have just failed to try_to_take_rt_mutex(). + */ +static void remove_waiter(struct rt_mutex *lock, + struct rt_mutex_waiter *waiter) +{ + bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock)); + struct task_struct *owner = rt_mutex_owner(lock); + struct rt_mutex *next_lock; + + lockdep_assert_held(&lock->wait_lock); + + raw_spin_lock(¤t->pi_lock); + rt_mutex_dequeue(lock, waiter); + current->pi_blocked_on = NULL; + raw_spin_unlock(¤t->pi_lock); + + /* + * Only update priority if the waiter was the highest priority + * waiter of the lock and there is an owner to update. + */ + if (!owner || !is_top_waiter) + return; + + raw_spin_lock(&owner->pi_lock); + + rt_mutex_dequeue_pi(owner, waiter); + + if (rt_mutex_has_waiters(lock)) + rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock)); + + rt_mutex_adjust_prio(owner); + + /* Store the lock on which owner is blocked or NULL */ + next_lock = task_blocked_on_lock(owner); + + raw_spin_unlock(&owner->pi_lock); + + /* + * Don't walk the chain, if the owner task is not blocked + * itself. + */ + if (!next_lock) + return; + + /* gets dropped in rt_mutex_adjust_prio_chain()! */ + get_task_struct(owner); + + raw_spin_unlock_irq(&lock->wait_lock); + + rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock, + next_lock, NULL, current); + + raw_spin_lock_irq(&lock->wait_lock); +} + +/* + * Recheck the pi chain, in case we got a priority setting + * + * Called from sched_setscheduler + */ +void rt_mutex_adjust_pi(struct task_struct *task) +{ + struct rt_mutex_waiter *waiter; + struct rt_mutex *next_lock; + unsigned long flags; + + raw_spin_lock_irqsave(&task->pi_lock, flags); + + waiter = task->pi_blocked_on; + if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) { + raw_spin_unlock_irqrestore(&task->pi_lock, flags); + return; + } + next_lock = waiter->lock; + raw_spin_unlock_irqrestore(&task->pi_lock, flags); + + /* gets dropped in rt_mutex_adjust_prio_chain()! */ + get_task_struct(task); + + rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL, + next_lock, NULL, task); +} + +void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter) +{ + debug_rt_mutex_init_waiter(waiter); + RB_CLEAR_NODE(&waiter->pi_tree_entry); + RB_CLEAR_NODE(&waiter->tree_entry); + waiter->task = NULL; +} + +/** + * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop + * @lock: the rt_mutex to take + * @state: the state the task should block in (TASK_INTERRUPTIBLE + * or TASK_UNINTERRUPTIBLE) + * @timeout: the pre-initialized and started timer, or NULL for none + * @waiter: the pre-initialized rt_mutex_waiter + * + * Must be called with lock->wait_lock held and interrupts disabled + */ +static int __sched +__rt_mutex_slowlock(struct rt_mutex *lock, int state, + struct hrtimer_sleeper *timeout, + struct rt_mutex_waiter *waiter) +{ + int ret = 0; + + for (;;) { + /* Try to acquire the lock: */ + if (try_to_take_rt_mutex(lock, current, waiter)) + break; + + /* + * TASK_INTERRUPTIBLE checks for signals and + * timeout. Ignored otherwise. + */ + if (likely(state == TASK_INTERRUPTIBLE)) { + /* Signal pending? */ + if (signal_pending(current)) + ret = -EINTR; + if (timeout && !timeout->task) + ret = -ETIMEDOUT; + if (ret) + break; + } + + raw_spin_unlock_irq(&lock->wait_lock); + + debug_rt_mutex_print_deadlock(waiter); + + schedule(); + + raw_spin_lock_irq(&lock->wait_lock); + set_current_state(state); + } + + __set_current_state(TASK_RUNNING); + return ret; +} + +static void rt_mutex_handle_deadlock(int res, int detect_deadlock, + struct rt_mutex_waiter *w) +{ + /* + * If the result is not -EDEADLOCK or the caller requested + * deadlock detection, nothing to do here. + */ + if (res != -EDEADLOCK || detect_deadlock) + return; + + /* + * Yell lowdly and stop the task right here. + */ + rt_mutex_print_deadlock(w); + while (1) { + set_current_state(TASK_INTERRUPTIBLE); + schedule(); + } +} + +/* + * Slow path lock function: + */ +static int __sched +rt_mutex_slowlock(struct rt_mutex *lock, int state, + struct hrtimer_sleeper *timeout, + enum rtmutex_chainwalk chwalk) +{ + struct rt_mutex_waiter waiter; + unsigned long flags; + int ret = 0; + + rt_mutex_init_waiter(&waiter); + + /* + * Technically we could use raw_spin_[un]lock_irq() here, but this can + * be called in early boot if the cmpxchg() fast path is disabled + * (debug, no architecture support). In this case we will acquire the + * rtmutex with lock->wait_lock held. But we cannot unconditionally + * enable interrupts in that early boot case. So we need to use the + * irqsave/restore variants. + */ + raw_spin_lock_irqsave(&lock->wait_lock, flags); + + /* Try to acquire the lock again: */ + if (try_to_take_rt_mutex(lock, current, NULL)) { + raw_spin_unlock_irqrestore(&lock->wait_lock, flags); + return 0; + } + + set_current_state(state); + + /* Setup the timer, when timeout != NULL */ + if (unlikely(timeout)) + hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); + + ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk); + + if (likely(!ret)) + /* sleep on the mutex */ + ret = __rt_mutex_slowlock(lock, state, timeout, &waiter); + + if (unlikely(ret)) { + __set_current_state(TASK_RUNNING); + remove_waiter(lock, &waiter); + rt_mutex_handle_deadlock(ret, chwalk, &waiter); + } + + /* + * try_to_take_rt_mutex() sets the waiter bit + * unconditionally. We might have to fix that up. + */ + fixup_rt_mutex_waiters(lock); + + raw_spin_unlock_irqrestore(&lock->wait_lock, flags); + + /* Remove pending timer: */ + if (unlikely(timeout)) + hrtimer_cancel(&timeout->timer); + + debug_rt_mutex_free_waiter(&waiter); + + return ret; +} + +static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock) +{ + int ret = try_to_take_rt_mutex(lock, current, NULL); + + /* + * try_to_take_rt_mutex() sets the lock waiters bit + * unconditionally. Clean this up. + */ + fixup_rt_mutex_waiters(lock); + + return ret; +} + +/* + * Slow path try-lock function: + */ +static inline int rt_mutex_slowtrylock(struct rt_mutex *lock) +{ + unsigned long flags; + int ret; + + /* + * If the lock already has an owner we fail to get the lock. + * This can be done without taking the @lock->wait_lock as + * it is only being read, and this is a trylock anyway. + */ + if (rt_mutex_owner(lock)) + return 0; + + /* + * The mutex has currently no owner. Lock the wait lock and try to + * acquire the lock. We use irqsave here to support early boot calls. + */ + raw_spin_lock_irqsave(&lock->wait_lock, flags); + + ret = __rt_mutex_slowtrylock(lock); + + raw_spin_unlock_irqrestore(&lock->wait_lock, flags); + + return ret; +} + +/* + * Slow path to release a rt-mutex. + * + * Return whether the current task needs to call rt_mutex_postunlock(). + */ +static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock, + struct wake_q_head *wake_q) +{ + unsigned long flags; + + /* irqsave required to support early boot calls */ + raw_spin_lock_irqsave(&lock->wait_lock, flags); + + debug_rt_mutex_unlock(lock); + + /* + * We must be careful here if the fast path is enabled. If we + * have no waiters queued we cannot set owner to NULL here + * because of: + * + * foo->lock->owner = NULL; + * rtmutex_lock(foo->lock); <- fast path + * free = atomic_dec_and_test(foo->refcnt); + * rtmutex_unlock(foo->lock); <- fast path + * if (free) + * kfree(foo); + * raw_spin_unlock(foo->lock->wait_lock); + * + * So for the fastpath enabled kernel: + * + * Nothing can set the waiters bit as long as we hold + * lock->wait_lock. So we do the following sequence: + * + * owner = rt_mutex_owner(lock); + * clear_rt_mutex_waiters(lock); + * raw_spin_unlock(&lock->wait_lock); + * if (cmpxchg(&lock->owner, owner, 0) == owner) + * return; + * goto retry; + * + * The fastpath disabled variant is simple as all access to + * lock->owner is serialized by lock->wait_lock: + * + * lock->owner = NULL; + * raw_spin_unlock(&lock->wait_lock); + */ + while (!rt_mutex_has_waiters(lock)) { + /* Drops lock->wait_lock ! */ + if (unlock_rt_mutex_safe(lock, flags) == true) + return false; + /* Relock the rtmutex and try again */ + raw_spin_lock_irqsave(&lock->wait_lock, flags); + } + + /* + * The wakeup next waiter path does not suffer from the above + * race. See the comments there. + * + * Queue the next waiter for wakeup once we release the wait_lock. + */ + mark_wakeup_next_waiter(wake_q, lock); + raw_spin_unlock_irqrestore(&lock->wait_lock, flags); + + return true; /* call rt_mutex_postunlock() */ +} + +/* + * debug aware fast / slowpath lock,trylock,unlock + * + * The atomic acquire/release ops are compiled away, when either the + * architecture does not support cmpxchg or when debugging is enabled. + */ +static inline int +rt_mutex_fastlock(struct rt_mutex *lock, int state, + int (*slowfn)(struct rt_mutex *lock, int state, + struct hrtimer_sleeper *timeout, + enum rtmutex_chainwalk chwalk)) +{ + if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) + return 0; + + return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK); +} + +static inline int +rt_mutex_timed_fastlock(struct rt_mutex *lock, int state, + struct hrtimer_sleeper *timeout, + enum rtmutex_chainwalk chwalk, + int (*slowfn)(struct rt_mutex *lock, int state, + struct hrtimer_sleeper *timeout, + enum rtmutex_chainwalk chwalk)) +{ + if (chwalk == RT_MUTEX_MIN_CHAINWALK && + likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) + return 0; + + return slowfn(lock, state, timeout, chwalk); +} + +static inline int +rt_mutex_fasttrylock(struct rt_mutex *lock, + int (*slowfn)(struct rt_mutex *lock)) +{ + if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) + return 1; + + return slowfn(lock); +} + +/* + * Performs the wakeup of the the top-waiter and re-enables preemption. + */ +void rt_mutex_postunlock(struct wake_q_head *wake_q) +{ + wake_up_q(wake_q); + + /* Pairs with preempt_disable() in rt_mutex_slowunlock() */ + preempt_enable(); +} + +static inline void +rt_mutex_fastunlock(struct rt_mutex *lock, + bool (*slowfn)(struct rt_mutex *lock, + struct wake_q_head *wqh)) +{ + DEFINE_WAKE_Q(wake_q); + + if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) + return; + + if (slowfn(lock, &wake_q)) + rt_mutex_postunlock(&wake_q); +} + +static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass) +{ + might_sleep(); + + mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_); + rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock); +} + +#ifdef CONFIG_DEBUG_LOCK_ALLOC +/** + * rt_mutex_lock_nested - lock a rt_mutex + * + * @lock: the rt_mutex to be locked + * @subclass: the lockdep subclass + */ +void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass) +{ + __rt_mutex_lock(lock, subclass); +} +EXPORT_SYMBOL_GPL(rt_mutex_lock_nested); +#endif + +#ifndef CONFIG_DEBUG_LOCK_ALLOC +/** + * rt_mutex_lock - lock a rt_mutex + * + * @lock: the rt_mutex to be locked + */ +void __sched rt_mutex_lock(struct rt_mutex *lock) +{ + __rt_mutex_lock(lock, 0); +} +EXPORT_SYMBOL_GPL(rt_mutex_lock); +#endif + +/** + * rt_mutex_lock_interruptible - lock a rt_mutex interruptible + * + * @lock: the rt_mutex to be locked + * + * Returns: + * 0 on success + * -EINTR when interrupted by a signal + */ +int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock) +{ + int ret; + + might_sleep(); + + mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_); + ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock); + if (ret) + mutex_release(&lock->dep_map, 1, _RET_IP_); + + return ret; +} +EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); + +/* + * Futex variant, must not use fastpath. + */ +int __sched rt_mutex_futex_trylock(struct rt_mutex *lock) +{ + return rt_mutex_slowtrylock(lock); +} + +int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock) +{ + return __rt_mutex_slowtrylock(lock); +} + +/** + * rt_mutex_timed_lock - lock a rt_mutex interruptible + * the timeout structure is provided + * by the caller + * + * @lock: the rt_mutex to be locked + * @timeout: timeout structure or NULL (no timeout) + * + * Returns: + * 0 on success + * -EINTR when interrupted by a signal + * -ETIMEDOUT when the timeout expired + */ +int +rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout) +{ + int ret; + + might_sleep(); + + mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_); + ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout, + RT_MUTEX_MIN_CHAINWALK, + rt_mutex_slowlock); + if (ret) + mutex_release(&lock->dep_map, 1, _RET_IP_); + + return ret; +} +EXPORT_SYMBOL_GPL(rt_mutex_timed_lock); + +/** + * rt_mutex_trylock - try to lock a rt_mutex + * + * @lock: the rt_mutex to be locked + * + * This function can only be called in thread context. It's safe to + * call it from atomic regions, but not from hard interrupt or soft + * interrupt context. + * + * Returns 1 on success and 0 on contention + */ +int __sched rt_mutex_trylock(struct rt_mutex *lock) +{ + int ret; + + if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq())) + return 0; + + ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock); + if (ret) + mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); + + return ret; +} +EXPORT_SYMBOL_GPL(rt_mutex_trylock); + +/** + * rt_mutex_unlock - unlock a rt_mutex + * + * @lock: the rt_mutex to be unlocked + */ +void __sched rt_mutex_unlock(struct rt_mutex *lock) +{ + mutex_release(&lock->dep_map, 1, _RET_IP_); + rt_mutex_fastunlock(lock, rt_mutex_slowunlock); +} +EXPORT_SYMBOL_GPL(rt_mutex_unlock); + +/** + * Futex variant, that since futex variants do not use the fast-path, can be + * simple and will not need to retry. + */ +bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock, + struct wake_q_head *wake_q) +{ + lockdep_assert_held(&lock->wait_lock); + + debug_rt_mutex_unlock(lock); + + if (!rt_mutex_has_waiters(lock)) { + lock->owner = NULL; + return false; /* done */ + } + + /* + * We've already deboosted, mark_wakeup_next_waiter() will + * retain preempt_disabled when we drop the wait_lock, to + * avoid inversion prior to the wakeup. preempt_disable() + * therein pairs with rt_mutex_postunlock(). + */ + mark_wakeup_next_waiter(wake_q, lock); + + return true; /* call postunlock() */ +} + +void __sched rt_mutex_futex_unlock(struct rt_mutex *lock) +{ + DEFINE_WAKE_Q(wake_q); + unsigned long flags; + bool postunlock; + + raw_spin_lock_irqsave(&lock->wait_lock, flags); + postunlock = __rt_mutex_futex_unlock(lock, &wake_q); + raw_spin_unlock_irqrestore(&lock->wait_lock, flags); + + if (postunlock) + rt_mutex_postunlock(&wake_q); +} + +/** + * rt_mutex_destroy - mark a mutex unusable + * @lock: the mutex to be destroyed + * + * This function marks the mutex uninitialized, and any subsequent + * use of the mutex is forbidden. The mutex must not be locked when + * this function is called. + */ +void rt_mutex_destroy(struct rt_mutex *lock) +{ + WARN_ON(rt_mutex_is_locked(lock)); +#ifdef CONFIG_DEBUG_RT_MUTEXES + lock->magic = NULL; +#endif +} +EXPORT_SYMBOL_GPL(rt_mutex_destroy); + +/** + * __rt_mutex_init - initialize the rt lock + * + * @lock: the rt lock to be initialized + * + * Initialize the rt lock to unlocked state. + * + * Initializing of a locked rt lock is not allowed + */ +void __rt_mutex_init(struct rt_mutex *lock, const char *name, + struct lock_class_key *key) +{ + lock->owner = NULL; + raw_spin_lock_init(&lock->wait_lock); + lock->waiters = RB_ROOT_CACHED; + + if (name && key) + debug_rt_mutex_init(lock, name, key); +} +EXPORT_SYMBOL_GPL(__rt_mutex_init); + +/** + * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a + * proxy owner + * + * @lock: the rt_mutex to be locked + * @proxy_owner:the task to set as owner + * + * No locking. Caller has to do serializing itself + * + * Special API call for PI-futex support. This initializes the rtmutex and + * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not + * possible at this point because the pi_state which contains the rtmutex + * is not yet visible to other tasks. + */ +void rt_mutex_init_proxy_locked(struct rt_mutex *lock, + struct task_struct *proxy_owner) +{ + __rt_mutex_init(lock, NULL, NULL); + debug_rt_mutex_proxy_lock(lock, proxy_owner); + rt_mutex_set_owner(lock, proxy_owner); +} + +/** + * rt_mutex_proxy_unlock - release a lock on behalf of owner + * + * @lock: the rt_mutex to be locked + * + * No locking. Caller has to do serializing itself + * + * Special API call for PI-futex support. This merrily cleans up the rtmutex + * (debugging) state. Concurrent operations on this rt_mutex are not + * possible because it belongs to the pi_state which is about to be freed + * and it is not longer visible to other tasks. + */ +void rt_mutex_proxy_unlock(struct rt_mutex *lock) +{ + debug_rt_mutex_proxy_unlock(lock); + rt_mutex_set_owner(lock, NULL); +} + +/** + * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task + * @lock: the rt_mutex to take + * @waiter: the pre-initialized rt_mutex_waiter + * @task: the task to prepare + * + * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock + * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that. + * + * NOTE: does _NOT_ remove the @waiter on failure; must either call + * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this. + * + * Returns: + * 0 - task blocked on lock + * 1 - acquired the lock for task, caller should wake it up + * <0 - error + * + * Special API call for PI-futex support. + */ +int __rt_mutex_start_proxy_lock(struct rt_mutex *lock, + struct rt_mutex_waiter *waiter, + struct task_struct *task) +{ + int ret; + + lockdep_assert_held(&lock->wait_lock); + + if (try_to_take_rt_mutex(lock, task, NULL)) + return 1; + + /* We enforce deadlock detection for futexes */ + ret = task_blocks_on_rt_mutex(lock, waiter, task, + RT_MUTEX_FULL_CHAINWALK); + + if (ret && !rt_mutex_owner(lock)) { + /* + * Reset the return value. We might have + * returned with -EDEADLK and the owner + * released the lock while we were walking the + * pi chain. Let the waiter sort it out. + */ + ret = 0; + } + + debug_rt_mutex_print_deadlock(waiter); + + return ret; +} + +/** + * rt_mutex_start_proxy_lock() - Start lock acquisition for another task + * @lock: the rt_mutex to take + * @waiter: the pre-initialized rt_mutex_waiter + * @task: the task to prepare + * + * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock + * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that. + * + * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter + * on failure. + * + * Returns: + * 0 - task blocked on lock + * 1 - acquired the lock for task, caller should wake it up + * <0 - error + * + * Special API call for PI-futex support. + */ +int rt_mutex_start_proxy_lock(struct rt_mutex *lock, + struct rt_mutex_waiter *waiter, + struct task_struct *task) +{ + int ret; + + raw_spin_lock_irq(&lock->wait_lock); + ret = __rt_mutex_start_proxy_lock(lock, waiter, task); + if (unlikely(ret)) + remove_waiter(lock, waiter); + raw_spin_unlock_irq(&lock->wait_lock); + + return ret; +} + +/** + * rt_mutex_next_owner - return the next owner of the lock + * + * @lock: the rt lock query + * + * Returns the next owner of the lock or NULL + * + * Caller has to serialize against other accessors to the lock + * itself. + * + * Special API call for PI-futex support + */ +struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock) +{ + if (!rt_mutex_has_waiters(lock)) + return NULL; + + return rt_mutex_top_waiter(lock)->task; +} + +/** + * rt_mutex_wait_proxy_lock() - Wait for lock acquisition + * @lock: the rt_mutex we were woken on + * @to: the timeout, null if none. hrtimer should already have + * been started. + * @waiter: the pre-initialized rt_mutex_waiter + * + * Wait for the the lock acquisition started on our behalf by + * rt_mutex_start_proxy_lock(). Upon failure, the caller must call + * rt_mutex_cleanup_proxy_lock(). + * + * Returns: + * 0 - success + * <0 - error, one of -EINTR, -ETIMEDOUT + * + * Special API call for PI-futex support + */ +int rt_mutex_wait_proxy_lock(struct rt_mutex *lock, + struct hrtimer_sleeper *to, + struct rt_mutex_waiter *waiter) +{ + int ret; + + raw_spin_lock_irq(&lock->wait_lock); + /* sleep on the mutex */ + set_current_state(TASK_INTERRUPTIBLE); + ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter); + /* + * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might + * have to fix that up. + */ + fixup_rt_mutex_waiters(lock); + raw_spin_unlock_irq(&lock->wait_lock); + + return ret; +} + +/** + * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition + * @lock: the rt_mutex we were woken on + * @waiter: the pre-initialized rt_mutex_waiter + * + * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or + * rt_mutex_wait_proxy_lock(). + * + * Unless we acquired the lock; we're still enqueued on the wait-list and can + * in fact still be granted ownership until we're removed. Therefore we can + * find we are in fact the owner and must disregard the + * rt_mutex_wait_proxy_lock() failure. + * + * Returns: + * true - did the cleanup, we done. + * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned, + * caller should disregards its return value. + * + * Special API call for PI-futex support + */ +bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock, + struct rt_mutex_waiter *waiter) +{ + bool cleanup = false; + + raw_spin_lock_irq(&lock->wait_lock); + /* + * Do an unconditional try-lock, this deals with the lock stealing + * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter() + * sets a NULL owner. + * + * We're not interested in the return value, because the subsequent + * test on rt_mutex_owner() will infer that. If the trylock succeeded, + * we will own the lock and it will have removed the waiter. If we + * failed the trylock, we're still not owner and we need to remove + * ourselves. + */ + try_to_take_rt_mutex(lock, current, waiter); + /* + * Unless we're the owner; we're still enqueued on the wait_list. + * So check if we became owner, if not, take us off the wait_list. + */ + if (rt_mutex_owner(lock) != current) { + remove_waiter(lock, waiter); + cleanup = true; + } + /* + * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might + * have to fix that up. + */ + fixup_rt_mutex_waiters(lock); + + raw_spin_unlock_irq(&lock->wait_lock); + + return cleanup; +} |