From 76cb841cb886eef6b3bee341a2266c76578724ad Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Mon, 6 May 2024 03:02:30 +0200 Subject: Adding upstream version 4.19.249. Signed-off-by: Daniel Baumann --- drivers/net/ethernet/intel/e1000e/netdev.c | 7615 ++++++++++++++++++++++++++++ 1 file changed, 7615 insertions(+) create mode 100644 drivers/net/ethernet/intel/e1000e/netdev.c (limited to 'drivers/net/ethernet/intel/e1000e/netdev.c') diff --git a/drivers/net/ethernet/intel/e1000e/netdev.c b/drivers/net/ethernet/intel/e1000e/netdev.c new file mode 100644 index 000000000..398f5951d --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/netdev.c @@ -0,0 +1,7615 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright(c) 1999 - 2018 Intel Corporation. */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "e1000.h" + +#define DRV_EXTRAVERSION "-k" + +#define DRV_VERSION "3.2.6" DRV_EXTRAVERSION +char e1000e_driver_name[] = "e1000e"; +const char e1000e_driver_version[] = DRV_VERSION; + +#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) +static int debug = -1; +module_param(debug, int, 0); +MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); + +static const struct e1000_info *e1000_info_tbl[] = { + [board_82571] = &e1000_82571_info, + [board_82572] = &e1000_82572_info, + [board_82573] = &e1000_82573_info, + [board_82574] = &e1000_82574_info, + [board_82583] = &e1000_82583_info, + [board_80003es2lan] = &e1000_es2_info, + [board_ich8lan] = &e1000_ich8_info, + [board_ich9lan] = &e1000_ich9_info, + [board_ich10lan] = &e1000_ich10_info, + [board_pchlan] = &e1000_pch_info, + [board_pch2lan] = &e1000_pch2_info, + [board_pch_lpt] = &e1000_pch_lpt_info, + [board_pch_spt] = &e1000_pch_spt_info, + [board_pch_cnp] = &e1000_pch_cnp_info, +}; + +struct e1000_reg_info { + u32 ofs; + char *name; +}; + +static const struct e1000_reg_info e1000_reg_info_tbl[] = { + /* General Registers */ + {E1000_CTRL, "CTRL"}, + {E1000_STATUS, "STATUS"}, + {E1000_CTRL_EXT, "CTRL_EXT"}, + + /* Interrupt Registers */ + {E1000_ICR, "ICR"}, + + /* Rx Registers */ + {E1000_RCTL, "RCTL"}, + {E1000_RDLEN(0), "RDLEN"}, + {E1000_RDH(0), "RDH"}, + {E1000_RDT(0), "RDT"}, + {E1000_RDTR, "RDTR"}, + {E1000_RXDCTL(0), "RXDCTL"}, + {E1000_ERT, "ERT"}, + {E1000_RDBAL(0), "RDBAL"}, + {E1000_RDBAH(0), "RDBAH"}, + {E1000_RDFH, "RDFH"}, + {E1000_RDFT, "RDFT"}, + {E1000_RDFHS, "RDFHS"}, + {E1000_RDFTS, "RDFTS"}, + {E1000_RDFPC, "RDFPC"}, + + /* Tx Registers */ + {E1000_TCTL, "TCTL"}, + {E1000_TDBAL(0), "TDBAL"}, + {E1000_TDBAH(0), "TDBAH"}, + {E1000_TDLEN(0), "TDLEN"}, + {E1000_TDH(0), "TDH"}, + {E1000_TDT(0), "TDT"}, + {E1000_TIDV, "TIDV"}, + {E1000_TXDCTL(0), "TXDCTL"}, + {E1000_TADV, "TADV"}, + {E1000_TARC(0), "TARC"}, + {E1000_TDFH, "TDFH"}, + {E1000_TDFT, "TDFT"}, + {E1000_TDFHS, "TDFHS"}, + {E1000_TDFTS, "TDFTS"}, + {E1000_TDFPC, "TDFPC"}, + + /* List Terminator */ + {0, NULL} +}; + +/** + * __ew32_prepare - prepare to write to MAC CSR register on certain parts + * @hw: pointer to the HW structure + * + * When updating the MAC CSR registers, the Manageability Engine (ME) could + * be accessing the registers at the same time. Normally, this is handled in + * h/w by an arbiter but on some parts there is a bug that acknowledges Host + * accesses later than it should which could result in the register to have + * an incorrect value. Workaround this by checking the FWSM register which + * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set + * and try again a number of times. + **/ +static void __ew32_prepare(struct e1000_hw *hw) +{ + s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT; + + while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i) + udelay(50); +} + +void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val) +{ + if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) + __ew32_prepare(hw); + + writel(val, hw->hw_addr + reg); +} + +/** + * e1000_regdump - register printout routine + * @hw: pointer to the HW structure + * @reginfo: pointer to the register info table + **/ +static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) +{ + int n = 0; + char rname[16]; + u32 regs[8]; + + switch (reginfo->ofs) { + case E1000_RXDCTL(0): + for (n = 0; n < 2; n++) + regs[n] = __er32(hw, E1000_RXDCTL(n)); + break; + case E1000_TXDCTL(0): + for (n = 0; n < 2; n++) + regs[n] = __er32(hw, E1000_TXDCTL(n)); + break; + case E1000_TARC(0): + for (n = 0; n < 2; n++) + regs[n] = __er32(hw, E1000_TARC(n)); + break; + default: + pr_info("%-15s %08x\n", + reginfo->name, __er32(hw, reginfo->ofs)); + return; + } + + snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); + pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]); +} + +static void e1000e_dump_ps_pages(struct e1000_adapter *adapter, + struct e1000_buffer *bi) +{ + int i; + struct e1000_ps_page *ps_page; + + for (i = 0; i < adapter->rx_ps_pages; i++) { + ps_page = &bi->ps_pages[i]; + + if (ps_page->page) { + pr_info("packet dump for ps_page %d:\n", i); + print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, + 16, 1, page_address(ps_page->page), + PAGE_SIZE, true); + } + } +} + +/** + * e1000e_dump - Print registers, Tx-ring and Rx-ring + * @adapter: board private structure + **/ +static void e1000e_dump(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + struct e1000_hw *hw = &adapter->hw; + struct e1000_reg_info *reginfo; + struct e1000_ring *tx_ring = adapter->tx_ring; + struct e1000_tx_desc *tx_desc; + struct my_u0 { + __le64 a; + __le64 b; + } *u0; + struct e1000_buffer *buffer_info; + struct e1000_ring *rx_ring = adapter->rx_ring; + union e1000_rx_desc_packet_split *rx_desc_ps; + union e1000_rx_desc_extended *rx_desc; + struct my_u1 { + __le64 a; + __le64 b; + __le64 c; + __le64 d; + } *u1; + u32 staterr; + int i = 0; + + if (!netif_msg_hw(adapter)) + return; + + /* Print netdevice Info */ + if (netdev) { + dev_info(&adapter->pdev->dev, "Net device Info\n"); + pr_info("Device Name state trans_start\n"); + pr_info("%-15s %016lX %016lX\n", netdev->name, + netdev->state, dev_trans_start(netdev)); + } + + /* Print Registers */ + dev_info(&adapter->pdev->dev, "Register Dump\n"); + pr_info(" Register Name Value\n"); + for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; + reginfo->name; reginfo++) { + e1000_regdump(hw, reginfo); + } + + /* Print Tx Ring Summary */ + if (!netdev || !netif_running(netdev)) + return; + + dev_info(&adapter->pdev->dev, "Tx Ring Summary\n"); + pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); + buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; + pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n", + 0, tx_ring->next_to_use, tx_ring->next_to_clean, + (unsigned long long)buffer_info->dma, + buffer_info->length, + buffer_info->next_to_watch, + (unsigned long long)buffer_info->time_stamp); + + /* Print Tx Ring */ + if (!netif_msg_tx_done(adapter)) + goto rx_ring_summary; + + dev_info(&adapter->pdev->dev, "Tx Ring Dump\n"); + + /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) + * + * Legacy Transmit Descriptor + * +--------------------------------------------------------------+ + * 0 | Buffer Address [63:0] (Reserved on Write Back) | + * +--------------------------------------------------------------+ + * 8 | Special | CSS | Status | CMD | CSO | Length | + * +--------------------------------------------------------------+ + * 63 48 47 36 35 32 31 24 23 16 15 0 + * + * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload + * 63 48 47 40 39 32 31 16 15 8 7 0 + * +----------------------------------------------------------------+ + * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | + * +----------------------------------------------------------------+ + * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | + * +----------------------------------------------------------------+ + * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 + * + * Extended Data Descriptor (DTYP=0x1) + * +----------------------------------------------------------------+ + * 0 | Buffer Address [63:0] | + * +----------------------------------------------------------------+ + * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | + * +----------------------------------------------------------------+ + * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 + */ + pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n"); + pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n"); + pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n"); + for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { + const char *next_desc; + tx_desc = E1000_TX_DESC(*tx_ring, i); + buffer_info = &tx_ring->buffer_info[i]; + u0 = (struct my_u0 *)tx_desc; + if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) + next_desc = " NTC/U"; + else if (i == tx_ring->next_to_use) + next_desc = " NTU"; + else if (i == tx_ring->next_to_clean) + next_desc = " NTC"; + else + next_desc = ""; + pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n", + (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' : + ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')), + i, + (unsigned long long)le64_to_cpu(u0->a), + (unsigned long long)le64_to_cpu(u0->b), + (unsigned long long)buffer_info->dma, + buffer_info->length, buffer_info->next_to_watch, + (unsigned long long)buffer_info->time_stamp, + buffer_info->skb, next_desc); + + if (netif_msg_pktdata(adapter) && buffer_info->skb) + print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, + 16, 1, buffer_info->skb->data, + buffer_info->skb->len, true); + } + + /* Print Rx Ring Summary */ +rx_ring_summary: + dev_info(&adapter->pdev->dev, "Rx Ring Summary\n"); + pr_info("Queue [NTU] [NTC]\n"); + pr_info(" %5d %5X %5X\n", + 0, rx_ring->next_to_use, rx_ring->next_to_clean); + + /* Print Rx Ring */ + if (!netif_msg_rx_status(adapter)) + return; + + dev_info(&adapter->pdev->dev, "Rx Ring Dump\n"); + switch (adapter->rx_ps_pages) { + case 1: + case 2: + case 3: + /* [Extended] Packet Split Receive Descriptor Format + * + * +-----------------------------------------------------+ + * 0 | Buffer Address 0 [63:0] | + * +-----------------------------------------------------+ + * 8 | Buffer Address 1 [63:0] | + * +-----------------------------------------------------+ + * 16 | Buffer Address 2 [63:0] | + * +-----------------------------------------------------+ + * 24 | Buffer Address 3 [63:0] | + * +-----------------------------------------------------+ + */ + pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n"); + /* [Extended] Receive Descriptor (Write-Back) Format + * + * 63 48 47 32 31 13 12 8 7 4 3 0 + * +------------------------------------------------------+ + * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS | + * | Checksum | Ident | | Queue | | Type | + * +------------------------------------------------------+ + * 8 | VLAN Tag | Length | Extended Error | Extended Status | + * +------------------------------------------------------+ + * 63 48 47 32 31 20 19 0 + */ + pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n"); + for (i = 0; i < rx_ring->count; i++) { + const char *next_desc; + buffer_info = &rx_ring->buffer_info[i]; + rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); + u1 = (struct my_u1 *)rx_desc_ps; + staterr = + le32_to_cpu(rx_desc_ps->wb.middle.status_error); + + if (i == rx_ring->next_to_use) + next_desc = " NTU"; + else if (i == rx_ring->next_to_clean) + next_desc = " NTC"; + else + next_desc = ""; + + if (staterr & E1000_RXD_STAT_DD) { + /* Descriptor Done */ + pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n", + "RWB", i, + (unsigned long long)le64_to_cpu(u1->a), + (unsigned long long)le64_to_cpu(u1->b), + (unsigned long long)le64_to_cpu(u1->c), + (unsigned long long)le64_to_cpu(u1->d), + buffer_info->skb, next_desc); + } else { + pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n", + "R ", i, + (unsigned long long)le64_to_cpu(u1->a), + (unsigned long long)le64_to_cpu(u1->b), + (unsigned long long)le64_to_cpu(u1->c), + (unsigned long long)le64_to_cpu(u1->d), + (unsigned long long)buffer_info->dma, + buffer_info->skb, next_desc); + + if (netif_msg_pktdata(adapter)) + e1000e_dump_ps_pages(adapter, + buffer_info); + } + } + break; + default: + case 0: + /* Extended Receive Descriptor (Read) Format + * + * +-----------------------------------------------------+ + * 0 | Buffer Address [63:0] | + * +-----------------------------------------------------+ + * 8 | Reserved | + * +-----------------------------------------------------+ + */ + pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n"); + /* Extended Receive Descriptor (Write-Back) Format + * + * 63 48 47 32 31 24 23 4 3 0 + * +------------------------------------------------------+ + * | RSS Hash | | | | + * 0 +-------------------+ Rsvd | Reserved | MRQ RSS | + * | Packet | IP | | | Type | + * | Checksum | Ident | | | | + * +------------------------------------------------------+ + * 8 | VLAN Tag | Length | Extended Error | Extended Status | + * +------------------------------------------------------+ + * 63 48 47 32 31 20 19 0 + */ + pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n"); + + for (i = 0; i < rx_ring->count; i++) { + const char *next_desc; + + buffer_info = &rx_ring->buffer_info[i]; + rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); + u1 = (struct my_u1 *)rx_desc; + staterr = le32_to_cpu(rx_desc->wb.upper.status_error); + + if (i == rx_ring->next_to_use) + next_desc = " NTU"; + else if (i == rx_ring->next_to_clean) + next_desc = " NTC"; + else + next_desc = ""; + + if (staterr & E1000_RXD_STAT_DD) { + /* Descriptor Done */ + pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n", + "RWB", i, + (unsigned long long)le64_to_cpu(u1->a), + (unsigned long long)le64_to_cpu(u1->b), + buffer_info->skb, next_desc); + } else { + pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n", + "R ", i, + (unsigned long long)le64_to_cpu(u1->a), + (unsigned long long)le64_to_cpu(u1->b), + (unsigned long long)buffer_info->dma, + buffer_info->skb, next_desc); + + if (netif_msg_pktdata(adapter) && + buffer_info->skb) + print_hex_dump(KERN_INFO, "", + DUMP_PREFIX_ADDRESS, 16, + 1, + buffer_info->skb->data, + adapter->rx_buffer_len, + true); + } + } + } +} + +/** + * e1000_desc_unused - calculate if we have unused descriptors + **/ +static int e1000_desc_unused(struct e1000_ring *ring) +{ + if (ring->next_to_clean > ring->next_to_use) + return ring->next_to_clean - ring->next_to_use - 1; + + return ring->count + ring->next_to_clean - ring->next_to_use - 1; +} + +/** + * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp + * @adapter: board private structure + * @hwtstamps: time stamp structure to update + * @systim: unsigned 64bit system time value. + * + * Convert the system time value stored in the RX/TXSTMP registers into a + * hwtstamp which can be used by the upper level time stamping functions. + * + * The 'systim_lock' spinlock is used to protect the consistency of the + * system time value. This is needed because reading the 64 bit time + * value involves reading two 32 bit registers. The first read latches the + * value. + **/ +static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter, + struct skb_shared_hwtstamps *hwtstamps, + u64 systim) +{ + u64 ns; + unsigned long flags; + + spin_lock_irqsave(&adapter->systim_lock, flags); + ns = timecounter_cyc2time(&adapter->tc, systim); + spin_unlock_irqrestore(&adapter->systim_lock, flags); + + memset(hwtstamps, 0, sizeof(*hwtstamps)); + hwtstamps->hwtstamp = ns_to_ktime(ns); +} + +/** + * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp + * @adapter: board private structure + * @status: descriptor extended error and status field + * @skb: particular skb to include time stamp + * + * If the time stamp is valid, convert it into the timecounter ns value + * and store that result into the shhwtstamps structure which is passed + * up the network stack. + **/ +static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status, + struct sk_buff *skb) +{ + struct e1000_hw *hw = &adapter->hw; + u64 rxstmp; + + if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) || + !(status & E1000_RXDEXT_STATERR_TST) || + !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) + return; + + /* The Rx time stamp registers contain the time stamp. No other + * received packet will be time stamped until the Rx time stamp + * registers are read. Because only one packet can be time stamped + * at a time, the register values must belong to this packet and + * therefore none of the other additional attributes need to be + * compared. + */ + rxstmp = (u64)er32(RXSTMPL); + rxstmp |= (u64)er32(RXSTMPH) << 32; + e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp); + + adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP; +} + +/** + * e1000_receive_skb - helper function to handle Rx indications + * @adapter: board private structure + * @staterr: descriptor extended error and status field as written by hardware + * @vlan: descriptor vlan field as written by hardware (no le/be conversion) + * @skb: pointer to sk_buff to be indicated to stack + **/ +static void e1000_receive_skb(struct e1000_adapter *adapter, + struct net_device *netdev, struct sk_buff *skb, + u32 staterr, __le16 vlan) +{ + u16 tag = le16_to_cpu(vlan); + + e1000e_rx_hwtstamp(adapter, staterr, skb); + + skb->protocol = eth_type_trans(skb, netdev); + + if (staterr & E1000_RXD_STAT_VP) + __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag); + + napi_gro_receive(&adapter->napi, skb); +} + +/** + * e1000_rx_checksum - Receive Checksum Offload + * @adapter: board private structure + * @status_err: receive descriptor status and error fields + * @csum: receive descriptor csum field + * @sk_buff: socket buffer with received data + **/ +static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, + struct sk_buff *skb) +{ + u16 status = (u16)status_err; + u8 errors = (u8)(status_err >> 24); + + skb_checksum_none_assert(skb); + + /* Rx checksum disabled */ + if (!(adapter->netdev->features & NETIF_F_RXCSUM)) + return; + + /* Ignore Checksum bit is set */ + if (status & E1000_RXD_STAT_IXSM) + return; + + /* TCP/UDP checksum error bit or IP checksum error bit is set */ + if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) { + /* let the stack verify checksum errors */ + adapter->hw_csum_err++; + return; + } + + /* TCP/UDP Checksum has not been calculated */ + if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) + return; + + /* It must be a TCP or UDP packet with a valid checksum */ + skb->ip_summed = CHECKSUM_UNNECESSARY; + adapter->hw_csum_good++; +} + +static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct e1000_hw *hw = &adapter->hw; + + __ew32_prepare(hw); + writel(i, rx_ring->tail); + + if (unlikely(i != readl(rx_ring->tail))) { + u32 rctl = er32(RCTL); + + ew32(RCTL, rctl & ~E1000_RCTL_EN); + e_err("ME firmware caused invalid RDT - resetting\n"); + schedule_work(&adapter->reset_task); + } +} + +static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + struct e1000_hw *hw = &adapter->hw; + + __ew32_prepare(hw); + writel(i, tx_ring->tail); + + if (unlikely(i != readl(tx_ring->tail))) { + u32 tctl = er32(TCTL); + + ew32(TCTL, tctl & ~E1000_TCTL_EN); + e_err("ME firmware caused invalid TDT - resetting\n"); + schedule_work(&adapter->reset_task); + } +} + +/** + * e1000_alloc_rx_buffers - Replace used receive buffers + * @rx_ring: Rx descriptor ring + **/ +static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring, + int cleaned_count, gfp_t gfp) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct net_device *netdev = adapter->netdev; + struct pci_dev *pdev = adapter->pdev; + union e1000_rx_desc_extended *rx_desc; + struct e1000_buffer *buffer_info; + struct sk_buff *skb; + unsigned int i; + unsigned int bufsz = adapter->rx_buffer_len; + + i = rx_ring->next_to_use; + buffer_info = &rx_ring->buffer_info[i]; + + while (cleaned_count--) { + skb = buffer_info->skb; + if (skb) { + skb_trim(skb, 0); + goto map_skb; + } + + skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); + if (!skb) { + /* Better luck next round */ + adapter->alloc_rx_buff_failed++; + break; + } + + buffer_info->skb = skb; +map_skb: + buffer_info->dma = dma_map_single(&pdev->dev, skb->data, + adapter->rx_buffer_len, + DMA_FROM_DEVICE); + if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { + dev_err(&pdev->dev, "Rx DMA map failed\n"); + adapter->rx_dma_failed++; + break; + } + + rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); + rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); + + if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { + /* Force memory writes to complete before letting h/w + * know there are new descriptors to fetch. (Only + * applicable for weak-ordered memory model archs, + * such as IA-64). + */ + wmb(); + if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) + e1000e_update_rdt_wa(rx_ring, i); + else + writel(i, rx_ring->tail); + } + i++; + if (i == rx_ring->count) + i = 0; + buffer_info = &rx_ring->buffer_info[i]; + } + + rx_ring->next_to_use = i; +} + +/** + * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split + * @rx_ring: Rx descriptor ring + **/ +static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring, + int cleaned_count, gfp_t gfp) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct net_device *netdev = adapter->netdev; + struct pci_dev *pdev = adapter->pdev; + union e1000_rx_desc_packet_split *rx_desc; + struct e1000_buffer *buffer_info; + struct e1000_ps_page *ps_page; + struct sk_buff *skb; + unsigned int i, j; + + i = rx_ring->next_to_use; + buffer_info = &rx_ring->buffer_info[i]; + + while (cleaned_count--) { + rx_desc = E1000_RX_DESC_PS(*rx_ring, i); + + for (j = 0; j < PS_PAGE_BUFFERS; j++) { + ps_page = &buffer_info->ps_pages[j]; + if (j >= adapter->rx_ps_pages) { + /* all unused desc entries get hw null ptr */ + rx_desc->read.buffer_addr[j + 1] = + ~cpu_to_le64(0); + continue; + } + if (!ps_page->page) { + ps_page->page = alloc_page(gfp); + if (!ps_page->page) { + adapter->alloc_rx_buff_failed++; + goto no_buffers; + } + ps_page->dma = dma_map_page(&pdev->dev, + ps_page->page, + 0, PAGE_SIZE, + DMA_FROM_DEVICE); + if (dma_mapping_error(&pdev->dev, + ps_page->dma)) { + dev_err(&adapter->pdev->dev, + "Rx DMA page map failed\n"); + adapter->rx_dma_failed++; + goto no_buffers; + } + } + /* Refresh the desc even if buffer_addrs + * didn't change because each write-back + * erases this info. + */ + rx_desc->read.buffer_addr[j + 1] = + cpu_to_le64(ps_page->dma); + } + + skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0, + gfp); + + if (!skb) { + adapter->alloc_rx_buff_failed++; + break; + } + + buffer_info->skb = skb; + buffer_info->dma = dma_map_single(&pdev->dev, skb->data, + adapter->rx_ps_bsize0, + DMA_FROM_DEVICE); + if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { + dev_err(&pdev->dev, "Rx DMA map failed\n"); + adapter->rx_dma_failed++; + /* cleanup skb */ + dev_kfree_skb_any(skb); + buffer_info->skb = NULL; + break; + } + + rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); + + if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { + /* Force memory writes to complete before letting h/w + * know there are new descriptors to fetch. (Only + * applicable for weak-ordered memory model archs, + * such as IA-64). + */ + wmb(); + if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) + e1000e_update_rdt_wa(rx_ring, i << 1); + else + writel(i << 1, rx_ring->tail); + } + + i++; + if (i == rx_ring->count) + i = 0; + buffer_info = &rx_ring->buffer_info[i]; + } + +no_buffers: + rx_ring->next_to_use = i; +} + +/** + * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers + * @rx_ring: Rx descriptor ring + * @cleaned_count: number of buffers to allocate this pass + **/ + +static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring, + int cleaned_count, gfp_t gfp) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct net_device *netdev = adapter->netdev; + struct pci_dev *pdev = adapter->pdev; + union e1000_rx_desc_extended *rx_desc; + struct e1000_buffer *buffer_info; + struct sk_buff *skb; + unsigned int i; + unsigned int bufsz = 256 - 16; /* for skb_reserve */ + + i = rx_ring->next_to_use; + buffer_info = &rx_ring->buffer_info[i]; + + while (cleaned_count--) { + skb = buffer_info->skb; + if (skb) { + skb_trim(skb, 0); + goto check_page; + } + + skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); + if (unlikely(!skb)) { + /* Better luck next round */ + adapter->alloc_rx_buff_failed++; + break; + } + + buffer_info->skb = skb; +check_page: + /* allocate a new page if necessary */ + if (!buffer_info->page) { + buffer_info->page = alloc_page(gfp); + if (unlikely(!buffer_info->page)) { + adapter->alloc_rx_buff_failed++; + break; + } + } + + if (!buffer_info->dma) { + buffer_info->dma = dma_map_page(&pdev->dev, + buffer_info->page, 0, + PAGE_SIZE, + DMA_FROM_DEVICE); + if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { + adapter->alloc_rx_buff_failed++; + break; + } + } + + rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); + rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); + + if (unlikely(++i == rx_ring->count)) + i = 0; + buffer_info = &rx_ring->buffer_info[i]; + } + + if (likely(rx_ring->next_to_use != i)) { + rx_ring->next_to_use = i; + if (unlikely(i-- == 0)) + i = (rx_ring->count - 1); + + /* Force memory writes to complete before letting h/w + * know there are new descriptors to fetch. (Only + * applicable for weak-ordered memory model archs, + * such as IA-64). + */ + wmb(); + if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) + e1000e_update_rdt_wa(rx_ring, i); + else + writel(i, rx_ring->tail); + } +} + +static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss, + struct sk_buff *skb) +{ + if (netdev->features & NETIF_F_RXHASH) + skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3); +} + +/** + * e1000_clean_rx_irq - Send received data up the network stack + * @rx_ring: Rx descriptor ring + * + * the return value indicates whether actual cleaning was done, there + * is no guarantee that everything was cleaned + **/ +static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done, + int work_to_do) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct net_device *netdev = adapter->netdev; + struct pci_dev *pdev = adapter->pdev; + struct e1000_hw *hw = &adapter->hw; + union e1000_rx_desc_extended *rx_desc, *next_rxd; + struct e1000_buffer *buffer_info, *next_buffer; + u32 length, staterr; + unsigned int i; + int cleaned_count = 0; + bool cleaned = false; + unsigned int total_rx_bytes = 0, total_rx_packets = 0; + + i = rx_ring->next_to_clean; + rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); + staterr = le32_to_cpu(rx_desc->wb.upper.status_error); + buffer_info = &rx_ring->buffer_info[i]; + + while (staterr & E1000_RXD_STAT_DD) { + struct sk_buff *skb; + + if (*work_done >= work_to_do) + break; + (*work_done)++; + dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ + + skb = buffer_info->skb; + buffer_info->skb = NULL; + + prefetch(skb->data - NET_IP_ALIGN); + + i++; + if (i == rx_ring->count) + i = 0; + next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); + prefetch(next_rxd); + + next_buffer = &rx_ring->buffer_info[i]; + + cleaned = true; + cleaned_count++; + dma_unmap_single(&pdev->dev, buffer_info->dma, + adapter->rx_buffer_len, DMA_FROM_DEVICE); + buffer_info->dma = 0; + + length = le16_to_cpu(rx_desc->wb.upper.length); + + /* !EOP means multiple descriptors were used to store a single + * packet, if that's the case we need to toss it. In fact, we + * need to toss every packet with the EOP bit clear and the + * next frame that _does_ have the EOP bit set, as it is by + * definition only a frame fragment + */ + if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) + adapter->flags2 |= FLAG2_IS_DISCARDING; + + if (adapter->flags2 & FLAG2_IS_DISCARDING) { + /* All receives must fit into a single buffer */ + e_dbg("Receive packet consumed multiple buffers\n"); + /* recycle */ + buffer_info->skb = skb; + if (staterr & E1000_RXD_STAT_EOP) + adapter->flags2 &= ~FLAG2_IS_DISCARDING; + goto next_desc; + } + + if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && + !(netdev->features & NETIF_F_RXALL))) { + /* recycle */ + buffer_info->skb = skb; + goto next_desc; + } + + /* adjust length to remove Ethernet CRC */ + if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { + /* If configured to store CRC, don't subtract FCS, + * but keep the FCS bytes out of the total_rx_bytes + * counter + */ + if (netdev->features & NETIF_F_RXFCS) + total_rx_bytes -= 4; + else + length -= 4; + } + + total_rx_bytes += length; + total_rx_packets++; + + /* code added for copybreak, this should improve + * performance for small packets with large amounts + * of reassembly being done in the stack + */ + if (length < copybreak) { + struct sk_buff *new_skb = + napi_alloc_skb(&adapter->napi, length); + if (new_skb) { + skb_copy_to_linear_data_offset(new_skb, + -NET_IP_ALIGN, + (skb->data - + NET_IP_ALIGN), + (length + + NET_IP_ALIGN)); + /* save the skb in buffer_info as good */ + buffer_info->skb = skb; + skb = new_skb; + } + /* else just continue with the old one */ + } + /* end copybreak code */ + skb_put(skb, length); + + /* Receive Checksum Offload */ + e1000_rx_checksum(adapter, staterr, skb); + + e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); + + e1000_receive_skb(adapter, netdev, skb, staterr, + rx_desc->wb.upper.vlan); + +next_desc: + rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); + + /* return some buffers to hardware, one at a time is too slow */ + if (cleaned_count >= E1000_RX_BUFFER_WRITE) { + adapter->alloc_rx_buf(rx_ring, cleaned_count, + GFP_ATOMIC); + cleaned_count = 0; + } + + /* use prefetched values */ + rx_desc = next_rxd; + buffer_info = next_buffer; + + staterr = le32_to_cpu(rx_desc->wb.upper.status_error); + } + rx_ring->next_to_clean = i; + + cleaned_count = e1000_desc_unused(rx_ring); + if (cleaned_count) + adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); + + adapter->total_rx_bytes += total_rx_bytes; + adapter->total_rx_packets += total_rx_packets; + return cleaned; +} + +static void e1000_put_txbuf(struct e1000_ring *tx_ring, + struct e1000_buffer *buffer_info, + bool drop) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + + if (buffer_info->dma) { + if (buffer_info->mapped_as_page) + dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, + buffer_info->length, DMA_TO_DEVICE); + else + dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, + buffer_info->length, DMA_TO_DEVICE); + buffer_info->dma = 0; + } + if (buffer_info->skb) { + if (drop) + dev_kfree_skb_any(buffer_info->skb); + else + dev_consume_skb_any(buffer_info->skb); + buffer_info->skb = NULL; + } + buffer_info->time_stamp = 0; +} + +static void e1000_print_hw_hang(struct work_struct *work) +{ + struct e1000_adapter *adapter = container_of(work, + struct e1000_adapter, + print_hang_task); + struct net_device *netdev = adapter->netdev; + struct e1000_ring *tx_ring = adapter->tx_ring; + unsigned int i = tx_ring->next_to_clean; + unsigned int eop = tx_ring->buffer_info[i].next_to_watch; + struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); + struct e1000_hw *hw = &adapter->hw; + u16 phy_status, phy_1000t_status, phy_ext_status; + u16 pci_status; + + if (test_bit(__E1000_DOWN, &adapter->state)) + return; + + if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) { + /* May be block on write-back, flush and detect again + * flush pending descriptor writebacks to memory + */ + ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); + /* execute the writes immediately */ + e1e_flush(); + /* Due to rare timing issues, write to TIDV again to ensure + * the write is successful + */ + ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); + /* execute the writes immediately */ + e1e_flush(); + adapter->tx_hang_recheck = true; + return; + } + adapter->tx_hang_recheck = false; + + if (er32(TDH(0)) == er32(TDT(0))) { + e_dbg("false hang detected, ignoring\n"); + return; + } + + /* Real hang detected */ + netif_stop_queue(netdev); + + e1e_rphy(hw, MII_BMSR, &phy_status); + e1e_rphy(hw, MII_STAT1000, &phy_1000t_status); + e1e_rphy(hw, MII_ESTATUS, &phy_ext_status); + + pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); + + /* detected Hardware unit hang */ + e_err("Detected Hardware Unit Hang:\n" + " TDH <%x>\n" + " TDT <%x>\n" + " next_to_use <%x>\n" + " next_to_clean <%x>\n" + "buffer_info[next_to_clean]:\n" + " time_stamp <%lx>\n" + " next_to_watch <%x>\n" + " jiffies <%lx>\n" + " next_to_watch.status <%x>\n" + "MAC Status <%x>\n" + "PHY Status <%x>\n" + "PHY 1000BASE-T Status <%x>\n" + "PHY Extended Status <%x>\n" + "PCI Status <%x>\n", + readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use, + tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp, + eop, jiffies, eop_desc->upper.fields.status, er32(STATUS), + phy_status, phy_1000t_status, phy_ext_status, pci_status); + + e1000e_dump(adapter); + + /* Suggest workaround for known h/w issue */ + if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE)) + e_err("Try turning off Tx pause (flow control) via ethtool\n"); +} + +/** + * e1000e_tx_hwtstamp_work - check for Tx time stamp + * @work: pointer to work struct + * + * This work function polls the TSYNCTXCTL valid bit to determine when a + * timestamp has been taken for the current stored skb. The timestamp must + * be for this skb because only one such packet is allowed in the queue. + */ +static void e1000e_tx_hwtstamp_work(struct work_struct *work) +{ + struct e1000_adapter *adapter = container_of(work, struct e1000_adapter, + tx_hwtstamp_work); + struct e1000_hw *hw = &adapter->hw; + + if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) { + struct sk_buff *skb = adapter->tx_hwtstamp_skb; + struct skb_shared_hwtstamps shhwtstamps; + u64 txstmp; + + txstmp = er32(TXSTMPL); + txstmp |= (u64)er32(TXSTMPH) << 32; + + e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp); + + /* Clear the global tx_hwtstamp_skb pointer and force writes + * prior to notifying the stack of a Tx timestamp. + */ + adapter->tx_hwtstamp_skb = NULL; + wmb(); /* force write prior to skb_tstamp_tx */ + + skb_tstamp_tx(skb, &shhwtstamps); + dev_consume_skb_any(skb); + } else if (time_after(jiffies, adapter->tx_hwtstamp_start + + adapter->tx_timeout_factor * HZ)) { + dev_kfree_skb_any(adapter->tx_hwtstamp_skb); + adapter->tx_hwtstamp_skb = NULL; + adapter->tx_hwtstamp_timeouts++; + e_warn("clearing Tx timestamp hang\n"); + } else { + /* reschedule to check later */ + schedule_work(&adapter->tx_hwtstamp_work); + } +} + +/** + * e1000_clean_tx_irq - Reclaim resources after transmit completes + * @tx_ring: Tx descriptor ring + * + * the return value indicates whether actual cleaning was done, there + * is no guarantee that everything was cleaned + **/ +static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + struct net_device *netdev = adapter->netdev; + struct e1000_hw *hw = &adapter->hw; + struct e1000_tx_desc *tx_desc, *eop_desc; + struct e1000_buffer *buffer_info; + unsigned int i, eop; + unsigned int count = 0; + unsigned int total_tx_bytes = 0, total_tx_packets = 0; + unsigned int bytes_compl = 0, pkts_compl = 0; + + i = tx_ring->next_to_clean; + eop = tx_ring->buffer_info[i].next_to_watch; + eop_desc = E1000_TX_DESC(*tx_ring, eop); + + while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && + (count < tx_ring->count)) { + bool cleaned = false; + + dma_rmb(); /* read buffer_info after eop_desc */ + for (; !cleaned; count++) { + tx_desc = E1000_TX_DESC(*tx_ring, i); + buffer_info = &tx_ring->buffer_info[i]; + cleaned = (i == eop); + + if (cleaned) { + total_tx_packets += buffer_info->segs; + total_tx_bytes += buffer_info->bytecount; + if (buffer_info->skb) { + bytes_compl += buffer_info->skb->len; + pkts_compl++; + } + } + + e1000_put_txbuf(tx_ring, buffer_info, false); + tx_desc->upper.data = 0; + + i++; + if (i == tx_ring->count) + i = 0; + } + + if (i == tx_ring->next_to_use) + break; + eop = tx_ring->buffer_info[i].next_to_watch; + eop_desc = E1000_TX_DESC(*tx_ring, eop); + } + + tx_ring->next_to_clean = i; + + netdev_completed_queue(netdev, pkts_compl, bytes_compl); + +#define TX_WAKE_THRESHOLD 32 + if (count && netif_carrier_ok(netdev) && + e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { + /* Make sure that anybody stopping the queue after this + * sees the new next_to_clean. + */ + smp_mb(); + + if (netif_queue_stopped(netdev) && + !(test_bit(__E1000_DOWN, &adapter->state))) { + netif_wake_queue(netdev); + ++adapter->restart_queue; + } + } + + if (adapter->detect_tx_hung) { + /* Detect a transmit hang in hardware, this serializes the + * check with the clearing of time_stamp and movement of i + */ + adapter->detect_tx_hung = false; + if (tx_ring->buffer_info[i].time_stamp && + time_after(jiffies, tx_ring->buffer_info[i].time_stamp + + (adapter->tx_timeout_factor * HZ)) && + !(er32(STATUS) & E1000_STATUS_TXOFF)) + schedule_work(&adapter->print_hang_task); + else + adapter->tx_hang_recheck = false; + } + adapter->total_tx_bytes += total_tx_bytes; + adapter->total_tx_packets += total_tx_packets; + return count < tx_ring->count; +} + +/** + * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split + * @rx_ring: Rx descriptor ring + * + * the return value indicates whether actual cleaning was done, there + * is no guarantee that everything was cleaned + **/ +static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done, + int work_to_do) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct e1000_hw *hw = &adapter->hw; + union e1000_rx_desc_packet_split *rx_desc, *next_rxd; + struct net_device *netdev = adapter->netdev; + struct pci_dev *pdev = adapter->pdev; + struct e1000_buffer *buffer_info, *next_buffer; + struct e1000_ps_page *ps_page; + struct sk_buff *skb; + unsigned int i, j; + u32 length, staterr; + int cleaned_count = 0; + bool cleaned = false; + unsigned int total_rx_bytes = 0, total_rx_packets = 0; + + i = rx_ring->next_to_clean; + rx_desc = E1000_RX_DESC_PS(*rx_ring, i); + staterr = le32_to_cpu(rx_desc->wb.middle.status_error); + buffer_info = &rx_ring->buffer_info[i]; + + while (staterr & E1000_RXD_STAT_DD) { + if (*work_done >= work_to_do) + break; + (*work_done)++; + skb = buffer_info->skb; + dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ + + /* in the packet split case this is header only */ + prefetch(skb->data - NET_IP_ALIGN); + + i++; + if (i == rx_ring->count) + i = 0; + next_rxd = E1000_RX_DESC_PS(*rx_ring, i); + prefetch(next_rxd); + + next_buffer = &rx_ring->buffer_info[i]; + + cleaned = true; + cleaned_count++; + dma_unmap_single(&pdev->dev, buffer_info->dma, + adapter->rx_ps_bsize0, DMA_FROM_DEVICE); + buffer_info->dma = 0; + + /* see !EOP comment in other Rx routine */ + if (!(staterr & E1000_RXD_STAT_EOP)) + adapter->flags2 |= FLAG2_IS_DISCARDING; + + if (adapter->flags2 & FLAG2_IS_DISCARDING) { + e_dbg("Packet Split buffers didn't pick up the full packet\n"); + dev_kfree_skb_irq(skb); + if (staterr & E1000_RXD_STAT_EOP) + adapter->flags2 &= ~FLAG2_IS_DISCARDING; + goto next_desc; + } + + if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && + !(netdev->features & NETIF_F_RXALL))) { + dev_kfree_skb_irq(skb); + goto next_desc; + } + + length = le16_to_cpu(rx_desc->wb.middle.length0); + + if (!length) { + e_dbg("Last part of the packet spanning multiple descriptors\n"); + dev_kfree_skb_irq(skb); + goto next_desc; + } + + /* Good Receive */ + skb_put(skb, length); + + { + /* this looks ugly, but it seems compiler issues make + * it more efficient than reusing j + */ + int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); + + /* page alloc/put takes too long and effects small + * packet throughput, so unsplit small packets and + * save the alloc/put only valid in softirq (napi) + * context to call kmap_* + */ + if (l1 && (l1 <= copybreak) && + ((length + l1) <= adapter->rx_ps_bsize0)) { + u8 *vaddr; + + ps_page = &buffer_info->ps_pages[0]; + + /* there is no documentation about how to call + * kmap_atomic, so we can't hold the mapping + * very long + */ + dma_sync_single_for_cpu(&pdev->dev, + ps_page->dma, + PAGE_SIZE, + DMA_FROM_DEVICE); + vaddr = kmap_atomic(ps_page->page); + memcpy(skb_tail_pointer(skb), vaddr, l1); + kunmap_atomic(vaddr); + dma_sync_single_for_device(&pdev->dev, + ps_page->dma, + PAGE_SIZE, + DMA_FROM_DEVICE); + + /* remove the CRC */ + if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { + if (!(netdev->features & NETIF_F_RXFCS)) + l1 -= 4; + } + + skb_put(skb, l1); + goto copydone; + } /* if */ + } + + for (j = 0; j < PS_PAGE_BUFFERS; j++) { + length = le16_to_cpu(rx_desc->wb.upper.length[j]); + if (!length) + break; + + ps_page = &buffer_info->ps_pages[j]; + dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, + DMA_FROM_DEVICE); + ps_page->dma = 0; + skb_fill_page_desc(skb, j, ps_page->page, 0, length); + ps_page->page = NULL; + skb->len += length; + skb->data_len += length; + skb->truesize += PAGE_SIZE; + } + + /* strip the ethernet crc, problem is we're using pages now so + * this whole operation can get a little cpu intensive + */ + if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { + if (!(netdev->features & NETIF_F_RXFCS)) + pskb_trim(skb, skb->len - 4); + } + +copydone: + total_rx_bytes += skb->len; + total_rx_packets++; + + e1000_rx_checksum(adapter, staterr, skb); + + e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); + + if (rx_desc->wb.upper.header_status & + cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) + adapter->rx_hdr_split++; + + e1000_receive_skb(adapter, netdev, skb, staterr, + rx_desc->wb.middle.vlan); + +next_desc: + rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); + buffer_info->skb = NULL; + + /* return some buffers to hardware, one at a time is too slow */ + if (cleaned_count >= E1000_RX_BUFFER_WRITE) { + adapter->alloc_rx_buf(rx_ring, cleaned_count, + GFP_ATOMIC); + cleaned_count = 0; + } + + /* use prefetched values */ + rx_desc = next_rxd; + buffer_info = next_buffer; + + staterr = le32_to_cpu(rx_desc->wb.middle.status_error); + } + rx_ring->next_to_clean = i; + + cleaned_count = e1000_desc_unused(rx_ring); + if (cleaned_count) + adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); + + adapter->total_rx_bytes += total_rx_bytes; + adapter->total_rx_packets += total_rx_packets; + return cleaned; +} + +/** + * e1000_consume_page - helper function + **/ +static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, + u16 length) +{ + bi->page = NULL; + skb->len += length; + skb->data_len += length; + skb->truesize += PAGE_SIZE; +} + +/** + * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy + * @adapter: board private structure + * + * the return value indicates whether actual cleaning was done, there + * is no guarantee that everything was cleaned + **/ +static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done, + int work_to_do) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct net_device *netdev = adapter->netdev; + struct pci_dev *pdev = adapter->pdev; + union e1000_rx_desc_extended *rx_desc, *next_rxd; + struct e1000_buffer *buffer_info, *next_buffer; + u32 length, staterr; + unsigned int i; + int cleaned_count = 0; + bool cleaned = false; + unsigned int total_rx_bytes = 0, total_rx_packets = 0; + struct skb_shared_info *shinfo; + + i = rx_ring->next_to_clean; + rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); + staterr = le32_to_cpu(rx_desc->wb.upper.status_error); + buffer_info = &rx_ring->buffer_info[i]; + + while (staterr & E1000_RXD_STAT_DD) { + struct sk_buff *skb; + + if (*work_done >= work_to_do) + break; + (*work_done)++; + dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ + + skb = buffer_info->skb; + buffer_info->skb = NULL; + + ++i; + if (i == rx_ring->count) + i = 0; + next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); + prefetch(next_rxd); + + next_buffer = &rx_ring->buffer_info[i]; + + cleaned = true; + cleaned_count++; + dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, + DMA_FROM_DEVICE); + buffer_info->dma = 0; + + length = le16_to_cpu(rx_desc->wb.upper.length); + + /* errors is only valid for DD + EOP descriptors */ + if (unlikely((staterr & E1000_RXD_STAT_EOP) && + ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && + !(netdev->features & NETIF_F_RXALL)))) { + /* recycle both page and skb */ + buffer_info->skb = skb; + /* an error means any chain goes out the window too */ + if (rx_ring->rx_skb_top) + dev_kfree_skb_irq(rx_ring->rx_skb_top); + rx_ring->rx_skb_top = NULL; + goto next_desc; + } +#define rxtop (rx_ring->rx_skb_top) + if (!(staterr & E1000_RXD_STAT_EOP)) { + /* this descriptor is only the beginning (or middle) */ + if (!rxtop) { + /* this is the beginning of a chain */ + rxtop = skb; + skb_fill_page_desc(rxtop, 0, buffer_info->page, + 0, length); + } else { + /* this is the middle of a chain */ + shinfo = skb_shinfo(rxtop); + skb_fill_page_desc(rxtop, shinfo->nr_frags, + buffer_info->page, 0, + length); + /* re-use the skb, only consumed the page */ + buffer_info->skb = skb; + } + e1000_consume_page(buffer_info, rxtop, length); + goto next_desc; + } else { + if (rxtop) { + /* end of the chain */ + shinfo = skb_shinfo(rxtop); + skb_fill_page_desc(rxtop, shinfo->nr_frags, + buffer_info->page, 0, + length); + /* re-use the current skb, we only consumed the + * page + */ + buffer_info->skb = skb; + skb = rxtop; + rxtop = NULL; + e1000_consume_page(buffer_info, skb, length); + } else { + /* no chain, got EOP, this buf is the packet + * copybreak to save the put_page/alloc_page + */ + if (length <= copybreak && + skb_tailroom(skb) >= length) { + u8 *vaddr; + vaddr = kmap_atomic(buffer_info->page); + memcpy(skb_tail_pointer(skb), vaddr, + length); + kunmap_atomic(vaddr); + /* re-use the page, so don't erase + * buffer_info->page + */ + skb_put(skb, length); + } else { + skb_fill_page_desc(skb, 0, + buffer_info->page, 0, + length); + e1000_consume_page(buffer_info, skb, + length); + } + } + } + + /* Receive Checksum Offload */ + e1000_rx_checksum(adapter, staterr, skb); + + e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); + + /* probably a little skewed due to removing CRC */ + total_rx_bytes += skb->len; + total_rx_packets++; + + /* eth type trans needs skb->data to point to something */ + if (!pskb_may_pull(skb, ETH_HLEN)) { + e_err("pskb_may_pull failed.\n"); + dev_kfree_skb_irq(skb); + goto next_desc; + } + + e1000_receive_skb(adapter, netdev, skb, staterr, + rx_desc->wb.upper.vlan); + +next_desc: + rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); + + /* return some buffers to hardware, one at a time is too slow */ + if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { + adapter->alloc_rx_buf(rx_ring, cleaned_count, + GFP_ATOMIC); + cleaned_count = 0; + } + + /* use prefetched values */ + rx_desc = next_rxd; + buffer_info = next_buffer; + + staterr = le32_to_cpu(rx_desc->wb.upper.status_error); + } + rx_ring->next_to_clean = i; + + cleaned_count = e1000_desc_unused(rx_ring); + if (cleaned_count) + adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); + + adapter->total_rx_bytes += total_rx_bytes; + adapter->total_rx_packets += total_rx_packets; + return cleaned; +} + +/** + * e1000_clean_rx_ring - Free Rx Buffers per Queue + * @rx_ring: Rx descriptor ring + **/ +static void e1000_clean_rx_ring(struct e1000_ring *rx_ring) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct e1000_buffer *buffer_info; + struct e1000_ps_page *ps_page; + struct pci_dev *pdev = adapter->pdev; + unsigned int i, j; + + /* Free all the Rx ring sk_buffs */ + for (i = 0; i < rx_ring->count; i++) { + buffer_info = &rx_ring->buffer_info[i]; + if (buffer_info->dma) { + if (adapter->clean_rx == e1000_clean_rx_irq) + dma_unmap_single(&pdev->dev, buffer_info->dma, + adapter->rx_buffer_len, + DMA_FROM_DEVICE); + else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) + dma_unmap_page(&pdev->dev, buffer_info->dma, + PAGE_SIZE, DMA_FROM_DEVICE); + else if (adapter->clean_rx == e1000_clean_rx_irq_ps) + dma_unmap_single(&pdev->dev, buffer_info->dma, + adapter->rx_ps_bsize0, + DMA_FROM_DEVICE); + buffer_info->dma = 0; + } + + if (buffer_info->page) { + put_page(buffer_info->page); + buffer_info->page = NULL; + } + + if (buffer_info->skb) { + dev_kfree_skb(buffer_info->skb); + buffer_info->skb = NULL; + } + + for (j = 0; j < PS_PAGE_BUFFERS; j++) { + ps_page = &buffer_info->ps_pages[j]; + if (!ps_page->page) + break; + dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, + DMA_FROM_DEVICE); + ps_page->dma = 0; + put_page(ps_page->page); + ps_page->page = NULL; + } + } + + /* there also may be some cached data from a chained receive */ + if (rx_ring->rx_skb_top) { + dev_kfree_skb(rx_ring->rx_skb_top); + rx_ring->rx_skb_top = NULL; + } + + /* Zero out the descriptor ring */ + memset(rx_ring->desc, 0, rx_ring->size); + + rx_ring->next_to_clean = 0; + rx_ring->next_to_use = 0; + adapter->flags2 &= ~FLAG2_IS_DISCARDING; +} + +static void e1000e_downshift_workaround(struct work_struct *work) +{ + struct e1000_adapter *adapter = container_of(work, + struct e1000_adapter, + downshift_task); + + if (test_bit(__E1000_DOWN, &adapter->state)) + return; + + e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); +} + +/** + * e1000_intr_msi - Interrupt Handler + * @irq: interrupt number + * @data: pointer to a network interface device structure + **/ +static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data) +{ + struct net_device *netdev = data; + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 icr = er32(ICR); + + /* read ICR disables interrupts using IAM */ + if (icr & E1000_ICR_LSC) { + hw->mac.get_link_status = true; + /* ICH8 workaround-- Call gig speed drop workaround on cable + * disconnect (LSC) before accessing any PHY registers + */ + if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && + (!(er32(STATUS) & E1000_STATUS_LU))) + schedule_work(&adapter->downshift_task); + + /* 80003ES2LAN workaround-- For packet buffer work-around on + * link down event; disable receives here in the ISR and reset + * adapter in watchdog + */ + if (netif_carrier_ok(netdev) && + adapter->flags & FLAG_RX_NEEDS_RESTART) { + /* disable receives */ + u32 rctl = er32(RCTL); + + ew32(RCTL, rctl & ~E1000_RCTL_EN); + adapter->flags |= FLAG_RESTART_NOW; + } + /* guard against interrupt when we're going down */ + if (!test_bit(__E1000_DOWN, &adapter->state)) + mod_timer(&adapter->watchdog_timer, jiffies + 1); + } + + /* Reset on uncorrectable ECC error */ + if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) { + u32 pbeccsts = er32(PBECCSTS); + + adapter->corr_errors += + pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; + adapter->uncorr_errors += + (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> + E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; + + /* Do the reset outside of interrupt context */ + schedule_work(&adapter->reset_task); + + /* return immediately since reset is imminent */ + return IRQ_HANDLED; + } + + if (napi_schedule_prep(&adapter->napi)) { + adapter->total_tx_bytes = 0; + adapter->total_tx_packets = 0; + adapter->total_rx_bytes = 0; + adapter->total_rx_packets = 0; + __napi_schedule(&adapter->napi); + } + + return IRQ_HANDLED; +} + +/** + * e1000_intr - Interrupt Handler + * @irq: interrupt number + * @data: pointer to a network interface device structure + **/ +static irqreturn_t e1000_intr(int __always_unused irq, void *data) +{ + struct net_device *netdev = data; + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 rctl, icr = er32(ICR); + + if (!icr || test_bit(__E1000_DOWN, &adapter->state)) + return IRQ_NONE; /* Not our interrupt */ + + /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is + * not set, then the adapter didn't send an interrupt + */ + if (!(icr & E1000_ICR_INT_ASSERTED)) + return IRQ_NONE; + + /* Interrupt Auto-Mask...upon reading ICR, + * interrupts are masked. No need for the + * IMC write + */ + + if (icr & E1000_ICR_LSC) { + hw->mac.get_link_status = true; + /* ICH8 workaround-- Call gig speed drop workaround on cable + * disconnect (LSC) before accessing any PHY registers + */ + if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && + (!(er32(STATUS) & E1000_STATUS_LU))) + schedule_work(&adapter->downshift_task); + + /* 80003ES2LAN workaround-- + * For packet buffer work-around on link down event; + * disable receives here in the ISR and + * reset adapter in watchdog + */ + if (netif_carrier_ok(netdev) && + (adapter->flags & FLAG_RX_NEEDS_RESTART)) { + /* disable receives */ + rctl = er32(RCTL); + ew32(RCTL, rctl & ~E1000_RCTL_EN); + adapter->flags |= FLAG_RESTART_NOW; + } + /* guard against interrupt when we're going down */ + if (!test_bit(__E1000_DOWN, &adapter->state)) + mod_timer(&adapter->watchdog_timer, jiffies + 1); + } + + /* Reset on uncorrectable ECC error */ + if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) { + u32 pbeccsts = er32(PBECCSTS); + + adapter->corr_errors += + pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; + adapter->uncorr_errors += + (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> + E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; + + /* Do the reset outside of interrupt context */ + schedule_work(&adapter->reset_task); + + /* return immediately since reset is imminent */ + return IRQ_HANDLED; + } + + if (napi_schedule_prep(&adapter->napi)) { + adapter->total_tx_bytes = 0; + adapter->total_tx_packets = 0; + adapter->total_rx_bytes = 0; + adapter->total_rx_packets = 0; + __napi_schedule(&adapter->napi); + } + + return IRQ_HANDLED; +} + +static irqreturn_t e1000_msix_other(int __always_unused irq, void *data) +{ + struct net_device *netdev = data; + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 icr = er32(ICR); + + if (icr & adapter->eiac_mask) + ew32(ICS, (icr & adapter->eiac_mask)); + + if (icr & E1000_ICR_LSC) { + hw->mac.get_link_status = true; + /* guard against interrupt when we're going down */ + if (!test_bit(__E1000_DOWN, &adapter->state)) + mod_timer(&adapter->watchdog_timer, jiffies + 1); + } + + if (!test_bit(__E1000_DOWN, &adapter->state)) + ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK); + + return IRQ_HANDLED; +} + +static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data) +{ + struct net_device *netdev = data; + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + struct e1000_ring *tx_ring = adapter->tx_ring; + + adapter->total_tx_bytes = 0; + adapter->total_tx_packets = 0; + + if (!e1000_clean_tx_irq(tx_ring)) + /* Ring was not completely cleaned, so fire another interrupt */ + ew32(ICS, tx_ring->ims_val); + + if (!test_bit(__E1000_DOWN, &adapter->state)) + ew32(IMS, adapter->tx_ring->ims_val); + + return IRQ_HANDLED; +} + +static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data) +{ + struct net_device *netdev = data; + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_ring *rx_ring = adapter->rx_ring; + + /* Write the ITR value calculated at the end of the + * previous interrupt. + */ + if (rx_ring->set_itr) { + u32 itr = rx_ring->itr_val ? + 1000000000 / (rx_ring->itr_val * 256) : 0; + + writel(itr, rx_ring->itr_register); + rx_ring->set_itr = 0; + } + + if (napi_schedule_prep(&adapter->napi)) { + adapter->total_rx_bytes = 0; + adapter->total_rx_packets = 0; + __napi_schedule(&adapter->napi); + } + return IRQ_HANDLED; +} + +/** + * e1000_configure_msix - Configure MSI-X hardware + * + * e1000_configure_msix sets up the hardware to properly + * generate MSI-X interrupts. + **/ +static void e1000_configure_msix(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + struct e1000_ring *rx_ring = adapter->rx_ring; + struct e1000_ring *tx_ring = adapter->tx_ring; + int vector = 0; + u32 ctrl_ext, ivar = 0; + + adapter->eiac_mask = 0; + + /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ + if (hw->mac.type == e1000_82574) { + u32 rfctl = er32(RFCTL); + + rfctl |= E1000_RFCTL_ACK_DIS; + ew32(RFCTL, rfctl); + } + + /* Configure Rx vector */ + rx_ring->ims_val = E1000_IMS_RXQ0; + adapter->eiac_mask |= rx_ring->ims_val; + if (rx_ring->itr_val) + writel(1000000000 / (rx_ring->itr_val * 256), + rx_ring->itr_register); + else + writel(1, rx_ring->itr_register); + ivar = E1000_IVAR_INT_ALLOC_VALID | vector; + + /* Configure Tx vector */ + tx_ring->ims_val = E1000_IMS_TXQ0; + vector++; + if (tx_ring->itr_val) + writel(1000000000 / (tx_ring->itr_val * 256), + tx_ring->itr_register); + else + writel(1, tx_ring->itr_register); + adapter->eiac_mask |= tx_ring->ims_val; + ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); + + /* set vector for Other Causes, e.g. link changes */ + vector++; + ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); + if (rx_ring->itr_val) + writel(1000000000 / (rx_ring->itr_val * 256), + hw->hw_addr + E1000_EITR_82574(vector)); + else + writel(1, hw->hw_addr + E1000_EITR_82574(vector)); + + /* Cause Tx interrupts on every write back */ + ivar |= BIT(31); + + ew32(IVAR, ivar); + + /* enable MSI-X PBA support */ + ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME; + ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME; + ew32(CTRL_EXT, ctrl_ext); + e1e_flush(); +} + +void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) +{ + if (adapter->msix_entries) { + pci_disable_msix(adapter->pdev); + kfree(adapter->msix_entries); + adapter->msix_entries = NULL; + } else if (adapter->flags & FLAG_MSI_ENABLED) { + pci_disable_msi(adapter->pdev); + adapter->flags &= ~FLAG_MSI_ENABLED; + } +} + +/** + * e1000e_set_interrupt_capability - set MSI or MSI-X if supported + * + * Attempt to configure interrupts using the best available + * capabilities of the hardware and kernel. + **/ +void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) +{ + int err; + int i; + + switch (adapter->int_mode) { + case E1000E_INT_MODE_MSIX: + if (adapter->flags & FLAG_HAS_MSIX) { + adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */ + adapter->msix_entries = kcalloc(adapter->num_vectors, + sizeof(struct + msix_entry), + GFP_KERNEL); + if (adapter->msix_entries) { + struct e1000_adapter *a = adapter; + + for (i = 0; i < adapter->num_vectors; i++) + adapter->msix_entries[i].entry = i; + + err = pci_enable_msix_range(a->pdev, + a->msix_entries, + a->num_vectors, + a->num_vectors); + if (err > 0) + return; + } + /* MSI-X failed, so fall through and try MSI */ + e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n"); + e1000e_reset_interrupt_capability(adapter); + } + adapter->int_mode = E1000E_INT_MODE_MSI; + /* Fall through */ + case E1000E_INT_MODE_MSI: + if (!pci_enable_msi(adapter->pdev)) { + adapter->flags |= FLAG_MSI_ENABLED; + } else { + adapter->int_mode = E1000E_INT_MODE_LEGACY; + e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n"); + } + /* Fall through */ + case E1000E_INT_MODE_LEGACY: + /* Don't do anything; this is the system default */ + break; + } + + /* store the number of vectors being used */ + adapter->num_vectors = 1; +} + +/** + * e1000_request_msix - Initialize MSI-X interrupts + * + * e1000_request_msix allocates MSI-X vectors and requests interrupts from the + * kernel. + **/ +static int e1000_request_msix(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + int err = 0, vector = 0; + + if (strlen(netdev->name) < (IFNAMSIZ - 5)) + snprintf(adapter->rx_ring->name, + sizeof(adapter->rx_ring->name) - 1, + "%.14s-rx-0", netdev->name); + else + memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); + err = request_irq(adapter->msix_entries[vector].vector, + e1000_intr_msix_rx, 0, adapter->rx_ring->name, + netdev); + if (err) + return err; + adapter->rx_ring->itr_register = adapter->hw.hw_addr + + E1000_EITR_82574(vector); + adapter->rx_ring->itr_val = adapter->itr; + vector++; + + if (strlen(netdev->name) < (IFNAMSIZ - 5)) + snprintf(adapter->tx_ring->name, + sizeof(adapter->tx_ring->name) - 1, + "%.14s-tx-0", netdev->name); + else + memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); + err = request_irq(adapter->msix_entries[vector].vector, + e1000_intr_msix_tx, 0, adapter->tx_ring->name, + netdev); + if (err) + return err; + adapter->tx_ring->itr_register = adapter->hw.hw_addr + + E1000_EITR_82574(vector); + adapter->tx_ring->itr_val = adapter->itr; + vector++; + + err = request_irq(adapter->msix_entries[vector].vector, + e1000_msix_other, 0, netdev->name, netdev); + if (err) + return err; + + e1000_configure_msix(adapter); + + return 0; +} + +/** + * e1000_request_irq - initialize interrupts + * + * Attempts to configure interrupts using the best available + * capabilities of the hardware and kernel. + **/ +static int e1000_request_irq(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + int err; + + if (adapter->msix_entries) { + err = e1000_request_msix(adapter); + if (!err) + return err; + /* fall back to MSI */ + e1000e_reset_interrupt_capability(adapter); + adapter->int_mode = E1000E_INT_MODE_MSI; + e1000e_set_interrupt_capability(adapter); + } + if (adapter->flags & FLAG_MSI_ENABLED) { + err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, + netdev->name, netdev); + if (!err) + return err; + + /* fall back to legacy interrupt */ + e1000e_reset_interrupt_capability(adapter); + adapter->int_mode = E1000E_INT_MODE_LEGACY; + } + + err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, + netdev->name, netdev); + if (err) + e_err("Unable to allocate interrupt, Error: %d\n", err); + + return err; +} + +static void e1000_free_irq(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + + if (adapter->msix_entries) { + int vector = 0; + + free_irq(adapter->msix_entries[vector].vector, netdev); + vector++; + + free_irq(adapter->msix_entries[vector].vector, netdev); + vector++; + + /* Other Causes interrupt vector */ + free_irq(adapter->msix_entries[vector].vector, netdev); + return; + } + + free_irq(adapter->pdev->irq, netdev); +} + +/** + * e1000_irq_disable - Mask off interrupt generation on the NIC + **/ +static void e1000_irq_disable(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + + ew32(IMC, ~0); + if (adapter->msix_entries) + ew32(EIAC_82574, 0); + e1e_flush(); + + if (adapter->msix_entries) { + int i; + + for (i = 0; i < adapter->num_vectors; i++) + synchronize_irq(adapter->msix_entries[i].vector); + } else { + synchronize_irq(adapter->pdev->irq); + } +} + +/** + * e1000_irq_enable - Enable default interrupt generation settings + **/ +static void e1000_irq_enable(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + + if (adapter->msix_entries) { + ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); + ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | + IMS_OTHER_MASK); + } else if (hw->mac.type >= e1000_pch_lpt) { + ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER); + } else { + ew32(IMS, IMS_ENABLE_MASK); + } + e1e_flush(); +} + +/** + * e1000e_get_hw_control - get control of the h/w from f/w + * @adapter: address of board private structure + * + * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. + * For ASF and Pass Through versions of f/w this means that + * the driver is loaded. For AMT version (only with 82573) + * of the f/w this means that the network i/f is open. + **/ +void e1000e_get_hw_control(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 ctrl_ext; + u32 swsm; + + /* Let firmware know the driver has taken over */ + if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { + swsm = er32(SWSM); + ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); + } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { + ctrl_ext = er32(CTRL_EXT); + ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); + } +} + +/** + * e1000e_release_hw_control - release control of the h/w to f/w + * @adapter: address of board private structure + * + * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. + * For ASF and Pass Through versions of f/w this means that the + * driver is no longer loaded. For AMT version (only with 82573) i + * of the f/w this means that the network i/f is closed. + * + **/ +void e1000e_release_hw_control(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 ctrl_ext; + u32 swsm; + + /* Let firmware taken over control of h/w */ + if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { + swsm = er32(SWSM); + ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); + } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { + ctrl_ext = er32(CTRL_EXT); + ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); + } +} + +/** + * e1000_alloc_ring_dma - allocate memory for a ring structure + **/ +static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, + struct e1000_ring *ring) +{ + struct pci_dev *pdev = adapter->pdev; + + ring->desc = dma_zalloc_coherent(&pdev->dev, ring->size, &ring->dma, + GFP_KERNEL); + if (!ring->desc) + return -ENOMEM; + + return 0; +} + +/** + * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) + * @tx_ring: Tx descriptor ring + * + * Return 0 on success, negative on failure + **/ +int e1000e_setup_tx_resources(struct e1000_ring *tx_ring) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + int err = -ENOMEM, size; + + size = sizeof(struct e1000_buffer) * tx_ring->count; + tx_ring->buffer_info = vzalloc(size); + if (!tx_ring->buffer_info) + goto err; + + /* round up to nearest 4K */ + tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); + tx_ring->size = ALIGN(tx_ring->size, 4096); + + err = e1000_alloc_ring_dma(adapter, tx_ring); + if (err) + goto err; + + tx_ring->next_to_use = 0; + tx_ring->next_to_clean = 0; + + return 0; +err: + vfree(tx_ring->buffer_info); + e_err("Unable to allocate memory for the transmit descriptor ring\n"); + return err; +} + +/** + * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) + * @rx_ring: Rx descriptor ring + * + * Returns 0 on success, negative on failure + **/ +int e1000e_setup_rx_resources(struct e1000_ring *rx_ring) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct e1000_buffer *buffer_info; + int i, size, desc_len, err = -ENOMEM; + + size = sizeof(struct e1000_buffer) * rx_ring->count; + rx_ring->buffer_info = vzalloc(size); + if (!rx_ring->buffer_info) + goto err; + + for (i = 0; i < rx_ring->count; i++) { + buffer_info = &rx_ring->buffer_info[i]; + buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, + sizeof(struct e1000_ps_page), + GFP_KERNEL); + if (!buffer_info->ps_pages) + goto err_pages; + } + + desc_len = sizeof(union e1000_rx_desc_packet_split); + + /* Round up to nearest 4K */ + rx_ring->size = rx_ring->count * desc_len; + rx_ring->size = ALIGN(rx_ring->size, 4096); + + err = e1000_alloc_ring_dma(adapter, rx_ring); + if (err) + goto err_pages; + + rx_ring->next_to_clean = 0; + rx_ring->next_to_use = 0; + rx_ring->rx_skb_top = NULL; + + return 0; + +err_pages: + for (i = 0; i < rx_ring->count; i++) { + buffer_info = &rx_ring->buffer_info[i]; + kfree(buffer_info->ps_pages); + } +err: + vfree(rx_ring->buffer_info); + e_err("Unable to allocate memory for the receive descriptor ring\n"); + return err; +} + +/** + * e1000_clean_tx_ring - Free Tx Buffers + * @tx_ring: Tx descriptor ring + **/ +static void e1000_clean_tx_ring(struct e1000_ring *tx_ring) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + struct e1000_buffer *buffer_info; + unsigned long size; + unsigned int i; + + for (i = 0; i < tx_ring->count; i++) { + buffer_info = &tx_ring->buffer_info[i]; + e1000_put_txbuf(tx_ring, buffer_info, false); + } + + netdev_reset_queue(adapter->netdev); + size = sizeof(struct e1000_buffer) * tx_ring->count; + memset(tx_ring->buffer_info, 0, size); + + memset(tx_ring->desc, 0, tx_ring->size); + + tx_ring->next_to_use = 0; + tx_ring->next_to_clean = 0; +} + +/** + * e1000e_free_tx_resources - Free Tx Resources per Queue + * @tx_ring: Tx descriptor ring + * + * Free all transmit software resources + **/ +void e1000e_free_tx_resources(struct e1000_ring *tx_ring) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + struct pci_dev *pdev = adapter->pdev; + + e1000_clean_tx_ring(tx_ring); + + vfree(tx_ring->buffer_info); + tx_ring->buffer_info = NULL; + + dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, + tx_ring->dma); + tx_ring->desc = NULL; +} + +/** + * e1000e_free_rx_resources - Free Rx Resources + * @rx_ring: Rx descriptor ring + * + * Free all receive software resources + **/ +void e1000e_free_rx_resources(struct e1000_ring *rx_ring) +{ + struct e1000_adapter *adapter = rx_ring->adapter; + struct pci_dev *pdev = adapter->pdev; + int i; + + e1000_clean_rx_ring(rx_ring); + + for (i = 0; i < rx_ring->count; i++) + kfree(rx_ring->buffer_info[i].ps_pages); + + vfree(rx_ring->buffer_info); + rx_ring->buffer_info = NULL; + + dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, + rx_ring->dma); + rx_ring->desc = NULL; +} + +/** + * e1000_update_itr - update the dynamic ITR value based on statistics + * @adapter: pointer to adapter + * @itr_setting: current adapter->itr + * @packets: the number of packets during this measurement interval + * @bytes: the number of bytes during this measurement interval + * + * Stores a new ITR value based on packets and byte + * counts during the last interrupt. The advantage of per interrupt + * computation is faster updates and more accurate ITR for the current + * traffic pattern. Constants in this function were computed + * based on theoretical maximum wire speed and thresholds were set based + * on testing data as well as attempting to minimize response time + * while increasing bulk throughput. This functionality is controlled + * by the InterruptThrottleRate module parameter. + **/ +static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes) +{ + unsigned int retval = itr_setting; + + if (packets == 0) + return itr_setting; + + switch (itr_setting) { + case lowest_latency: + /* handle TSO and jumbo frames */ + if (bytes / packets > 8000) + retval = bulk_latency; + else if ((packets < 5) && (bytes > 512)) + retval = low_latency; + break; + case low_latency: /* 50 usec aka 20000 ints/s */ + if (bytes > 10000) { + /* this if handles the TSO accounting */ + if (bytes / packets > 8000) + retval = bulk_latency; + else if ((packets < 10) || ((bytes / packets) > 1200)) + retval = bulk_latency; + else if ((packets > 35)) + retval = lowest_latency; + } else if (bytes / packets > 2000) { + retval = bulk_latency; + } else if (packets <= 2 && bytes < 512) { + retval = lowest_latency; + } + break; + case bulk_latency: /* 250 usec aka 4000 ints/s */ + if (bytes > 25000) { + if (packets > 35) + retval = low_latency; + } else if (bytes < 6000) { + retval = low_latency; + } + break; + } + + return retval; +} + +static void e1000_set_itr(struct e1000_adapter *adapter) +{ + u16 current_itr; + u32 new_itr = adapter->itr; + + /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ + if (adapter->link_speed != SPEED_1000) { + current_itr = 0; + new_itr = 4000; + goto set_itr_now; + } + + if (adapter->flags2 & FLAG2_DISABLE_AIM) { + new_itr = 0; + goto set_itr_now; + } + + adapter->tx_itr = e1000_update_itr(adapter->tx_itr, + adapter->total_tx_packets, + adapter->total_tx_bytes); + /* conservative mode (itr 3) eliminates the lowest_latency setting */ + if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) + adapter->tx_itr = low_latency; + + adapter->rx_itr = e1000_update_itr(adapter->rx_itr, + adapter->total_rx_packets, + adapter->total_rx_bytes); + /* conservative mode (itr 3) eliminates the lowest_latency setting */ + if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) + adapter->rx_itr = low_latency; + + current_itr = max(adapter->rx_itr, adapter->tx_itr); + + /* counts and packets in update_itr are dependent on these numbers */ + switch (current_itr) { + case lowest_latency: + new_itr = 70000; + break; + case low_latency: + new_itr = 20000; /* aka hwitr = ~200 */ + break; + case bulk_latency: + new_itr = 4000; + break; + default: + break; + } + +set_itr_now: + if (new_itr != adapter->itr) { + /* this attempts to bias the interrupt rate towards Bulk + * by adding intermediate steps when interrupt rate is + * increasing + */ + new_itr = new_itr > adapter->itr ? + min(adapter->itr + (new_itr >> 2), new_itr) : new_itr; + adapter->itr = new_itr; + adapter->rx_ring->itr_val = new_itr; + if (adapter->msix_entries) + adapter->rx_ring->set_itr = 1; + else + e1000e_write_itr(adapter, new_itr); + } +} + +/** + * e1000e_write_itr - write the ITR value to the appropriate registers + * @adapter: address of board private structure + * @itr: new ITR value to program + * + * e1000e_write_itr determines if the adapter is in MSI-X mode + * and, if so, writes the EITR registers with the ITR value. + * Otherwise, it writes the ITR value into the ITR register. + **/ +void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr) +{ + struct e1000_hw *hw = &adapter->hw; + u32 new_itr = itr ? 1000000000 / (itr * 256) : 0; + + if (adapter->msix_entries) { + int vector; + + for (vector = 0; vector < adapter->num_vectors; vector++) + writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector)); + } else { + ew32(ITR, new_itr); + } +} + +/** + * e1000_alloc_queues - Allocate memory for all rings + * @adapter: board private structure to initialize + **/ +static int e1000_alloc_queues(struct e1000_adapter *adapter) +{ + int size = sizeof(struct e1000_ring); + + adapter->tx_ring = kzalloc(size, GFP_KERNEL); + if (!adapter->tx_ring) + goto err; + adapter->tx_ring->count = adapter->tx_ring_count; + adapter->tx_ring->adapter = adapter; + + adapter->rx_ring = kzalloc(size, GFP_KERNEL); + if (!adapter->rx_ring) + goto err; + adapter->rx_ring->count = adapter->rx_ring_count; + adapter->rx_ring->adapter = adapter; + + return 0; +err: + e_err("Unable to allocate memory for queues\n"); + kfree(adapter->rx_ring); + kfree(adapter->tx_ring); + return -ENOMEM; +} + +/** + * e1000e_poll - NAPI Rx polling callback + * @napi: struct associated with this polling callback + * @weight: number of packets driver is allowed to process this poll + **/ +static int e1000e_poll(struct napi_struct *napi, int weight) +{ + struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, + napi); + struct e1000_hw *hw = &adapter->hw; + struct net_device *poll_dev = adapter->netdev; + int tx_cleaned = 1, work_done = 0; + + adapter = netdev_priv(poll_dev); + + if (!adapter->msix_entries || + (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) + tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring); + + adapter->clean_rx(adapter->rx_ring, &work_done, weight); + + if (!tx_cleaned) + work_done = weight; + + /* If weight not fully consumed, exit the polling mode */ + if (work_done < weight) { + if (adapter->itr_setting & 3) + e1000_set_itr(adapter); + napi_complete_done(napi, work_done); + if (!test_bit(__E1000_DOWN, &adapter->state)) { + if (adapter->msix_entries) + ew32(IMS, adapter->rx_ring->ims_val); + else + e1000_irq_enable(adapter); + } + } + + return work_done; +} + +static int e1000_vlan_rx_add_vid(struct net_device *netdev, + __always_unused __be16 proto, u16 vid) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 vfta, index; + + /* don't update vlan cookie if already programmed */ + if ((adapter->hw.mng_cookie.status & + E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && + (vid == adapter->mng_vlan_id)) + return 0; + + /* add VID to filter table */ + if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { + index = (vid >> 5) & 0x7F; + vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); + vfta |= BIT((vid & 0x1F)); + hw->mac.ops.write_vfta(hw, index, vfta); + } + + set_bit(vid, adapter->active_vlans); + + return 0; +} + +static int e1000_vlan_rx_kill_vid(struct net_device *netdev, + __always_unused __be16 proto, u16 vid) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 vfta, index; + + if ((adapter->hw.mng_cookie.status & + E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && + (vid == adapter->mng_vlan_id)) { + /* release control to f/w */ + e1000e_release_hw_control(adapter); + return 0; + } + + /* remove VID from filter table */ + if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { + index = (vid >> 5) & 0x7F; + vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); + vfta &= ~BIT((vid & 0x1F)); + hw->mac.ops.write_vfta(hw, index, vfta); + } + + clear_bit(vid, adapter->active_vlans); + + return 0; +} + +/** + * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering + * @adapter: board private structure to initialize + **/ +static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + struct e1000_hw *hw = &adapter->hw; + u32 rctl; + + if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { + /* disable VLAN receive filtering */ + rctl = er32(RCTL); + rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); + ew32(RCTL, rctl); + + if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { + e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), + adapter->mng_vlan_id); + adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; + } + } +} + +/** + * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering + * @adapter: board private structure to initialize + **/ +static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 rctl; + + if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { + /* enable VLAN receive filtering */ + rctl = er32(RCTL); + rctl |= E1000_RCTL_VFE; + rctl &= ~E1000_RCTL_CFIEN; + ew32(RCTL, rctl); + } +} + +/** + * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping + * @adapter: board private structure to initialize + **/ +static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 ctrl; + + /* disable VLAN tag insert/strip */ + ctrl = er32(CTRL); + ctrl &= ~E1000_CTRL_VME; + ew32(CTRL, ctrl); +} + +/** + * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping + * @adapter: board private structure to initialize + **/ +static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 ctrl; + + /* enable VLAN tag insert/strip */ + ctrl = er32(CTRL); + ctrl |= E1000_CTRL_VME; + ew32(CTRL, ctrl); +} + +static void e1000_update_mng_vlan(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + u16 vid = adapter->hw.mng_cookie.vlan_id; + u16 old_vid = adapter->mng_vlan_id; + + if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { + e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); + adapter->mng_vlan_id = vid; + } + + if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid)) + e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid); +} + +static void e1000_restore_vlan(struct e1000_adapter *adapter) +{ + u16 vid; + + e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); + + for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) + e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); +} + +static void e1000_init_manageability_pt(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 manc, manc2h, mdef, i, j; + + if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) + return; + + manc = er32(MANC); + + /* enable receiving management packets to the host. this will probably + * generate destination unreachable messages from the host OS, but + * the packets will be handled on SMBUS + */ + manc |= E1000_MANC_EN_MNG2HOST; + manc2h = er32(MANC2H); + + switch (hw->mac.type) { + default: + manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); + break; + case e1000_82574: + case e1000_82583: + /* Check if IPMI pass-through decision filter already exists; + * if so, enable it. + */ + for (i = 0, j = 0; i < 8; i++) { + mdef = er32(MDEF(i)); + + /* Ignore filters with anything other than IPMI ports */ + if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) + continue; + + /* Enable this decision filter in MANC2H */ + if (mdef) + manc2h |= BIT(i); + + j |= mdef; + } + + if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) + break; + + /* Create new decision filter in an empty filter */ + for (i = 0, j = 0; i < 8; i++) + if (er32(MDEF(i)) == 0) { + ew32(MDEF(i), (E1000_MDEF_PORT_623 | + E1000_MDEF_PORT_664)); + manc2h |= BIT(1); + j++; + break; + } + + if (!j) + e_warn("Unable to create IPMI pass-through filter\n"); + break; + } + + ew32(MANC2H, manc2h); + ew32(MANC, manc); +} + +/** + * e1000_configure_tx - Configure Transmit Unit after Reset + * @adapter: board private structure + * + * Configure the Tx unit of the MAC after a reset. + **/ +static void e1000_configure_tx(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + struct e1000_ring *tx_ring = adapter->tx_ring; + u64 tdba; + u32 tdlen, tctl, tarc; + + /* Setup the HW Tx Head and Tail descriptor pointers */ + tdba = tx_ring->dma; + tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); + ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); + ew32(TDBAH(0), (tdba >> 32)); + ew32(TDLEN(0), tdlen); + ew32(TDH(0), 0); + ew32(TDT(0), 0); + tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0); + tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0); + + writel(0, tx_ring->head); + if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) + e1000e_update_tdt_wa(tx_ring, 0); + else + writel(0, tx_ring->tail); + + /* Set the Tx Interrupt Delay register */ + ew32(TIDV, adapter->tx_int_delay); + /* Tx irq moderation */ + ew32(TADV, adapter->tx_abs_int_delay); + + if (adapter->flags2 & FLAG2_DMA_BURST) { + u32 txdctl = er32(TXDCTL(0)); + + txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH | + E1000_TXDCTL_WTHRESH); + /* set up some performance related parameters to encourage the + * hardware to use the bus more efficiently in bursts, depends + * on the tx_int_delay to be enabled, + * wthresh = 1 ==> burst write is disabled to avoid Tx stalls + * hthresh = 1 ==> prefetch when one or more available + * pthresh = 0x1f ==> prefetch if internal cache 31 or less + * BEWARE: this seems to work but should be considered first if + * there are Tx hangs or other Tx related bugs + */ + txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE; + ew32(TXDCTL(0), txdctl); + } + /* erratum work around: set txdctl the same for both queues */ + ew32(TXDCTL(1), er32(TXDCTL(0))); + + /* Program the Transmit Control Register */ + tctl = er32(TCTL); + tctl &= ~E1000_TCTL_CT; + tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | + (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); + + if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { + tarc = er32(TARC(0)); + /* set the speed mode bit, we'll clear it if we're not at + * gigabit link later + */ +#define SPEED_MODE_BIT BIT(21) + tarc |= SPEED_MODE_BIT; + ew32(TARC(0), tarc); + } + + /* errata: program both queues to unweighted RR */ + if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { + tarc = er32(TARC(0)); + tarc |= 1; + ew32(TARC(0), tarc); + tarc = er32(TARC(1)); + tarc |= 1; + ew32(TARC(1), tarc); + } + + /* Setup Transmit Descriptor Settings for eop descriptor */ + adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; + + /* only set IDE if we are delaying interrupts using the timers */ + if (adapter->tx_int_delay) + adapter->txd_cmd |= E1000_TXD_CMD_IDE; + + /* enable Report Status bit */ + adapter->txd_cmd |= E1000_TXD_CMD_RS; + + ew32(TCTL, tctl); + + hw->mac.ops.config_collision_dist(hw); + + /* SPT and KBL Si errata workaround to avoid data corruption */ + if (hw->mac.type == e1000_pch_spt) { + u32 reg_val; + + reg_val = er32(IOSFPC); + reg_val |= E1000_RCTL_RDMTS_HEX; + ew32(IOSFPC, reg_val); + + reg_val = er32(TARC(0)); + /* SPT and KBL Si errata workaround to avoid Tx hang. + * Dropping the number of outstanding requests from + * 3 to 2 in order to avoid a buffer overrun. + */ + reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ; + reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ; + ew32(TARC(0), reg_val); + } +} + +/** + * e1000_setup_rctl - configure the receive control registers + * @adapter: Board private structure + **/ +#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ + (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) +static void e1000_setup_rctl(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 rctl, rfctl; + u32 pages = 0; + + /* Workaround Si errata on PCHx - configure jumbo frame flow. + * If jumbo frames not set, program related MAC/PHY registers + * to h/w defaults + */ + if (hw->mac.type >= e1000_pch2lan) { + s32 ret_val; + + if (adapter->netdev->mtu > ETH_DATA_LEN) + ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true); + else + ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false); + + if (ret_val) + e_dbg("failed to enable|disable jumbo frame workaround mode\n"); + } + + /* Program MC offset vector base */ + rctl = er32(RCTL); + rctl &= ~(3 << E1000_RCTL_MO_SHIFT); + rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | + E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | + (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); + + /* Do not Store bad packets */ + rctl &= ~E1000_RCTL_SBP; + + /* Enable Long Packet receive */ + if (adapter->netdev->mtu <= ETH_DATA_LEN) + rctl &= ~E1000_RCTL_LPE; + else + rctl |= E1000_RCTL_LPE; + + /* Some systems expect that the CRC is included in SMBUS traffic. The + * hardware strips the CRC before sending to both SMBUS (BMC) and to + * host memory when this is enabled + */ + if (adapter->flags2 & FLAG2_CRC_STRIPPING) + rctl |= E1000_RCTL_SECRC; + + /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ + if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { + u16 phy_data; + + e1e_rphy(hw, PHY_REG(770, 26), &phy_data); + phy_data &= 0xfff8; + phy_data |= BIT(2); + e1e_wphy(hw, PHY_REG(770, 26), phy_data); + + e1e_rphy(hw, 22, &phy_data); + phy_data &= 0x0fff; + phy_data |= BIT(14); + e1e_wphy(hw, 0x10, 0x2823); + e1e_wphy(hw, 0x11, 0x0003); + e1e_wphy(hw, 22, phy_data); + } + + /* Setup buffer sizes */ + rctl &= ~E1000_RCTL_SZ_4096; + rctl |= E1000_RCTL_BSEX; + switch (adapter->rx_buffer_len) { + case 2048: + default: + rctl |= E1000_RCTL_SZ_2048; + rctl &= ~E1000_RCTL_BSEX; + break; + case 4096: + rctl |= E1000_RCTL_SZ_4096; + break; + case 8192: + rctl |= E1000_RCTL_SZ_8192; + break; + case 16384: + rctl |= E1000_RCTL_SZ_16384; + break; + } + + /* Enable Extended Status in all Receive Descriptors */ + rfctl = er32(RFCTL); + rfctl |= E1000_RFCTL_EXTEN; + ew32(RFCTL, rfctl); + + /* 82571 and greater support packet-split where the protocol + * header is placed in skb->data and the packet data is + * placed in pages hanging off of skb_shinfo(skb)->nr_frags. + * In the case of a non-split, skb->data is linearly filled, + * followed by the page buffers. Therefore, skb->data is + * sized to hold the largest protocol header. + * + * allocations using alloc_page take too long for regular MTU + * so only enable packet split for jumbo frames + * + * Using pages when the page size is greater than 16k wastes + * a lot of memory, since we allocate 3 pages at all times + * per packet. + */ + pages = PAGE_USE_COUNT(adapter->netdev->mtu); + if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) + adapter->rx_ps_pages = pages; + else + adapter->rx_ps_pages = 0; + + if (adapter->rx_ps_pages) { + u32 psrctl = 0; + + /* Enable Packet split descriptors */ + rctl |= E1000_RCTL_DTYP_PS; + + psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT; + + switch (adapter->rx_ps_pages) { + case 3: + psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT; + /* fall-through */ + case 2: + psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT; + /* fall-through */ + case 1: + psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT; + break; + } + + ew32(PSRCTL, psrctl); + } + + /* This is useful for sniffing bad packets. */ + if (adapter->netdev->features & NETIF_F_RXALL) { + /* UPE and MPE will be handled by normal PROMISC logic + * in e1000e_set_rx_mode + */ + rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ + E1000_RCTL_BAM | /* RX All Bcast Pkts */ + E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ + + rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ + E1000_RCTL_DPF | /* Allow filtered pause */ + E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ + /* Do not mess with E1000_CTRL_VME, it affects transmit as well, + * and that breaks VLANs. + */ + } + + ew32(RCTL, rctl); + /* just started the receive unit, no need to restart */ + adapter->flags &= ~FLAG_RESTART_NOW; +} + +/** + * e1000_configure_rx - Configure Receive Unit after Reset + * @adapter: board private structure + * + * Configure the Rx unit of the MAC after a reset. + **/ +static void e1000_configure_rx(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + struct e1000_ring *rx_ring = adapter->rx_ring; + u64 rdba; + u32 rdlen, rctl, rxcsum, ctrl_ext; + + if (adapter->rx_ps_pages) { + /* this is a 32 byte descriptor */ + rdlen = rx_ring->count * + sizeof(union e1000_rx_desc_packet_split); + adapter->clean_rx = e1000_clean_rx_irq_ps; + adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; + } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { + rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); + adapter->clean_rx = e1000_clean_jumbo_rx_irq; + adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; + } else { + rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); + adapter->clean_rx = e1000_clean_rx_irq; + adapter->alloc_rx_buf = e1000_alloc_rx_buffers; + } + + /* disable receives while setting up the descriptors */ + rctl = er32(RCTL); + if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) + ew32(RCTL, rctl & ~E1000_RCTL_EN); + e1e_flush(); + usleep_range(10000, 20000); + + if (adapter->flags2 & FLAG2_DMA_BURST) { + /* set the writeback threshold (only takes effect if the RDTR + * is set). set GRAN=1 and write back up to 0x4 worth, and + * enable prefetching of 0x20 Rx descriptors + * granularity = 01 + * wthresh = 04, + * hthresh = 04, + * pthresh = 0x20 + */ + ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE); + ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE); + } + + /* set the Receive Delay Timer Register */ + ew32(RDTR, adapter->rx_int_delay); + + /* irq moderation */ + ew32(RADV, adapter->rx_abs_int_delay); + if ((adapter->itr_setting != 0) && (adapter->itr != 0)) + e1000e_write_itr(adapter, adapter->itr); + + ctrl_ext = er32(CTRL_EXT); + /* Auto-Mask interrupts upon ICR access */ + ctrl_ext |= E1000_CTRL_EXT_IAME; + ew32(IAM, 0xffffffff); + ew32(CTRL_EXT, ctrl_ext); + e1e_flush(); + + /* Setup the HW Rx Head and Tail Descriptor Pointers and + * the Base and Length of the Rx Descriptor Ring + */ + rdba = rx_ring->dma; + ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); + ew32(RDBAH(0), (rdba >> 32)); + ew32(RDLEN(0), rdlen); + ew32(RDH(0), 0); + ew32(RDT(0), 0); + rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0); + rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0); + + writel(0, rx_ring->head); + if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) + e1000e_update_rdt_wa(rx_ring, 0); + else + writel(0, rx_ring->tail); + + /* Enable Receive Checksum Offload for TCP and UDP */ + rxcsum = er32(RXCSUM); + if (adapter->netdev->features & NETIF_F_RXCSUM) + rxcsum |= E1000_RXCSUM_TUOFL; + else + rxcsum &= ~E1000_RXCSUM_TUOFL; + ew32(RXCSUM, rxcsum); + + /* With jumbo frames, excessive C-state transition latencies result + * in dropped transactions. + */ + if (adapter->netdev->mtu > ETH_DATA_LEN) { + u32 lat = + ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 - + adapter->max_frame_size) * 8 / 1000; + + if (adapter->flags & FLAG_IS_ICH) { + u32 rxdctl = er32(RXDCTL(0)); + + ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8)); + } + + dev_info(&adapter->pdev->dev, + "Some CPU C-states have been disabled in order to enable jumbo frames\n"); + pm_qos_update_request(&adapter->pm_qos_req, lat); + } else { + pm_qos_update_request(&adapter->pm_qos_req, + PM_QOS_DEFAULT_VALUE); + } + + /* Enable Receives */ + ew32(RCTL, rctl); +} + +/** + * e1000e_write_mc_addr_list - write multicast addresses to MTA + * @netdev: network interface device structure + * + * Writes multicast address list to the MTA hash table. + * Returns: -ENOMEM on failure + * 0 on no addresses written + * X on writing X addresses to MTA + */ +static int e1000e_write_mc_addr_list(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + struct netdev_hw_addr *ha; + u8 *mta_list; + int i; + + if (netdev_mc_empty(netdev)) { + /* nothing to program, so clear mc list */ + hw->mac.ops.update_mc_addr_list(hw, NULL, 0); + return 0; + } + + mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC); + if (!mta_list) + return -ENOMEM; + + /* update_mc_addr_list expects a packed array of only addresses. */ + i = 0; + netdev_for_each_mc_addr(ha, netdev) + memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); + + hw->mac.ops.update_mc_addr_list(hw, mta_list, i); + kfree(mta_list); + + return netdev_mc_count(netdev); +} + +/** + * e1000e_write_uc_addr_list - write unicast addresses to RAR table + * @netdev: network interface device structure + * + * Writes unicast address list to the RAR table. + * Returns: -ENOMEM on failure/insufficient address space + * 0 on no addresses written + * X on writing X addresses to the RAR table + **/ +static int e1000e_write_uc_addr_list(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + unsigned int rar_entries; + int count = 0; + + rar_entries = hw->mac.ops.rar_get_count(hw); + + /* save a rar entry for our hardware address */ + rar_entries--; + + /* save a rar entry for the LAA workaround */ + if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) + rar_entries--; + + /* return ENOMEM indicating insufficient memory for addresses */ + if (netdev_uc_count(netdev) > rar_entries) + return -ENOMEM; + + if (!netdev_uc_empty(netdev) && rar_entries) { + struct netdev_hw_addr *ha; + + /* write the addresses in reverse order to avoid write + * combining + */ + netdev_for_each_uc_addr(ha, netdev) { + int ret_val; + + if (!rar_entries) + break; + ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--); + if (ret_val < 0) + return -ENOMEM; + count++; + } + } + + /* zero out the remaining RAR entries not used above */ + for (; rar_entries > 0; rar_entries--) { + ew32(RAH(rar_entries), 0); + ew32(RAL(rar_entries), 0); + } + e1e_flush(); + + return count; +} + +/** + * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set + * @netdev: network interface device structure + * + * The ndo_set_rx_mode entry point is called whenever the unicast or multicast + * address list or the network interface flags are updated. This routine is + * responsible for configuring the hardware for proper unicast, multicast, + * promiscuous mode, and all-multi behavior. + **/ +static void e1000e_set_rx_mode(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 rctl; + + if (pm_runtime_suspended(netdev->dev.parent)) + return; + + /* Check for Promiscuous and All Multicast modes */ + rctl = er32(RCTL); + + /* clear the affected bits */ + rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); + + if (netdev->flags & IFF_PROMISC) { + rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); + /* Do not hardware filter VLANs in promisc mode */ + e1000e_vlan_filter_disable(adapter); + } else { + int count; + + if (netdev->flags & IFF_ALLMULTI) { + rctl |= E1000_RCTL_MPE; + } else { + /* Write addresses to the MTA, if the attempt fails + * then we should just turn on promiscuous mode so + * that we can at least receive multicast traffic + */ + count = e1000e_write_mc_addr_list(netdev); + if (count < 0) + rctl |= E1000_RCTL_MPE; + } + e1000e_vlan_filter_enable(adapter); + /* Write addresses to available RAR registers, if there is not + * sufficient space to store all the addresses then enable + * unicast promiscuous mode + */ + count = e1000e_write_uc_addr_list(netdev); + if (count < 0) + rctl |= E1000_RCTL_UPE; + } + + ew32(RCTL, rctl); + + if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) + e1000e_vlan_strip_enable(adapter); + else + e1000e_vlan_strip_disable(adapter); +} + +static void e1000e_setup_rss_hash(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 mrqc, rxcsum; + u32 rss_key[10]; + int i; + + netdev_rss_key_fill(rss_key, sizeof(rss_key)); + for (i = 0; i < 10; i++) + ew32(RSSRK(i), rss_key[i]); + + /* Direct all traffic to queue 0 */ + for (i = 0; i < 32; i++) + ew32(RETA(i), 0); + + /* Disable raw packet checksumming so that RSS hash is placed in + * descriptor on writeback. + */ + rxcsum = er32(RXCSUM); + rxcsum |= E1000_RXCSUM_PCSD; + + ew32(RXCSUM, rxcsum); + + mrqc = (E1000_MRQC_RSS_FIELD_IPV4 | + E1000_MRQC_RSS_FIELD_IPV4_TCP | + E1000_MRQC_RSS_FIELD_IPV6 | + E1000_MRQC_RSS_FIELD_IPV6_TCP | + E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); + + ew32(MRQC, mrqc); +} + +/** + * e1000e_get_base_timinca - get default SYSTIM time increment attributes + * @adapter: board private structure + * @timinca: pointer to returned time increment attributes + * + * Get attributes for incrementing the System Time Register SYSTIML/H at + * the default base frequency, and set the cyclecounter shift value. + **/ +s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca) +{ + struct e1000_hw *hw = &adapter->hw; + u32 incvalue, incperiod, shift; + + /* Make sure clock is enabled on I217/I218/I219 before checking + * the frequency + */ + if ((hw->mac.type >= e1000_pch_lpt) && + !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) && + !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) { + u32 fextnvm7 = er32(FEXTNVM7); + + if (!(fextnvm7 & BIT(0))) { + ew32(FEXTNVM7, fextnvm7 | BIT(0)); + e1e_flush(); + } + } + + switch (hw->mac.type) { + case e1000_pch2lan: + /* Stable 96MHz frequency */ + incperiod = INCPERIOD_96MHZ; + incvalue = INCVALUE_96MHZ; + shift = INCVALUE_SHIFT_96MHZ; + adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ; + break; + case e1000_pch_lpt: + if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) { + /* Stable 96MHz frequency */ + incperiod = INCPERIOD_96MHZ; + incvalue = INCVALUE_96MHZ; + shift = INCVALUE_SHIFT_96MHZ; + adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ; + } else { + /* Stable 25MHz frequency */ + incperiod = INCPERIOD_25MHZ; + incvalue = INCVALUE_25MHZ; + shift = INCVALUE_SHIFT_25MHZ; + adapter->cc.shift = shift; + } + break; + case e1000_pch_spt: + /* Stable 24MHz frequency */ + incperiod = INCPERIOD_24MHZ; + incvalue = INCVALUE_24MHZ; + shift = INCVALUE_SHIFT_24MHZ; + adapter->cc.shift = shift; + break; + case e1000_pch_cnp: + if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) { + /* Stable 24MHz frequency */ + incperiod = INCPERIOD_24MHZ; + incvalue = INCVALUE_24MHZ; + shift = INCVALUE_SHIFT_24MHZ; + adapter->cc.shift = shift; + } else { + /* Stable 38400KHz frequency */ + incperiod = INCPERIOD_38400KHZ; + incvalue = INCVALUE_38400KHZ; + shift = INCVALUE_SHIFT_38400KHZ; + adapter->cc.shift = shift; + } + break; + case e1000_82574: + case e1000_82583: + /* Stable 25MHz frequency */ + incperiod = INCPERIOD_25MHZ; + incvalue = INCVALUE_25MHZ; + shift = INCVALUE_SHIFT_25MHZ; + adapter->cc.shift = shift; + break; + default: + return -EINVAL; + } + + *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) | + ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK)); + + return 0; +} + +/** + * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable + * @adapter: board private structure + * + * Outgoing time stamping can be enabled and disabled. Play nice and + * disable it when requested, although it shouldn't cause any overhead + * when no packet needs it. At most one packet in the queue may be + * marked for time stamping, otherwise it would be impossible to tell + * for sure to which packet the hardware time stamp belongs. + * + * Incoming time stamping has to be configured via the hardware filters. + * Not all combinations are supported, in particular event type has to be + * specified. Matching the kind of event packet is not supported, with the + * exception of "all V2 events regardless of level 2 or 4". + **/ +static int e1000e_config_hwtstamp(struct e1000_adapter *adapter, + struct hwtstamp_config *config) +{ + struct e1000_hw *hw = &adapter->hw; + u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; + u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; + u32 rxmtrl = 0; + u16 rxudp = 0; + bool is_l4 = false; + bool is_l2 = false; + u32 regval; + + if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) + return -EINVAL; + + /* flags reserved for future extensions - must be zero */ + if (config->flags) + return -EINVAL; + + switch (config->tx_type) { + case HWTSTAMP_TX_OFF: + tsync_tx_ctl = 0; + break; + case HWTSTAMP_TX_ON: + break; + default: + return -ERANGE; + } + + switch (config->rx_filter) { + case HWTSTAMP_FILTER_NONE: + tsync_rx_ctl = 0; + break; + case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: + tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; + rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE; + is_l4 = true; + break; + case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: + tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; + rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE; + is_l4 = true; + break; + case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: + /* Also time stamps V2 L2 Path Delay Request/Response */ + tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; + rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; + is_l2 = true; + break; + case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: + /* Also time stamps V2 L2 Path Delay Request/Response. */ + tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; + rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; + is_l2 = true; + break; + case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: + /* Hardware cannot filter just V2 L4 Sync messages; + * fall-through to V2 (both L2 and L4) Sync. + */ + case HWTSTAMP_FILTER_PTP_V2_SYNC: + /* Also time stamps V2 Path Delay Request/Response. */ + tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; + rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; + is_l2 = true; + is_l4 = true; + break; + case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: + /* Hardware cannot filter just V2 L4 Delay Request messages; + * fall-through to V2 (both L2 and L4) Delay Request. + */ + case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: + /* Also time stamps V2 Path Delay Request/Response. */ + tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; + rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; + is_l2 = true; + is_l4 = true; + break; + case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: + case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: + /* Hardware cannot filter just V2 L4 or L2 Event messages; + * fall-through to all V2 (both L2 and L4) Events. + */ + case HWTSTAMP_FILTER_PTP_V2_EVENT: + tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; + config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; + is_l2 = true; + is_l4 = true; + break; + case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: + /* For V1, the hardware can only filter Sync messages or + * Delay Request messages but not both so fall-through to + * time stamp all packets. + */ + case HWTSTAMP_FILTER_NTP_ALL: + case HWTSTAMP_FILTER_ALL: + is_l2 = true; + is_l4 = true; + tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; + config->rx_filter = HWTSTAMP_FILTER_ALL; + break; + default: + return -ERANGE; + } + + adapter->hwtstamp_config = *config; + + /* enable/disable Tx h/w time stamping */ + regval = er32(TSYNCTXCTL); + regval &= ~E1000_TSYNCTXCTL_ENABLED; + regval |= tsync_tx_ctl; + ew32(TSYNCTXCTL, regval); + if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) != + (regval & E1000_TSYNCTXCTL_ENABLED)) { + e_err("Timesync Tx Control register not set as expected\n"); + return -EAGAIN; + } + + /* enable/disable Rx h/w time stamping */ + regval = er32(TSYNCRXCTL); + regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); + regval |= tsync_rx_ctl; + ew32(TSYNCRXCTL, regval); + if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED | + E1000_TSYNCRXCTL_TYPE_MASK)) != + (regval & (E1000_TSYNCRXCTL_ENABLED | + E1000_TSYNCRXCTL_TYPE_MASK))) { + e_err("Timesync Rx Control register not set as expected\n"); + return -EAGAIN; + } + + /* L2: define ethertype filter for time stamped packets */ + if (is_l2) + rxmtrl |= ETH_P_1588; + + /* define which PTP packets get time stamped */ + ew32(RXMTRL, rxmtrl); + + /* Filter by destination port */ + if (is_l4) { + rxudp = PTP_EV_PORT; + cpu_to_be16s(&rxudp); + } + ew32(RXUDP, rxudp); + + e1e_flush(); + + /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */ + er32(RXSTMPH); + er32(TXSTMPH); + + return 0; +} + +/** + * e1000_configure - configure the hardware for Rx and Tx + * @adapter: private board structure + **/ +static void e1000_configure(struct e1000_adapter *adapter) +{ + struct e1000_ring *rx_ring = adapter->rx_ring; + + e1000e_set_rx_mode(adapter->netdev); + + e1000_restore_vlan(adapter); + e1000_init_manageability_pt(adapter); + + e1000_configure_tx(adapter); + + if (adapter->netdev->features & NETIF_F_RXHASH) + e1000e_setup_rss_hash(adapter); + e1000_setup_rctl(adapter); + e1000_configure_rx(adapter); + adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL); +} + +/** + * e1000e_power_up_phy - restore link in case the phy was powered down + * @adapter: address of board private structure + * + * The phy may be powered down to save power and turn off link when the + * driver is unloaded and wake on lan is not enabled (among others) + * *** this routine MUST be followed by a call to e1000e_reset *** + **/ +void e1000e_power_up_phy(struct e1000_adapter *adapter) +{ + if (adapter->hw.phy.ops.power_up) + adapter->hw.phy.ops.power_up(&adapter->hw); + + adapter->hw.mac.ops.setup_link(&adapter->hw); +} + +/** + * e1000_power_down_phy - Power down the PHY + * + * Power down the PHY so no link is implied when interface is down. + * The PHY cannot be powered down if management or WoL is active. + */ +static void e1000_power_down_phy(struct e1000_adapter *adapter) +{ + if (adapter->hw.phy.ops.power_down) + adapter->hw.phy.ops.power_down(&adapter->hw); +} + +/** + * e1000_flush_tx_ring - remove all descriptors from the tx_ring + * + * We want to clear all pending descriptors from the TX ring. + * zeroing happens when the HW reads the regs. We assign the ring itself as + * the data of the next descriptor. We don't care about the data we are about + * to reset the HW. + */ +static void e1000_flush_tx_ring(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + struct e1000_ring *tx_ring = adapter->tx_ring; + struct e1000_tx_desc *tx_desc = NULL; + u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS; + u16 size = 512; + + tctl = er32(TCTL); + ew32(TCTL, tctl | E1000_TCTL_EN); + tdt = er32(TDT(0)); + BUG_ON(tdt != tx_ring->next_to_use); + tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use); + tx_desc->buffer_addr = tx_ring->dma; + + tx_desc->lower.data = cpu_to_le32(txd_lower | size); + tx_desc->upper.data = 0; + /* flush descriptors to memory before notifying the HW */ + wmb(); + tx_ring->next_to_use++; + if (tx_ring->next_to_use == tx_ring->count) + tx_ring->next_to_use = 0; + ew32(TDT(0), tx_ring->next_to_use); + mmiowb(); + usleep_range(200, 250); +} + +/** + * e1000_flush_rx_ring - remove all descriptors from the rx_ring + * + * Mark all descriptors in the RX ring as consumed and disable the rx ring + */ +static void e1000_flush_rx_ring(struct e1000_adapter *adapter) +{ + u32 rctl, rxdctl; + struct e1000_hw *hw = &adapter->hw; + + rctl = er32(RCTL); + ew32(RCTL, rctl & ~E1000_RCTL_EN); + e1e_flush(); + usleep_range(100, 150); + + rxdctl = er32(RXDCTL(0)); + /* zero the lower 14 bits (prefetch and host thresholds) */ + rxdctl &= 0xffffc000; + + /* update thresholds: prefetch threshold to 31, host threshold to 1 + * and make sure the granularity is "descriptors" and not "cache lines" + */ + rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC); + + ew32(RXDCTL(0), rxdctl); + /* momentarily enable the RX ring for the changes to take effect */ + ew32(RCTL, rctl | E1000_RCTL_EN); + e1e_flush(); + usleep_range(100, 150); + ew32(RCTL, rctl & ~E1000_RCTL_EN); +} + +/** + * e1000_flush_desc_rings - remove all descriptors from the descriptor rings + * + * In i219, the descriptor rings must be emptied before resetting the HW + * or before changing the device state to D3 during runtime (runtime PM). + * + * Failure to do this will cause the HW to enter a unit hang state which can + * only be released by PCI reset on the device + * + */ + +static void e1000_flush_desc_rings(struct e1000_adapter *adapter) +{ + u16 hang_state; + u32 fext_nvm11, tdlen; + struct e1000_hw *hw = &adapter->hw; + + /* First, disable MULR fix in FEXTNVM11 */ + fext_nvm11 = er32(FEXTNVM11); + fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; + ew32(FEXTNVM11, fext_nvm11); + /* do nothing if we're not in faulty state, or if the queue is empty */ + tdlen = er32(TDLEN(0)); + pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS, + &hang_state); + if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen) + return; + e1000_flush_tx_ring(adapter); + /* recheck, maybe the fault is caused by the rx ring */ + pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS, + &hang_state); + if (hang_state & FLUSH_DESC_REQUIRED) + e1000_flush_rx_ring(adapter); +} + +/** + * e1000e_systim_reset - reset the timesync registers after a hardware reset + * @adapter: board private structure + * + * When the MAC is reset, all hardware bits for timesync will be reset to the + * default values. This function will restore the settings last in place. + * Since the clock SYSTIME registers are reset, we will simply restore the + * cyclecounter to the kernel real clock time. + **/ +static void e1000e_systim_reset(struct e1000_adapter *adapter) +{ + struct ptp_clock_info *info = &adapter->ptp_clock_info; + struct e1000_hw *hw = &adapter->hw; + unsigned long flags; + u32 timinca; + s32 ret_val; + + if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) + return; + + if (info->adjfreq) { + /* restore the previous ptp frequency delta */ + ret_val = info->adjfreq(info, adapter->ptp_delta); + } else { + /* set the default base frequency if no adjustment possible */ + ret_val = e1000e_get_base_timinca(adapter, &timinca); + if (!ret_val) + ew32(TIMINCA, timinca); + } + + if (ret_val) { + dev_warn(&adapter->pdev->dev, + "Failed to restore TIMINCA clock rate delta: %d\n", + ret_val); + return; + } + + /* reset the systim ns time counter */ + spin_lock_irqsave(&adapter->systim_lock, flags); + timecounter_init(&adapter->tc, &adapter->cc, + ktime_to_ns(ktime_get_real())); + spin_unlock_irqrestore(&adapter->systim_lock, flags); + + /* restore the previous hwtstamp configuration settings */ + e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config); +} + +/** + * e1000e_reset - bring the hardware into a known good state + * + * This function boots the hardware and enables some settings that + * require a configuration cycle of the hardware - those cannot be + * set/changed during runtime. After reset the device needs to be + * properly configured for Rx, Tx etc. + */ +void e1000e_reset(struct e1000_adapter *adapter) +{ + struct e1000_mac_info *mac = &adapter->hw.mac; + struct e1000_fc_info *fc = &adapter->hw.fc; + struct e1000_hw *hw = &adapter->hw; + u32 tx_space, min_tx_space, min_rx_space; + u32 pba = adapter->pba; + u16 hwm; + + /* reset Packet Buffer Allocation to default */ + ew32(PBA, pba); + + if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) { + /* To maintain wire speed transmits, the Tx FIFO should be + * large enough to accommodate two full transmit packets, + * rounded up to the next 1KB and expressed in KB. Likewise, + * the Rx FIFO should be large enough to accommodate at least + * one full receive packet and is similarly rounded up and + * expressed in KB. + */ + pba = er32(PBA); + /* upper 16 bits has Tx packet buffer allocation size in KB */ + tx_space = pba >> 16; + /* lower 16 bits has Rx packet buffer allocation size in KB */ + pba &= 0xffff; + /* the Tx fifo also stores 16 bytes of information about the Tx + * but don't include ethernet FCS because hardware appends it + */ + min_tx_space = (adapter->max_frame_size + + sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2; + min_tx_space = ALIGN(min_tx_space, 1024); + min_tx_space >>= 10; + /* software strips receive CRC, so leave room for it */ + min_rx_space = adapter->max_frame_size; + min_rx_space = ALIGN(min_rx_space, 1024); + min_rx_space >>= 10; + + /* If current Tx allocation is less than the min Tx FIFO size, + * and the min Tx FIFO size is less than the current Rx FIFO + * allocation, take space away from current Rx allocation + */ + if ((tx_space < min_tx_space) && + ((min_tx_space - tx_space) < pba)) { + pba -= min_tx_space - tx_space; + + /* if short on Rx space, Rx wins and must trump Tx + * adjustment + */ + if (pba < min_rx_space) + pba = min_rx_space; + } + + ew32(PBA, pba); + } + + /* flow control settings + * + * The high water mark must be low enough to fit one full frame + * (or the size used for early receive) above it in the Rx FIFO. + * Set it to the lower of: + * - 90% of the Rx FIFO size, and + * - the full Rx FIFO size minus one full frame + */ + if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) + fc->pause_time = 0xFFFF; + else + fc->pause_time = E1000_FC_PAUSE_TIME; + fc->send_xon = true; + fc->current_mode = fc->requested_mode; + + switch (hw->mac.type) { + case e1000_ich9lan: + case e1000_ich10lan: + if (adapter->netdev->mtu > ETH_DATA_LEN) { + pba = 14; + ew32(PBA, pba); + fc->high_water = 0x2800; + fc->low_water = fc->high_water - 8; + break; + } + /* fall-through */ + default: + hwm = min(((pba << 10) * 9 / 10), + ((pba << 10) - adapter->max_frame_size)); + + fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ + fc->low_water = fc->high_water - 8; + break; + case e1000_pchlan: + /* Workaround PCH LOM adapter hangs with certain network + * loads. If hangs persist, try disabling Tx flow control. + */ + if (adapter->netdev->mtu > ETH_DATA_LEN) { + fc->high_water = 0x3500; + fc->low_water = 0x1500; + } else { + fc->high_water = 0x5000; + fc->low_water = 0x3000; + } + fc->refresh_time = 0x1000; + break; + case e1000_pch2lan: + case e1000_pch_lpt: + case e1000_pch_spt: + case e1000_pch_cnp: + fc->refresh_time = 0x0400; + + if (adapter->netdev->mtu <= ETH_DATA_LEN) { + fc->high_water = 0x05C20; + fc->low_water = 0x05048; + fc->pause_time = 0x0650; + break; + } + + pba = 14; + ew32(PBA, pba); + fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH; + fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL; + break; + } + + /* Alignment of Tx data is on an arbitrary byte boundary with the + * maximum size per Tx descriptor limited only to the transmit + * allocation of the packet buffer minus 96 bytes with an upper + * limit of 24KB due to receive synchronization limitations. + */ + adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96, + 24 << 10); + + /* Disable Adaptive Interrupt Moderation if 2 full packets cannot + * fit in receive buffer. + */ + if (adapter->itr_setting & 0x3) { + if ((adapter->max_frame_size * 2) > (pba << 10)) { + if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) { + dev_info(&adapter->pdev->dev, + "Interrupt Throttle Rate off\n"); + adapter->flags2 |= FLAG2_DISABLE_AIM; + e1000e_write_itr(adapter, 0); + } + } else if (adapter->flags2 & FLAG2_DISABLE_AIM) { + dev_info(&adapter->pdev->dev, + "Interrupt Throttle Rate on\n"); + adapter->flags2 &= ~FLAG2_DISABLE_AIM; + adapter->itr = 20000; + e1000e_write_itr(adapter, adapter->itr); + } + } + + if (hw->mac.type >= e1000_pch_spt) + e1000_flush_desc_rings(adapter); + /* Allow time for pending master requests to run */ + mac->ops.reset_hw(hw); + + /* For parts with AMT enabled, let the firmware know + * that the network interface is in control + */ + if (adapter->flags & FLAG_HAS_AMT) + e1000e_get_hw_control(adapter); + + ew32(WUC, 0); + + if (mac->ops.init_hw(hw)) + e_err("Hardware Error\n"); + + e1000_update_mng_vlan(adapter); + + /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ + ew32(VET, ETH_P_8021Q); + + e1000e_reset_adaptive(hw); + + /* restore systim and hwtstamp settings */ + e1000e_systim_reset(adapter); + + /* Set EEE advertisement as appropriate */ + if (adapter->flags2 & FLAG2_HAS_EEE) { + s32 ret_val; + u16 adv_addr; + + switch (hw->phy.type) { + case e1000_phy_82579: + adv_addr = I82579_EEE_ADVERTISEMENT; + break; + case e1000_phy_i217: + adv_addr = I217_EEE_ADVERTISEMENT; + break; + default: + dev_err(&adapter->pdev->dev, + "Invalid PHY type setting EEE advertisement\n"); + return; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) { + dev_err(&adapter->pdev->dev, + "EEE advertisement - unable to acquire PHY\n"); + return; + } + + e1000_write_emi_reg_locked(hw, adv_addr, + hw->dev_spec.ich8lan.eee_disable ? + 0 : adapter->eee_advert); + + hw->phy.ops.release(hw); + } + + if (!netif_running(adapter->netdev) && + !test_bit(__E1000_TESTING, &adapter->state)) + e1000_power_down_phy(adapter); + + e1000_get_phy_info(hw); + + if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && + !(adapter->flags & FLAG_SMART_POWER_DOWN)) { + u16 phy_data = 0; + /* speed up time to link by disabling smart power down, ignore + * the return value of this function because there is nothing + * different we would do if it failed + */ + e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); + phy_data &= ~IGP02E1000_PM_SPD; + e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); + } + if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) { + u32 reg; + + /* Fextnvm7 @ 0xe4[2] = 1 */ + reg = er32(FEXTNVM7); + reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE; + ew32(FEXTNVM7, reg); + /* Fextnvm9 @ 0x5bb4[13:12] = 11 */ + reg = er32(FEXTNVM9); + reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS | + E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS; + ew32(FEXTNVM9, reg); + } + +} + +/** + * e1000e_trigger_lsc - trigger an LSC interrupt + * @adapter: + * + * Fire a link status change interrupt to start the watchdog. + **/ +static void e1000e_trigger_lsc(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + + if (adapter->msix_entries) + ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER); + else + ew32(ICS, E1000_ICS_LSC); +} + +void e1000e_up(struct e1000_adapter *adapter) +{ + /* hardware has been reset, we need to reload some things */ + e1000_configure(adapter); + + clear_bit(__E1000_DOWN, &adapter->state); + + if (adapter->msix_entries) + e1000_configure_msix(adapter); + e1000_irq_enable(adapter); + + /* Tx queue started by watchdog timer when link is up */ + + e1000e_trigger_lsc(adapter); +} + +static void e1000e_flush_descriptors(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + + if (!(adapter->flags2 & FLAG2_DMA_BURST)) + return; + + /* flush pending descriptor writebacks to memory */ + ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); + ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); + + /* execute the writes immediately */ + e1e_flush(); + + /* due to rare timing issues, write to TIDV/RDTR again to ensure the + * write is successful + */ + ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); + ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); + + /* execute the writes immediately */ + e1e_flush(); +} + +static void e1000e_update_stats(struct e1000_adapter *adapter); + +/** + * e1000e_down - quiesce the device and optionally reset the hardware + * @adapter: board private structure + * @reset: boolean flag to reset the hardware or not + */ +void e1000e_down(struct e1000_adapter *adapter, bool reset) +{ + struct net_device *netdev = adapter->netdev; + struct e1000_hw *hw = &adapter->hw; + u32 tctl, rctl; + + /* signal that we're down so the interrupt handler does not + * reschedule our watchdog timer + */ + set_bit(__E1000_DOWN, &adapter->state); + + netif_carrier_off(netdev); + + /* disable receives in the hardware */ + rctl = er32(RCTL); + if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) + ew32(RCTL, rctl & ~E1000_RCTL_EN); + /* flush and sleep below */ + + netif_stop_queue(netdev); + + /* disable transmits in the hardware */ + tctl = er32(TCTL); + tctl &= ~E1000_TCTL_EN; + ew32(TCTL, tctl); + + /* flush both disables and wait for them to finish */ + e1e_flush(); + usleep_range(10000, 20000); + + e1000_irq_disable(adapter); + + napi_synchronize(&adapter->napi); + + del_timer_sync(&adapter->watchdog_timer); + del_timer_sync(&adapter->phy_info_timer); + + spin_lock(&adapter->stats64_lock); + e1000e_update_stats(adapter); + spin_unlock(&adapter->stats64_lock); + + e1000e_flush_descriptors(adapter); + + adapter->link_speed = 0; + adapter->link_duplex = 0; + + /* Disable Si errata workaround on PCHx for jumbo frame flow */ + if ((hw->mac.type >= e1000_pch2lan) && + (adapter->netdev->mtu > ETH_DATA_LEN) && + e1000_lv_jumbo_workaround_ich8lan(hw, false)) + e_dbg("failed to disable jumbo frame workaround mode\n"); + + if (!pci_channel_offline(adapter->pdev)) { + if (reset) + e1000e_reset(adapter); + else if (hw->mac.type >= e1000_pch_spt) + e1000_flush_desc_rings(adapter); + } + e1000_clean_tx_ring(adapter->tx_ring); + e1000_clean_rx_ring(adapter->rx_ring); +} + +void e1000e_reinit_locked(struct e1000_adapter *adapter) +{ + might_sleep(); + while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) + usleep_range(1000, 2000); + e1000e_down(adapter, true); + e1000e_up(adapter); + clear_bit(__E1000_RESETTING, &adapter->state); +} + +/** + * e1000e_sanitize_systim - sanitize raw cycle counter reads + * @hw: pointer to the HW structure + * @systim: time value read, sanitized and returned + * + * Errata for 82574/82583 possible bad bits read from SYSTIMH/L: + * check to see that the time is incrementing at a reasonable + * rate and is a multiple of incvalue. + **/ +static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim) +{ + u64 time_delta, rem, temp; + u64 systim_next; + u32 incvalue; + int i; + + incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK; + for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) { + /* latch SYSTIMH on read of SYSTIML */ + systim_next = (u64)er32(SYSTIML); + systim_next |= (u64)er32(SYSTIMH) << 32; + + time_delta = systim_next - systim; + temp = time_delta; + /* VMWare users have seen incvalue of zero, don't div / 0 */ + rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0); + + systim = systim_next; + + if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0)) + break; + } + + return systim; +} + +/** + * e1000e_cyclecounter_read - read raw cycle counter (used by time counter) + * @cc: cyclecounter structure + **/ +static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc) +{ + struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter, + cc); + struct e1000_hw *hw = &adapter->hw; + u32 systimel, systimeh; + u64 systim; + /* SYSTIMH latching upon SYSTIML read does not work well. + * This means that if SYSTIML overflows after we read it but before + * we read SYSTIMH, the value of SYSTIMH has been incremented and we + * will experience a huge non linear increment in the systime value + * to fix that we test for overflow and if true, we re-read systime. + */ + systimel = er32(SYSTIML); + systimeh = er32(SYSTIMH); + /* Is systimel is so large that overflow is possible? */ + if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) { + u32 systimel_2 = er32(SYSTIML); + if (systimel > systimel_2) { + /* There was an overflow, read again SYSTIMH, and use + * systimel_2 + */ + systimeh = er32(SYSTIMH); + systimel = systimel_2; + } + } + systim = (u64)systimel; + systim |= (u64)systimeh << 32; + + if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW) + systim = e1000e_sanitize_systim(hw, systim); + + return systim; +} + +/** + * e1000_sw_init - Initialize general software structures (struct e1000_adapter) + * @adapter: board private structure to initialize + * + * e1000_sw_init initializes the Adapter private data structure. + * Fields are initialized based on PCI device information and + * OS network device settings (MTU size). + **/ +static int e1000_sw_init(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + + adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; + adapter->rx_ps_bsize0 = 128; + adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; + adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; + adapter->tx_ring_count = E1000_DEFAULT_TXD; + adapter->rx_ring_count = E1000_DEFAULT_RXD; + + spin_lock_init(&adapter->stats64_lock); + + e1000e_set_interrupt_capability(adapter); + + if (e1000_alloc_queues(adapter)) + return -ENOMEM; + + /* Setup hardware time stamping cyclecounter */ + if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { + adapter->cc.read = e1000e_cyclecounter_read; + adapter->cc.mask = CYCLECOUNTER_MASK(64); + adapter->cc.mult = 1; + /* cc.shift set in e1000e_get_base_tininca() */ + + spin_lock_init(&adapter->systim_lock); + INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work); + } + + /* Explicitly disable IRQ since the NIC can be in any state. */ + e1000_irq_disable(adapter); + + set_bit(__E1000_DOWN, &adapter->state); + return 0; +} + +/** + * e1000_intr_msi_test - Interrupt Handler + * @irq: interrupt number + * @data: pointer to a network interface device structure + **/ +static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data) +{ + struct net_device *netdev = data; + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 icr = er32(ICR); + + e_dbg("icr is %08X\n", icr); + if (icr & E1000_ICR_RXSEQ) { + adapter->flags &= ~FLAG_MSI_TEST_FAILED; + /* Force memory writes to complete before acknowledging the + * interrupt is handled. + */ + wmb(); + } + + return IRQ_HANDLED; +} + +/** + * e1000_test_msi_interrupt - Returns 0 for successful test + * @adapter: board private struct + * + * code flow taken from tg3.c + **/ +static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + struct e1000_hw *hw = &adapter->hw; + int err; + + /* poll_enable hasn't been called yet, so don't need disable */ + /* clear any pending events */ + er32(ICR); + + /* free the real vector and request a test handler */ + e1000_free_irq(adapter); + e1000e_reset_interrupt_capability(adapter); + + /* Assume that the test fails, if it succeeds then the test + * MSI irq handler will unset this flag + */ + adapter->flags |= FLAG_MSI_TEST_FAILED; + + err = pci_enable_msi(adapter->pdev); + if (err) + goto msi_test_failed; + + err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, + netdev->name, netdev); + if (err) { + pci_disable_msi(adapter->pdev); + goto msi_test_failed; + } + + /* Force memory writes to complete before enabling and firing an + * interrupt. + */ + wmb(); + + e1000_irq_enable(adapter); + + /* fire an unusual interrupt on the test handler */ + ew32(ICS, E1000_ICS_RXSEQ); + e1e_flush(); + msleep(100); + + e1000_irq_disable(adapter); + + rmb(); /* read flags after interrupt has been fired */ + + if (adapter->flags & FLAG_MSI_TEST_FAILED) { + adapter->int_mode = E1000E_INT_MODE_LEGACY; + e_info("MSI interrupt test failed, using legacy interrupt.\n"); + } else { + e_dbg("MSI interrupt test succeeded!\n"); + } + + free_irq(adapter->pdev->irq, netdev); + pci_disable_msi(adapter->pdev); + +msi_test_failed: + e1000e_set_interrupt_capability(adapter); + return e1000_request_irq(adapter); +} + +/** + * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored + * @adapter: board private struct + * + * code flow taken from tg3.c, called with e1000 interrupts disabled. + **/ +static int e1000_test_msi(struct e1000_adapter *adapter) +{ + int err; + u16 pci_cmd; + + if (!(adapter->flags & FLAG_MSI_ENABLED)) + return 0; + + /* disable SERR in case the MSI write causes a master abort */ + pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); + if (pci_cmd & PCI_COMMAND_SERR) + pci_write_config_word(adapter->pdev, PCI_COMMAND, + pci_cmd & ~PCI_COMMAND_SERR); + + err = e1000_test_msi_interrupt(adapter); + + /* re-enable SERR */ + if (pci_cmd & PCI_COMMAND_SERR) { + pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); + pci_cmd |= PCI_COMMAND_SERR; + pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); + } + + return err; +} + +/** + * e1000e_open - Called when a network interface is made active + * @netdev: network interface device structure + * + * Returns 0 on success, negative value on failure + * + * The open entry point is called when a network interface is made + * active by the system (IFF_UP). At this point all resources needed + * for transmit and receive operations are allocated, the interrupt + * handler is registered with the OS, the watchdog timer is started, + * and the stack is notified that the interface is ready. + **/ +int e1000e_open(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + struct pci_dev *pdev = adapter->pdev; + int err; + + /* disallow open during test */ + if (test_bit(__E1000_TESTING, &adapter->state)) + return -EBUSY; + + pm_runtime_get_sync(&pdev->dev); + + netif_carrier_off(netdev); + netif_stop_queue(netdev); + + /* allocate transmit descriptors */ + err = e1000e_setup_tx_resources(adapter->tx_ring); + if (err) + goto err_setup_tx; + + /* allocate receive descriptors */ + err = e1000e_setup_rx_resources(adapter->rx_ring); + if (err) + goto err_setup_rx; + + /* If AMT is enabled, let the firmware know that the network + * interface is now open and reset the part to a known state. + */ + if (adapter->flags & FLAG_HAS_AMT) { + e1000e_get_hw_control(adapter); + e1000e_reset(adapter); + } + + e1000e_power_up_phy(adapter); + + adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; + if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) + e1000_update_mng_vlan(adapter); + + /* DMA latency requirement to workaround jumbo issue */ + pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, + PM_QOS_DEFAULT_VALUE); + + /* before we allocate an interrupt, we must be ready to handle it. + * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt + * as soon as we call pci_request_irq, so we have to setup our + * clean_rx handler before we do so. + */ + e1000_configure(adapter); + + err = e1000_request_irq(adapter); + if (err) + goto err_req_irq; + + /* Work around PCIe errata with MSI interrupts causing some chipsets to + * ignore e1000e MSI messages, which means we need to test our MSI + * interrupt now + */ + if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { + err = e1000_test_msi(adapter); + if (err) { + e_err("Interrupt allocation failed\n"); + goto err_req_irq; + } + } + + /* From here on the code is the same as e1000e_up() */ + clear_bit(__E1000_DOWN, &adapter->state); + + napi_enable(&adapter->napi); + + e1000_irq_enable(adapter); + + adapter->tx_hang_recheck = false; + + hw->mac.get_link_status = true; + pm_runtime_put(&pdev->dev); + + e1000e_trigger_lsc(adapter); + + return 0; + +err_req_irq: + pm_qos_remove_request(&adapter->pm_qos_req); + e1000e_release_hw_control(adapter); + e1000_power_down_phy(adapter); + e1000e_free_rx_resources(adapter->rx_ring); +err_setup_rx: + e1000e_free_tx_resources(adapter->tx_ring); +err_setup_tx: + e1000e_reset(adapter); + pm_runtime_put_sync(&pdev->dev); + + return err; +} + +/** + * e1000e_close - Disables a network interface + * @netdev: network interface device structure + * + * Returns 0, this is not allowed to fail + * + * The close entry point is called when an interface is de-activated + * by the OS. The hardware is still under the drivers control, but + * needs to be disabled. A global MAC reset is issued to stop the + * hardware, and all transmit and receive resources are freed. + **/ +int e1000e_close(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct pci_dev *pdev = adapter->pdev; + int count = E1000_CHECK_RESET_COUNT; + + while (test_bit(__E1000_RESETTING, &adapter->state) && count--) + usleep_range(10000, 20000); + + WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); + + pm_runtime_get_sync(&pdev->dev); + + if (!test_bit(__E1000_DOWN, &adapter->state)) { + e1000e_down(adapter, true); + e1000_free_irq(adapter); + + /* Link status message must follow this format */ + pr_info("%s NIC Link is Down\n", adapter->netdev->name); + } + + napi_disable(&adapter->napi); + + e1000e_free_tx_resources(adapter->tx_ring); + e1000e_free_rx_resources(adapter->rx_ring); + + /* kill manageability vlan ID if supported, but not if a vlan with + * the same ID is registered on the host OS (let 8021q kill it) + */ + if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) + e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), + adapter->mng_vlan_id); + + /* If AMT is enabled, let the firmware know that the network + * interface is now closed + */ + if ((adapter->flags & FLAG_HAS_AMT) && + !test_bit(__E1000_TESTING, &adapter->state)) + e1000e_release_hw_control(adapter); + + pm_qos_remove_request(&adapter->pm_qos_req); + + pm_runtime_put_sync(&pdev->dev); + + return 0; +} + +/** + * e1000_set_mac - Change the Ethernet Address of the NIC + * @netdev: network interface device structure + * @p: pointer to an address structure + * + * Returns 0 on success, negative on failure + **/ +static int e1000_set_mac(struct net_device *netdev, void *p) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + struct sockaddr *addr = p; + + if (!is_valid_ether_addr(addr->sa_data)) + return -EADDRNOTAVAIL; + + memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); + memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); + + hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0); + + if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { + /* activate the work around */ + e1000e_set_laa_state_82571(&adapter->hw, 1); + + /* Hold a copy of the LAA in RAR[14] This is done so that + * between the time RAR[0] gets clobbered and the time it + * gets fixed (in e1000_watchdog), the actual LAA is in one + * of the RARs and no incoming packets directed to this port + * are dropped. Eventually the LAA will be in RAR[0] and + * RAR[14] + */ + hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, + adapter->hw.mac.rar_entry_count - 1); + } + + return 0; +} + +/** + * e1000e_update_phy_task - work thread to update phy + * @work: pointer to our work struct + * + * this worker thread exists because we must acquire a + * semaphore to read the phy, which we could msleep while + * waiting for it, and we can't msleep in a timer. + **/ +static void e1000e_update_phy_task(struct work_struct *work) +{ + struct e1000_adapter *adapter = container_of(work, + struct e1000_adapter, + update_phy_task); + struct e1000_hw *hw = &adapter->hw; + + if (test_bit(__E1000_DOWN, &adapter->state)) + return; + + e1000_get_phy_info(hw); + + /* Enable EEE on 82579 after link up */ + if (hw->phy.type >= e1000_phy_82579) + e1000_set_eee_pchlan(hw); +} + +/** + * e1000_update_phy_info - timre call-back to update PHY info + * @data: pointer to adapter cast into an unsigned long + * + * Need to wait a few seconds after link up to get diagnostic information from + * the phy + **/ +static void e1000_update_phy_info(struct timer_list *t) +{ + struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer); + + if (test_bit(__E1000_DOWN, &adapter->state)) + return; + + schedule_work(&adapter->update_phy_task); +} + +/** + * e1000e_update_phy_stats - Update the PHY statistics counters + * @adapter: board private structure + * + * Read/clear the upper 16-bit PHY registers and read/accumulate lower + **/ +static void e1000e_update_phy_stats(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + s32 ret_val; + u16 phy_data; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return; + + /* A page set is expensive so check if already on desired page. + * If not, set to the page with the PHY status registers. + */ + hw->phy.addr = 1; + ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, + &phy_data); + if (ret_val) + goto release; + if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) { + ret_val = hw->phy.ops.set_page(hw, + HV_STATS_PAGE << IGP_PAGE_SHIFT); + if (ret_val) + goto release; + } + + /* Single Collision Count */ + hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); + ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); + if (!ret_val) + adapter->stats.scc += phy_data; + + /* Excessive Collision Count */ + hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); + ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); + if (!ret_val) + adapter->stats.ecol += phy_data; + + /* Multiple Collision Count */ + hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); + ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); + if (!ret_val) + adapter->stats.mcc += phy_data; + + /* Late Collision Count */ + hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); + ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); + if (!ret_val) + adapter->stats.latecol += phy_data; + + /* Collision Count - also used for adaptive IFS */ + hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); + ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); + if (!ret_val) + hw->mac.collision_delta = phy_data; + + /* Defer Count */ + hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); + ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); + if (!ret_val) + adapter->stats.dc += phy_data; + + /* Transmit with no CRS */ + hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); + ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); + if (!ret_val) + adapter->stats.tncrs += phy_data; + +release: + hw->phy.ops.release(hw); +} + +/** + * e1000e_update_stats - Update the board statistics counters + * @adapter: board private structure + **/ +static void e1000e_update_stats(struct e1000_adapter *adapter) +{ + struct net_device *netdev = adapter->netdev; + struct e1000_hw *hw = &adapter->hw; + struct pci_dev *pdev = adapter->pdev; + + /* Prevent stats update while adapter is being reset, or if the pci + * connection is down. + */ + if (adapter->link_speed == 0) + return; + if (pci_channel_offline(pdev)) + return; + + adapter->stats.crcerrs += er32(CRCERRS); + adapter->stats.gprc += er32(GPRC); + adapter->stats.gorc += er32(GORCL); + er32(GORCH); /* Clear gorc */ + adapter->stats.bprc += er32(BPRC); + adapter->stats.mprc += er32(MPRC); + adapter->stats.roc += er32(ROC); + + adapter->stats.mpc += er32(MPC); + + /* Half-duplex statistics */ + if (adapter->link_duplex == HALF_DUPLEX) { + if (adapter->flags2 & FLAG2_HAS_PHY_STATS) { + e1000e_update_phy_stats(adapter); + } else { + adapter->stats.scc += er32(SCC); + adapter->stats.ecol += er32(ECOL); + adapter->stats.mcc += er32(MCC); + adapter->stats.latecol += er32(LATECOL); + adapter->stats.dc += er32(DC); + + hw->mac.collision_delta = er32(COLC); + + if ((hw->mac.type != e1000_82574) && + (hw->mac.type != e1000_82583)) + adapter->stats.tncrs += er32(TNCRS); + } + adapter->stats.colc += hw->mac.collision_delta; + } + + adapter->stats.xonrxc += er32(XONRXC); + adapter->stats.xontxc += er32(XONTXC); + adapter->stats.xoffrxc += er32(XOFFRXC); + adapter->stats.xofftxc += er32(XOFFTXC); + adapter->stats.gptc += er32(GPTC); + adapter->stats.gotc += er32(GOTCL); + er32(GOTCH); /* Clear gotc */ + adapter->stats.rnbc += er32(RNBC); + adapter->stats.ruc += er32(RUC); + + adapter->stats.mptc += er32(MPTC); + adapter->stats.bptc += er32(BPTC); + + /* used for adaptive IFS */ + + hw->mac.tx_packet_delta = er32(TPT); + adapter->stats.tpt += hw->mac.tx_packet_delta; + + adapter->stats.algnerrc += er32(ALGNERRC); + adapter->stats.rxerrc += er32(RXERRC); + adapter->stats.cexterr += er32(CEXTERR); + adapter->stats.tsctc += er32(TSCTC); + adapter->stats.tsctfc += er32(TSCTFC); + + /* Fill out the OS statistics structure */ + netdev->stats.multicast = adapter->stats.mprc; + netdev->stats.collisions = adapter->stats.colc; + + /* Rx Errors */ + + /* RLEC on some newer hardware can be incorrect so build + * our own version based on RUC and ROC + */ + netdev->stats.rx_errors = adapter->stats.rxerrc + + adapter->stats.crcerrs + adapter->stats.algnerrc + + adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; + netdev->stats.rx_length_errors = adapter->stats.ruc + + adapter->stats.roc; + netdev->stats.rx_crc_errors = adapter->stats.crcerrs; + netdev->stats.rx_frame_errors = adapter->stats.algnerrc; + netdev->stats.rx_missed_errors = adapter->stats.mpc; + + /* Tx Errors */ + netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol; + netdev->stats.tx_aborted_errors = adapter->stats.ecol; + netdev->stats.tx_window_errors = adapter->stats.latecol; + netdev->stats.tx_carrier_errors = adapter->stats.tncrs; + + /* Tx Dropped needs to be maintained elsewhere */ + + /* Management Stats */ + adapter->stats.mgptc += er32(MGTPTC); + adapter->stats.mgprc += er32(MGTPRC); + adapter->stats.mgpdc += er32(MGTPDC); + + /* Correctable ECC Errors */ + if (hw->mac.type >= e1000_pch_lpt) { + u32 pbeccsts = er32(PBECCSTS); + + adapter->corr_errors += + pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; + adapter->uncorr_errors += + (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> + E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; + } +} + +/** + * e1000_phy_read_status - Update the PHY register status snapshot + * @adapter: board private structure + **/ +static void e1000_phy_read_status(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + struct e1000_phy_regs *phy = &adapter->phy_regs; + + if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) && + (er32(STATUS) & E1000_STATUS_LU) && + (adapter->hw.phy.media_type == e1000_media_type_copper)) { + int ret_val; + + ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr); + ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr); + ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise); + ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa); + ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion); + ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000); + ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000); + ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus); + if (ret_val) + e_warn("Error reading PHY register\n"); + } else { + /* Do not read PHY registers if link is not up + * Set values to typical power-on defaults + */ + phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); + phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | + BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | + BMSR_ERCAP); + phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | + ADVERTISE_ALL | ADVERTISE_CSMA); + phy->lpa = 0; + phy->expansion = EXPANSION_ENABLENPAGE; + phy->ctrl1000 = ADVERTISE_1000FULL; + phy->stat1000 = 0; + phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); + } +} + +static void e1000_print_link_info(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + u32 ctrl = er32(CTRL); + + /* Link status message must follow this format for user tools */ + pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", + adapter->netdev->name, adapter->link_speed, + adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half", + (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" : + (ctrl & E1000_CTRL_RFCE) ? "Rx" : + (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None"); +} + +static bool e1000e_has_link(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + bool link_active = false; + s32 ret_val = 0; + + /* get_link_status is set on LSC (link status) interrupt or + * Rx sequence error interrupt. get_link_status will stay + * true until the check_for_link establishes link + * for copper adapters ONLY + */ + switch (hw->phy.media_type) { + case e1000_media_type_copper: + if (hw->mac.get_link_status) { + ret_val = hw->mac.ops.check_for_link(hw); + link_active = !hw->mac.get_link_status; + } else { + link_active = true; + } + break; + case e1000_media_type_fiber: + ret_val = hw->mac.ops.check_for_link(hw); + link_active = !!(er32(STATUS) & E1000_STATUS_LU); + break; + case e1000_media_type_internal_serdes: + ret_val = hw->mac.ops.check_for_link(hw); + link_active = hw->mac.serdes_has_link; + break; + default: + case e1000_media_type_unknown: + break; + } + + if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && + (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { + /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ + e_info("Gigabit has been disabled, downgrading speed\n"); + } + + return link_active; +} + +static void e1000e_enable_receives(struct e1000_adapter *adapter) +{ + /* make sure the receive unit is started */ + if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && + (adapter->flags & FLAG_RESTART_NOW)) { + struct e1000_hw *hw = &adapter->hw; + u32 rctl = er32(RCTL); + + ew32(RCTL, rctl | E1000_RCTL_EN); + adapter->flags &= ~FLAG_RESTART_NOW; + } +} + +static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + + /* With 82574 controllers, PHY needs to be checked periodically + * for hung state and reset, if two calls return true + */ + if (e1000_check_phy_82574(hw)) + adapter->phy_hang_count++; + else + adapter->phy_hang_count = 0; + + if (adapter->phy_hang_count > 1) { + adapter->phy_hang_count = 0; + e_dbg("PHY appears hung - resetting\n"); + schedule_work(&adapter->reset_task); + } +} + +/** + * e1000_watchdog - Timer Call-back + * @data: pointer to adapter cast into an unsigned long + **/ +static void e1000_watchdog(struct timer_list *t) +{ + struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer); + + /* Do the rest outside of interrupt context */ + schedule_work(&adapter->watchdog_task); + + /* TODO: make this use queue_delayed_work() */ +} + +static void e1000_watchdog_task(struct work_struct *work) +{ + struct e1000_adapter *adapter = container_of(work, + struct e1000_adapter, + watchdog_task); + struct net_device *netdev = adapter->netdev; + struct e1000_mac_info *mac = &adapter->hw.mac; + struct e1000_phy_info *phy = &adapter->hw.phy; + struct e1000_ring *tx_ring = adapter->tx_ring; + struct e1000_hw *hw = &adapter->hw; + u32 link, tctl; + + if (test_bit(__E1000_DOWN, &adapter->state)) + return; + + link = e1000e_has_link(adapter); + if ((netif_carrier_ok(netdev)) && link) { + /* Cancel scheduled suspend requests. */ + pm_runtime_resume(netdev->dev.parent); + + e1000e_enable_receives(adapter); + goto link_up; + } + + if ((e1000e_enable_tx_pkt_filtering(hw)) && + (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) + e1000_update_mng_vlan(adapter); + + if (link) { + if (!netif_carrier_ok(netdev)) { + bool txb2b = true; + + /* Cancel scheduled suspend requests. */ + pm_runtime_resume(netdev->dev.parent); + + /* update snapshot of PHY registers on LSC */ + e1000_phy_read_status(adapter); + mac->ops.get_link_up_info(&adapter->hw, + &adapter->link_speed, + &adapter->link_duplex); + e1000_print_link_info(adapter); + + /* check if SmartSpeed worked */ + e1000e_check_downshift(hw); + if (phy->speed_downgraded) + netdev_warn(netdev, + "Link Speed was downgraded by SmartSpeed\n"); + + /* On supported PHYs, check for duplex mismatch only + * if link has autonegotiated at 10/100 half + */ + if ((hw->phy.type == e1000_phy_igp_3 || + hw->phy.type == e1000_phy_bm) && + hw->mac.autoneg && + (adapter->link_speed == SPEED_10 || + adapter->link_speed == SPEED_100) && + (adapter->link_duplex == HALF_DUPLEX)) { + u16 autoneg_exp; + + e1e_rphy(hw, MII_EXPANSION, &autoneg_exp); + + if (!(autoneg_exp & EXPANSION_NWAY)) + e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n"); + } + + /* adjust timeout factor according to speed/duplex */ + adapter->tx_timeout_factor = 1; + switch (adapter->link_speed) { + case SPEED_10: + txb2b = false; + adapter->tx_timeout_factor = 16; + break; + case SPEED_100: + txb2b = false; + adapter->tx_timeout_factor = 10; + break; + } + + /* workaround: re-program speed mode bit after + * link-up event + */ + if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && + !txb2b) { + u32 tarc0; + + tarc0 = er32(TARC(0)); + tarc0 &= ~SPEED_MODE_BIT; + ew32(TARC(0), tarc0); + } + + /* disable TSO for pcie and 10/100 speeds, to avoid + * some hardware issues + */ + if (!(adapter->flags & FLAG_TSO_FORCE)) { + switch (adapter->link_speed) { + case SPEED_10: + case SPEED_100: + e_info("10/100 speed: disabling TSO\n"); + netdev->features &= ~NETIF_F_TSO; + netdev->features &= ~NETIF_F_TSO6; + break; + case SPEED_1000: + netdev->features |= NETIF_F_TSO; + netdev->features |= NETIF_F_TSO6; + break; + default: + /* oops */ + break; + } + if (hw->mac.type == e1000_pch_spt) { + netdev->features &= ~NETIF_F_TSO; + netdev->features &= ~NETIF_F_TSO6; + } + } + + /* enable transmits in the hardware, need to do this + * after setting TARC(0) + */ + tctl = er32(TCTL); + tctl |= E1000_TCTL_EN; + ew32(TCTL, tctl); + + /* Perform any post-link-up configuration before + * reporting link up. + */ + if (phy->ops.cfg_on_link_up) + phy->ops.cfg_on_link_up(hw); + + netif_wake_queue(netdev); + netif_carrier_on(netdev); + + if (!test_bit(__E1000_DOWN, &adapter->state)) + mod_timer(&adapter->phy_info_timer, + round_jiffies(jiffies + 2 * HZ)); + } + } else { + if (netif_carrier_ok(netdev)) { + adapter->link_speed = 0; + adapter->link_duplex = 0; + /* Link status message must follow this format */ + pr_info("%s NIC Link is Down\n", adapter->netdev->name); + netif_carrier_off(netdev); + netif_stop_queue(netdev); + if (!test_bit(__E1000_DOWN, &adapter->state)) + mod_timer(&adapter->phy_info_timer, + round_jiffies(jiffies + 2 * HZ)); + + /* 8000ES2LAN requires a Rx packet buffer work-around + * on link down event; reset the controller to flush + * the Rx packet buffer. + */ + if (adapter->flags & FLAG_RX_NEEDS_RESTART) + adapter->flags |= FLAG_RESTART_NOW; + else + pm_schedule_suspend(netdev->dev.parent, + LINK_TIMEOUT); + } + } + +link_up: + spin_lock(&adapter->stats64_lock); + e1000e_update_stats(adapter); + + mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; + adapter->tpt_old = adapter->stats.tpt; + mac->collision_delta = adapter->stats.colc - adapter->colc_old; + adapter->colc_old = adapter->stats.colc; + + adapter->gorc = adapter->stats.gorc - adapter->gorc_old; + adapter->gorc_old = adapter->stats.gorc; + adapter->gotc = adapter->stats.gotc - adapter->gotc_old; + adapter->gotc_old = adapter->stats.gotc; + spin_unlock(&adapter->stats64_lock); + + /* If the link is lost the controller stops DMA, but + * if there is queued Tx work it cannot be done. So + * reset the controller to flush the Tx packet buffers. + */ + if (!netif_carrier_ok(netdev) && + (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) + adapter->flags |= FLAG_RESTART_NOW; + + /* If reset is necessary, do it outside of interrupt context. */ + if (adapter->flags & FLAG_RESTART_NOW) { + schedule_work(&adapter->reset_task); + /* return immediately since reset is imminent */ + return; + } + + e1000e_update_adaptive(&adapter->hw); + + /* Simple mode for Interrupt Throttle Rate (ITR) */ + if (adapter->itr_setting == 4) { + /* Symmetric Tx/Rx gets a reduced ITR=2000; + * Total asymmetrical Tx or Rx gets ITR=8000; + * everyone else is between 2000-8000. + */ + u32 goc = (adapter->gotc + adapter->gorc) / 10000; + u32 dif = (adapter->gotc > adapter->gorc ? + adapter->gotc - adapter->gorc : + adapter->gorc - adapter->gotc) / 10000; + u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; + + e1000e_write_itr(adapter, itr); + } + + /* Cause software interrupt to ensure Rx ring is cleaned */ + if (adapter->msix_entries) + ew32(ICS, adapter->rx_ring->ims_val); + else + ew32(ICS, E1000_ICS_RXDMT0); + + /* flush pending descriptors to memory before detecting Tx hang */ + e1000e_flush_descriptors(adapter); + + /* Force detection of hung controller every watchdog period */ + adapter->detect_tx_hung = true; + + /* With 82571 controllers, LAA may be overwritten due to controller + * reset from the other port. Set the appropriate LAA in RAR[0] + */ + if (e1000e_get_laa_state_82571(hw)) + hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0); + + if (adapter->flags2 & FLAG2_CHECK_PHY_HANG) + e1000e_check_82574_phy_workaround(adapter); + + /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */ + if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) { + if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) && + (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) { + er32(RXSTMPH); + adapter->rx_hwtstamp_cleared++; + } else { + adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP; + } + } + + /* Reset the timer */ + if (!test_bit(__E1000_DOWN, &adapter->state)) + mod_timer(&adapter->watchdog_timer, + round_jiffies(jiffies + 2 * HZ)); +} + +#define E1000_TX_FLAGS_CSUM 0x00000001 +#define E1000_TX_FLAGS_VLAN 0x00000002 +#define E1000_TX_FLAGS_TSO 0x00000004 +#define E1000_TX_FLAGS_IPV4 0x00000008 +#define E1000_TX_FLAGS_NO_FCS 0x00000010 +#define E1000_TX_FLAGS_HWTSTAMP 0x00000020 +#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 +#define E1000_TX_FLAGS_VLAN_SHIFT 16 + +static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb, + __be16 protocol) +{ + struct e1000_context_desc *context_desc; + struct e1000_buffer *buffer_info; + unsigned int i; + u32 cmd_length = 0; + u16 ipcse = 0, mss; + u8 ipcss, ipcso, tucss, tucso, hdr_len; + int err; + + if (!skb_is_gso(skb)) + return 0; + + err = skb_cow_head(skb, 0); + if (err < 0) + return err; + + hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); + mss = skb_shinfo(skb)->gso_size; + if (protocol == htons(ETH_P_IP)) { + struct iphdr *iph = ip_hdr(skb); + iph->tot_len = 0; + iph->check = 0; + tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, + 0, IPPROTO_TCP, 0); + cmd_length = E1000_TXD_CMD_IP; + ipcse = skb_transport_offset(skb) - 1; + } else if (skb_is_gso_v6(skb)) { + ipv6_hdr(skb)->payload_len = 0; + tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, + &ipv6_hdr(skb)->daddr, + 0, IPPROTO_TCP, 0); + ipcse = 0; + } + ipcss = skb_network_offset(skb); + ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; + tucss = skb_transport_offset(skb); + tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; + + cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | + E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); + + i = tx_ring->next_to_use; + context_desc = E1000_CONTEXT_DESC(*tx_ring, i); + buffer_info = &tx_ring->buffer_info[i]; + + context_desc->lower_setup.ip_fields.ipcss = ipcss; + context_desc->lower_setup.ip_fields.ipcso = ipcso; + context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); + context_desc->upper_setup.tcp_fields.tucss = tucss; + context_desc->upper_setup.tcp_fields.tucso = tucso; + context_desc->upper_setup.tcp_fields.tucse = 0; + context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); + context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; + context_desc->cmd_and_length = cpu_to_le32(cmd_length); + + buffer_info->time_stamp = jiffies; + buffer_info->next_to_watch = i; + + i++; + if (i == tx_ring->count) + i = 0; + tx_ring->next_to_use = i; + + return 1; +} + +static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb, + __be16 protocol) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + struct e1000_context_desc *context_desc; + struct e1000_buffer *buffer_info; + unsigned int i; + u8 css; + u32 cmd_len = E1000_TXD_CMD_DEXT; + + if (skb->ip_summed != CHECKSUM_PARTIAL) + return false; + + switch (protocol) { + case cpu_to_be16(ETH_P_IP): + if (ip_hdr(skb)->protocol == IPPROTO_TCP) + cmd_len |= E1000_TXD_CMD_TCP; + break; + case cpu_to_be16(ETH_P_IPV6): + /* XXX not handling all IPV6 headers */ + if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) + cmd_len |= E1000_TXD_CMD_TCP; + break; + default: + if (unlikely(net_ratelimit())) + e_warn("checksum_partial proto=%x!\n", + be16_to_cpu(protocol)); + break; + } + + css = skb_checksum_start_offset(skb); + + i = tx_ring->next_to_use; + buffer_info = &tx_ring->buffer_info[i]; + context_desc = E1000_CONTEXT_DESC(*tx_ring, i); + + context_desc->lower_setup.ip_config = 0; + context_desc->upper_setup.tcp_fields.tucss = css; + context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset; + context_desc->upper_setup.tcp_fields.tucse = 0; + context_desc->tcp_seg_setup.data = 0; + context_desc->cmd_and_length = cpu_to_le32(cmd_len); + + buffer_info->time_stamp = jiffies; + buffer_info->next_to_watch = i; + + i++; + if (i == tx_ring->count) + i = 0; + tx_ring->next_to_use = i; + + return true; +} + +static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb, + unsigned int first, unsigned int max_per_txd, + unsigned int nr_frags) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + struct pci_dev *pdev = adapter->pdev; + struct e1000_buffer *buffer_info; + unsigned int len = skb_headlen(skb); + unsigned int offset = 0, size, count = 0, i; + unsigned int f, bytecount, segs; + + i = tx_ring->next_to_use; + + while (len) { + buffer_info = &tx_ring->buffer_info[i]; + size = min(len, max_per_txd); + + buffer_info->length = size; + buffer_info->time_stamp = jiffies; + buffer_info->next_to_watch = i; + buffer_info->dma = dma_map_single(&pdev->dev, + skb->data + offset, + size, DMA_TO_DEVICE); + buffer_info->mapped_as_page = false; + if (dma_mapping_error(&pdev->dev, buffer_info->dma)) + goto dma_error; + + len -= size; + offset += size; + count++; + + if (len) { + i++; + if (i == tx_ring->count) + i = 0; + } + } + + for (f = 0; f < nr_frags; f++) { + const struct skb_frag_struct *frag; + + frag = &skb_shinfo(skb)->frags[f]; + len = skb_frag_size(frag); + offset = 0; + + while (len) { + i++; + if (i == tx_ring->count) + i = 0; + + buffer_info = &tx_ring->buffer_info[i]; + size = min(len, max_per_txd); + + buffer_info->length = size; + buffer_info->time_stamp = jiffies; + buffer_info->next_to_watch = i; + buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, + offset, size, + DMA_TO_DEVICE); + buffer_info->mapped_as_page = true; + if (dma_mapping_error(&pdev->dev, buffer_info->dma)) + goto dma_error; + + len -= size; + offset += size; + count++; + } + } + + segs = skb_shinfo(skb)->gso_segs ? : 1; + /* multiply data chunks by size of headers */ + bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; + + tx_ring->buffer_info[i].skb = skb; + tx_ring->buffer_info[i].segs = segs; + tx_ring->buffer_info[i].bytecount = bytecount; + tx_ring->buffer_info[first].next_to_watch = i; + + return count; + +dma_error: + dev_err(&pdev->dev, "Tx DMA map failed\n"); + buffer_info->dma = 0; + if (count) + count--; + + while (count--) { + if (i == 0) + i += tx_ring->count; + i--; + buffer_info = &tx_ring->buffer_info[i]; + e1000_put_txbuf(tx_ring, buffer_info, true); + } + + return 0; +} + +static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + struct e1000_tx_desc *tx_desc = NULL; + struct e1000_buffer *buffer_info; + u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; + unsigned int i; + + if (tx_flags & E1000_TX_FLAGS_TSO) { + txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | + E1000_TXD_CMD_TSE; + txd_upper |= E1000_TXD_POPTS_TXSM << 8; + + if (tx_flags & E1000_TX_FLAGS_IPV4) + txd_upper |= E1000_TXD_POPTS_IXSM << 8; + } + + if (tx_flags & E1000_TX_FLAGS_CSUM) { + txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; + txd_upper |= E1000_TXD_POPTS_TXSM << 8; + } + + if (tx_flags & E1000_TX_FLAGS_VLAN) { + txd_lower |= E1000_TXD_CMD_VLE; + txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); + } + + if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) + txd_lower &= ~(E1000_TXD_CMD_IFCS); + + if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) { + txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; + txd_upper |= E1000_TXD_EXTCMD_TSTAMP; + } + + i = tx_ring->next_to_use; + + do { + buffer_info = &tx_ring->buffer_info[i]; + tx_desc = E1000_TX_DESC(*tx_ring, i); + tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); + tx_desc->lower.data = cpu_to_le32(txd_lower | + buffer_info->length); + tx_desc->upper.data = cpu_to_le32(txd_upper); + + i++; + if (i == tx_ring->count) + i = 0; + } while (--count > 0); + + tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); + + /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ + if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) + tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); + + /* Force memory writes to complete before letting h/w + * know there are new descriptors to fetch. (Only + * applicable for weak-ordered memory model archs, + * such as IA-64). + */ + wmb(); + + tx_ring->next_to_use = i; +} + +#define MINIMUM_DHCP_PACKET_SIZE 282 +static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, + struct sk_buff *skb) +{ + struct e1000_hw *hw = &adapter->hw; + u16 length, offset; + + if (skb_vlan_tag_present(skb) && + !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && + (adapter->hw.mng_cookie.status & + E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) + return 0; + + if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) + return 0; + + if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP)) + return 0; + + { + const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14); + struct udphdr *udp; + + if (ip->protocol != IPPROTO_UDP) + return 0; + + udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); + if (ntohs(udp->dest) != 67) + return 0; + + offset = (u8 *)udp + 8 - skb->data; + length = skb->len - offset; + return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); + } + + return 0; +} + +static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) +{ + struct e1000_adapter *adapter = tx_ring->adapter; + + netif_stop_queue(adapter->netdev); + /* Herbert's original patch had: + * smp_mb__after_netif_stop_queue(); + * but since that doesn't exist yet, just open code it. + */ + smp_mb(); + + /* We need to check again in a case another CPU has just + * made room available. + */ + if (e1000_desc_unused(tx_ring) < size) + return -EBUSY; + + /* A reprieve! */ + netif_start_queue(adapter->netdev); + ++adapter->restart_queue; + return 0; +} + +static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) +{ + BUG_ON(size > tx_ring->count); + + if (e1000_desc_unused(tx_ring) >= size) + return 0; + return __e1000_maybe_stop_tx(tx_ring, size); +} + +static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, + struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_ring *tx_ring = adapter->tx_ring; + unsigned int first; + unsigned int tx_flags = 0; + unsigned int len = skb_headlen(skb); + unsigned int nr_frags; + unsigned int mss; + int count = 0; + int tso; + unsigned int f; + __be16 protocol = vlan_get_protocol(skb); + + if (test_bit(__E1000_DOWN, &adapter->state)) { + dev_kfree_skb_any(skb); + return NETDEV_TX_OK; + } + + if (skb->len <= 0) { + dev_kfree_skb_any(skb); + return NETDEV_TX_OK; + } + + /* The minimum packet size with TCTL.PSP set is 17 bytes so + * pad skb in order to meet this minimum size requirement + */ + if (skb_put_padto(skb, 17)) + return NETDEV_TX_OK; + + mss = skb_shinfo(skb)->gso_size; + if (mss) { + u8 hdr_len; + + /* TSO Workaround for 82571/2/3 Controllers -- if skb->data + * points to just header, pull a few bytes of payload from + * frags into skb->data + */ + hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); + /* we do this workaround for ES2LAN, but it is un-necessary, + * avoiding it could save a lot of cycles + */ + if (skb->data_len && (hdr_len == len)) { + unsigned int pull_size; + + pull_size = min_t(unsigned int, 4, skb->data_len); + if (!__pskb_pull_tail(skb, pull_size)) { + e_err("__pskb_pull_tail failed.\n"); + dev_kfree_skb_any(skb); + return NETDEV_TX_OK; + } + len = skb_headlen(skb); + } + } + + /* reserve a descriptor for the offload context */ + if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) + count++; + count++; + + count += DIV_ROUND_UP(len, adapter->tx_fifo_limit); + + nr_frags = skb_shinfo(skb)->nr_frags; + for (f = 0; f < nr_frags; f++) + count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]), + adapter->tx_fifo_limit); + + if (adapter->hw.mac.tx_pkt_filtering) + e1000_transfer_dhcp_info(adapter, skb); + + /* need: count + 2 desc gap to keep tail from touching + * head, otherwise try next time + */ + if (e1000_maybe_stop_tx(tx_ring, count + 2)) + return NETDEV_TX_BUSY; + + if (skb_vlan_tag_present(skb)) { + tx_flags |= E1000_TX_FLAGS_VLAN; + tx_flags |= (skb_vlan_tag_get(skb) << + E1000_TX_FLAGS_VLAN_SHIFT); + } + + first = tx_ring->next_to_use; + + tso = e1000_tso(tx_ring, skb, protocol); + if (tso < 0) { + dev_kfree_skb_any(skb); + return NETDEV_TX_OK; + } + + if (tso) + tx_flags |= E1000_TX_FLAGS_TSO; + else if (e1000_tx_csum(tx_ring, skb, protocol)) + tx_flags |= E1000_TX_FLAGS_CSUM; + + /* Old method was to assume IPv4 packet by default if TSO was enabled. + * 82571 hardware supports TSO capabilities for IPv6 as well... + * no longer assume, we must. + */ + if (protocol == htons(ETH_P_IP)) + tx_flags |= E1000_TX_FLAGS_IPV4; + + if (unlikely(skb->no_fcs)) + tx_flags |= E1000_TX_FLAGS_NO_FCS; + + /* if count is 0 then mapping error has occurred */ + count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit, + nr_frags); + if (count) { + if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && + (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) { + if (!adapter->tx_hwtstamp_skb) { + skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; + tx_flags |= E1000_TX_FLAGS_HWTSTAMP; + adapter->tx_hwtstamp_skb = skb_get(skb); + adapter->tx_hwtstamp_start = jiffies; + schedule_work(&adapter->tx_hwtstamp_work); + } else { + adapter->tx_hwtstamp_skipped++; + } + } + + skb_tx_timestamp(skb); + + netdev_sent_queue(netdev, skb->len); + e1000_tx_queue(tx_ring, tx_flags, count); + /* Make sure there is space in the ring for the next send. */ + e1000_maybe_stop_tx(tx_ring, + (MAX_SKB_FRAGS * + DIV_ROUND_UP(PAGE_SIZE, + adapter->tx_fifo_limit) + 2)); + + if (!skb->xmit_more || + netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { + if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) + e1000e_update_tdt_wa(tx_ring, + tx_ring->next_to_use); + else + writel(tx_ring->next_to_use, tx_ring->tail); + + /* we need this if more than one processor can write + * to our tail at a time, it synchronizes IO on + *IA64/Altix systems + */ + mmiowb(); + } + } else { + dev_kfree_skb_any(skb); + tx_ring->buffer_info[first].time_stamp = 0; + tx_ring->next_to_use = first; + } + + return NETDEV_TX_OK; +} + +/** + * e1000_tx_timeout - Respond to a Tx Hang + * @netdev: network interface device structure + **/ +static void e1000_tx_timeout(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + + /* Do the reset outside of interrupt context */ + adapter->tx_timeout_count++; + schedule_work(&adapter->reset_task); +} + +static void e1000_reset_task(struct work_struct *work) +{ + struct e1000_adapter *adapter; + adapter = container_of(work, struct e1000_adapter, reset_task); + + rtnl_lock(); + /* don't run the task if already down */ + if (test_bit(__E1000_DOWN, &adapter->state)) { + rtnl_unlock(); + return; + } + + if (!(adapter->flags & FLAG_RESTART_NOW)) { + e1000e_dump(adapter); + e_err("Reset adapter unexpectedly\n"); + } + e1000e_reinit_locked(adapter); + rtnl_unlock(); +} + +/** + * e1000_get_stats64 - Get System Network Statistics + * @netdev: network interface device structure + * @stats: rtnl_link_stats64 pointer + * + * Returns the address of the device statistics structure. + **/ +void e1000e_get_stats64(struct net_device *netdev, + struct rtnl_link_stats64 *stats) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + + spin_lock(&adapter->stats64_lock); + e1000e_update_stats(adapter); + /* Fill out the OS statistics structure */ + stats->rx_bytes = adapter->stats.gorc; + stats->rx_packets = adapter->stats.gprc; + stats->tx_bytes = adapter->stats.gotc; + stats->tx_packets = adapter->stats.gptc; + stats->multicast = adapter->stats.mprc; + stats->collisions = adapter->stats.colc; + + /* Rx Errors */ + + /* RLEC on some newer hardware can be incorrect so build + * our own version based on RUC and ROC + */ + stats->rx_errors = adapter->stats.rxerrc + + adapter->stats.crcerrs + adapter->stats.algnerrc + + adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; + stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc; + stats->rx_crc_errors = adapter->stats.crcerrs; + stats->rx_frame_errors = adapter->stats.algnerrc; + stats->rx_missed_errors = adapter->stats.mpc; + + /* Tx Errors */ + stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol; + stats->tx_aborted_errors = adapter->stats.ecol; + stats->tx_window_errors = adapter->stats.latecol; + stats->tx_carrier_errors = adapter->stats.tncrs; + + /* Tx Dropped needs to be maintained elsewhere */ + + spin_unlock(&adapter->stats64_lock); +} + +/** + * e1000_change_mtu - Change the Maximum Transfer Unit + * @netdev: network interface device structure + * @new_mtu: new value for maximum frame size + * + * Returns 0 on success, negative on failure + **/ +static int e1000_change_mtu(struct net_device *netdev, int new_mtu) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; + + /* Jumbo frame support */ + if ((new_mtu > ETH_DATA_LEN) && + !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { + e_err("Jumbo Frames not supported.\n"); + return -EINVAL; + } + + /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ + if ((adapter->hw.mac.type >= e1000_pch2lan) && + !(adapter->flags2 & FLAG2_CRC_STRIPPING) && + (new_mtu > ETH_DATA_LEN)) { + e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n"); + return -EINVAL; + } + + while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) + usleep_range(1000, 2000); + /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ + adapter->max_frame_size = max_frame; + e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); + netdev->mtu = new_mtu; + + pm_runtime_get_sync(netdev->dev.parent); + + if (netif_running(netdev)) + e1000e_down(adapter, true); + + /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN + * means we reserve 2 more, this pushes us to allocate from the next + * larger slab size. + * i.e. RXBUFFER_2048 --> size-4096 slab + * However with the new *_jumbo_rx* routines, jumbo receives will use + * fragmented skbs + */ + + if (max_frame <= 2048) + adapter->rx_buffer_len = 2048; + else + adapter->rx_buffer_len = 4096; + + /* adjust allocation if LPE protects us, and we aren't using SBP */ + if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) + adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; + + if (netif_running(netdev)) + e1000e_up(adapter); + else + e1000e_reset(adapter); + + pm_runtime_put_sync(netdev->dev.parent); + + clear_bit(__E1000_RESETTING, &adapter->state); + + return 0; +} + +static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, + int cmd) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct mii_ioctl_data *data = if_mii(ifr); + + if (adapter->hw.phy.media_type != e1000_media_type_copper) + return -EOPNOTSUPP; + + switch (cmd) { + case SIOCGMIIPHY: + data->phy_id = adapter->hw.phy.addr; + break; + case SIOCGMIIREG: + e1000_phy_read_status(adapter); + + switch (data->reg_num & 0x1F) { + case MII_BMCR: + data->val_out = adapter->phy_regs.bmcr; + break; + case MII_BMSR: + data->val_out = adapter->phy_regs.bmsr; + break; + case MII_PHYSID1: + data->val_out = (adapter->hw.phy.id >> 16); + break; + case MII_PHYSID2: + data->val_out = (adapter->hw.phy.id & 0xFFFF); + break; + case MII_ADVERTISE: + data->val_out = adapter->phy_regs.advertise; + break; + case MII_LPA: + data->val_out = adapter->phy_regs.lpa; + break; + case MII_EXPANSION: + data->val_out = adapter->phy_regs.expansion; + break; + case MII_CTRL1000: + data->val_out = adapter->phy_regs.ctrl1000; + break; + case MII_STAT1000: + data->val_out = adapter->phy_regs.stat1000; + break; + case MII_ESTATUS: + data->val_out = adapter->phy_regs.estatus; + break; + default: + return -EIO; + } + break; + case SIOCSMIIREG: + default: + return -EOPNOTSUPP; + } + return 0; +} + +/** + * e1000e_hwtstamp_ioctl - control hardware time stamping + * @netdev: network interface device structure + * @ifreq: interface request + * + * Outgoing time stamping can be enabled and disabled. Play nice and + * disable it when requested, although it shouldn't cause any overhead + * when no packet needs it. At most one packet in the queue may be + * marked for time stamping, otherwise it would be impossible to tell + * for sure to which packet the hardware time stamp belongs. + * + * Incoming time stamping has to be configured via the hardware filters. + * Not all combinations are supported, in particular event type has to be + * specified. Matching the kind of event packet is not supported, with the + * exception of "all V2 events regardless of level 2 or 4". + **/ +static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct hwtstamp_config config; + int ret_val; + + if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) + return -EFAULT; + + ret_val = e1000e_config_hwtstamp(adapter, &config); + if (ret_val) + return ret_val; + + switch (config.rx_filter) { + case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: + case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: + case HWTSTAMP_FILTER_PTP_V2_SYNC: + case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: + case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: + case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: + /* With V2 type filters which specify a Sync or Delay Request, + * Path Delay Request/Response messages are also time stamped + * by hardware so notify the caller the requested packets plus + * some others are time stamped. + */ + config.rx_filter = HWTSTAMP_FILTER_SOME; + break; + default: + break; + } + + return copy_to_user(ifr->ifr_data, &config, + sizeof(config)) ? -EFAULT : 0; +} + +static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + + return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config, + sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0; +} + +static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) +{ + switch (cmd) { + case SIOCGMIIPHY: + case SIOCGMIIREG: + case SIOCSMIIREG: + return e1000_mii_ioctl(netdev, ifr, cmd); + case SIOCSHWTSTAMP: + return e1000e_hwtstamp_set(netdev, ifr); + case SIOCGHWTSTAMP: + return e1000e_hwtstamp_get(netdev, ifr); + default: + return -EOPNOTSUPP; + } +} + +static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) +{ + struct e1000_hw *hw = &adapter->hw; + u32 i, mac_reg, wuc; + u16 phy_reg, wuc_enable; + int retval; + + /* copy MAC RARs to PHY RARs */ + e1000_copy_rx_addrs_to_phy_ich8lan(hw); + + retval = hw->phy.ops.acquire(hw); + if (retval) { + e_err("Could not acquire PHY\n"); + return retval; + } + + /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */ + retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable); + if (retval) + goto release; + + /* copy MAC MTA to PHY MTA - only needed for pchlan */ + for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { + mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); + hw->phy.ops.write_reg_page(hw, BM_MTA(i), + (u16)(mac_reg & 0xFFFF)); + hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1, + (u16)((mac_reg >> 16) & 0xFFFF)); + } + + /* configure PHY Rx Control register */ + hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg); + mac_reg = er32(RCTL); + if (mac_reg & E1000_RCTL_UPE) + phy_reg |= BM_RCTL_UPE; + if (mac_reg & E1000_RCTL_MPE) + phy_reg |= BM_RCTL_MPE; + phy_reg &= ~(BM_RCTL_MO_MASK); + if (mac_reg & E1000_RCTL_MO_3) + phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) + << BM_RCTL_MO_SHIFT); + if (mac_reg & E1000_RCTL_BAM) + phy_reg |= BM_RCTL_BAM; + if (mac_reg & E1000_RCTL_PMCF) + phy_reg |= BM_RCTL_PMCF; + mac_reg = er32(CTRL); + if (mac_reg & E1000_CTRL_RFCE) + phy_reg |= BM_RCTL_RFCE; + hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg); + + wuc = E1000_WUC_PME_EN; + if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC)) + wuc |= E1000_WUC_APME; + + /* enable PHY wakeup in MAC register */ + ew32(WUFC, wufc); + ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME | + E1000_WUC_PME_STATUS | wuc)); + + /* configure and enable PHY wakeup in PHY registers */ + hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc); + hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc); + + /* activate PHY wakeup */ + wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; + retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable); + if (retval) + e_err("Could not set PHY Host Wakeup bit\n"); +release: + hw->phy.ops.release(hw); + + return retval; +} + +static void e1000e_flush_lpic(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 ret_val; + + pm_runtime_get_sync(netdev->dev.parent); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto fl_out; + + pr_info("EEE TX LPI TIMER: %08X\n", + er32(LPIC) >> E1000_LPIC_LPIET_SHIFT); + + hw->phy.ops.release(hw); + +fl_out: + pm_runtime_put_sync(netdev->dev.parent); +} + +static int e1000e_pm_freeze(struct device *dev) +{ + struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); + struct e1000_adapter *adapter = netdev_priv(netdev); + + netif_device_detach(netdev); + + if (netif_running(netdev)) { + int count = E1000_CHECK_RESET_COUNT; + + while (test_bit(__E1000_RESETTING, &adapter->state) && count--) + usleep_range(10000, 20000); + + WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); + + /* Quiesce the device without resetting the hardware */ + e1000e_down(adapter, false); + e1000_free_irq(adapter); + } + e1000e_reset_interrupt_capability(adapter); + + /* Allow time for pending master requests to run */ + e1000e_disable_pcie_master(&adapter->hw); + + return 0; +} + +static int __e1000_shutdown(struct pci_dev *pdev, bool runtime) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u32 ctrl, ctrl_ext, rctl, status, wufc; + int retval = 0; + + /* Runtime suspend should only enable wakeup for link changes */ + if (runtime) + wufc = E1000_WUFC_LNKC; + else if (device_may_wakeup(&pdev->dev)) + wufc = adapter->wol; + else + wufc = 0; + + status = er32(STATUS); + if (status & E1000_STATUS_LU) + wufc &= ~E1000_WUFC_LNKC; + + if (wufc) { + e1000_setup_rctl(adapter); + e1000e_set_rx_mode(netdev); + + /* turn on all-multi mode if wake on multicast is enabled */ + if (wufc & E1000_WUFC_MC) { + rctl = er32(RCTL); + rctl |= E1000_RCTL_MPE; + ew32(RCTL, rctl); + } + + ctrl = er32(CTRL); + ctrl |= E1000_CTRL_ADVD3WUC; + if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) + ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; + ew32(CTRL, ctrl); + + if (adapter->hw.phy.media_type == e1000_media_type_fiber || + adapter->hw.phy.media_type == + e1000_media_type_internal_serdes) { + /* keep the laser running in D3 */ + ctrl_ext = er32(CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; + ew32(CTRL_EXT, ctrl_ext); + } + + if (!runtime) + e1000e_power_up_phy(adapter); + + if (adapter->flags & FLAG_IS_ICH) + e1000_suspend_workarounds_ich8lan(&adapter->hw); + + if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { + /* enable wakeup by the PHY */ + retval = e1000_init_phy_wakeup(adapter, wufc); + if (retval) + return retval; + } else { + /* enable wakeup by the MAC */ + ew32(WUFC, wufc); + ew32(WUC, E1000_WUC_PME_EN); + } + } else { + ew32(WUC, 0); + ew32(WUFC, 0); + + e1000_power_down_phy(adapter); + } + + if (adapter->hw.phy.type == e1000_phy_igp_3) { + e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); + } else if (hw->mac.type >= e1000_pch_lpt) { + if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) + /* ULP does not support wake from unicast, multicast + * or broadcast. + */ + retval = e1000_enable_ulp_lpt_lp(hw, !runtime); + + if (retval) + return retval; + } + + /* Ensure that the appropriate bits are set in LPI_CTRL + * for EEE in Sx + */ + if ((hw->phy.type >= e1000_phy_i217) && + adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) { + u16 lpi_ctrl = 0; + + retval = hw->phy.ops.acquire(hw); + if (!retval) { + retval = e1e_rphy_locked(hw, I82579_LPI_CTRL, + &lpi_ctrl); + if (!retval) { + if (adapter->eee_advert & + hw->dev_spec.ich8lan.eee_lp_ability & + I82579_EEE_100_SUPPORTED) + lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; + if (adapter->eee_advert & + hw->dev_spec.ich8lan.eee_lp_ability & + I82579_EEE_1000_SUPPORTED) + lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; + + retval = e1e_wphy_locked(hw, I82579_LPI_CTRL, + lpi_ctrl); + } + } + hw->phy.ops.release(hw); + } + + /* Release control of h/w to f/w. If f/w is AMT enabled, this + * would have already happened in close and is redundant. + */ + e1000e_release_hw_control(adapter); + + pci_clear_master(pdev); + + /* The pci-e switch on some quad port adapters will report a + * correctable error when the MAC transitions from D0 to D3. To + * prevent this we need to mask off the correctable errors on the + * downstream port of the pci-e switch. + * + * We don't have the associated upstream bridge while assigning + * the PCI device into guest. For example, the KVM on power is + * one of the cases. + */ + if (adapter->flags & FLAG_IS_QUAD_PORT) { + struct pci_dev *us_dev = pdev->bus->self; + u16 devctl; + + if (!us_dev) + return 0; + + pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl); + pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, + (devctl & ~PCI_EXP_DEVCTL_CERE)); + + pci_save_state(pdev); + pci_prepare_to_sleep(pdev); + + pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl); + } + + return 0; +} + +/** + * __e1000e_disable_aspm - Disable ASPM states + * @pdev: pointer to PCI device struct + * @state: bit-mask of ASPM states to disable + * @locked: indication if this context holds pci_bus_sem locked. + * + * Some devices *must* have certain ASPM states disabled per hardware errata. + **/ +static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked) +{ + struct pci_dev *parent = pdev->bus->self; + u16 aspm_dis_mask = 0; + u16 pdev_aspmc, parent_aspmc; + + switch (state) { + case PCIE_LINK_STATE_L0S: + case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1: + aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S; + /* fall-through - can't have L1 without L0s */ + case PCIE_LINK_STATE_L1: + aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1; + break; + default: + return; + } + + pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); + pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; + + if (parent) { + pcie_capability_read_word(parent, PCI_EXP_LNKCTL, + &parent_aspmc); + parent_aspmc &= PCI_EXP_LNKCTL_ASPMC; + } + + /* Nothing to do if the ASPM states to be disabled already are */ + if (!(pdev_aspmc & aspm_dis_mask) && + (!parent || !(parent_aspmc & aspm_dis_mask))) + return; + + dev_info(&pdev->dev, "Disabling ASPM %s %s\n", + (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ? + "L0s" : "", + (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ? + "L1" : ""); + +#ifdef CONFIG_PCIEASPM + if (locked) + pci_disable_link_state_locked(pdev, state); + else + pci_disable_link_state(pdev, state); + + /* Double-check ASPM control. If not disabled by the above, the + * BIOS is preventing that from happening (or CONFIG_PCIEASPM is + * not enabled); override by writing PCI config space directly. + */ + pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); + pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; + + if (!(aspm_dis_mask & pdev_aspmc)) + return; +#endif + + /* Both device and parent should have the same ASPM setting. + * Disable ASPM in downstream component first and then upstream. + */ + pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask); + + if (parent) + pcie_capability_clear_word(parent, PCI_EXP_LNKCTL, + aspm_dis_mask); +} + +/** + * e1000e_disable_aspm - Disable ASPM states. + * @pdev: pointer to PCI device struct + * @state: bit-mask of ASPM states to disable + * + * This function acquires the pci_bus_sem! + * Some devices *must* have certain ASPM states disabled per hardware errata. + **/ +static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) +{ + __e1000e_disable_aspm(pdev, state, 0); +} + +/** + * e1000e_disable_aspm_locked Disable ASPM states. + * @pdev: pointer to PCI device struct + * @state: bit-mask of ASPM states to disable + * + * This function must be called with pci_bus_sem acquired! + * Some devices *must* have certain ASPM states disabled per hardware errata. + **/ +static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state) +{ + __e1000e_disable_aspm(pdev, state, 1); +} + +#ifdef CONFIG_PM +static int __e1000_resume(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u16 aspm_disable_flag = 0; + + if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) + aspm_disable_flag = PCIE_LINK_STATE_L0S; + if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) + aspm_disable_flag |= PCIE_LINK_STATE_L1; + if (aspm_disable_flag) + e1000e_disable_aspm(pdev, aspm_disable_flag); + + pci_set_master(pdev); + + if (hw->mac.type >= e1000_pch2lan) + e1000_resume_workarounds_pchlan(&adapter->hw); + + e1000e_power_up_phy(adapter); + + /* report the system wakeup cause from S3/S4 */ + if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { + u16 phy_data; + + e1e_rphy(&adapter->hw, BM_WUS, &phy_data); + if (phy_data) { + e_info("PHY Wakeup cause - %s\n", + phy_data & E1000_WUS_EX ? "Unicast Packet" : + phy_data & E1000_WUS_MC ? "Multicast Packet" : + phy_data & E1000_WUS_BC ? "Broadcast Packet" : + phy_data & E1000_WUS_MAG ? "Magic Packet" : + phy_data & E1000_WUS_LNKC ? + "Link Status Change" : "other"); + } + e1e_wphy(&adapter->hw, BM_WUS, ~0); + } else { + u32 wus = er32(WUS); + + if (wus) { + e_info("MAC Wakeup cause - %s\n", + wus & E1000_WUS_EX ? "Unicast Packet" : + wus & E1000_WUS_MC ? "Multicast Packet" : + wus & E1000_WUS_BC ? "Broadcast Packet" : + wus & E1000_WUS_MAG ? "Magic Packet" : + wus & E1000_WUS_LNKC ? "Link Status Change" : + "other"); + } + ew32(WUS, ~0); + } + + e1000e_reset(adapter); + + e1000_init_manageability_pt(adapter); + + /* If the controller has AMT, do not set DRV_LOAD until the interface + * is up. For all other cases, let the f/w know that the h/w is now + * under the control of the driver. + */ + if (!(adapter->flags & FLAG_HAS_AMT)) + e1000e_get_hw_control(adapter); + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int e1000e_pm_thaw(struct device *dev) +{ + struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); + struct e1000_adapter *adapter = netdev_priv(netdev); + + e1000e_set_interrupt_capability(adapter); + if (netif_running(netdev)) { + u32 err = e1000_request_irq(adapter); + + if (err) + return err; + + e1000e_up(adapter); + } + + netif_device_attach(netdev); + + return 0; +} + +static int e1000e_pm_suspend(struct device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev); + int rc; + + e1000e_flush_lpic(pdev); + + e1000e_pm_freeze(dev); + + rc = __e1000_shutdown(pdev, false); + if (rc) + e1000e_pm_thaw(dev); + + return rc; +} + +static int e1000e_pm_resume(struct device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev); + int rc; + + rc = __e1000_resume(pdev); + if (rc) + return rc; + + return e1000e_pm_thaw(dev); +} +#endif /* CONFIG_PM_SLEEP */ + +static int e1000e_pm_runtime_idle(struct device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev); + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + u16 eee_lp; + + eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability; + + if (!e1000e_has_link(adapter)) { + adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp; + pm_schedule_suspend(dev, 5 * MSEC_PER_SEC); + } + + return -EBUSY; +} + +static int e1000e_pm_runtime_resume(struct device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev); + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + int rc; + + rc = __e1000_resume(pdev); + if (rc) + return rc; + + if (netdev->flags & IFF_UP) + e1000e_up(adapter); + + return rc; +} + +static int e1000e_pm_runtime_suspend(struct device *dev) +{ + struct pci_dev *pdev = to_pci_dev(dev); + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + + if (netdev->flags & IFF_UP) { + int count = E1000_CHECK_RESET_COUNT; + + while (test_bit(__E1000_RESETTING, &adapter->state) && count--) + usleep_range(10000, 20000); + + WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); + + /* Down the device without resetting the hardware */ + e1000e_down(adapter, false); + } + + if (__e1000_shutdown(pdev, true)) { + e1000e_pm_runtime_resume(dev); + return -EBUSY; + } + + return 0; +} +#endif /* CONFIG_PM */ + +static void e1000_shutdown(struct pci_dev *pdev) +{ + e1000e_flush_lpic(pdev); + + e1000e_pm_freeze(&pdev->dev); + + __e1000_shutdown(pdev, false); +} + +#ifdef CONFIG_NET_POLL_CONTROLLER + +static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data) +{ + struct net_device *netdev = data; + struct e1000_adapter *adapter = netdev_priv(netdev); + + if (adapter->msix_entries) { + int vector, msix_irq; + + vector = 0; + msix_irq = adapter->msix_entries[vector].vector; + if (disable_hardirq(msix_irq)) + e1000_intr_msix_rx(msix_irq, netdev); + enable_irq(msix_irq); + + vector++; + msix_irq = adapter->msix_entries[vector].vector; + if (disable_hardirq(msix_irq)) + e1000_intr_msix_tx(msix_irq, netdev); + enable_irq(msix_irq); + + vector++; + msix_irq = adapter->msix_entries[vector].vector; + if (disable_hardirq(msix_irq)) + e1000_msix_other(msix_irq, netdev); + enable_irq(msix_irq); + } + + return IRQ_HANDLED; +} + +/** + * e1000_netpoll + * @netdev: network interface device structure + * + * Polling 'interrupt' - used by things like netconsole to send skbs + * without having to re-enable interrupts. It's not called while + * the interrupt routine is executing. + */ +static void e1000_netpoll(struct net_device *netdev) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + + switch (adapter->int_mode) { + case E1000E_INT_MODE_MSIX: + e1000_intr_msix(adapter->pdev->irq, netdev); + break; + case E1000E_INT_MODE_MSI: + if (disable_hardirq(adapter->pdev->irq)) + e1000_intr_msi(adapter->pdev->irq, netdev); + enable_irq(adapter->pdev->irq); + break; + default: /* E1000E_INT_MODE_LEGACY */ + if (disable_hardirq(adapter->pdev->irq)) + e1000_intr(adapter->pdev->irq, netdev); + enable_irq(adapter->pdev->irq); + break; + } +} +#endif + +/** + * e1000_io_error_detected - called when PCI error is detected + * @pdev: Pointer to PCI device + * @state: The current pci connection state + * + * This function is called after a PCI bus error affecting + * this device has been detected. + */ +static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, + pci_channel_state_t state) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + + netif_device_detach(netdev); + + if (state == pci_channel_io_perm_failure) + return PCI_ERS_RESULT_DISCONNECT; + + if (netif_running(netdev)) + e1000e_down(adapter, true); + pci_disable_device(pdev); + + /* Request a slot slot reset. */ + return PCI_ERS_RESULT_NEED_RESET; +} + +/** + * e1000_io_slot_reset - called after the pci bus has been reset. + * @pdev: Pointer to PCI device + * + * Restart the card from scratch, as if from a cold-boot. Implementation + * resembles the first-half of the e1000e_pm_resume routine. + */ +static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + u16 aspm_disable_flag = 0; + int err; + pci_ers_result_t result; + + if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) + aspm_disable_flag = PCIE_LINK_STATE_L0S; + if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) + aspm_disable_flag |= PCIE_LINK_STATE_L1; + if (aspm_disable_flag) + e1000e_disable_aspm_locked(pdev, aspm_disable_flag); + + err = pci_enable_device_mem(pdev); + if (err) { + dev_err(&pdev->dev, + "Cannot re-enable PCI device after reset.\n"); + result = PCI_ERS_RESULT_DISCONNECT; + } else { + pdev->state_saved = true; + pci_restore_state(pdev); + pci_set_master(pdev); + + pci_enable_wake(pdev, PCI_D3hot, 0); + pci_enable_wake(pdev, PCI_D3cold, 0); + + e1000e_reset(adapter); + ew32(WUS, ~0); + result = PCI_ERS_RESULT_RECOVERED; + } + + pci_cleanup_aer_uncorrect_error_status(pdev); + + return result; +} + +/** + * e1000_io_resume - called when traffic can start flowing again. + * @pdev: Pointer to PCI device + * + * This callback is called when the error recovery driver tells us that + * its OK to resume normal operation. Implementation resembles the + * second-half of the e1000e_pm_resume routine. + */ +static void e1000_io_resume(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + + e1000_init_manageability_pt(adapter); + + if (netif_running(netdev)) + e1000e_up(adapter); + + netif_device_attach(netdev); + + /* If the controller has AMT, do not set DRV_LOAD until the interface + * is up. For all other cases, let the f/w know that the h/w is now + * under the control of the driver. + */ + if (!(adapter->flags & FLAG_HAS_AMT)) + e1000e_get_hw_control(adapter); +} + +static void e1000_print_device_info(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + struct net_device *netdev = adapter->netdev; + u32 ret_val; + u8 pba_str[E1000_PBANUM_LENGTH]; + + /* print bus type/speed/width info */ + e_info("(PCI Express:2.5GT/s:%s) %pM\n", + /* bus width */ + ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : + "Width x1"), + /* MAC address */ + netdev->dev_addr); + e_info("Intel(R) PRO/%s Network Connection\n", + (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); + ret_val = e1000_read_pba_string_generic(hw, pba_str, + E1000_PBANUM_LENGTH); + if (ret_val) + strlcpy((char *)pba_str, "Unknown", sizeof(pba_str)); + e_info("MAC: %d, PHY: %d, PBA No: %s\n", + hw->mac.type, hw->phy.type, pba_str); +} + +static void e1000_eeprom_checks(struct e1000_adapter *adapter) +{ + struct e1000_hw *hw = &adapter->hw; + int ret_val; + u16 buf = 0; + + if (hw->mac.type != e1000_82573) + return; + + ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); + le16_to_cpus(&buf); + if (!ret_val && (!(buf & BIT(0)))) { + /* Deep Smart Power Down (DSPD) */ + dev_warn(&adapter->pdev->dev, + "Warning: detected DSPD enabled in EEPROM\n"); + } +} + +static netdev_features_t e1000_fix_features(struct net_device *netdev, + netdev_features_t features) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + struct e1000_hw *hw = &adapter->hw; + + /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ + if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN)) + features &= ~NETIF_F_RXFCS; + + /* Since there is no support for separate Rx/Tx vlan accel + * enable/disable make sure Tx flag is always in same state as Rx. + */ + if (features & NETIF_F_HW_VLAN_CTAG_RX) + features |= NETIF_F_HW_VLAN_CTAG_TX; + else + features &= ~NETIF_F_HW_VLAN_CTAG_TX; + + return features; +} + +static int e1000_set_features(struct net_device *netdev, + netdev_features_t features) +{ + struct e1000_adapter *adapter = netdev_priv(netdev); + netdev_features_t changed = features ^ netdev->features; + + if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) + adapter->flags |= FLAG_TSO_FORCE; + + if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | + NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS | + NETIF_F_RXALL))) + return 0; + + if (changed & NETIF_F_RXFCS) { + if (features & NETIF_F_RXFCS) { + adapter->flags2 &= ~FLAG2_CRC_STRIPPING; + } else { + /* We need to take it back to defaults, which might mean + * stripping is still disabled at the adapter level. + */ + if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING) + adapter->flags2 |= FLAG2_CRC_STRIPPING; + else + adapter->flags2 &= ~FLAG2_CRC_STRIPPING; + } + } + + netdev->features = features; + + if (netif_running(netdev)) + e1000e_reinit_locked(adapter); + else + e1000e_reset(adapter); + + return 0; +} + +static const struct net_device_ops e1000e_netdev_ops = { + .ndo_open = e1000e_open, + .ndo_stop = e1000e_close, + .ndo_start_xmit = e1000_xmit_frame, + .ndo_get_stats64 = e1000e_get_stats64, + .ndo_set_rx_mode = e1000e_set_rx_mode, + .ndo_set_mac_address = e1000_set_mac, + .ndo_change_mtu = e1000_change_mtu, + .ndo_do_ioctl = e1000_ioctl, + .ndo_tx_timeout = e1000_tx_timeout, + .ndo_validate_addr = eth_validate_addr, + + .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, + .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, +#ifdef CONFIG_NET_POLL_CONTROLLER + .ndo_poll_controller = e1000_netpoll, +#endif + .ndo_set_features = e1000_set_features, + .ndo_fix_features = e1000_fix_features, + .ndo_features_check = passthru_features_check, +}; + +/** + * e1000_probe - Device Initialization Routine + * @pdev: PCI device information struct + * @ent: entry in e1000_pci_tbl + * + * Returns 0 on success, negative on failure + * + * e1000_probe initializes an adapter identified by a pci_dev structure. + * The OS initialization, configuring of the adapter private structure, + * and a hardware reset occur. + **/ +static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) +{ + struct net_device *netdev; + struct e1000_adapter *adapter; + struct e1000_hw *hw; + const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; + resource_size_t mmio_start, mmio_len; + resource_size_t flash_start, flash_len; + static int cards_found; + u16 aspm_disable_flag = 0; + int bars, i, err, pci_using_dac; + u16 eeprom_data = 0; + u16 eeprom_apme_mask = E1000_EEPROM_APME; + s32 ret_val = 0; + + if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S) + aspm_disable_flag = PCIE_LINK_STATE_L0S; + if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) + aspm_disable_flag |= PCIE_LINK_STATE_L1; + if (aspm_disable_flag) + e1000e_disable_aspm(pdev, aspm_disable_flag); + + err = pci_enable_device_mem(pdev); + if (err) + return err; + + pci_using_dac = 0; + err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); + if (!err) { + pci_using_dac = 1; + } else { + err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); + if (err) { + dev_err(&pdev->dev, + "No usable DMA configuration, aborting\n"); + goto err_dma; + } + } + + bars = pci_select_bars(pdev, IORESOURCE_MEM); + err = pci_request_selected_regions_exclusive(pdev, bars, + e1000e_driver_name); + if (err) + goto err_pci_reg; + + /* AER (Advanced Error Reporting) hooks */ + pci_enable_pcie_error_reporting(pdev); + + pci_set_master(pdev); + /* PCI config space info */ + err = pci_save_state(pdev); + if (err) + goto err_alloc_etherdev; + + err = -ENOMEM; + netdev = alloc_etherdev(sizeof(struct e1000_adapter)); + if (!netdev) + goto err_alloc_etherdev; + + SET_NETDEV_DEV(netdev, &pdev->dev); + + netdev->irq = pdev->irq; + + pci_set_drvdata(pdev, netdev); + adapter = netdev_priv(netdev); + hw = &adapter->hw; + adapter->netdev = netdev; + adapter->pdev = pdev; + adapter->ei = ei; + adapter->pba = ei->pba; + adapter->flags = ei->flags; + adapter->flags2 = ei->flags2; + adapter->hw.adapter = adapter; + adapter->hw.mac.type = ei->mac; + adapter->max_hw_frame_size = ei->max_hw_frame_size; + adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); + + mmio_start = pci_resource_start(pdev, 0); + mmio_len = pci_resource_len(pdev, 0); + + err = -EIO; + adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); + if (!adapter->hw.hw_addr) + goto err_ioremap; + + if ((adapter->flags & FLAG_HAS_FLASH) && + (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) && + (hw->mac.type < e1000_pch_spt)) { + flash_start = pci_resource_start(pdev, 1); + flash_len = pci_resource_len(pdev, 1); + adapter->hw.flash_address = ioremap(flash_start, flash_len); + if (!adapter->hw.flash_address) + goto err_flashmap; + } + + /* Set default EEE advertisement */ + if (adapter->flags2 & FLAG2_HAS_EEE) + adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; + + /* construct the net_device struct */ + netdev->netdev_ops = &e1000e_netdev_ops; + e1000e_set_ethtool_ops(netdev); + netdev->watchdog_timeo = 5 * HZ; + netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64); + strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name)); + + netdev->mem_start = mmio_start; + netdev->mem_end = mmio_start + mmio_len; + + adapter->bd_number = cards_found++; + + e1000e_check_options(adapter); + + /* setup adapter struct */ + err = e1000_sw_init(adapter); + if (err) + goto err_sw_init; + + memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); + memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); + memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); + + err = ei->get_variants(adapter); + if (err) + goto err_hw_init; + + if ((adapter->flags & FLAG_IS_ICH) && + (adapter->flags & FLAG_READ_ONLY_NVM) && + (hw->mac.type < e1000_pch_spt)) + e1000e_write_protect_nvm_ich8lan(&adapter->hw); + + hw->mac.ops.get_bus_info(&adapter->hw); + + adapter->hw.phy.autoneg_wait_to_complete = 0; + + /* Copper options */ + if (adapter->hw.phy.media_type == e1000_media_type_copper) { + adapter->hw.phy.mdix = AUTO_ALL_MODES; + adapter->hw.phy.disable_polarity_correction = 0; + adapter->hw.phy.ms_type = e1000_ms_hw_default; + } + + if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) + dev_info(&pdev->dev, + "PHY reset is blocked due to SOL/IDER session.\n"); + + /* Set initial default active device features */ + netdev->features = (NETIF_F_SG | + NETIF_F_HW_VLAN_CTAG_RX | + NETIF_F_HW_VLAN_CTAG_TX | + NETIF_F_TSO | + NETIF_F_TSO6 | + NETIF_F_RXHASH | + NETIF_F_RXCSUM | + NETIF_F_HW_CSUM); + + /* Set user-changeable features (subset of all device features) */ + netdev->hw_features = netdev->features; + netdev->hw_features |= NETIF_F_RXFCS; + netdev->priv_flags |= IFF_SUPP_NOFCS; + netdev->hw_features |= NETIF_F_RXALL; + + if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) + netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; + + netdev->vlan_features |= (NETIF_F_SG | + NETIF_F_TSO | + NETIF_F_TSO6 | + NETIF_F_HW_CSUM); + + netdev->priv_flags |= IFF_UNICAST_FLT; + + if (pci_using_dac) { + netdev->features |= NETIF_F_HIGHDMA; + netdev->vlan_features |= NETIF_F_HIGHDMA; + } + + /* MTU range: 68 - max_hw_frame_size */ + netdev->min_mtu = ETH_MIN_MTU; + netdev->max_mtu = adapter->max_hw_frame_size - + (VLAN_ETH_HLEN + ETH_FCS_LEN); + + if (e1000e_enable_mng_pass_thru(&adapter->hw)) + adapter->flags |= FLAG_MNG_PT_ENABLED; + + /* before reading the NVM, reset the controller to + * put the device in a known good starting state + */ + adapter->hw.mac.ops.reset_hw(&adapter->hw); + + /* systems with ASPM and others may see the checksum fail on the first + * attempt. Let's give it a few tries + */ + for (i = 0;; i++) { + if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) + break; + if (i == 2) { + dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); + err = -EIO; + goto err_eeprom; + } + } + + e1000_eeprom_checks(adapter); + + /* copy the MAC address */ + if (e1000e_read_mac_addr(&adapter->hw)) + dev_err(&pdev->dev, + "NVM Read Error while reading MAC address\n"); + + memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); + + if (!is_valid_ether_addr(netdev->dev_addr)) { + dev_err(&pdev->dev, "Invalid MAC Address: %pM\n", + netdev->dev_addr); + err = -EIO; + goto err_eeprom; + } + + timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0); + timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0); + + INIT_WORK(&adapter->reset_task, e1000_reset_task); + INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); + INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); + INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); + INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); + + /* Initialize link parameters. User can change them with ethtool */ + adapter->hw.mac.autoneg = 1; + adapter->fc_autoneg = true; + adapter->hw.fc.requested_mode = e1000_fc_default; + adapter->hw.fc.current_mode = e1000_fc_default; + adapter->hw.phy.autoneg_advertised = 0x2f; + + /* Initial Wake on LAN setting - If APM wake is enabled in + * the EEPROM, enable the ACPI Magic Packet filter + */ + if (adapter->flags & FLAG_APME_IN_WUC) { + /* APME bit in EEPROM is mapped to WUC.APME */ + eeprom_data = er32(WUC); + eeprom_apme_mask = E1000_WUC_APME; + if ((hw->mac.type > e1000_ich10lan) && + (eeprom_data & E1000_WUC_PHY_WAKE)) + adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; + } else if (adapter->flags & FLAG_APME_IN_CTRL3) { + if (adapter->flags & FLAG_APME_CHECK_PORT_B && + (adapter->hw.bus.func == 1)) + ret_val = e1000_read_nvm(&adapter->hw, + NVM_INIT_CONTROL3_PORT_B, + 1, &eeprom_data); + else + ret_val = e1000_read_nvm(&adapter->hw, + NVM_INIT_CONTROL3_PORT_A, + 1, &eeprom_data); + } + + /* fetch WoL from EEPROM */ + if (ret_val) + e_dbg("NVM read error getting WoL initial values: %d\n", ret_val); + else if (eeprom_data & eeprom_apme_mask) + adapter->eeprom_wol |= E1000_WUFC_MAG; + + /* now that we have the eeprom settings, apply the special cases + * where the eeprom may be wrong or the board simply won't support + * wake on lan on a particular port + */ + if (!(adapter->flags & FLAG_HAS_WOL)) + adapter->eeprom_wol = 0; + + /* initialize the wol settings based on the eeprom settings */ + adapter->wol = adapter->eeprom_wol; + + /* make sure adapter isn't asleep if manageability is enabled */ + if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) || + (hw->mac.ops.check_mng_mode(hw))) + device_wakeup_enable(&pdev->dev); + + /* save off EEPROM version number */ + ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); + + if (ret_val) { + e_dbg("NVM read error getting EEPROM version: %d\n", ret_val); + adapter->eeprom_vers = 0; + } + + /* init PTP hardware clock */ + e1000e_ptp_init(adapter); + + /* reset the hardware with the new settings */ + e1000e_reset(adapter); + + /* If the controller has AMT, do not set DRV_LOAD until the interface + * is up. For all other cases, let the f/w know that the h/w is now + * under the control of the driver. + */ + if (!(adapter->flags & FLAG_HAS_AMT)) + e1000e_get_hw_control(adapter); + + strlcpy(netdev->name, "eth%d", sizeof(netdev->name)); + err = register_netdev(netdev); + if (err) + goto err_register; + + /* carrier off reporting is important to ethtool even BEFORE open */ + netif_carrier_off(netdev); + + e1000_print_device_info(adapter); + + dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP); + + if (pci_dev_run_wake(pdev) && hw->mac.type < e1000_pch_cnp) + pm_runtime_put_noidle(&pdev->dev); + + return 0; + +err_register: + if (!(adapter->flags & FLAG_HAS_AMT)) + e1000e_release_hw_control(adapter); +err_eeprom: + if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw)) + e1000_phy_hw_reset(&adapter->hw); +err_hw_init: + kfree(adapter->tx_ring); + kfree(adapter->rx_ring); +err_sw_init: + if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt)) + iounmap(adapter->hw.flash_address); + e1000e_reset_interrupt_capability(adapter); +err_flashmap: + iounmap(adapter->hw.hw_addr); +err_ioremap: + free_netdev(netdev); +err_alloc_etherdev: + pci_disable_pcie_error_reporting(pdev); + pci_release_mem_regions(pdev); +err_pci_reg: +err_dma: + pci_disable_device(pdev); + return err; +} + +/** + * e1000_remove - Device Removal Routine + * @pdev: PCI device information struct + * + * e1000_remove is called by the PCI subsystem to alert the driver + * that it should release a PCI device. The could be caused by a + * Hot-Plug event, or because the driver is going to be removed from + * memory. + **/ +static void e1000_remove(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct e1000_adapter *adapter = netdev_priv(netdev); + bool down = test_bit(__E1000_DOWN, &adapter->state); + + e1000e_ptp_remove(adapter); + + /* The timers may be rescheduled, so explicitly disable them + * from being rescheduled. + */ + if (!down) + set_bit(__E1000_DOWN, &adapter->state); + del_timer_sync(&adapter->watchdog_timer); + del_timer_sync(&adapter->phy_info_timer); + + cancel_work_sync(&adapter->reset_task); + cancel_work_sync(&adapter->watchdog_task); + cancel_work_sync(&adapter->downshift_task); + cancel_work_sync(&adapter->update_phy_task); + cancel_work_sync(&adapter->print_hang_task); + + if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { + cancel_work_sync(&adapter->tx_hwtstamp_work); + if (adapter->tx_hwtstamp_skb) { + dev_consume_skb_any(adapter->tx_hwtstamp_skb); + adapter->tx_hwtstamp_skb = NULL; + } + } + + /* Don't lie to e1000_close() down the road. */ + if (!down) + clear_bit(__E1000_DOWN, &adapter->state); + unregister_netdev(netdev); + + if (pci_dev_run_wake(pdev)) + pm_runtime_get_noresume(&pdev->dev); + + /* Release control of h/w to f/w. If f/w is AMT enabled, this + * would have already happened in close and is redundant. + */ + e1000e_release_hw_control(adapter); + + e1000e_reset_interrupt_capability(adapter); + kfree(adapter->tx_ring); + kfree(adapter->rx_ring); + + iounmap(adapter->hw.hw_addr); + if ((adapter->hw.flash_address) && + (adapter->hw.mac.type < e1000_pch_spt)) + iounmap(adapter->hw.flash_address); + pci_release_mem_regions(pdev); + + free_netdev(netdev); + + /* AER disable */ + pci_disable_pcie_error_reporting(pdev); + + pci_disable_device(pdev); +} + +/* PCI Error Recovery (ERS) */ +static const struct pci_error_handlers e1000_err_handler = { + .error_detected = e1000_io_error_detected, + .slot_reset = e1000_io_slot_reset, + .resume = e1000_io_resume, +}; + +static const struct pci_device_id e1000_pci_tbl[] = { + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), + board_82571 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), + board_80003es2lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), + board_80003es2lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), + board_80003es2lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), + board_80003es2lan }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan }, + + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp }, + { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp }, + + { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */ +}; +MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); + +static const struct dev_pm_ops e1000_pm_ops = { +#ifdef CONFIG_PM_SLEEP + .suspend = e1000e_pm_suspend, + .resume = e1000e_pm_resume, + .freeze = e1000e_pm_freeze, + .thaw = e1000e_pm_thaw, + .poweroff = e1000e_pm_suspend, + .restore = e1000e_pm_resume, +#endif + SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume, + e1000e_pm_runtime_idle) +}; + +/* PCI Device API Driver */ +static struct pci_driver e1000_driver = { + .name = e1000e_driver_name, + .id_table = e1000_pci_tbl, + .probe = e1000_probe, + .remove = e1000_remove, + .driver = { + .pm = &e1000_pm_ops, + }, + .shutdown = e1000_shutdown, + .err_handler = &e1000_err_handler +}; + +/** + * e1000_init_module - Driver Registration Routine + * + * e1000_init_module is the first routine called when the driver is + * loaded. All it does is register with the PCI subsystem. + **/ +static int __init e1000_init_module(void) +{ + pr_info("Intel(R) PRO/1000 Network Driver - %s\n", + e1000e_driver_version); + pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n"); + + return pci_register_driver(&e1000_driver); +} +module_init(e1000_init_module); + +/** + * e1000_exit_module - Driver Exit Cleanup Routine + * + * e1000_exit_module is called just before the driver is removed + * from memory. + **/ +static void __exit e1000_exit_module(void) +{ + pci_unregister_driver(&e1000_driver); +} +module_exit(e1000_exit_module); + +MODULE_AUTHOR("Intel Corporation, "); +MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); +MODULE_LICENSE("GPL"); +MODULE_VERSION(DRV_VERSION); + +/* netdev.c */ -- cgit v1.2.3