From 76cb841cb886eef6b3bee341a2266c76578724ad Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Mon, 6 May 2024 03:02:30 +0200 Subject: Adding upstream version 4.19.249. Signed-off-by: Daniel Baumann --- Documentation/hwmon/ltc2990 | 49 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 49 insertions(+) create mode 100644 Documentation/hwmon/ltc2990 (limited to 'Documentation/hwmon/ltc2990') diff --git a/Documentation/hwmon/ltc2990 b/Documentation/hwmon/ltc2990 new file mode 100644 index 000000000..3ed68f676 --- /dev/null +++ b/Documentation/hwmon/ltc2990 @@ -0,0 +1,49 @@ +Kernel driver ltc2990 +===================== + +Supported chips: + * Linear Technology LTC2990 + Prefix: 'ltc2990' + Addresses scanned: - + Datasheet: http://www.linear.com/product/ltc2990 + +Author: Mike Looijmans + Tom Levens + + +Description +----------- + +LTC2990 is a Quad I2C Voltage, Current and Temperature Monitor. +The chip's inputs can measure 4 voltages, or two inputs together (1+2 and 3+4) +can be combined to measure a differential voltage, which is typically used to +measure current through a series resistor, or a temperature with an external +diode. + + +Usage Notes +----------- + +This driver does not probe for PMBus devices. You will have to instantiate +devices explicitly. + + +Sysfs attributes +---------------- + +in0_input Voltage at Vcc pin in millivolt (range 2.5V to 5V) +temp1_input Internal chip temperature in millidegrees Celcius + +A subset of the following attributes are visible, depending on the measurement +mode of the chip. + +in[1-4]_input Voltage at V[1-4] pin in millivolt +temp2_input External temperature sensor TR1 in millidegrees Celcius +temp3_input External temperature sensor TR2 in millidegrees Celcius +curr1_input Current in mA across V1-V2 assuming a 1mOhm sense resistor +curr2_input Current in mA across V3-V4 assuming a 1mOhm sense resistor + +The "curr*_input" measurements actually report the voltage drop across the +input pins in microvolts. This is equivalent to the current through a 1mOhm +sense resistor. Divide the reported value by the actual sense resistor value +in mOhm to get the actual value. -- cgit v1.2.3