summaryrefslogtreecommitdiffstats
path: root/mm/kasan
diff options
context:
space:
mode:
Diffstat (limited to 'mm/kasan')
-rw-r--r--mm/kasan/Makefile11
-rw-r--r--mm/kasan/kasan.c903
-rw-r--r--mm/kasan/kasan.h167
-rw-r--r--mm/kasan/kasan_init.c492
-rw-r--r--mm/kasan/quarantine.c328
-rw-r--r--mm/kasan/report.c451
6 files changed, 2352 insertions, 0 deletions
diff --git a/mm/kasan/Makefile b/mm/kasan/Makefile
new file mode 100644
index 000000000..3289db38b
--- /dev/null
+++ b/mm/kasan/Makefile
@@ -0,0 +1,11 @@
+# SPDX-License-Identifier: GPL-2.0
+KASAN_SANITIZE := n
+UBSAN_SANITIZE_kasan.o := n
+KCOV_INSTRUMENT := n
+
+CFLAGS_REMOVE_kasan.o = -pg
+# Function splitter causes unnecessary splits in __asan_load1/__asan_store1
+# see: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63533
+CFLAGS_kasan.o := $(call cc-option, -fno-conserve-stack -fno-stack-protector)
+
+obj-y := kasan.o report.o kasan_init.o quarantine.o
diff --git a/mm/kasan/kasan.c b/mm/kasan/kasan.c
new file mode 100644
index 000000000..c3bd5209d
--- /dev/null
+++ b/mm/kasan/kasan.c
@@ -0,0 +1,903 @@
+/*
+ * This file contains shadow memory manipulation code.
+ *
+ * Copyright (c) 2014 Samsung Electronics Co., Ltd.
+ * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
+ *
+ * Some code borrowed from https://github.com/xairy/kasan-prototype by
+ * Andrey Konovalov <andreyknvl@gmail.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+#define DISABLE_BRANCH_PROFILING
+
+#include <linux/export.h>
+#include <linux/interrupt.h>
+#include <linux/init.h>
+#include <linux/kasan.h>
+#include <linux/kernel.h>
+#include <linux/kmemleak.h>
+#include <linux/linkage.h>
+#include <linux/memblock.h>
+#include <linux/memory.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/printk.h>
+#include <linux/sched.h>
+#include <linux/sched/task_stack.h>
+#include <linux/slab.h>
+#include <linux/stacktrace.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/vmalloc.h>
+#include <linux/bug.h>
+
+#include "kasan.h"
+#include "../slab.h"
+
+void kasan_enable_current(void)
+{
+ current->kasan_depth++;
+}
+
+void kasan_disable_current(void)
+{
+ current->kasan_depth--;
+}
+
+/*
+ * Poisons the shadow memory for 'size' bytes starting from 'addr'.
+ * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
+ */
+static void kasan_poison_shadow(const void *address, size_t size, u8 value)
+{
+ void *shadow_start, *shadow_end;
+
+ shadow_start = kasan_mem_to_shadow(address);
+ shadow_end = kasan_mem_to_shadow(address + size);
+
+ memset(shadow_start, value, shadow_end - shadow_start);
+}
+
+void kasan_unpoison_shadow(const void *address, size_t size)
+{
+ kasan_poison_shadow(address, size, 0);
+
+ if (size & KASAN_SHADOW_MASK) {
+ u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
+ *shadow = size & KASAN_SHADOW_MASK;
+ }
+}
+
+static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
+{
+ void *base = task_stack_page(task);
+ size_t size = sp - base;
+
+ kasan_unpoison_shadow(base, size);
+}
+
+/* Unpoison the entire stack for a task. */
+void kasan_unpoison_task_stack(struct task_struct *task)
+{
+ __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
+}
+
+/* Unpoison the stack for the current task beyond a watermark sp value. */
+asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
+{
+ /*
+ * Calculate the task stack base address. Avoid using 'current'
+ * because this function is called by early resume code which hasn't
+ * yet set up the percpu register (%gs).
+ */
+ void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
+
+ kasan_unpoison_shadow(base, watermark - base);
+}
+
+/*
+ * Clear all poison for the region between the current SP and a provided
+ * watermark value, as is sometimes required prior to hand-crafted asm function
+ * returns in the middle of functions.
+ */
+void kasan_unpoison_stack_above_sp_to(const void *watermark)
+{
+ const void *sp = __builtin_frame_address(0);
+ size_t size = watermark - sp;
+
+ if (WARN_ON(sp > watermark))
+ return;
+ kasan_unpoison_shadow(sp, size);
+}
+
+/*
+ * All functions below always inlined so compiler could
+ * perform better optimizations in each of __asan_loadX/__assn_storeX
+ * depending on memory access size X.
+ */
+
+static __always_inline bool memory_is_poisoned_1(unsigned long addr)
+{
+ s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
+
+ if (unlikely(shadow_value)) {
+ s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
+ return unlikely(last_accessible_byte >= shadow_value);
+ }
+
+ return false;
+}
+
+static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr,
+ unsigned long size)
+{
+ u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr);
+
+ /*
+ * Access crosses 8(shadow size)-byte boundary. Such access maps
+ * into 2 shadow bytes, so we need to check them both.
+ */
+ if (unlikely(((addr + size - 1) & KASAN_SHADOW_MASK) < size - 1))
+ return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
+
+ return memory_is_poisoned_1(addr + size - 1);
+}
+
+static __always_inline bool memory_is_poisoned_16(unsigned long addr)
+{
+ u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
+
+ /* Unaligned 16-bytes access maps into 3 shadow bytes. */
+ if (unlikely(!IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
+ return *shadow_addr || memory_is_poisoned_1(addr + 15);
+
+ return *shadow_addr;
+}
+
+static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
+ size_t size)
+{
+ while (size) {
+ if (unlikely(*start))
+ return (unsigned long)start;
+ start++;
+ size--;
+ }
+
+ return 0;
+}
+
+static __always_inline unsigned long memory_is_nonzero(const void *start,
+ const void *end)
+{
+ unsigned int words;
+ unsigned long ret;
+ unsigned int prefix = (unsigned long)start % 8;
+
+ if (end - start <= 16)
+ return bytes_is_nonzero(start, end - start);
+
+ if (prefix) {
+ prefix = 8 - prefix;
+ ret = bytes_is_nonzero(start, prefix);
+ if (unlikely(ret))
+ return ret;
+ start += prefix;
+ }
+
+ words = (end - start) / 8;
+ while (words) {
+ if (unlikely(*(u64 *)start))
+ return bytes_is_nonzero(start, 8);
+ start += 8;
+ words--;
+ }
+
+ return bytes_is_nonzero(start, (end - start) % 8);
+}
+
+static __always_inline bool memory_is_poisoned_n(unsigned long addr,
+ size_t size)
+{
+ unsigned long ret;
+
+ ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr),
+ kasan_mem_to_shadow((void *)addr + size - 1) + 1);
+
+ if (unlikely(ret)) {
+ unsigned long last_byte = addr + size - 1;
+ s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
+
+ if (unlikely(ret != (unsigned long)last_shadow ||
+ ((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
+ return true;
+ }
+ return false;
+}
+
+static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
+{
+ if (__builtin_constant_p(size)) {
+ switch (size) {
+ case 1:
+ return memory_is_poisoned_1(addr);
+ case 2:
+ case 4:
+ case 8:
+ return memory_is_poisoned_2_4_8(addr, size);
+ case 16:
+ return memory_is_poisoned_16(addr);
+ default:
+ BUILD_BUG();
+ }
+ }
+
+ return memory_is_poisoned_n(addr, size);
+}
+
+static __always_inline void check_memory_region_inline(unsigned long addr,
+ size_t size, bool write,
+ unsigned long ret_ip)
+{
+ if (unlikely(size == 0))
+ return;
+
+ if (unlikely((void *)addr <
+ kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
+ kasan_report(addr, size, write, ret_ip);
+ return;
+ }
+
+ if (likely(!memory_is_poisoned(addr, size)))
+ return;
+
+ kasan_report(addr, size, write, ret_ip);
+}
+
+static void check_memory_region(unsigned long addr,
+ size_t size, bool write,
+ unsigned long ret_ip)
+{
+ check_memory_region_inline(addr, size, write, ret_ip);
+}
+
+void kasan_check_read(const volatile void *p, unsigned int size)
+{
+ check_memory_region((unsigned long)p, size, false, _RET_IP_);
+}
+EXPORT_SYMBOL(kasan_check_read);
+
+void kasan_check_write(const volatile void *p, unsigned int size)
+{
+ check_memory_region((unsigned long)p, size, true, _RET_IP_);
+}
+EXPORT_SYMBOL(kasan_check_write);
+
+#undef memset
+void *memset(void *addr, int c, size_t len)
+{
+ check_memory_region((unsigned long)addr, len, true, _RET_IP_);
+
+ return __memset(addr, c, len);
+}
+
+#undef memmove
+void *memmove(void *dest, const void *src, size_t len)
+{
+ check_memory_region((unsigned long)src, len, false, _RET_IP_);
+ check_memory_region((unsigned long)dest, len, true, _RET_IP_);
+
+ return __memmove(dest, src, len);
+}
+
+#undef memcpy
+void *memcpy(void *dest, const void *src, size_t len)
+{
+ check_memory_region((unsigned long)src, len, false, _RET_IP_);
+ check_memory_region((unsigned long)dest, len, true, _RET_IP_);
+
+ return __memcpy(dest, src, len);
+}
+
+void kasan_alloc_pages(struct page *page, unsigned int order)
+{
+ if (likely(!PageHighMem(page)))
+ kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
+}
+
+void kasan_free_pages(struct page *page, unsigned int order)
+{
+ if (likely(!PageHighMem(page)))
+ kasan_poison_shadow(page_address(page),
+ PAGE_SIZE << order,
+ KASAN_FREE_PAGE);
+}
+
+/*
+ * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
+ * For larger allocations larger redzones are used.
+ */
+static unsigned int optimal_redzone(unsigned int object_size)
+{
+ return
+ object_size <= 64 - 16 ? 16 :
+ object_size <= 128 - 32 ? 32 :
+ object_size <= 512 - 64 ? 64 :
+ object_size <= 4096 - 128 ? 128 :
+ object_size <= (1 << 14) - 256 ? 256 :
+ object_size <= (1 << 15) - 512 ? 512 :
+ object_size <= (1 << 16) - 1024 ? 1024 : 2048;
+}
+
+void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
+ slab_flags_t *flags)
+{
+ unsigned int orig_size = *size;
+ int redzone_adjust;
+
+ /* Add alloc meta. */
+ cache->kasan_info.alloc_meta_offset = *size;
+ *size += sizeof(struct kasan_alloc_meta);
+
+ /* Add free meta. */
+ if (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
+ cache->object_size < sizeof(struct kasan_free_meta)) {
+ cache->kasan_info.free_meta_offset = *size;
+ *size += sizeof(struct kasan_free_meta);
+ }
+ redzone_adjust = optimal_redzone(cache->object_size) -
+ (*size - cache->object_size);
+
+ if (redzone_adjust > 0)
+ *size += redzone_adjust;
+
+ *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
+ max(*size, cache->object_size +
+ optimal_redzone(cache->object_size)));
+
+ /*
+ * If the metadata doesn't fit, don't enable KASAN at all.
+ */
+ if (*size <= cache->kasan_info.alloc_meta_offset ||
+ *size <= cache->kasan_info.free_meta_offset) {
+ cache->kasan_info.alloc_meta_offset = 0;
+ cache->kasan_info.free_meta_offset = 0;
+ *size = orig_size;
+ return;
+ }
+
+ *flags |= SLAB_KASAN;
+}
+
+void kasan_cache_shrink(struct kmem_cache *cache)
+{
+ quarantine_remove_cache(cache);
+}
+
+void kasan_cache_shutdown(struct kmem_cache *cache)
+{
+ if (!__kmem_cache_empty(cache))
+ quarantine_remove_cache(cache);
+}
+
+size_t kasan_metadata_size(struct kmem_cache *cache)
+{
+ return (cache->kasan_info.alloc_meta_offset ?
+ sizeof(struct kasan_alloc_meta) : 0) +
+ (cache->kasan_info.free_meta_offset ?
+ sizeof(struct kasan_free_meta) : 0);
+}
+
+void kasan_poison_slab(struct page *page)
+{
+ kasan_poison_shadow(page_address(page),
+ PAGE_SIZE << compound_order(page),
+ KASAN_KMALLOC_REDZONE);
+}
+
+void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
+{
+ kasan_unpoison_shadow(object, cache->object_size);
+}
+
+void kasan_poison_object_data(struct kmem_cache *cache, void *object)
+{
+ kasan_poison_shadow(object,
+ round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
+ KASAN_KMALLOC_REDZONE);
+}
+
+static inline int in_irqentry_text(unsigned long ptr)
+{
+ return (ptr >= (unsigned long)&__irqentry_text_start &&
+ ptr < (unsigned long)&__irqentry_text_end) ||
+ (ptr >= (unsigned long)&__softirqentry_text_start &&
+ ptr < (unsigned long)&__softirqentry_text_end);
+}
+
+static inline void filter_irq_stacks(struct stack_trace *trace)
+{
+ int i;
+
+ if (!trace->nr_entries)
+ return;
+ for (i = 0; i < trace->nr_entries; i++)
+ if (in_irqentry_text(trace->entries[i])) {
+ /* Include the irqentry function into the stack. */
+ trace->nr_entries = i + 1;
+ break;
+ }
+}
+
+static inline depot_stack_handle_t save_stack(gfp_t flags)
+{
+ unsigned long entries[KASAN_STACK_DEPTH];
+ struct stack_trace trace = {
+ .nr_entries = 0,
+ .entries = entries,
+ .max_entries = KASAN_STACK_DEPTH,
+ .skip = 0
+ };
+
+ save_stack_trace(&trace);
+ filter_irq_stacks(&trace);
+ if (trace.nr_entries != 0 &&
+ trace.entries[trace.nr_entries-1] == ULONG_MAX)
+ trace.nr_entries--;
+
+ return depot_save_stack(&trace, flags);
+}
+
+static inline void set_track(struct kasan_track *track, gfp_t flags)
+{
+ track->pid = current->pid;
+ track->stack = save_stack(flags);
+}
+
+struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
+ const void *object)
+{
+ BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
+ return (void *)object + cache->kasan_info.alloc_meta_offset;
+}
+
+struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
+ const void *object)
+{
+ BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
+ return (void *)object + cache->kasan_info.free_meta_offset;
+}
+
+void kasan_init_slab_obj(struct kmem_cache *cache, const void *object)
+{
+ struct kasan_alloc_meta *alloc_info;
+
+ if (!(cache->flags & SLAB_KASAN))
+ return;
+
+ alloc_info = get_alloc_info(cache, object);
+ __memset(alloc_info, 0, sizeof(*alloc_info));
+}
+
+void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
+{
+ kasan_kmalloc(cache, object, cache->object_size, flags);
+}
+
+static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
+ unsigned long ip, bool quarantine)
+{
+ s8 shadow_byte;
+ unsigned long rounded_up_size;
+
+ if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
+ object)) {
+ kasan_report_invalid_free(object, ip);
+ return true;
+ }
+
+ /* RCU slabs could be legally used after free within the RCU period */
+ if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
+ return false;
+
+ shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
+ if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) {
+ kasan_report_invalid_free(object, ip);
+ return true;
+ }
+
+ rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
+ kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
+
+ if (!quarantine || unlikely(!(cache->flags & SLAB_KASAN)))
+ return false;
+
+ set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
+ quarantine_put(get_free_info(cache, object), cache);
+ return true;
+}
+
+bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
+{
+ return __kasan_slab_free(cache, object, ip, true);
+}
+
+void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
+ gfp_t flags)
+{
+ unsigned long redzone_start;
+ unsigned long redzone_end;
+
+ if (gfpflags_allow_blocking(flags))
+ quarantine_reduce();
+
+ if (unlikely(object == NULL))
+ return;
+
+ redzone_start = round_up((unsigned long)(object + size),
+ KASAN_SHADOW_SCALE_SIZE);
+ redzone_end = round_up((unsigned long)object + cache->object_size,
+ KASAN_SHADOW_SCALE_SIZE);
+
+ kasan_unpoison_shadow(object, size);
+ kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
+ KASAN_KMALLOC_REDZONE);
+
+ if (cache->flags & SLAB_KASAN)
+ set_track(&get_alloc_info(cache, object)->alloc_track, flags);
+}
+EXPORT_SYMBOL(kasan_kmalloc);
+
+void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
+{
+ struct page *page;
+ unsigned long redzone_start;
+ unsigned long redzone_end;
+
+ if (gfpflags_allow_blocking(flags))
+ quarantine_reduce();
+
+ if (unlikely(ptr == NULL))
+ return;
+
+ page = virt_to_page(ptr);
+ redzone_start = round_up((unsigned long)(ptr + size),
+ KASAN_SHADOW_SCALE_SIZE);
+ redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
+
+ kasan_unpoison_shadow(ptr, size);
+ kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
+ KASAN_PAGE_REDZONE);
+}
+
+void kasan_krealloc(const void *object, size_t size, gfp_t flags)
+{
+ struct page *page;
+
+ if (unlikely(object == ZERO_SIZE_PTR))
+ return;
+
+ page = virt_to_head_page(object);
+
+ if (unlikely(!PageSlab(page)))
+ kasan_kmalloc_large(object, size, flags);
+ else
+ kasan_kmalloc(page->slab_cache, object, size, flags);
+}
+
+void kasan_poison_kfree(void *ptr, unsigned long ip)
+{
+ struct page *page;
+
+ page = virt_to_head_page(ptr);
+
+ if (unlikely(!PageSlab(page))) {
+ if (ptr != page_address(page)) {
+ kasan_report_invalid_free(ptr, ip);
+ return;
+ }
+ kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
+ KASAN_FREE_PAGE);
+ } else {
+ __kasan_slab_free(page->slab_cache, ptr, ip, false);
+ }
+}
+
+void kasan_kfree_large(void *ptr, unsigned long ip)
+{
+ if (ptr != page_address(virt_to_head_page(ptr)))
+ kasan_report_invalid_free(ptr, ip);
+ /* The object will be poisoned by page_alloc. */
+}
+
+int kasan_module_alloc(void *addr, size_t size)
+{
+ void *ret;
+ size_t scaled_size;
+ size_t shadow_size;
+ unsigned long shadow_start;
+
+ shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
+ scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
+ shadow_size = round_up(scaled_size, PAGE_SIZE);
+
+ if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
+ return -EINVAL;
+
+ ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
+ shadow_start + shadow_size,
+ GFP_KERNEL | __GFP_ZERO,
+ PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
+ __builtin_return_address(0));
+
+ if (ret) {
+ find_vm_area(addr)->flags |= VM_KASAN;
+ kmemleak_ignore(ret);
+ return 0;
+ }
+
+ return -ENOMEM;
+}
+
+void kasan_free_shadow(const struct vm_struct *vm)
+{
+ if (vm->flags & VM_KASAN)
+ vfree(kasan_mem_to_shadow(vm->addr));
+}
+
+static void register_global(struct kasan_global *global)
+{
+ size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
+
+ kasan_unpoison_shadow(global->beg, global->size);
+
+ kasan_poison_shadow(global->beg + aligned_size,
+ global->size_with_redzone - aligned_size,
+ KASAN_GLOBAL_REDZONE);
+}
+
+void __asan_register_globals(struct kasan_global *globals, size_t size)
+{
+ int i;
+
+ for (i = 0; i < size; i++)
+ register_global(&globals[i]);
+}
+EXPORT_SYMBOL(__asan_register_globals);
+
+void __asan_unregister_globals(struct kasan_global *globals, size_t size)
+{
+}
+EXPORT_SYMBOL(__asan_unregister_globals);
+
+#define DEFINE_ASAN_LOAD_STORE(size) \
+ void __asan_load##size(unsigned long addr) \
+ { \
+ check_memory_region_inline(addr, size, false, _RET_IP_);\
+ } \
+ EXPORT_SYMBOL(__asan_load##size); \
+ __alias(__asan_load##size) \
+ void __asan_load##size##_noabort(unsigned long); \
+ EXPORT_SYMBOL(__asan_load##size##_noabort); \
+ void __asan_store##size(unsigned long addr) \
+ { \
+ check_memory_region_inline(addr, size, true, _RET_IP_); \
+ } \
+ EXPORT_SYMBOL(__asan_store##size); \
+ __alias(__asan_store##size) \
+ void __asan_store##size##_noabort(unsigned long); \
+ EXPORT_SYMBOL(__asan_store##size##_noabort)
+
+DEFINE_ASAN_LOAD_STORE(1);
+DEFINE_ASAN_LOAD_STORE(2);
+DEFINE_ASAN_LOAD_STORE(4);
+DEFINE_ASAN_LOAD_STORE(8);
+DEFINE_ASAN_LOAD_STORE(16);
+
+void __asan_loadN(unsigned long addr, size_t size)
+{
+ check_memory_region(addr, size, false, _RET_IP_);
+}
+EXPORT_SYMBOL(__asan_loadN);
+
+__alias(__asan_loadN)
+void __asan_loadN_noabort(unsigned long, size_t);
+EXPORT_SYMBOL(__asan_loadN_noabort);
+
+void __asan_storeN(unsigned long addr, size_t size)
+{
+ check_memory_region(addr, size, true, _RET_IP_);
+}
+EXPORT_SYMBOL(__asan_storeN);
+
+__alias(__asan_storeN)
+void __asan_storeN_noabort(unsigned long, size_t);
+EXPORT_SYMBOL(__asan_storeN_noabort);
+
+/* to shut up compiler complaints */
+void __asan_handle_no_return(void) {}
+EXPORT_SYMBOL(__asan_handle_no_return);
+
+/* Emitted by compiler to poison large objects when they go out of scope. */
+void __asan_poison_stack_memory(const void *addr, size_t size)
+{
+ /*
+ * Addr is KASAN_SHADOW_SCALE_SIZE-aligned and the object is surrounded
+ * by redzones, so we simply round up size to simplify logic.
+ */
+ kasan_poison_shadow(addr, round_up(size, KASAN_SHADOW_SCALE_SIZE),
+ KASAN_USE_AFTER_SCOPE);
+}
+EXPORT_SYMBOL(__asan_poison_stack_memory);
+
+/* Emitted by compiler to unpoison large objects when they go into scope. */
+void __asan_unpoison_stack_memory(const void *addr, size_t size)
+{
+ kasan_unpoison_shadow(addr, size);
+}
+EXPORT_SYMBOL(__asan_unpoison_stack_memory);
+
+/* Emitted by compiler to poison alloca()ed objects. */
+void __asan_alloca_poison(unsigned long addr, size_t size)
+{
+ size_t rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
+ size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
+ rounded_up_size;
+ size_t rounded_down_size = round_down(size, KASAN_SHADOW_SCALE_SIZE);
+
+ const void *left_redzone = (const void *)(addr -
+ KASAN_ALLOCA_REDZONE_SIZE);
+ const void *right_redzone = (const void *)(addr + rounded_up_size);
+
+ WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE));
+
+ kasan_unpoison_shadow((const void *)(addr + rounded_down_size),
+ size - rounded_down_size);
+ kasan_poison_shadow(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
+ KASAN_ALLOCA_LEFT);
+ kasan_poison_shadow(right_redzone,
+ padding_size + KASAN_ALLOCA_REDZONE_SIZE,
+ KASAN_ALLOCA_RIGHT);
+}
+EXPORT_SYMBOL(__asan_alloca_poison);
+
+/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
+void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom)
+{
+ if (unlikely(!stack_top || stack_top > stack_bottom))
+ return;
+
+ kasan_unpoison_shadow(stack_top, stack_bottom - stack_top);
+}
+EXPORT_SYMBOL(__asan_allocas_unpoison);
+
+/* Emitted by the compiler to [un]poison local variables. */
+#define DEFINE_ASAN_SET_SHADOW(byte) \
+ void __asan_set_shadow_##byte(const void *addr, size_t size) \
+ { \
+ __memset((void *)addr, 0x##byte, size); \
+ } \
+ EXPORT_SYMBOL(__asan_set_shadow_##byte)
+
+DEFINE_ASAN_SET_SHADOW(00);
+DEFINE_ASAN_SET_SHADOW(f1);
+DEFINE_ASAN_SET_SHADOW(f2);
+DEFINE_ASAN_SET_SHADOW(f3);
+DEFINE_ASAN_SET_SHADOW(f5);
+DEFINE_ASAN_SET_SHADOW(f8);
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+static bool shadow_mapped(unsigned long addr)
+{
+ pgd_t *pgd = pgd_offset_k(addr);
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ if (pgd_none(*pgd))
+ return false;
+ p4d = p4d_offset(pgd, addr);
+ if (p4d_none(*p4d))
+ return false;
+ pud = pud_offset(p4d, addr);
+ if (pud_none(*pud))
+ return false;
+
+ /*
+ * We can't use pud_large() or pud_huge(), the first one is
+ * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
+ * pud_bad(), if pud is bad then it's bad because it's huge.
+ */
+ if (pud_bad(*pud))
+ return true;
+ pmd = pmd_offset(pud, addr);
+ if (pmd_none(*pmd))
+ return false;
+
+ if (pmd_bad(*pmd))
+ return true;
+ pte = pte_offset_kernel(pmd, addr);
+ return !pte_none(*pte);
+}
+
+static int __meminit kasan_mem_notifier(struct notifier_block *nb,
+ unsigned long action, void *data)
+{
+ struct memory_notify *mem_data = data;
+ unsigned long nr_shadow_pages, start_kaddr, shadow_start;
+ unsigned long shadow_end, shadow_size;
+
+ nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
+ start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
+ shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
+ shadow_size = nr_shadow_pages << PAGE_SHIFT;
+ shadow_end = shadow_start + shadow_size;
+
+ if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
+ WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
+ return NOTIFY_BAD;
+
+ switch (action) {
+ case MEM_GOING_ONLINE: {
+ void *ret;
+
+ /*
+ * If shadow is mapped already than it must have been mapped
+ * during the boot. This could happen if we onlining previously
+ * offlined memory.
+ */
+ if (shadow_mapped(shadow_start))
+ return NOTIFY_OK;
+
+ ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
+ shadow_end, GFP_KERNEL,
+ PAGE_KERNEL, VM_NO_GUARD,
+ pfn_to_nid(mem_data->start_pfn),
+ __builtin_return_address(0));
+ if (!ret)
+ return NOTIFY_BAD;
+
+ kmemleak_ignore(ret);
+ return NOTIFY_OK;
+ }
+ case MEM_CANCEL_ONLINE:
+ case MEM_OFFLINE: {
+ struct vm_struct *vm;
+
+ /*
+ * shadow_start was either mapped during boot by kasan_init()
+ * or during memory online by __vmalloc_node_range().
+ * In the latter case we can use vfree() to free shadow.
+ * Non-NULL result of the find_vm_area() will tell us if
+ * that was the second case.
+ *
+ * Currently it's not possible to free shadow mapped
+ * during boot by kasan_init(). It's because the code
+ * to do that hasn't been written yet. So we'll just
+ * leak the memory.
+ */
+ vm = find_vm_area((void *)shadow_start);
+ if (vm)
+ vfree((void *)shadow_start);
+ }
+ }
+
+ return NOTIFY_OK;
+}
+
+static int __init kasan_memhotplug_init(void)
+{
+ hotplug_memory_notifier(kasan_mem_notifier, 0);
+
+ return 0;
+}
+
+core_initcall(kasan_memhotplug_init);
+#endif
diff --git a/mm/kasan/kasan.h b/mm/kasan/kasan.h
new file mode 100644
index 000000000..c12dcfde2
--- /dev/null
+++ b/mm/kasan/kasan.h
@@ -0,0 +1,167 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __MM_KASAN_KASAN_H
+#define __MM_KASAN_KASAN_H
+
+#include <linux/kasan.h>
+#include <linux/stackdepot.h>
+
+#define KASAN_SHADOW_SCALE_SIZE (1UL << KASAN_SHADOW_SCALE_SHIFT)
+#define KASAN_SHADOW_MASK (KASAN_SHADOW_SCALE_SIZE - 1)
+
+#define KASAN_FREE_PAGE 0xFF /* page was freed */
+#define KASAN_PAGE_REDZONE 0xFE /* redzone for kmalloc_large allocations */
+#define KASAN_KMALLOC_REDZONE 0xFC /* redzone inside slub object */
+#define KASAN_KMALLOC_FREE 0xFB /* object was freed (kmem_cache_free/kfree) */
+#define KASAN_GLOBAL_REDZONE 0xFA /* redzone for global variable */
+
+/*
+ * Stack redzone shadow values
+ * (Those are compiler's ABI, don't change them)
+ */
+#define KASAN_STACK_LEFT 0xF1
+#define KASAN_STACK_MID 0xF2
+#define KASAN_STACK_RIGHT 0xF3
+#define KASAN_STACK_PARTIAL 0xF4
+#define KASAN_USE_AFTER_SCOPE 0xF8
+
+/*
+ * alloca redzone shadow values
+ */
+#define KASAN_ALLOCA_LEFT 0xCA
+#define KASAN_ALLOCA_RIGHT 0xCB
+
+#define KASAN_ALLOCA_REDZONE_SIZE 32
+
+/* Don't break randconfig/all*config builds */
+#ifndef KASAN_ABI_VERSION
+#define KASAN_ABI_VERSION 1
+#endif
+
+struct kasan_access_info {
+ const void *access_addr;
+ const void *first_bad_addr;
+ size_t access_size;
+ bool is_write;
+ unsigned long ip;
+};
+
+/* The layout of struct dictated by compiler */
+struct kasan_source_location {
+ const char *filename;
+ int line_no;
+ int column_no;
+};
+
+/* The layout of struct dictated by compiler */
+struct kasan_global {
+ const void *beg; /* Address of the beginning of the global variable. */
+ size_t size; /* Size of the global variable. */
+ size_t size_with_redzone; /* Size of the variable + size of the red zone. 32 bytes aligned */
+ const void *name;
+ const void *module_name; /* Name of the module where the global variable is declared. */
+ unsigned long has_dynamic_init; /* This needed for C++ */
+#if KASAN_ABI_VERSION >= 4
+ struct kasan_source_location *location;
+#endif
+#if KASAN_ABI_VERSION >= 5
+ char *odr_indicator;
+#endif
+};
+
+/**
+ * Structures to keep alloc and free tracks *
+ */
+
+#define KASAN_STACK_DEPTH 64
+
+struct kasan_track {
+ u32 pid;
+ depot_stack_handle_t stack;
+};
+
+struct kasan_alloc_meta {
+ struct kasan_track alloc_track;
+ struct kasan_track free_track;
+};
+
+struct qlist_node {
+ struct qlist_node *next;
+};
+struct kasan_free_meta {
+ /* This field is used while the object is in the quarantine.
+ * Otherwise it might be used for the allocator freelist.
+ */
+ struct qlist_node quarantine_link;
+};
+
+struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
+ const void *object);
+struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
+ const void *object);
+
+static inline const void *kasan_shadow_to_mem(const void *shadow_addr)
+{
+ return (void *)(((unsigned long)shadow_addr - KASAN_SHADOW_OFFSET)
+ << KASAN_SHADOW_SCALE_SHIFT);
+}
+
+void kasan_report(unsigned long addr, size_t size,
+ bool is_write, unsigned long ip);
+void kasan_report_invalid_free(void *object, unsigned long ip);
+
+#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB)
+void quarantine_put(struct kasan_free_meta *info, struct kmem_cache *cache);
+void quarantine_reduce(void);
+void quarantine_remove_cache(struct kmem_cache *cache);
+#else
+static inline void quarantine_put(struct kasan_free_meta *info,
+ struct kmem_cache *cache) { }
+static inline void quarantine_reduce(void) { }
+static inline void quarantine_remove_cache(struct kmem_cache *cache) { }
+#endif
+
+/*
+ * Exported functions for interfaces called from assembly or from generated
+ * code. Declarations here to avoid warning about missing declarations.
+ */
+asmlinkage void kasan_unpoison_task_stack_below(const void *watermark);
+void __asan_register_globals(struct kasan_global *globals, size_t size);
+void __asan_unregister_globals(struct kasan_global *globals, size_t size);
+void __asan_loadN(unsigned long addr, size_t size);
+void __asan_storeN(unsigned long addr, size_t size);
+void __asan_handle_no_return(void);
+void __asan_poison_stack_memory(const void *addr, size_t size);
+void __asan_unpoison_stack_memory(const void *addr, size_t size);
+void __asan_alloca_poison(unsigned long addr, size_t size);
+void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom);
+
+void __asan_load1(unsigned long addr);
+void __asan_store1(unsigned long addr);
+void __asan_load2(unsigned long addr);
+void __asan_store2(unsigned long addr);
+void __asan_load4(unsigned long addr);
+void __asan_store4(unsigned long addr);
+void __asan_load8(unsigned long addr);
+void __asan_store8(unsigned long addr);
+void __asan_load16(unsigned long addr);
+void __asan_store16(unsigned long addr);
+
+void __asan_load1_noabort(unsigned long addr);
+void __asan_store1_noabort(unsigned long addr);
+void __asan_load2_noabort(unsigned long addr);
+void __asan_store2_noabort(unsigned long addr);
+void __asan_load4_noabort(unsigned long addr);
+void __asan_store4_noabort(unsigned long addr);
+void __asan_load8_noabort(unsigned long addr);
+void __asan_store8_noabort(unsigned long addr);
+void __asan_load16_noabort(unsigned long addr);
+void __asan_store16_noabort(unsigned long addr);
+
+void __asan_set_shadow_00(const void *addr, size_t size);
+void __asan_set_shadow_f1(const void *addr, size_t size);
+void __asan_set_shadow_f2(const void *addr, size_t size);
+void __asan_set_shadow_f3(const void *addr, size_t size);
+void __asan_set_shadow_f5(const void *addr, size_t size);
+void __asan_set_shadow_f8(const void *addr, size_t size);
+
+#endif
diff --git a/mm/kasan/kasan_init.c b/mm/kasan/kasan_init.c
new file mode 100644
index 000000000..7a731c74b
--- /dev/null
+++ b/mm/kasan/kasan_init.c
@@ -0,0 +1,492 @@
+/*
+ * This file contains some kasan initialization code.
+ *
+ * Copyright (c) 2015 Samsung Electronics Co., Ltd.
+ * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/bootmem.h>
+#include <linux/init.h>
+#include <linux/kasan.h>
+#include <linux/kernel.h>
+#include <linux/memblock.h>
+#include <linux/mm.h>
+#include <linux/pfn.h>
+#include <linux/slab.h>
+
+#include <asm/page.h>
+#include <asm/pgalloc.h>
+
+#include "kasan.h"
+
+/*
+ * This page serves two purposes:
+ * - It used as early shadow memory. The entire shadow region populated
+ * with this page, before we will be able to setup normal shadow memory.
+ * - Latter it reused it as zero shadow to cover large ranges of memory
+ * that allowed to access, but not handled by kasan (vmalloc/vmemmap ...).
+ */
+unsigned char kasan_zero_page[PAGE_SIZE] __page_aligned_bss;
+
+#if CONFIG_PGTABLE_LEVELS > 4
+p4d_t kasan_zero_p4d[MAX_PTRS_PER_P4D] __page_aligned_bss;
+static inline bool kasan_p4d_table(pgd_t pgd)
+{
+ return pgd_page(pgd) == virt_to_page(lm_alias(kasan_zero_p4d));
+}
+#else
+static inline bool kasan_p4d_table(pgd_t pgd)
+{
+ return 0;
+}
+#endif
+#if CONFIG_PGTABLE_LEVELS > 3
+pud_t kasan_zero_pud[PTRS_PER_PUD] __page_aligned_bss;
+static inline bool kasan_pud_table(p4d_t p4d)
+{
+ return p4d_page(p4d) == virt_to_page(lm_alias(kasan_zero_pud));
+}
+#else
+static inline bool kasan_pud_table(p4d_t p4d)
+{
+ return 0;
+}
+#endif
+#if CONFIG_PGTABLE_LEVELS > 2
+pmd_t kasan_zero_pmd[PTRS_PER_PMD] __page_aligned_bss;
+static inline bool kasan_pmd_table(pud_t pud)
+{
+ return pud_page(pud) == virt_to_page(lm_alias(kasan_zero_pmd));
+}
+#else
+static inline bool kasan_pmd_table(pud_t pud)
+{
+ return 0;
+}
+#endif
+pte_t kasan_zero_pte[PTRS_PER_PTE] __page_aligned_bss;
+
+static inline bool kasan_pte_table(pmd_t pmd)
+{
+ return pmd_page(pmd) == virt_to_page(lm_alias(kasan_zero_pte));
+}
+
+static inline bool kasan_zero_page_entry(pte_t pte)
+{
+ return pte_page(pte) == virt_to_page(lm_alias(kasan_zero_page));
+}
+
+static __init void *early_alloc(size_t size, int node)
+{
+ return memblock_virt_alloc_try_nid(size, size, __pa(MAX_DMA_ADDRESS),
+ BOOTMEM_ALLOC_ACCESSIBLE, node);
+}
+
+static void __ref zero_pte_populate(pmd_t *pmd, unsigned long addr,
+ unsigned long end)
+{
+ pte_t *pte = pte_offset_kernel(pmd, addr);
+ pte_t zero_pte;
+
+ zero_pte = pfn_pte(PFN_DOWN(__pa_symbol(kasan_zero_page)), PAGE_KERNEL);
+ zero_pte = pte_wrprotect(zero_pte);
+
+ while (addr + PAGE_SIZE <= end) {
+ set_pte_at(&init_mm, addr, pte, zero_pte);
+ addr += PAGE_SIZE;
+ pte = pte_offset_kernel(pmd, addr);
+ }
+}
+
+static int __ref zero_pmd_populate(pud_t *pud, unsigned long addr,
+ unsigned long end)
+{
+ pmd_t *pmd = pmd_offset(pud, addr);
+ unsigned long next;
+
+ do {
+ next = pmd_addr_end(addr, end);
+
+ if (IS_ALIGNED(addr, PMD_SIZE) && end - addr >= PMD_SIZE) {
+ pmd_populate_kernel(&init_mm, pmd, lm_alias(kasan_zero_pte));
+ continue;
+ }
+
+ if (pmd_none(*pmd)) {
+ pte_t *p;
+
+ if (slab_is_available())
+ p = pte_alloc_one_kernel(&init_mm, addr);
+ else
+ p = early_alloc(PAGE_SIZE, NUMA_NO_NODE);
+ if (!p)
+ return -ENOMEM;
+
+ pmd_populate_kernel(&init_mm, pmd, p);
+ }
+ zero_pte_populate(pmd, addr, next);
+ } while (pmd++, addr = next, addr != end);
+
+ return 0;
+}
+
+static int __ref zero_pud_populate(p4d_t *p4d, unsigned long addr,
+ unsigned long end)
+{
+ pud_t *pud = pud_offset(p4d, addr);
+ unsigned long next;
+
+ do {
+ next = pud_addr_end(addr, end);
+ if (IS_ALIGNED(addr, PUD_SIZE) && end - addr >= PUD_SIZE) {
+ pmd_t *pmd;
+
+ pud_populate(&init_mm, pud, lm_alias(kasan_zero_pmd));
+ pmd = pmd_offset(pud, addr);
+ pmd_populate_kernel(&init_mm, pmd, lm_alias(kasan_zero_pte));
+ continue;
+ }
+
+ if (pud_none(*pud)) {
+ pmd_t *p;
+
+ if (slab_is_available()) {
+ p = pmd_alloc(&init_mm, pud, addr);
+ if (!p)
+ return -ENOMEM;
+ } else {
+ pud_populate(&init_mm, pud,
+ early_alloc(PAGE_SIZE, NUMA_NO_NODE));
+ }
+ }
+ zero_pmd_populate(pud, addr, next);
+ } while (pud++, addr = next, addr != end);
+
+ return 0;
+}
+
+static int __ref zero_p4d_populate(pgd_t *pgd, unsigned long addr,
+ unsigned long end)
+{
+ p4d_t *p4d = p4d_offset(pgd, addr);
+ unsigned long next;
+
+ do {
+ next = p4d_addr_end(addr, end);
+ if (IS_ALIGNED(addr, P4D_SIZE) && end - addr >= P4D_SIZE) {
+ pud_t *pud;
+ pmd_t *pmd;
+
+ p4d_populate(&init_mm, p4d, lm_alias(kasan_zero_pud));
+ pud = pud_offset(p4d, addr);
+ pud_populate(&init_mm, pud, lm_alias(kasan_zero_pmd));
+ pmd = pmd_offset(pud, addr);
+ pmd_populate_kernel(&init_mm, pmd,
+ lm_alias(kasan_zero_pte));
+ continue;
+ }
+
+ if (p4d_none(*p4d)) {
+ pud_t *p;
+
+ if (slab_is_available()) {
+ p = pud_alloc(&init_mm, p4d, addr);
+ if (!p)
+ return -ENOMEM;
+ } else {
+ p4d_populate(&init_mm, p4d,
+ early_alloc(PAGE_SIZE, NUMA_NO_NODE));
+ }
+ }
+ zero_pud_populate(p4d, addr, next);
+ } while (p4d++, addr = next, addr != end);
+
+ return 0;
+}
+
+/**
+ * kasan_populate_zero_shadow - populate shadow memory region with
+ * kasan_zero_page
+ * @shadow_start - start of the memory range to populate
+ * @shadow_end - end of the memory range to populate
+ */
+int __ref kasan_populate_zero_shadow(const void *shadow_start,
+ const void *shadow_end)
+{
+ unsigned long addr = (unsigned long)shadow_start;
+ unsigned long end = (unsigned long)shadow_end;
+ pgd_t *pgd = pgd_offset_k(addr);
+ unsigned long next;
+
+ do {
+ next = pgd_addr_end(addr, end);
+
+ if (IS_ALIGNED(addr, PGDIR_SIZE) && end - addr >= PGDIR_SIZE) {
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+
+ /*
+ * kasan_zero_pud should be populated with pmds
+ * at this moment.
+ * [pud,pmd]_populate*() below needed only for
+ * 3,2 - level page tables where we don't have
+ * puds,pmds, so pgd_populate(), pud_populate()
+ * is noops.
+ *
+ * The ifndef is required to avoid build breakage.
+ *
+ * With 5level-fixup.h, pgd_populate() is not nop and
+ * we reference kasan_zero_p4d. It's not defined
+ * unless 5-level paging enabled.
+ *
+ * The ifndef can be dropped once all KASAN-enabled
+ * architectures will switch to pgtable-nop4d.h.
+ */
+#ifndef __ARCH_HAS_5LEVEL_HACK
+ pgd_populate(&init_mm, pgd, lm_alias(kasan_zero_p4d));
+#endif
+ p4d = p4d_offset(pgd, addr);
+ p4d_populate(&init_mm, p4d, lm_alias(kasan_zero_pud));
+ pud = pud_offset(p4d, addr);
+ pud_populate(&init_mm, pud, lm_alias(kasan_zero_pmd));
+ pmd = pmd_offset(pud, addr);
+ pmd_populate_kernel(&init_mm, pmd, lm_alias(kasan_zero_pte));
+ continue;
+ }
+
+ if (pgd_none(*pgd)) {
+ p4d_t *p;
+
+ if (slab_is_available()) {
+ p = p4d_alloc(&init_mm, pgd, addr);
+ if (!p)
+ return -ENOMEM;
+ } else {
+ pgd_populate(&init_mm, pgd,
+ early_alloc(PAGE_SIZE, NUMA_NO_NODE));
+ }
+ }
+ zero_p4d_populate(pgd, addr, next);
+ } while (pgd++, addr = next, addr != end);
+
+ return 0;
+}
+
+static void kasan_free_pte(pte_t *pte_start, pmd_t *pmd)
+{
+ pte_t *pte;
+ int i;
+
+ for (i = 0; i < PTRS_PER_PTE; i++) {
+ pte = pte_start + i;
+ if (!pte_none(*pte))
+ return;
+ }
+
+ pte_free_kernel(&init_mm, (pte_t *)page_to_virt(pmd_page(*pmd)));
+ pmd_clear(pmd);
+}
+
+static void kasan_free_pmd(pmd_t *pmd_start, pud_t *pud)
+{
+ pmd_t *pmd;
+ int i;
+
+ for (i = 0; i < PTRS_PER_PMD; i++) {
+ pmd = pmd_start + i;
+ if (!pmd_none(*pmd))
+ return;
+ }
+
+ pmd_free(&init_mm, (pmd_t *)page_to_virt(pud_page(*pud)));
+ pud_clear(pud);
+}
+
+static void kasan_free_pud(pud_t *pud_start, p4d_t *p4d)
+{
+ pud_t *pud;
+ int i;
+
+ for (i = 0; i < PTRS_PER_PUD; i++) {
+ pud = pud_start + i;
+ if (!pud_none(*pud))
+ return;
+ }
+
+ pud_free(&init_mm, (pud_t *)page_to_virt(p4d_page(*p4d)));
+ p4d_clear(p4d);
+}
+
+static void kasan_free_p4d(p4d_t *p4d_start, pgd_t *pgd)
+{
+ p4d_t *p4d;
+ int i;
+
+ for (i = 0; i < PTRS_PER_P4D; i++) {
+ p4d = p4d_start + i;
+ if (!p4d_none(*p4d))
+ return;
+ }
+
+ p4d_free(&init_mm, (p4d_t *)page_to_virt(pgd_page(*pgd)));
+ pgd_clear(pgd);
+}
+
+static void kasan_remove_pte_table(pte_t *pte, unsigned long addr,
+ unsigned long end)
+{
+ unsigned long next;
+
+ for (; addr < end; addr = next, pte++) {
+ next = (addr + PAGE_SIZE) & PAGE_MASK;
+ if (next > end)
+ next = end;
+
+ if (!pte_present(*pte))
+ continue;
+
+ if (WARN_ON(!kasan_zero_page_entry(*pte)))
+ continue;
+ pte_clear(&init_mm, addr, pte);
+ }
+}
+
+static void kasan_remove_pmd_table(pmd_t *pmd, unsigned long addr,
+ unsigned long end)
+{
+ unsigned long next;
+
+ for (; addr < end; addr = next, pmd++) {
+ pte_t *pte;
+
+ next = pmd_addr_end(addr, end);
+
+ if (!pmd_present(*pmd))
+ continue;
+
+ if (kasan_pte_table(*pmd)) {
+ if (IS_ALIGNED(addr, PMD_SIZE) &&
+ IS_ALIGNED(next, PMD_SIZE)) {
+ pmd_clear(pmd);
+ continue;
+ }
+ }
+ pte = pte_offset_kernel(pmd, addr);
+ kasan_remove_pte_table(pte, addr, next);
+ kasan_free_pte(pte_offset_kernel(pmd, 0), pmd);
+ }
+}
+
+static void kasan_remove_pud_table(pud_t *pud, unsigned long addr,
+ unsigned long end)
+{
+ unsigned long next;
+
+ for (; addr < end; addr = next, pud++) {
+ pmd_t *pmd, *pmd_base;
+
+ next = pud_addr_end(addr, end);
+
+ if (!pud_present(*pud))
+ continue;
+
+ if (kasan_pmd_table(*pud)) {
+ if (IS_ALIGNED(addr, PUD_SIZE) &&
+ IS_ALIGNED(next, PUD_SIZE)) {
+ pud_clear(pud);
+ continue;
+ }
+ }
+ pmd = pmd_offset(pud, addr);
+ pmd_base = pmd_offset(pud, 0);
+ kasan_remove_pmd_table(pmd, addr, next);
+ kasan_free_pmd(pmd_base, pud);
+ }
+}
+
+static void kasan_remove_p4d_table(p4d_t *p4d, unsigned long addr,
+ unsigned long end)
+{
+ unsigned long next;
+
+ for (; addr < end; addr = next, p4d++) {
+ pud_t *pud;
+
+ next = p4d_addr_end(addr, end);
+
+ if (!p4d_present(*p4d))
+ continue;
+
+ if (kasan_pud_table(*p4d)) {
+ if (IS_ALIGNED(addr, P4D_SIZE) &&
+ IS_ALIGNED(next, P4D_SIZE)) {
+ p4d_clear(p4d);
+ continue;
+ }
+ }
+ pud = pud_offset(p4d, addr);
+ kasan_remove_pud_table(pud, addr, next);
+ kasan_free_pud(pud_offset(p4d, 0), p4d);
+ }
+}
+
+void kasan_remove_zero_shadow(void *start, unsigned long size)
+{
+ unsigned long addr, end, next;
+ pgd_t *pgd;
+
+ addr = (unsigned long)kasan_mem_to_shadow(start);
+ end = addr + (size >> KASAN_SHADOW_SCALE_SHIFT);
+
+ if (WARN_ON((unsigned long)start %
+ (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)) ||
+ WARN_ON(size % (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)))
+ return;
+
+ for (; addr < end; addr = next) {
+ p4d_t *p4d;
+
+ next = pgd_addr_end(addr, end);
+
+ pgd = pgd_offset_k(addr);
+ if (!pgd_present(*pgd))
+ continue;
+
+ if (kasan_p4d_table(*pgd)) {
+ if (IS_ALIGNED(addr, PGDIR_SIZE) &&
+ IS_ALIGNED(next, PGDIR_SIZE)) {
+ pgd_clear(pgd);
+ continue;
+ }
+ }
+
+ p4d = p4d_offset(pgd, addr);
+ kasan_remove_p4d_table(p4d, addr, next);
+ kasan_free_p4d(p4d_offset(pgd, 0), pgd);
+ }
+}
+
+int kasan_add_zero_shadow(void *start, unsigned long size)
+{
+ int ret;
+ void *shadow_start, *shadow_end;
+
+ shadow_start = kasan_mem_to_shadow(start);
+ shadow_end = shadow_start + (size >> KASAN_SHADOW_SCALE_SHIFT);
+
+ if (WARN_ON((unsigned long)start %
+ (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)) ||
+ WARN_ON(size % (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)))
+ return -EINVAL;
+
+ ret = kasan_populate_zero_shadow(shadow_start, shadow_end);
+ if (ret)
+ kasan_remove_zero_shadow(start, size);
+ return ret;
+}
diff --git a/mm/kasan/quarantine.c b/mm/kasan/quarantine.c
new file mode 100644
index 000000000..3a8ddf8ba
--- /dev/null
+++ b/mm/kasan/quarantine.c
@@ -0,0 +1,328 @@
+/*
+ * KASAN quarantine.
+ *
+ * Author: Alexander Potapenko <glider@google.com>
+ * Copyright (C) 2016 Google, Inc.
+ *
+ * Based on code by Dmitry Chernenkov.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ */
+
+#include <linux/gfp.h>
+#include <linux/hash.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/percpu.h>
+#include <linux/printk.h>
+#include <linux/shrinker.h>
+#include <linux/slab.h>
+#include <linux/srcu.h>
+#include <linux/string.h>
+#include <linux/types.h>
+
+#include "../slab.h"
+#include "kasan.h"
+
+/* Data structure and operations for quarantine queues. */
+
+/*
+ * Each queue is a signle-linked list, which also stores the total size of
+ * objects inside of it.
+ */
+struct qlist_head {
+ struct qlist_node *head;
+ struct qlist_node *tail;
+ size_t bytes;
+};
+
+#define QLIST_INIT { NULL, NULL, 0 }
+
+static bool qlist_empty(struct qlist_head *q)
+{
+ return !q->head;
+}
+
+static void qlist_init(struct qlist_head *q)
+{
+ q->head = q->tail = NULL;
+ q->bytes = 0;
+}
+
+static void qlist_put(struct qlist_head *q, struct qlist_node *qlink,
+ size_t size)
+{
+ if (unlikely(qlist_empty(q)))
+ q->head = qlink;
+ else
+ q->tail->next = qlink;
+ q->tail = qlink;
+ qlink->next = NULL;
+ q->bytes += size;
+}
+
+static void qlist_move_all(struct qlist_head *from, struct qlist_head *to)
+{
+ if (unlikely(qlist_empty(from)))
+ return;
+
+ if (qlist_empty(to)) {
+ *to = *from;
+ qlist_init(from);
+ return;
+ }
+
+ to->tail->next = from->head;
+ to->tail = from->tail;
+ to->bytes += from->bytes;
+
+ qlist_init(from);
+}
+
+#define QUARANTINE_PERCPU_SIZE (1 << 20)
+#define QUARANTINE_BATCHES \
+ (1024 > 4 * CONFIG_NR_CPUS ? 1024 : 4 * CONFIG_NR_CPUS)
+
+/*
+ * The object quarantine consists of per-cpu queues and a global queue,
+ * guarded by quarantine_lock.
+ */
+static DEFINE_PER_CPU(struct qlist_head, cpu_quarantine);
+
+/* Round-robin FIFO array of batches. */
+static struct qlist_head global_quarantine[QUARANTINE_BATCHES];
+static int quarantine_head;
+static int quarantine_tail;
+/* Total size of all objects in global_quarantine across all batches. */
+static unsigned long quarantine_size;
+static DEFINE_SPINLOCK(quarantine_lock);
+DEFINE_STATIC_SRCU(remove_cache_srcu);
+
+/* Maximum size of the global queue. */
+static unsigned long quarantine_max_size;
+
+/*
+ * Target size of a batch in global_quarantine.
+ * Usually equal to QUARANTINE_PERCPU_SIZE unless we have too much RAM.
+ */
+static unsigned long quarantine_batch_size;
+
+/*
+ * The fraction of physical memory the quarantine is allowed to occupy.
+ * Quarantine doesn't support memory shrinker with SLAB allocator, so we keep
+ * the ratio low to avoid OOM.
+ */
+#define QUARANTINE_FRACTION 32
+
+static struct kmem_cache *qlink_to_cache(struct qlist_node *qlink)
+{
+ return virt_to_head_page(qlink)->slab_cache;
+}
+
+static void *qlink_to_object(struct qlist_node *qlink, struct kmem_cache *cache)
+{
+ struct kasan_free_meta *free_info =
+ container_of(qlink, struct kasan_free_meta,
+ quarantine_link);
+
+ return ((void *)free_info) - cache->kasan_info.free_meta_offset;
+}
+
+static void qlink_free(struct qlist_node *qlink, struct kmem_cache *cache)
+{
+ void *object = qlink_to_object(qlink, cache);
+ unsigned long flags;
+
+ if (IS_ENABLED(CONFIG_SLAB))
+ local_irq_save(flags);
+
+ ___cache_free(cache, object, _THIS_IP_);
+
+ if (IS_ENABLED(CONFIG_SLAB))
+ local_irq_restore(flags);
+}
+
+static void qlist_free_all(struct qlist_head *q, struct kmem_cache *cache)
+{
+ struct qlist_node *qlink;
+
+ if (unlikely(qlist_empty(q)))
+ return;
+
+ qlink = q->head;
+ while (qlink) {
+ struct kmem_cache *obj_cache =
+ cache ? cache : qlink_to_cache(qlink);
+ struct qlist_node *next = qlink->next;
+
+ qlink_free(qlink, obj_cache);
+ qlink = next;
+ }
+ qlist_init(q);
+}
+
+void quarantine_put(struct kasan_free_meta *info, struct kmem_cache *cache)
+{
+ unsigned long flags;
+ struct qlist_head *q;
+ struct qlist_head temp = QLIST_INIT;
+
+ /*
+ * Note: irq must be disabled until after we move the batch to the
+ * global quarantine. Otherwise quarantine_remove_cache() can miss
+ * some objects belonging to the cache if they are in our local temp
+ * list. quarantine_remove_cache() executes on_each_cpu() at the
+ * beginning which ensures that it either sees the objects in per-cpu
+ * lists or in the global quarantine.
+ */
+ local_irq_save(flags);
+
+ q = this_cpu_ptr(&cpu_quarantine);
+ qlist_put(q, &info->quarantine_link, cache->size);
+ if (unlikely(q->bytes > QUARANTINE_PERCPU_SIZE)) {
+ qlist_move_all(q, &temp);
+
+ spin_lock(&quarantine_lock);
+ WRITE_ONCE(quarantine_size, quarantine_size + temp.bytes);
+ qlist_move_all(&temp, &global_quarantine[quarantine_tail]);
+ if (global_quarantine[quarantine_tail].bytes >=
+ READ_ONCE(quarantine_batch_size)) {
+ int new_tail;
+
+ new_tail = quarantine_tail + 1;
+ if (new_tail == QUARANTINE_BATCHES)
+ new_tail = 0;
+ if (new_tail != quarantine_head)
+ quarantine_tail = new_tail;
+ }
+ spin_unlock(&quarantine_lock);
+ }
+
+ local_irq_restore(flags);
+}
+
+void quarantine_reduce(void)
+{
+ size_t total_size, new_quarantine_size, percpu_quarantines;
+ unsigned long flags;
+ int srcu_idx;
+ struct qlist_head to_free = QLIST_INIT;
+
+ if (likely(READ_ONCE(quarantine_size) <=
+ READ_ONCE(quarantine_max_size)))
+ return;
+
+ /*
+ * srcu critical section ensures that quarantine_remove_cache()
+ * will not miss objects belonging to the cache while they are in our
+ * local to_free list. srcu is chosen because (1) it gives us private
+ * grace period domain that does not interfere with anything else,
+ * and (2) it allows synchronize_srcu() to return without waiting
+ * if there are no pending read critical sections (which is the
+ * expected case).
+ */
+ srcu_idx = srcu_read_lock(&remove_cache_srcu);
+ spin_lock_irqsave(&quarantine_lock, flags);
+
+ /*
+ * Update quarantine size in case of hotplug. Allocate a fraction of
+ * the installed memory to quarantine minus per-cpu queue limits.
+ */
+ total_size = (READ_ONCE(totalram_pages) << PAGE_SHIFT) /
+ QUARANTINE_FRACTION;
+ percpu_quarantines = QUARANTINE_PERCPU_SIZE * num_online_cpus();
+ new_quarantine_size = (total_size < percpu_quarantines) ?
+ 0 : total_size - percpu_quarantines;
+ WRITE_ONCE(quarantine_max_size, new_quarantine_size);
+ /* Aim at consuming at most 1/2 of slots in quarantine. */
+ WRITE_ONCE(quarantine_batch_size, max((size_t)QUARANTINE_PERCPU_SIZE,
+ 2 * total_size / QUARANTINE_BATCHES));
+
+ if (likely(quarantine_size > quarantine_max_size)) {
+ qlist_move_all(&global_quarantine[quarantine_head], &to_free);
+ WRITE_ONCE(quarantine_size, quarantine_size - to_free.bytes);
+ quarantine_head++;
+ if (quarantine_head == QUARANTINE_BATCHES)
+ quarantine_head = 0;
+ }
+
+ spin_unlock_irqrestore(&quarantine_lock, flags);
+
+ qlist_free_all(&to_free, NULL);
+ srcu_read_unlock(&remove_cache_srcu, srcu_idx);
+}
+
+static void qlist_move_cache(struct qlist_head *from,
+ struct qlist_head *to,
+ struct kmem_cache *cache)
+{
+ struct qlist_node *curr;
+
+ if (unlikely(qlist_empty(from)))
+ return;
+
+ curr = from->head;
+ qlist_init(from);
+ while (curr) {
+ struct qlist_node *next = curr->next;
+ struct kmem_cache *obj_cache = qlink_to_cache(curr);
+
+ if (obj_cache == cache)
+ qlist_put(to, curr, obj_cache->size);
+ else
+ qlist_put(from, curr, obj_cache->size);
+
+ curr = next;
+ }
+}
+
+static void per_cpu_remove_cache(void *arg)
+{
+ struct kmem_cache *cache = arg;
+ struct qlist_head to_free = QLIST_INIT;
+ struct qlist_head *q;
+
+ q = this_cpu_ptr(&cpu_quarantine);
+ qlist_move_cache(q, &to_free, cache);
+ qlist_free_all(&to_free, cache);
+}
+
+/* Free all quarantined objects belonging to cache. */
+void quarantine_remove_cache(struct kmem_cache *cache)
+{
+ unsigned long flags, i;
+ struct qlist_head to_free = QLIST_INIT;
+
+ /*
+ * Must be careful to not miss any objects that are being moved from
+ * per-cpu list to the global quarantine in quarantine_put(),
+ * nor objects being freed in quarantine_reduce(). on_each_cpu()
+ * achieves the first goal, while synchronize_srcu() achieves the
+ * second.
+ */
+ on_each_cpu(per_cpu_remove_cache, cache, 1);
+
+ spin_lock_irqsave(&quarantine_lock, flags);
+ for (i = 0; i < QUARANTINE_BATCHES; i++) {
+ if (qlist_empty(&global_quarantine[i]))
+ continue;
+ qlist_move_cache(&global_quarantine[i], &to_free, cache);
+ /* Scanning whole quarantine can take a while. */
+ spin_unlock_irqrestore(&quarantine_lock, flags);
+ cond_resched();
+ spin_lock_irqsave(&quarantine_lock, flags);
+ }
+ spin_unlock_irqrestore(&quarantine_lock, flags);
+
+ qlist_free_all(&to_free, cache);
+
+ synchronize_srcu(&remove_cache_srcu);
+}
diff --git a/mm/kasan/report.c b/mm/kasan/report.c
new file mode 100644
index 000000000..5c169aa68
--- /dev/null
+++ b/mm/kasan/report.c
@@ -0,0 +1,451 @@
+/*
+ * This file contains error reporting code.
+ *
+ * Copyright (c) 2014 Samsung Electronics Co., Ltd.
+ * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
+ *
+ * Some code borrowed from https://github.com/xairy/kasan-prototype by
+ * Andrey Konovalov <andreyknvl@gmail.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/bitops.h>
+#include <linux/ftrace.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/printk.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/stackdepot.h>
+#include <linux/stacktrace.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/kasan.h>
+#include <linux/module.h>
+
+#include <asm/sections.h>
+
+#include "kasan.h"
+#include "../slab.h"
+
+/* Shadow layout customization. */
+#define SHADOW_BYTES_PER_BLOCK 1
+#define SHADOW_BLOCKS_PER_ROW 16
+#define SHADOW_BYTES_PER_ROW (SHADOW_BLOCKS_PER_ROW * SHADOW_BYTES_PER_BLOCK)
+#define SHADOW_ROWS_AROUND_ADDR 2
+
+static const void *find_first_bad_addr(const void *addr, size_t size)
+{
+ u8 shadow_val = *(u8 *)kasan_mem_to_shadow(addr);
+ const void *first_bad_addr = addr;
+
+ while (!shadow_val && first_bad_addr < addr + size) {
+ first_bad_addr += KASAN_SHADOW_SCALE_SIZE;
+ shadow_val = *(u8 *)kasan_mem_to_shadow(first_bad_addr);
+ }
+ return first_bad_addr;
+}
+
+static bool addr_has_shadow(struct kasan_access_info *info)
+{
+ return (info->access_addr >=
+ kasan_shadow_to_mem((void *)KASAN_SHADOW_START));
+}
+
+static const char *get_shadow_bug_type(struct kasan_access_info *info)
+{
+ const char *bug_type = "unknown-crash";
+ u8 *shadow_addr;
+
+ info->first_bad_addr = find_first_bad_addr(info->access_addr,
+ info->access_size);
+
+ shadow_addr = (u8 *)kasan_mem_to_shadow(info->first_bad_addr);
+
+ /*
+ * If shadow byte value is in [0, KASAN_SHADOW_SCALE_SIZE) we can look
+ * at the next shadow byte to determine the type of the bad access.
+ */
+ if (*shadow_addr > 0 && *shadow_addr <= KASAN_SHADOW_SCALE_SIZE - 1)
+ shadow_addr++;
+
+ switch (*shadow_addr) {
+ case 0 ... KASAN_SHADOW_SCALE_SIZE - 1:
+ /*
+ * In theory it's still possible to see these shadow values
+ * due to a data race in the kernel code.
+ */
+ bug_type = "out-of-bounds";
+ break;
+ case KASAN_PAGE_REDZONE:
+ case KASAN_KMALLOC_REDZONE:
+ bug_type = "slab-out-of-bounds";
+ break;
+ case KASAN_GLOBAL_REDZONE:
+ bug_type = "global-out-of-bounds";
+ break;
+ case KASAN_STACK_LEFT:
+ case KASAN_STACK_MID:
+ case KASAN_STACK_RIGHT:
+ case KASAN_STACK_PARTIAL:
+ bug_type = "stack-out-of-bounds";
+ break;
+ case KASAN_FREE_PAGE:
+ case KASAN_KMALLOC_FREE:
+ bug_type = "use-after-free";
+ break;
+ case KASAN_USE_AFTER_SCOPE:
+ bug_type = "use-after-scope";
+ break;
+ case KASAN_ALLOCA_LEFT:
+ case KASAN_ALLOCA_RIGHT:
+ bug_type = "alloca-out-of-bounds";
+ break;
+ }
+
+ return bug_type;
+}
+
+static const char *get_wild_bug_type(struct kasan_access_info *info)
+{
+ const char *bug_type = "unknown-crash";
+
+ if ((unsigned long)info->access_addr < PAGE_SIZE)
+ bug_type = "null-ptr-deref";
+ else if ((unsigned long)info->access_addr < TASK_SIZE)
+ bug_type = "user-memory-access";
+ else
+ bug_type = "wild-memory-access";
+
+ return bug_type;
+}
+
+static const char *get_bug_type(struct kasan_access_info *info)
+{
+ if (addr_has_shadow(info))
+ return get_shadow_bug_type(info);
+ return get_wild_bug_type(info);
+}
+
+static void print_error_description(struct kasan_access_info *info)
+{
+ const char *bug_type = get_bug_type(info);
+
+ pr_err("BUG: KASAN: %s in %pS\n",
+ bug_type, (void *)info->ip);
+ pr_err("%s of size %zu at addr %px by task %s/%d\n",
+ info->is_write ? "Write" : "Read", info->access_size,
+ info->access_addr, current->comm, task_pid_nr(current));
+}
+
+static inline bool kernel_or_module_addr(const void *addr)
+{
+ if (addr >= (void *)_stext && addr < (void *)_end)
+ return true;
+ if (is_module_address((unsigned long)addr))
+ return true;
+ return false;
+}
+
+static inline bool init_task_stack_addr(const void *addr)
+{
+ return addr >= (void *)&init_thread_union.stack &&
+ (addr <= (void *)&init_thread_union.stack +
+ sizeof(init_thread_union.stack));
+}
+
+static DEFINE_SPINLOCK(report_lock);
+
+static void kasan_start_report(unsigned long *flags)
+{
+ /*
+ * Make sure we don't end up in loop.
+ */
+ kasan_disable_current();
+ spin_lock_irqsave(&report_lock, *flags);
+ pr_err("==================================================================\n");
+}
+
+static void kasan_end_report(unsigned long *flags)
+{
+ pr_err("==================================================================\n");
+ add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
+ spin_unlock_irqrestore(&report_lock, *flags);
+ if (panic_on_warn)
+ panic("panic_on_warn set ...\n");
+ kasan_enable_current();
+}
+
+static void print_track(struct kasan_track *track, const char *prefix)
+{
+ pr_err("%s by task %u:\n", prefix, track->pid);
+ if (track->stack) {
+ struct stack_trace trace;
+
+ depot_fetch_stack(track->stack, &trace);
+ print_stack_trace(&trace, 0);
+ } else {
+ pr_err("(stack is not available)\n");
+ }
+}
+
+static struct page *addr_to_page(const void *addr)
+{
+ if ((addr >= (void *)PAGE_OFFSET) &&
+ (addr < high_memory))
+ return virt_to_head_page(addr);
+ return NULL;
+}
+
+static void describe_object_addr(struct kmem_cache *cache, void *object,
+ const void *addr)
+{
+ unsigned long access_addr = (unsigned long)addr;
+ unsigned long object_addr = (unsigned long)object;
+ const char *rel_type;
+ int rel_bytes;
+
+ pr_err("The buggy address belongs to the object at %px\n"
+ " which belongs to the cache %s of size %d\n",
+ object, cache->name, cache->object_size);
+
+ if (!addr)
+ return;
+
+ if (access_addr < object_addr) {
+ rel_type = "to the left";
+ rel_bytes = object_addr - access_addr;
+ } else if (access_addr >= object_addr + cache->object_size) {
+ rel_type = "to the right";
+ rel_bytes = access_addr - (object_addr + cache->object_size);
+ } else {
+ rel_type = "inside";
+ rel_bytes = access_addr - object_addr;
+ }
+
+ pr_err("The buggy address is located %d bytes %s of\n"
+ " %d-byte region [%px, %px)\n",
+ rel_bytes, rel_type, cache->object_size, (void *)object_addr,
+ (void *)(object_addr + cache->object_size));
+}
+
+static void describe_object(struct kmem_cache *cache, void *object,
+ const void *addr)
+{
+ struct kasan_alloc_meta *alloc_info = get_alloc_info(cache, object);
+
+ if (cache->flags & SLAB_KASAN) {
+ print_track(&alloc_info->alloc_track, "Allocated");
+ pr_err("\n");
+ print_track(&alloc_info->free_track, "Freed");
+ pr_err("\n");
+ }
+
+ describe_object_addr(cache, object, addr);
+}
+
+static void print_address_description(void *addr)
+{
+ struct page *page = addr_to_page(addr);
+
+ dump_stack();
+ pr_err("\n");
+
+ if (page && PageSlab(page)) {
+ struct kmem_cache *cache = page->slab_cache;
+ void *object = nearest_obj(cache, page, addr);
+
+ describe_object(cache, object, addr);
+ }
+
+ if (kernel_or_module_addr(addr) && !init_task_stack_addr(addr)) {
+ pr_err("The buggy address belongs to the variable:\n");
+ pr_err(" %pS\n", addr);
+ }
+
+ if (page) {
+ pr_err("The buggy address belongs to the page:\n");
+ dump_page(page, "kasan: bad access detected");
+ }
+}
+
+static bool row_is_guilty(const void *row, const void *guilty)
+{
+ return (row <= guilty) && (guilty < row + SHADOW_BYTES_PER_ROW);
+}
+
+static int shadow_pointer_offset(const void *row, const void *shadow)
+{
+ /* The length of ">ff00ff00ff00ff00: " is
+ * 3 + (BITS_PER_LONG/8)*2 chars.
+ */
+ return 3 + (BITS_PER_LONG/8)*2 + (shadow - row)*2 +
+ (shadow - row) / SHADOW_BYTES_PER_BLOCK + 1;
+}
+
+static void print_shadow_for_address(const void *addr)
+{
+ int i;
+ const void *shadow = kasan_mem_to_shadow(addr);
+ const void *shadow_row;
+
+ shadow_row = (void *)round_down((unsigned long)shadow,
+ SHADOW_BYTES_PER_ROW)
+ - SHADOW_ROWS_AROUND_ADDR * SHADOW_BYTES_PER_ROW;
+
+ pr_err("Memory state around the buggy address:\n");
+
+ for (i = -SHADOW_ROWS_AROUND_ADDR; i <= SHADOW_ROWS_AROUND_ADDR; i++) {
+ const void *kaddr = kasan_shadow_to_mem(shadow_row);
+ char buffer[4 + (BITS_PER_LONG/8)*2];
+ char shadow_buf[SHADOW_BYTES_PER_ROW];
+
+ snprintf(buffer, sizeof(buffer),
+ (i == 0) ? ">%px: " : " %px: ", kaddr);
+ /*
+ * We should not pass a shadow pointer to generic
+ * function, because generic functions may try to
+ * access kasan mapping for the passed address.
+ */
+ memcpy(shadow_buf, shadow_row, SHADOW_BYTES_PER_ROW);
+ print_hex_dump(KERN_ERR, buffer,
+ DUMP_PREFIX_NONE, SHADOW_BYTES_PER_ROW, 1,
+ shadow_buf, SHADOW_BYTES_PER_ROW, 0);
+
+ if (row_is_guilty(shadow_row, shadow))
+ pr_err("%*c\n",
+ shadow_pointer_offset(shadow_row, shadow),
+ '^');
+
+ shadow_row += SHADOW_BYTES_PER_ROW;
+ }
+}
+
+void kasan_report_invalid_free(void *object, unsigned long ip)
+{
+ unsigned long flags;
+
+ kasan_start_report(&flags);
+ pr_err("BUG: KASAN: double-free or invalid-free in %pS\n", (void *)ip);
+ pr_err("\n");
+ print_address_description(object);
+ pr_err("\n");
+ print_shadow_for_address(object);
+ kasan_end_report(&flags);
+}
+
+static void kasan_report_error(struct kasan_access_info *info)
+{
+ unsigned long flags;
+
+ kasan_start_report(&flags);
+
+ print_error_description(info);
+ pr_err("\n");
+
+ if (!addr_has_shadow(info)) {
+ dump_stack();
+ } else {
+ print_address_description((void *)info->access_addr);
+ pr_err("\n");
+ print_shadow_for_address(info->first_bad_addr);
+ }
+
+ kasan_end_report(&flags);
+}
+
+static unsigned long kasan_flags;
+
+#define KASAN_BIT_REPORTED 0
+#define KASAN_BIT_MULTI_SHOT 1
+
+bool kasan_save_enable_multi_shot(void)
+{
+ return test_and_set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags);
+}
+EXPORT_SYMBOL_GPL(kasan_save_enable_multi_shot);
+
+void kasan_restore_multi_shot(bool enabled)
+{
+ if (!enabled)
+ clear_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags);
+}
+EXPORT_SYMBOL_GPL(kasan_restore_multi_shot);
+
+static int __init kasan_set_multi_shot(char *str)
+{
+ set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags);
+ return 1;
+}
+__setup("kasan_multi_shot", kasan_set_multi_shot);
+
+static inline bool kasan_report_enabled(void)
+{
+ if (current->kasan_depth)
+ return false;
+ if (test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags))
+ return true;
+ return !test_and_set_bit(KASAN_BIT_REPORTED, &kasan_flags);
+}
+
+void kasan_report(unsigned long addr, size_t size,
+ bool is_write, unsigned long ip)
+{
+ struct kasan_access_info info;
+
+ if (likely(!kasan_report_enabled()))
+ return;
+
+ disable_trace_on_warning();
+
+ info.access_addr = (void *)addr;
+ info.first_bad_addr = (void *)addr;
+ info.access_size = size;
+ info.is_write = is_write;
+ info.ip = ip;
+
+ kasan_report_error(&info);
+}
+
+
+#define DEFINE_ASAN_REPORT_LOAD(size) \
+void __asan_report_load##size##_noabort(unsigned long addr) \
+{ \
+ kasan_report(addr, size, false, _RET_IP_); \
+} \
+EXPORT_SYMBOL(__asan_report_load##size##_noabort)
+
+#define DEFINE_ASAN_REPORT_STORE(size) \
+void __asan_report_store##size##_noabort(unsigned long addr) \
+{ \
+ kasan_report(addr, size, true, _RET_IP_); \
+} \
+EXPORT_SYMBOL(__asan_report_store##size##_noabort)
+
+DEFINE_ASAN_REPORT_LOAD(1);
+DEFINE_ASAN_REPORT_LOAD(2);
+DEFINE_ASAN_REPORT_LOAD(4);
+DEFINE_ASAN_REPORT_LOAD(8);
+DEFINE_ASAN_REPORT_LOAD(16);
+DEFINE_ASAN_REPORT_STORE(1);
+DEFINE_ASAN_REPORT_STORE(2);
+DEFINE_ASAN_REPORT_STORE(4);
+DEFINE_ASAN_REPORT_STORE(8);
+DEFINE_ASAN_REPORT_STORE(16);
+
+void __asan_report_load_n_noabort(unsigned long addr, size_t size)
+{
+ kasan_report(addr, size, false, _RET_IP_);
+}
+EXPORT_SYMBOL(__asan_report_load_n_noabort);
+
+void __asan_report_store_n_noabort(unsigned long addr, size_t size)
+{
+ kasan_report(addr, size, true, _RET_IP_);
+}
+EXPORT_SYMBOL(__asan_report_store_n_noabort);