From 76cb841cb886eef6b3bee341a2266c76578724ad Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Mon, 6 May 2024 03:02:30 +0200 Subject: Adding upstream version 4.19.249. Signed-off-by: Daniel Baumann --- kernel/cgroup/cgroup.c | 6136 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 6136 insertions(+) create mode 100644 kernel/cgroup/cgroup.c (limited to 'kernel/cgroup/cgroup.c') diff --git a/kernel/cgroup/cgroup.c b/kernel/cgroup/cgroup.c new file mode 100644 index 000000000..4e8284d8c --- /dev/null +++ b/kernel/cgroup/cgroup.c @@ -0,0 +1,6136 @@ +/* + * Generic process-grouping system. + * + * Based originally on the cpuset system, extracted by Paul Menage + * Copyright (C) 2006 Google, Inc + * + * Notifications support + * Copyright (C) 2009 Nokia Corporation + * Author: Kirill A. Shutemov + * + * Copyright notices from the original cpuset code: + * -------------------------------------------------- + * Copyright (C) 2003 BULL SA. + * Copyright (C) 2004-2006 Silicon Graphics, Inc. + * + * Portions derived from Patrick Mochel's sysfs code. + * sysfs is Copyright (c) 2001-3 Patrick Mochel + * + * 2003-10-10 Written by Simon Derr. + * 2003-10-22 Updates by Stephen Hemminger. + * 2004 May-July Rework by Paul Jackson. + * --------------------------------------------------- + * + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file COPYING in the main directory of the Linux + * distribution for more details. + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include "cgroup-internal.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define CREATE_TRACE_POINTS +#include + +#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ + MAX_CFTYPE_NAME + 2) +/* let's not notify more than 100 times per second */ +#define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) + +/* + * cgroup_mutex is the master lock. Any modification to cgroup or its + * hierarchy must be performed while holding it. + * + * css_set_lock protects task->cgroups pointer, the list of css_set + * objects, and the chain of tasks off each css_set. + * + * These locks are exported if CONFIG_PROVE_RCU so that accessors in + * cgroup.h can use them for lockdep annotations. + */ +DEFINE_MUTEX(cgroup_mutex); +DEFINE_SPINLOCK(css_set_lock); + +#ifdef CONFIG_PROVE_RCU +EXPORT_SYMBOL_GPL(cgroup_mutex); +EXPORT_SYMBOL_GPL(css_set_lock); +#endif + +DEFINE_SPINLOCK(trace_cgroup_path_lock); +char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; + +/* + * Protects cgroup_idr and css_idr so that IDs can be released without + * grabbing cgroup_mutex. + */ +static DEFINE_SPINLOCK(cgroup_idr_lock); + +/* + * Protects cgroup_file->kn for !self csses. It synchronizes notifications + * against file removal/re-creation across css hiding. + */ +static DEFINE_SPINLOCK(cgroup_file_kn_lock); + +struct percpu_rw_semaphore cgroup_threadgroup_rwsem; + +#define cgroup_assert_mutex_or_rcu_locked() \ + RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ + !lockdep_is_held(&cgroup_mutex), \ + "cgroup_mutex or RCU read lock required"); + +/* + * cgroup destruction makes heavy use of work items and there can be a lot + * of concurrent destructions. Use a separate workqueue so that cgroup + * destruction work items don't end up filling up max_active of system_wq + * which may lead to deadlock. + */ +static struct workqueue_struct *cgroup_destroy_wq; + +/* generate an array of cgroup subsystem pointers */ +#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, +struct cgroup_subsys *cgroup_subsys[] = { +#include +}; +#undef SUBSYS + +/* array of cgroup subsystem names */ +#define SUBSYS(_x) [_x ## _cgrp_id] = #_x, +static const char *cgroup_subsys_name[] = { +#include +}; +#undef SUBSYS + +/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ +#define SUBSYS(_x) \ + DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ + DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ + EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ + EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); +#include +#undef SUBSYS + +#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, +static struct static_key_true *cgroup_subsys_enabled_key[] = { +#include +}; +#undef SUBSYS + +#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, +static struct static_key_true *cgroup_subsys_on_dfl_key[] = { +#include +}; +#undef SUBSYS + +static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); + +/* + * The default hierarchy, reserved for the subsystems that are otherwise + * unattached - it never has more than a single cgroup, and all tasks are + * part of that cgroup. + */ +struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; +EXPORT_SYMBOL_GPL(cgrp_dfl_root); + +/* + * The default hierarchy always exists but is hidden until mounted for the + * first time. This is for backward compatibility. + */ +static bool cgrp_dfl_visible; + +/* some controllers are not supported in the default hierarchy */ +static u16 cgrp_dfl_inhibit_ss_mask; + +/* some controllers are implicitly enabled on the default hierarchy */ +static u16 cgrp_dfl_implicit_ss_mask; + +/* some controllers can be threaded on the default hierarchy */ +static u16 cgrp_dfl_threaded_ss_mask; + +/* The list of hierarchy roots */ +LIST_HEAD(cgroup_roots); +static int cgroup_root_count; + +/* hierarchy ID allocation and mapping, protected by cgroup_mutex */ +static DEFINE_IDR(cgroup_hierarchy_idr); + +/* + * Assign a monotonically increasing serial number to csses. It guarantees + * cgroups with bigger numbers are newer than those with smaller numbers. + * Also, as csses are always appended to the parent's ->children list, it + * guarantees that sibling csses are always sorted in the ascending serial + * number order on the list. Protected by cgroup_mutex. + */ +static u64 css_serial_nr_next = 1; + +/* + * These bitmasks identify subsystems with specific features to avoid + * having to do iterative checks repeatedly. + */ +static u16 have_fork_callback __read_mostly; +static u16 have_exit_callback __read_mostly; +static u16 have_release_callback __read_mostly; +static u16 have_canfork_callback __read_mostly; + +/* cgroup namespace for init task */ +struct cgroup_namespace init_cgroup_ns = { + .count = REFCOUNT_INIT(2), + .user_ns = &init_user_ns, + .ns.ops = &cgroupns_operations, + .ns.inum = PROC_CGROUP_INIT_INO, + .root_cset = &init_css_set, +}; + +static struct file_system_type cgroup2_fs_type; +static struct cftype cgroup_base_files[]; + +static int cgroup_apply_control(struct cgroup *cgrp); +static void cgroup_finalize_control(struct cgroup *cgrp, int ret); +static void css_task_iter_skip(struct css_task_iter *it, + struct task_struct *task); +static int cgroup_destroy_locked(struct cgroup *cgrp); +static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, + struct cgroup_subsys *ss); +static void css_release(struct percpu_ref *ref); +static void kill_css(struct cgroup_subsys_state *css); +static int cgroup_addrm_files(struct cgroup_subsys_state *css, + struct cgroup *cgrp, struct cftype cfts[], + bool is_add); + +/** + * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID + * @ssid: subsys ID of interest + * + * cgroup_subsys_enabled() can only be used with literal subsys names which + * is fine for individual subsystems but unsuitable for cgroup core. This + * is slower static_key_enabled() based test indexed by @ssid. + */ +bool cgroup_ssid_enabled(int ssid) +{ + if (CGROUP_SUBSYS_COUNT == 0) + return false; + + return static_key_enabled(cgroup_subsys_enabled_key[ssid]); +} + +/** + * cgroup_on_dfl - test whether a cgroup is on the default hierarchy + * @cgrp: the cgroup of interest + * + * The default hierarchy is the v2 interface of cgroup and this function + * can be used to test whether a cgroup is on the default hierarchy for + * cases where a subsystem should behave differnetly depending on the + * interface version. + * + * The set of behaviors which change on the default hierarchy are still + * being determined and the mount option is prefixed with __DEVEL__. + * + * List of changed behaviors: + * + * - Mount options "noprefix", "xattr", "clone_children", "release_agent" + * and "name" are disallowed. + * + * - When mounting an existing superblock, mount options should match. + * + * - Remount is disallowed. + * + * - rename(2) is disallowed. + * + * - "tasks" is removed. Everything should be at process granularity. Use + * "cgroup.procs" instead. + * + * - "cgroup.procs" is not sorted. pids will be unique unless they got + * recycled inbetween reads. + * + * - "release_agent" and "notify_on_release" are removed. Replacement + * notification mechanism will be implemented. + * + * - "cgroup.clone_children" is removed. + * + * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup + * and its descendants contain no task; otherwise, 1. The file also + * generates kernfs notification which can be monitored through poll and + * [di]notify when the value of the file changes. + * + * - cpuset: tasks will be kept in empty cpusets when hotplug happens and + * take masks of ancestors with non-empty cpus/mems, instead of being + * moved to an ancestor. + * + * - cpuset: a task can be moved into an empty cpuset, and again it takes + * masks of ancestors. + * + * - memcg: use_hierarchy is on by default and the cgroup file for the flag + * is not created. + * + * - blkcg: blk-throttle becomes properly hierarchical. + * + * - debug: disallowed on the default hierarchy. + */ +bool cgroup_on_dfl(const struct cgroup *cgrp) +{ + return cgrp->root == &cgrp_dfl_root; +} + +/* IDR wrappers which synchronize using cgroup_idr_lock */ +static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, + gfp_t gfp_mask) +{ + int ret; + + idr_preload(gfp_mask); + spin_lock_bh(&cgroup_idr_lock); + ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); + spin_unlock_bh(&cgroup_idr_lock); + idr_preload_end(); + return ret; +} + +static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) +{ + void *ret; + + spin_lock_bh(&cgroup_idr_lock); + ret = idr_replace(idr, ptr, id); + spin_unlock_bh(&cgroup_idr_lock); + return ret; +} + +static void cgroup_idr_remove(struct idr *idr, int id) +{ + spin_lock_bh(&cgroup_idr_lock); + idr_remove(idr, id); + spin_unlock_bh(&cgroup_idr_lock); +} + +static bool cgroup_has_tasks(struct cgroup *cgrp) +{ + return cgrp->nr_populated_csets; +} + +bool cgroup_is_threaded(struct cgroup *cgrp) +{ + return cgrp->dom_cgrp != cgrp; +} + +/* can @cgrp host both domain and threaded children? */ +static bool cgroup_is_mixable(struct cgroup *cgrp) +{ + /* + * Root isn't under domain level resource control exempting it from + * the no-internal-process constraint, so it can serve as a thread + * root and a parent of resource domains at the same time. + */ + return !cgroup_parent(cgrp); +} + +/* can @cgrp become a thread root? should always be true for a thread root */ +static bool cgroup_can_be_thread_root(struct cgroup *cgrp) +{ + /* mixables don't care */ + if (cgroup_is_mixable(cgrp)) + return true; + + /* domain roots can't be nested under threaded */ + if (cgroup_is_threaded(cgrp)) + return false; + + /* can only have either domain or threaded children */ + if (cgrp->nr_populated_domain_children) + return false; + + /* and no domain controllers can be enabled */ + if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) + return false; + + return true; +} + +/* is @cgrp root of a threaded subtree? */ +bool cgroup_is_thread_root(struct cgroup *cgrp) +{ + /* thread root should be a domain */ + if (cgroup_is_threaded(cgrp)) + return false; + + /* a domain w/ threaded children is a thread root */ + if (cgrp->nr_threaded_children) + return true; + + /* + * A domain which has tasks and explicit threaded controllers + * enabled is a thread root. + */ + if (cgroup_has_tasks(cgrp) && + (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) + return true; + + return false; +} + +/* a domain which isn't connected to the root w/o brekage can't be used */ +static bool cgroup_is_valid_domain(struct cgroup *cgrp) +{ + /* the cgroup itself can be a thread root */ + if (cgroup_is_threaded(cgrp)) + return false; + + /* but the ancestors can't be unless mixable */ + while ((cgrp = cgroup_parent(cgrp))) { + if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) + return false; + if (cgroup_is_threaded(cgrp)) + return false; + } + + return true; +} + +/* subsystems visibly enabled on a cgroup */ +static u16 cgroup_control(struct cgroup *cgrp) +{ + struct cgroup *parent = cgroup_parent(cgrp); + u16 root_ss_mask = cgrp->root->subsys_mask; + + if (parent) { + u16 ss_mask = parent->subtree_control; + + /* threaded cgroups can only have threaded controllers */ + if (cgroup_is_threaded(cgrp)) + ss_mask &= cgrp_dfl_threaded_ss_mask; + return ss_mask; + } + + if (cgroup_on_dfl(cgrp)) + root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | + cgrp_dfl_implicit_ss_mask); + return root_ss_mask; +} + +/* subsystems enabled on a cgroup */ +static u16 cgroup_ss_mask(struct cgroup *cgrp) +{ + struct cgroup *parent = cgroup_parent(cgrp); + + if (parent) { + u16 ss_mask = parent->subtree_ss_mask; + + /* threaded cgroups can only have threaded controllers */ + if (cgroup_is_threaded(cgrp)) + ss_mask &= cgrp_dfl_threaded_ss_mask; + return ss_mask; + } + + return cgrp->root->subsys_mask; +} + +/** + * cgroup_css - obtain a cgroup's css for the specified subsystem + * @cgrp: the cgroup of interest + * @ss: the subsystem of interest (%NULL returns @cgrp->self) + * + * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This + * function must be called either under cgroup_mutex or rcu_read_lock() and + * the caller is responsible for pinning the returned css if it wants to + * keep accessing it outside the said locks. This function may return + * %NULL if @cgrp doesn't have @subsys_id enabled. + */ +static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, + struct cgroup_subsys *ss) +{ + if (ss) + return rcu_dereference_check(cgrp->subsys[ss->id], + lockdep_is_held(&cgroup_mutex)); + else + return &cgrp->self; +} + +/** + * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem + * @cgrp: the cgroup of interest + * @ss: the subsystem of interest + * + * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist + * or is offline, %NULL is returned. + */ +static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, + struct cgroup_subsys *ss) +{ + struct cgroup_subsys_state *css; + + rcu_read_lock(); + css = cgroup_css(cgrp, ss); + if (!css || !css_tryget_online(css)) + css = NULL; + rcu_read_unlock(); + + return css; +} + +/** + * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem + * @cgrp: the cgroup of interest + * @ss: the subsystem of interest (%NULL returns @cgrp->self) + * + * Similar to cgroup_css() but returns the effective css, which is defined + * as the matching css of the nearest ancestor including self which has @ss + * enabled. If @ss is associated with the hierarchy @cgrp is on, this + * function is guaranteed to return non-NULL css. + */ +static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, + struct cgroup_subsys *ss) +{ + lockdep_assert_held(&cgroup_mutex); + + if (!ss) + return &cgrp->self; + + /* + * This function is used while updating css associations and thus + * can't test the csses directly. Test ss_mask. + */ + while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { + cgrp = cgroup_parent(cgrp); + if (!cgrp) + return NULL; + } + + return cgroup_css(cgrp, ss); +} + +/** + * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem + * @cgrp: the cgroup of interest + * @ss: the subsystem of interest + * + * Find and get the effective css of @cgrp for @ss. The effective css is + * defined as the matching css of the nearest ancestor including self which + * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, + * the root css is returned, so this function always returns a valid css. + * The returned css must be put using css_put(). + */ +struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, + struct cgroup_subsys *ss) +{ + struct cgroup_subsys_state *css; + + rcu_read_lock(); + + do { + css = cgroup_css(cgrp, ss); + + if (css && css_tryget_online(css)) + goto out_unlock; + cgrp = cgroup_parent(cgrp); + } while (cgrp); + + css = init_css_set.subsys[ss->id]; + css_get(css); +out_unlock: + rcu_read_unlock(); + return css; +} + +static void cgroup_get_live(struct cgroup *cgrp) +{ + WARN_ON_ONCE(cgroup_is_dead(cgrp)); + css_get(&cgrp->self); +} + +struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) +{ + struct cgroup *cgrp = of->kn->parent->priv; + struct cftype *cft = of_cft(of); + + /* + * This is open and unprotected implementation of cgroup_css(). + * seq_css() is only called from a kernfs file operation which has + * an active reference on the file. Because all the subsystem + * files are drained before a css is disassociated with a cgroup, + * the matching css from the cgroup's subsys table is guaranteed to + * be and stay valid until the enclosing operation is complete. + */ + if (cft->ss) + return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); + else + return &cgrp->self; +} +EXPORT_SYMBOL_GPL(of_css); + +/** + * for_each_css - iterate all css's of a cgroup + * @css: the iteration cursor + * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end + * @cgrp: the target cgroup to iterate css's of + * + * Should be called under cgroup_[tree_]mutex. + */ +#define for_each_css(css, ssid, cgrp) \ + for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ + if (!((css) = rcu_dereference_check( \ + (cgrp)->subsys[(ssid)], \ + lockdep_is_held(&cgroup_mutex)))) { } \ + else + +/** + * for_each_e_css - iterate all effective css's of a cgroup + * @css: the iteration cursor + * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end + * @cgrp: the target cgroup to iterate css's of + * + * Should be called under cgroup_[tree_]mutex. + */ +#define for_each_e_css(css, ssid, cgrp) \ + for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ + if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ + ; \ + else + +/** + * do_each_subsys_mask - filter for_each_subsys with a bitmask + * @ss: the iteration cursor + * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end + * @ss_mask: the bitmask + * + * The block will only run for cases where the ssid-th bit (1 << ssid) of + * @ss_mask is set. + */ +#define do_each_subsys_mask(ss, ssid, ss_mask) do { \ + unsigned long __ss_mask = (ss_mask); \ + if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ + (ssid) = 0; \ + break; \ + } \ + for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ + (ss) = cgroup_subsys[ssid]; \ + { + +#define while_each_subsys_mask() \ + } \ + } \ +} while (false) + +/* iterate over child cgrps, lock should be held throughout iteration */ +#define cgroup_for_each_live_child(child, cgrp) \ + list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ + if (({ lockdep_assert_held(&cgroup_mutex); \ + cgroup_is_dead(child); })) \ + ; \ + else + +/* walk live descendants in preorder */ +#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ + css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ + if (({ lockdep_assert_held(&cgroup_mutex); \ + (dsct) = (d_css)->cgroup; \ + cgroup_is_dead(dsct); })) \ + ; \ + else + +/* walk live descendants in postorder */ +#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ + css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ + if (({ lockdep_assert_held(&cgroup_mutex); \ + (dsct) = (d_css)->cgroup; \ + cgroup_is_dead(dsct); })) \ + ; \ + else + +/* + * The default css_set - used by init and its children prior to any + * hierarchies being mounted. It contains a pointer to the root state + * for each subsystem. Also used to anchor the list of css_sets. Not + * reference-counted, to improve performance when child cgroups + * haven't been created. + */ +struct css_set init_css_set = { + .refcount = REFCOUNT_INIT(1), + .dom_cset = &init_css_set, + .tasks = LIST_HEAD_INIT(init_css_set.tasks), + .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), + .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), + .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), + .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), + .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), + .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), + .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), + + /* + * The following field is re-initialized when this cset gets linked + * in cgroup_init(). However, let's initialize the field + * statically too so that the default cgroup can be accessed safely + * early during boot. + */ + .dfl_cgrp = &cgrp_dfl_root.cgrp, +}; + +static int css_set_count = 1; /* 1 for init_css_set */ + +static bool css_set_threaded(struct css_set *cset) +{ + return cset->dom_cset != cset; +} + +/** + * css_set_populated - does a css_set contain any tasks? + * @cset: target css_set + * + * css_set_populated() should be the same as !!cset->nr_tasks at steady + * state. However, css_set_populated() can be called while a task is being + * added to or removed from the linked list before the nr_tasks is + * properly updated. Hence, we can't just look at ->nr_tasks here. + */ +static bool css_set_populated(struct css_set *cset) +{ + lockdep_assert_held(&css_set_lock); + + return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); +} + +/** + * cgroup_update_populated - update the populated count of a cgroup + * @cgrp: the target cgroup + * @populated: inc or dec populated count + * + * One of the css_sets associated with @cgrp is either getting its first + * task or losing the last. Update @cgrp->nr_populated_* accordingly. The + * count is propagated towards root so that a given cgroup's + * nr_populated_children is zero iff none of its descendants contain any + * tasks. + * + * @cgrp's interface file "cgroup.populated" is zero if both + * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and + * 1 otherwise. When the sum changes from or to zero, userland is notified + * that the content of the interface file has changed. This can be used to + * detect when @cgrp and its descendants become populated or empty. + */ +static void cgroup_update_populated(struct cgroup *cgrp, bool populated) +{ + struct cgroup *child = NULL; + int adj = populated ? 1 : -1; + + lockdep_assert_held(&css_set_lock); + + do { + bool was_populated = cgroup_is_populated(cgrp); + + if (!child) { + cgrp->nr_populated_csets += adj; + } else { + if (cgroup_is_threaded(child)) + cgrp->nr_populated_threaded_children += adj; + else + cgrp->nr_populated_domain_children += adj; + } + + if (was_populated == cgroup_is_populated(cgrp)) + break; + + cgroup1_check_for_release(cgrp); + cgroup_file_notify(&cgrp->events_file); + + child = cgrp; + cgrp = cgroup_parent(cgrp); + } while (cgrp); +} + +/** + * css_set_update_populated - update populated state of a css_set + * @cset: target css_set + * @populated: whether @cset is populated or depopulated + * + * @cset is either getting the first task or losing the last. Update the + * populated counters of all associated cgroups accordingly. + */ +static void css_set_update_populated(struct css_set *cset, bool populated) +{ + struct cgrp_cset_link *link; + + lockdep_assert_held(&css_set_lock); + + list_for_each_entry(link, &cset->cgrp_links, cgrp_link) + cgroup_update_populated(link->cgrp, populated); +} + +/* + * @task is leaving, advance task iterators which are pointing to it so + * that they can resume at the next position. Advancing an iterator might + * remove it from the list, use safe walk. See css_task_iter_skip() for + * details. + */ +static void css_set_skip_task_iters(struct css_set *cset, + struct task_struct *task) +{ + struct css_task_iter *it, *pos; + + list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) + css_task_iter_skip(it, task); +} + +/** + * css_set_move_task - move a task from one css_set to another + * @task: task being moved + * @from_cset: css_set @task currently belongs to (may be NULL) + * @to_cset: new css_set @task is being moved to (may be NULL) + * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks + * + * Move @task from @from_cset to @to_cset. If @task didn't belong to any + * css_set, @from_cset can be NULL. If @task is being disassociated + * instead of moved, @to_cset can be NULL. + * + * This function automatically handles populated counter updates and + * css_task_iter adjustments but the caller is responsible for managing + * @from_cset and @to_cset's reference counts. + */ +static void css_set_move_task(struct task_struct *task, + struct css_set *from_cset, struct css_set *to_cset, + bool use_mg_tasks) +{ + lockdep_assert_held(&css_set_lock); + + if (to_cset && !css_set_populated(to_cset)) + css_set_update_populated(to_cset, true); + + if (from_cset) { + WARN_ON_ONCE(list_empty(&task->cg_list)); + + css_set_skip_task_iters(from_cset, task); + list_del_init(&task->cg_list); + if (!css_set_populated(from_cset)) + css_set_update_populated(from_cset, false); + } else { + WARN_ON_ONCE(!list_empty(&task->cg_list)); + } + + if (to_cset) { + /* + * We are synchronized through cgroup_threadgroup_rwsem + * against PF_EXITING setting such that we can't race + * against cgroup_exit() changing the css_set to + * init_css_set and dropping the old one. + */ + WARN_ON_ONCE(task->flags & PF_EXITING); + + rcu_assign_pointer(task->cgroups, to_cset); + list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : + &to_cset->tasks); + } +} + +/* + * hash table for cgroup groups. This improves the performance to find + * an existing css_set. This hash doesn't (currently) take into + * account cgroups in empty hierarchies. + */ +#define CSS_SET_HASH_BITS 7 +static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); + +static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) +{ + unsigned long key = 0UL; + struct cgroup_subsys *ss; + int i; + + for_each_subsys(ss, i) + key += (unsigned long)css[i]; + key = (key >> 16) ^ key; + + return key; +} + +void put_css_set_locked(struct css_set *cset) +{ + struct cgrp_cset_link *link, *tmp_link; + struct cgroup_subsys *ss; + int ssid; + + lockdep_assert_held(&css_set_lock); + + if (!refcount_dec_and_test(&cset->refcount)) + return; + + WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); + + /* This css_set is dead. unlink it and release cgroup and css refs */ + for_each_subsys(ss, ssid) { + list_del(&cset->e_cset_node[ssid]); + css_put(cset->subsys[ssid]); + } + hash_del(&cset->hlist); + css_set_count--; + + list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { + list_del(&link->cset_link); + list_del(&link->cgrp_link); + if (cgroup_parent(link->cgrp)) + cgroup_put(link->cgrp); + kfree(link); + } + + if (css_set_threaded(cset)) { + list_del(&cset->threaded_csets_node); + put_css_set_locked(cset->dom_cset); + } + + kfree_rcu(cset, rcu_head); +} + +/** + * compare_css_sets - helper function for find_existing_css_set(). + * @cset: candidate css_set being tested + * @old_cset: existing css_set for a task + * @new_cgrp: cgroup that's being entered by the task + * @template: desired set of css pointers in css_set (pre-calculated) + * + * Returns true if "cset" matches "old_cset" except for the hierarchy + * which "new_cgrp" belongs to, for which it should match "new_cgrp". + */ +static bool compare_css_sets(struct css_set *cset, + struct css_set *old_cset, + struct cgroup *new_cgrp, + struct cgroup_subsys_state *template[]) +{ + struct cgroup *new_dfl_cgrp; + struct list_head *l1, *l2; + + /* + * On the default hierarchy, there can be csets which are + * associated with the same set of cgroups but different csses. + * Let's first ensure that csses match. + */ + if (memcmp(template, cset->subsys, sizeof(cset->subsys))) + return false; + + + /* @cset's domain should match the default cgroup's */ + if (cgroup_on_dfl(new_cgrp)) + new_dfl_cgrp = new_cgrp; + else + new_dfl_cgrp = old_cset->dfl_cgrp; + + if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) + return false; + + /* + * Compare cgroup pointers in order to distinguish between + * different cgroups in hierarchies. As different cgroups may + * share the same effective css, this comparison is always + * necessary. + */ + l1 = &cset->cgrp_links; + l2 = &old_cset->cgrp_links; + while (1) { + struct cgrp_cset_link *link1, *link2; + struct cgroup *cgrp1, *cgrp2; + + l1 = l1->next; + l2 = l2->next; + /* See if we reached the end - both lists are equal length. */ + if (l1 == &cset->cgrp_links) { + BUG_ON(l2 != &old_cset->cgrp_links); + break; + } else { + BUG_ON(l2 == &old_cset->cgrp_links); + } + /* Locate the cgroups associated with these links. */ + link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); + link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); + cgrp1 = link1->cgrp; + cgrp2 = link2->cgrp; + /* Hierarchies should be linked in the same order. */ + BUG_ON(cgrp1->root != cgrp2->root); + + /* + * If this hierarchy is the hierarchy of the cgroup + * that's changing, then we need to check that this + * css_set points to the new cgroup; if it's any other + * hierarchy, then this css_set should point to the + * same cgroup as the old css_set. + */ + if (cgrp1->root == new_cgrp->root) { + if (cgrp1 != new_cgrp) + return false; + } else { + if (cgrp1 != cgrp2) + return false; + } + } + return true; +} + +/** + * find_existing_css_set - init css array and find the matching css_set + * @old_cset: the css_set that we're using before the cgroup transition + * @cgrp: the cgroup that we're moving into + * @template: out param for the new set of csses, should be clear on entry + */ +static struct css_set *find_existing_css_set(struct css_set *old_cset, + struct cgroup *cgrp, + struct cgroup_subsys_state *template[]) +{ + struct cgroup_root *root = cgrp->root; + struct cgroup_subsys *ss; + struct css_set *cset; + unsigned long key; + int i; + + /* + * Build the set of subsystem state objects that we want to see in the + * new css_set. while subsystems can change globally, the entries here + * won't change, so no need for locking. + */ + for_each_subsys(ss, i) { + if (root->subsys_mask & (1UL << i)) { + /* + * @ss is in this hierarchy, so we want the + * effective css from @cgrp. + */ + template[i] = cgroup_e_css(cgrp, ss); + } else { + /* + * @ss is not in this hierarchy, so we don't want + * to change the css. + */ + template[i] = old_cset->subsys[i]; + } + } + + key = css_set_hash(template); + hash_for_each_possible(css_set_table, cset, hlist, key) { + if (!compare_css_sets(cset, old_cset, cgrp, template)) + continue; + + /* This css_set matches what we need */ + return cset; + } + + /* No existing cgroup group matched */ + return NULL; +} + +static void free_cgrp_cset_links(struct list_head *links_to_free) +{ + struct cgrp_cset_link *link, *tmp_link; + + list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { + list_del(&link->cset_link); + kfree(link); + } +} + +/** + * allocate_cgrp_cset_links - allocate cgrp_cset_links + * @count: the number of links to allocate + * @tmp_links: list_head the allocated links are put on + * + * Allocate @count cgrp_cset_link structures and chain them on @tmp_links + * through ->cset_link. Returns 0 on success or -errno. + */ +static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) +{ + struct cgrp_cset_link *link; + int i; + + INIT_LIST_HEAD(tmp_links); + + for (i = 0; i < count; i++) { + link = kzalloc(sizeof(*link), GFP_KERNEL); + if (!link) { + free_cgrp_cset_links(tmp_links); + return -ENOMEM; + } + list_add(&link->cset_link, tmp_links); + } + return 0; +} + +/** + * link_css_set - a helper function to link a css_set to a cgroup + * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() + * @cset: the css_set to be linked + * @cgrp: the destination cgroup + */ +static void link_css_set(struct list_head *tmp_links, struct css_set *cset, + struct cgroup *cgrp) +{ + struct cgrp_cset_link *link; + + BUG_ON(list_empty(tmp_links)); + + if (cgroup_on_dfl(cgrp)) + cset->dfl_cgrp = cgrp; + + link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); + link->cset = cset; + link->cgrp = cgrp; + + /* + * Always add links to the tail of the lists so that the lists are + * in choronological order. + */ + list_move_tail(&link->cset_link, &cgrp->cset_links); + list_add_tail(&link->cgrp_link, &cset->cgrp_links); + + if (cgroup_parent(cgrp)) + cgroup_get_live(cgrp); +} + +/** + * find_css_set - return a new css_set with one cgroup updated + * @old_cset: the baseline css_set + * @cgrp: the cgroup to be updated + * + * Return a new css_set that's equivalent to @old_cset, but with @cgrp + * substituted into the appropriate hierarchy. + */ +static struct css_set *find_css_set(struct css_set *old_cset, + struct cgroup *cgrp) +{ + struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; + struct css_set *cset; + struct list_head tmp_links; + struct cgrp_cset_link *link; + struct cgroup_subsys *ss; + unsigned long key; + int ssid; + + lockdep_assert_held(&cgroup_mutex); + + /* First see if we already have a cgroup group that matches + * the desired set */ + spin_lock_irq(&css_set_lock); + cset = find_existing_css_set(old_cset, cgrp, template); + if (cset) + get_css_set(cset); + spin_unlock_irq(&css_set_lock); + + if (cset) + return cset; + + cset = kzalloc(sizeof(*cset), GFP_KERNEL); + if (!cset) + return NULL; + + /* Allocate all the cgrp_cset_link objects that we'll need */ + if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { + kfree(cset); + return NULL; + } + + refcount_set(&cset->refcount, 1); + cset->dom_cset = cset; + INIT_LIST_HEAD(&cset->tasks); + INIT_LIST_HEAD(&cset->mg_tasks); + INIT_LIST_HEAD(&cset->dying_tasks); + INIT_LIST_HEAD(&cset->task_iters); + INIT_LIST_HEAD(&cset->threaded_csets); + INIT_HLIST_NODE(&cset->hlist); + INIT_LIST_HEAD(&cset->cgrp_links); + INIT_LIST_HEAD(&cset->mg_preload_node); + INIT_LIST_HEAD(&cset->mg_node); + + /* Copy the set of subsystem state objects generated in + * find_existing_css_set() */ + memcpy(cset->subsys, template, sizeof(cset->subsys)); + + spin_lock_irq(&css_set_lock); + /* Add reference counts and links from the new css_set. */ + list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { + struct cgroup *c = link->cgrp; + + if (c->root == cgrp->root) + c = cgrp; + link_css_set(&tmp_links, cset, c); + } + + BUG_ON(!list_empty(&tmp_links)); + + css_set_count++; + + /* Add @cset to the hash table */ + key = css_set_hash(cset->subsys); + hash_add(css_set_table, &cset->hlist, key); + + for_each_subsys(ss, ssid) { + struct cgroup_subsys_state *css = cset->subsys[ssid]; + + list_add_tail(&cset->e_cset_node[ssid], + &css->cgroup->e_csets[ssid]); + css_get(css); + } + + spin_unlock_irq(&css_set_lock); + + /* + * If @cset should be threaded, look up the matching dom_cset and + * link them up. We first fully initialize @cset then look for the + * dom_cset. It's simpler this way and safe as @cset is guaranteed + * to stay empty until we return. + */ + if (cgroup_is_threaded(cset->dfl_cgrp)) { + struct css_set *dcset; + + dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); + if (!dcset) { + put_css_set(cset); + return NULL; + } + + spin_lock_irq(&css_set_lock); + cset->dom_cset = dcset; + list_add_tail(&cset->threaded_csets_node, + &dcset->threaded_csets); + spin_unlock_irq(&css_set_lock); + } + + return cset; +} + +struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) +{ + struct cgroup *root_cgrp = kf_root->kn->priv; + + return root_cgrp->root; +} + +static int cgroup_init_root_id(struct cgroup_root *root) +{ + int id; + + lockdep_assert_held(&cgroup_mutex); + + id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); + if (id < 0) + return id; + + root->hierarchy_id = id; + return 0; +} + +static void cgroup_exit_root_id(struct cgroup_root *root) +{ + lockdep_assert_held(&cgroup_mutex); + + idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); +} + +void cgroup_free_root(struct cgroup_root *root) +{ + if (root) { + idr_destroy(&root->cgroup_idr); + kfree(root); + } +} + +static void cgroup_destroy_root(struct cgroup_root *root) +{ + struct cgroup *cgrp = &root->cgrp; + struct cgrp_cset_link *link, *tmp_link; + + trace_cgroup_destroy_root(root); + + cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); + + BUG_ON(atomic_read(&root->nr_cgrps)); + BUG_ON(!list_empty(&cgrp->self.children)); + + /* Rebind all subsystems back to the default hierarchy */ + WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); + + /* + * Release all the links from cset_links to this hierarchy's + * root cgroup + */ + spin_lock_irq(&css_set_lock); + + list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { + list_del(&link->cset_link); + list_del(&link->cgrp_link); + kfree(link); + } + + spin_unlock_irq(&css_set_lock); + + if (!list_empty(&root->root_list)) { + list_del(&root->root_list); + cgroup_root_count--; + } + + cgroup_exit_root_id(root); + + mutex_unlock(&cgroup_mutex); + + kernfs_destroy_root(root->kf_root); + cgroup_free_root(root); +} + +/* + * look up cgroup associated with current task's cgroup namespace on the + * specified hierarchy + */ +static struct cgroup * +current_cgns_cgroup_from_root(struct cgroup_root *root) +{ + struct cgroup *res = NULL; + struct css_set *cset; + + lockdep_assert_held(&css_set_lock); + + rcu_read_lock(); + + cset = current->nsproxy->cgroup_ns->root_cset; + if (cset == &init_css_set) { + res = &root->cgrp; + } else { + struct cgrp_cset_link *link; + + list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { + struct cgroup *c = link->cgrp; + + if (c->root == root) { + res = c; + break; + } + } + } + rcu_read_unlock(); + + BUG_ON(!res); + return res; +} + +/* look up cgroup associated with given css_set on the specified hierarchy */ +static struct cgroup *cset_cgroup_from_root(struct css_set *cset, + struct cgroup_root *root) +{ + struct cgroup *res = NULL; + + lockdep_assert_held(&cgroup_mutex); + lockdep_assert_held(&css_set_lock); + + if (cset == &init_css_set) { + res = &root->cgrp; + } else if (root == &cgrp_dfl_root) { + res = cset->dfl_cgrp; + } else { + struct cgrp_cset_link *link; + + list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { + struct cgroup *c = link->cgrp; + + if (c->root == root) { + res = c; + break; + } + } + } + + BUG_ON(!res); + return res; +} + +/* + * Return the cgroup for "task" from the given hierarchy. Must be + * called with cgroup_mutex and css_set_lock held. + */ +struct cgroup *task_cgroup_from_root(struct task_struct *task, + struct cgroup_root *root) +{ + /* + * No need to lock the task - since we hold cgroup_mutex the + * task can't change groups, so the only thing that can happen + * is that it exits and its css is set back to init_css_set. + */ + return cset_cgroup_from_root(task_css_set(task), root); +} + +/* + * A task must hold cgroup_mutex to modify cgroups. + * + * Any task can increment and decrement the count field without lock. + * So in general, code holding cgroup_mutex can't rely on the count + * field not changing. However, if the count goes to zero, then only + * cgroup_attach_task() can increment it again. Because a count of zero + * means that no tasks are currently attached, therefore there is no + * way a task attached to that cgroup can fork (the other way to + * increment the count). So code holding cgroup_mutex can safely + * assume that if the count is zero, it will stay zero. Similarly, if + * a task holds cgroup_mutex on a cgroup with zero count, it + * knows that the cgroup won't be removed, as cgroup_rmdir() + * needs that mutex. + * + * A cgroup can only be deleted if both its 'count' of using tasks + * is zero, and its list of 'children' cgroups is empty. Since all + * tasks in the system use _some_ cgroup, and since there is always at + * least one task in the system (init, pid == 1), therefore, root cgroup + * always has either children cgroups and/or using tasks. So we don't + * need a special hack to ensure that root cgroup cannot be deleted. + * + * P.S. One more locking exception. RCU is used to guard the + * update of a tasks cgroup pointer by cgroup_attach_task() + */ + +static struct kernfs_syscall_ops cgroup_kf_syscall_ops; + +static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, + char *buf) +{ + struct cgroup_subsys *ss = cft->ss; + + if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && + !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) + snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", + cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, + cft->name); + else + strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); + return buf; +} + +/** + * cgroup_file_mode - deduce file mode of a control file + * @cft: the control file in question + * + * S_IRUGO for read, S_IWUSR for write. + */ +static umode_t cgroup_file_mode(const struct cftype *cft) +{ + umode_t mode = 0; + + if (cft->read_u64 || cft->read_s64 || cft->seq_show) + mode |= S_IRUGO; + + if (cft->write_u64 || cft->write_s64 || cft->write) { + if (cft->flags & CFTYPE_WORLD_WRITABLE) + mode |= S_IWUGO; + else + mode |= S_IWUSR; + } + + return mode; +} + +/** + * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask + * @subtree_control: the new subtree_control mask to consider + * @this_ss_mask: available subsystems + * + * On the default hierarchy, a subsystem may request other subsystems to be + * enabled together through its ->depends_on mask. In such cases, more + * subsystems than specified in "cgroup.subtree_control" may be enabled. + * + * This function calculates which subsystems need to be enabled if + * @subtree_control is to be applied while restricted to @this_ss_mask. + */ +static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) +{ + u16 cur_ss_mask = subtree_control; + struct cgroup_subsys *ss; + int ssid; + + lockdep_assert_held(&cgroup_mutex); + + cur_ss_mask |= cgrp_dfl_implicit_ss_mask; + + while (true) { + u16 new_ss_mask = cur_ss_mask; + + do_each_subsys_mask(ss, ssid, cur_ss_mask) { + new_ss_mask |= ss->depends_on; + } while_each_subsys_mask(); + + /* + * Mask out subsystems which aren't available. This can + * happen only if some depended-upon subsystems were bound + * to non-default hierarchies. + */ + new_ss_mask &= this_ss_mask; + + if (new_ss_mask == cur_ss_mask) + break; + cur_ss_mask = new_ss_mask; + } + + return cur_ss_mask; +} + +/** + * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods + * @kn: the kernfs_node being serviced + * + * This helper undoes cgroup_kn_lock_live() and should be invoked before + * the method finishes if locking succeeded. Note that once this function + * returns the cgroup returned by cgroup_kn_lock_live() may become + * inaccessible any time. If the caller intends to continue to access the + * cgroup, it should pin it before invoking this function. + */ +void cgroup_kn_unlock(struct kernfs_node *kn) +{ + struct cgroup *cgrp; + + if (kernfs_type(kn) == KERNFS_DIR) + cgrp = kn->priv; + else + cgrp = kn->parent->priv; + + mutex_unlock(&cgroup_mutex); + + kernfs_unbreak_active_protection(kn); + cgroup_put(cgrp); +} + +/** + * cgroup_kn_lock_live - locking helper for cgroup kernfs methods + * @kn: the kernfs_node being serviced + * @drain_offline: perform offline draining on the cgroup + * + * This helper is to be used by a cgroup kernfs method currently servicing + * @kn. It breaks the active protection, performs cgroup locking and + * verifies that the associated cgroup is alive. Returns the cgroup if + * alive; otherwise, %NULL. A successful return should be undone by a + * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the + * cgroup is drained of offlining csses before return. + * + * Any cgroup kernfs method implementation which requires locking the + * associated cgroup should use this helper. It avoids nesting cgroup + * locking under kernfs active protection and allows all kernfs operations + * including self-removal. + */ +struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) +{ + struct cgroup *cgrp; + + if (kernfs_type(kn) == KERNFS_DIR) + cgrp = kn->priv; + else + cgrp = kn->parent->priv; + + /* + * We're gonna grab cgroup_mutex which nests outside kernfs + * active_ref. cgroup liveliness check alone provides enough + * protection against removal. Ensure @cgrp stays accessible and + * break the active_ref protection. + */ + if (!cgroup_tryget(cgrp)) + return NULL; + kernfs_break_active_protection(kn); + + if (drain_offline) + cgroup_lock_and_drain_offline(cgrp); + else + mutex_lock(&cgroup_mutex); + + if (!cgroup_is_dead(cgrp)) + return cgrp; + + cgroup_kn_unlock(kn); + return NULL; +} + +static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) +{ + char name[CGROUP_FILE_NAME_MAX]; + + lockdep_assert_held(&cgroup_mutex); + + if (cft->file_offset) { + struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); + struct cgroup_file *cfile = (void *)css + cft->file_offset; + + spin_lock_irq(&cgroup_file_kn_lock); + cfile->kn = NULL; + spin_unlock_irq(&cgroup_file_kn_lock); + + del_timer_sync(&cfile->notify_timer); + } + + kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); +} + +/** + * css_clear_dir - remove subsys files in a cgroup directory + * @css: taget css + */ +static void css_clear_dir(struct cgroup_subsys_state *css) +{ + struct cgroup *cgrp = css->cgroup; + struct cftype *cfts; + + if (!(css->flags & CSS_VISIBLE)) + return; + + css->flags &= ~CSS_VISIBLE; + + if (!css->ss) { + if (cgroup_on_dfl(cgrp)) + cfts = cgroup_base_files; + else + cfts = cgroup1_base_files; + + cgroup_addrm_files(css, cgrp, cfts, false); + } else { + list_for_each_entry(cfts, &css->ss->cfts, node) + cgroup_addrm_files(css, cgrp, cfts, false); + } +} + +/** + * css_populate_dir - create subsys files in a cgroup directory + * @css: target css + * + * On failure, no file is added. + */ +static int css_populate_dir(struct cgroup_subsys_state *css) +{ + struct cgroup *cgrp = css->cgroup; + struct cftype *cfts, *failed_cfts; + int ret; + + if ((css->flags & CSS_VISIBLE) || !cgrp->kn) + return 0; + + if (!css->ss) { + if (cgroup_on_dfl(cgrp)) + cfts = cgroup_base_files; + else + cfts = cgroup1_base_files; + + ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); + if (ret < 0) + return ret; + } else { + list_for_each_entry(cfts, &css->ss->cfts, node) { + ret = cgroup_addrm_files(css, cgrp, cfts, true); + if (ret < 0) { + failed_cfts = cfts; + goto err; + } + } + } + + css->flags |= CSS_VISIBLE; + + return 0; +err: + list_for_each_entry(cfts, &css->ss->cfts, node) { + if (cfts == failed_cfts) + break; + cgroup_addrm_files(css, cgrp, cfts, false); + } + return ret; +} + +int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) +{ + struct cgroup *dcgrp = &dst_root->cgrp; + struct cgroup_subsys *ss; + int ssid, i, ret; + u16 dfl_disable_ss_mask = 0; + + lockdep_assert_held(&cgroup_mutex); + + do_each_subsys_mask(ss, ssid, ss_mask) { + /* + * If @ss has non-root csses attached to it, can't move. + * If @ss is an implicit controller, it is exempt from this + * rule and can be stolen. + */ + if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && + !ss->implicit_on_dfl) + return -EBUSY; + + /* can't move between two non-dummy roots either */ + if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) + return -EBUSY; + + /* + * Collect ssid's that need to be disabled from default + * hierarchy. + */ + if (ss->root == &cgrp_dfl_root) + dfl_disable_ss_mask |= 1 << ssid; + + } while_each_subsys_mask(); + + if (dfl_disable_ss_mask) { + struct cgroup *scgrp = &cgrp_dfl_root.cgrp; + + /* + * Controllers from default hierarchy that need to be rebound + * are all disabled together in one go. + */ + cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; + WARN_ON(cgroup_apply_control(scgrp)); + cgroup_finalize_control(scgrp, 0); + } + + do_each_subsys_mask(ss, ssid, ss_mask) { + struct cgroup_root *src_root = ss->root; + struct cgroup *scgrp = &src_root->cgrp; + struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); + struct css_set *cset; + + WARN_ON(!css || cgroup_css(dcgrp, ss)); + + if (src_root != &cgrp_dfl_root) { + /* disable from the source */ + src_root->subsys_mask &= ~(1 << ssid); + WARN_ON(cgroup_apply_control(scgrp)); + cgroup_finalize_control(scgrp, 0); + } + + /* rebind */ + RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); + rcu_assign_pointer(dcgrp->subsys[ssid], css); + ss->root = dst_root; + css->cgroup = dcgrp; + + spin_lock_irq(&css_set_lock); + hash_for_each(css_set_table, i, cset, hlist) + list_move_tail(&cset->e_cset_node[ss->id], + &dcgrp->e_csets[ss->id]); + spin_unlock_irq(&css_set_lock); + + /* default hierarchy doesn't enable controllers by default */ + dst_root->subsys_mask |= 1 << ssid; + if (dst_root == &cgrp_dfl_root) { + static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); + } else { + dcgrp->subtree_control |= 1 << ssid; + static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); + } + + ret = cgroup_apply_control(dcgrp); + if (ret) + pr_warn("partial failure to rebind %s controller (err=%d)\n", + ss->name, ret); + + if (ss->bind) + ss->bind(css); + } while_each_subsys_mask(); + + kernfs_activate(dcgrp->kn); + return 0; +} + +int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, + struct kernfs_root *kf_root) +{ + int len = 0; + char *buf = NULL; + struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); + struct cgroup *ns_cgroup; + + buf = kmalloc(PATH_MAX, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + spin_lock_irq(&css_set_lock); + ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); + len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); + spin_unlock_irq(&css_set_lock); + + if (len >= PATH_MAX) + len = -ERANGE; + else if (len > 0) { + seq_escape(sf, buf, " \t\n\\"); + len = 0; + } + kfree(buf); + return len; +} + +static int parse_cgroup_root_flags(char *data, unsigned int *root_flags) +{ + char *token; + + *root_flags = 0; + + if (!data || *data == '\0') + return 0; + + while ((token = strsep(&data, ",")) != NULL) { + if (!strcmp(token, "nsdelegate")) { + *root_flags |= CGRP_ROOT_NS_DELEGATE; + continue; + } + + pr_err("cgroup2: unknown option \"%s\"\n", token); + return -EINVAL; + } + + return 0; +} + +static void apply_cgroup_root_flags(unsigned int root_flags) +{ + if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { + if (root_flags & CGRP_ROOT_NS_DELEGATE) + cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; + else + cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; + } +} + +static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) +{ + if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) + seq_puts(seq, ",nsdelegate"); + return 0; +} + +static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) +{ + unsigned int root_flags; + int ret; + + ret = parse_cgroup_root_flags(data, &root_flags); + if (ret) + return ret; + + apply_cgroup_root_flags(root_flags); + return 0; +} + +/* + * To reduce the fork() overhead for systems that are not actually using + * their cgroups capability, we don't maintain the lists running through + * each css_set to its tasks until we see the list actually used - in other + * words after the first mount. + */ +static bool use_task_css_set_links __read_mostly; + +static void cgroup_enable_task_cg_lists(void) +{ + struct task_struct *p, *g; + + /* + * We need tasklist_lock because RCU is not safe against + * while_each_thread(). Besides, a forking task that has passed + * cgroup_post_fork() without seeing use_task_css_set_links = 1 + * is not guaranteed to have its child immediately visible in the + * tasklist if we walk through it with RCU. + */ + read_lock(&tasklist_lock); + spin_lock_irq(&css_set_lock); + + if (use_task_css_set_links) + goto out_unlock; + + use_task_css_set_links = true; + + do_each_thread(g, p) { + WARN_ON_ONCE(!list_empty(&p->cg_list) || + task_css_set(p) != &init_css_set); + + /* + * We should check if the process is exiting, otherwise + * it will race with cgroup_exit() in that the list + * entry won't be deleted though the process has exited. + * Do it while holding siglock so that we don't end up + * racing against cgroup_exit(). + * + * Interrupts were already disabled while acquiring + * the css_set_lock, so we do not need to disable it + * again when acquiring the sighand->siglock here. + */ + spin_lock(&p->sighand->siglock); + if (!(p->flags & PF_EXITING)) { + struct css_set *cset = task_css_set(p); + + if (!css_set_populated(cset)) + css_set_update_populated(cset, true); + list_add_tail(&p->cg_list, &cset->tasks); + get_css_set(cset); + cset->nr_tasks++; + } + spin_unlock(&p->sighand->siglock); + } while_each_thread(g, p); +out_unlock: + spin_unlock_irq(&css_set_lock); + read_unlock(&tasklist_lock); +} + +static void init_cgroup_housekeeping(struct cgroup *cgrp) +{ + struct cgroup_subsys *ss; + int ssid; + + INIT_LIST_HEAD(&cgrp->self.sibling); + INIT_LIST_HEAD(&cgrp->self.children); + INIT_LIST_HEAD(&cgrp->cset_links); + INIT_LIST_HEAD(&cgrp->pidlists); + mutex_init(&cgrp->pidlist_mutex); + cgrp->self.cgroup = cgrp; + cgrp->self.flags |= CSS_ONLINE; + cgrp->dom_cgrp = cgrp; + cgrp->max_descendants = INT_MAX; + cgrp->max_depth = INT_MAX; + INIT_LIST_HEAD(&cgrp->rstat_css_list); + prev_cputime_init(&cgrp->prev_cputime); + + for_each_subsys(ss, ssid) + INIT_LIST_HEAD(&cgrp->e_csets[ssid]); + + init_waitqueue_head(&cgrp->offline_waitq); + INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); +} + +void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) +{ + struct cgroup *cgrp = &root->cgrp; + + INIT_LIST_HEAD(&root->root_list); + atomic_set(&root->nr_cgrps, 1); + cgrp->root = root; + init_cgroup_housekeeping(cgrp); + idr_init(&root->cgroup_idr); + + root->flags = opts->flags; + if (opts->release_agent) + strscpy(root->release_agent_path, opts->release_agent, PATH_MAX); + if (opts->name) + strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN); + if (opts->cpuset_clone_children) + set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); +} + +int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) +{ + LIST_HEAD(tmp_links); + struct cgroup *root_cgrp = &root->cgrp; + struct kernfs_syscall_ops *kf_sops; + struct css_set *cset; + int i, ret; + + lockdep_assert_held(&cgroup_mutex); + + ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); + if (ret < 0) + goto out; + root_cgrp->id = ret; + root_cgrp->ancestor_ids[0] = ret; + + ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, + ref_flags, GFP_KERNEL); + if (ret) + goto out; + + /* + * We're accessing css_set_count without locking css_set_lock here, + * but that's OK - it can only be increased by someone holding + * cgroup_lock, and that's us. Later rebinding may disable + * controllers on the default hierarchy and thus create new csets, + * which can't be more than the existing ones. Allocate 2x. + */ + ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); + if (ret) + goto cancel_ref; + + ret = cgroup_init_root_id(root); + if (ret) + goto cancel_ref; + + kf_sops = root == &cgrp_dfl_root ? + &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; + + root->kf_root = kernfs_create_root(kf_sops, + KERNFS_ROOT_CREATE_DEACTIVATED | + KERNFS_ROOT_SUPPORT_EXPORTOP, + root_cgrp); + if (IS_ERR(root->kf_root)) { + ret = PTR_ERR(root->kf_root); + goto exit_root_id; + } + root_cgrp->kn = root->kf_root->kn; + + ret = css_populate_dir(&root_cgrp->self); + if (ret) + goto destroy_root; + + ret = rebind_subsystems(root, ss_mask); + if (ret) + goto destroy_root; + + ret = cgroup_bpf_inherit(root_cgrp); + WARN_ON_ONCE(ret); + + trace_cgroup_setup_root(root); + + /* + * There must be no failure case after here, since rebinding takes + * care of subsystems' refcounts, which are explicitly dropped in + * the failure exit path. + */ + list_add(&root->root_list, &cgroup_roots); + cgroup_root_count++; + + /* + * Link the root cgroup in this hierarchy into all the css_set + * objects. + */ + spin_lock_irq(&css_set_lock); + hash_for_each(css_set_table, i, cset, hlist) { + link_css_set(&tmp_links, cset, root_cgrp); + if (css_set_populated(cset)) + cgroup_update_populated(root_cgrp, true); + } + spin_unlock_irq(&css_set_lock); + + BUG_ON(!list_empty(&root_cgrp->self.children)); + BUG_ON(atomic_read(&root->nr_cgrps) != 1); + + kernfs_activate(root_cgrp->kn); + ret = 0; + goto out; + +destroy_root: + kernfs_destroy_root(root->kf_root); + root->kf_root = NULL; +exit_root_id: + cgroup_exit_root_id(root); +cancel_ref: + percpu_ref_exit(&root_cgrp->self.refcnt); +out: + free_cgrp_cset_links(&tmp_links); + return ret; +} + +struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, + struct cgroup_root *root, unsigned long magic, + struct cgroup_namespace *ns) +{ + struct dentry *dentry; + bool new_sb = false; + + dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb); + + /* + * In non-init cgroup namespace, instead of root cgroup's dentry, + * we return the dentry corresponding to the cgroupns->root_cgrp. + */ + if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { + struct dentry *nsdentry; + struct super_block *sb = dentry->d_sb; + struct cgroup *cgrp; + + mutex_lock(&cgroup_mutex); + spin_lock_irq(&css_set_lock); + + cgrp = cset_cgroup_from_root(ns->root_cset, root); + + spin_unlock_irq(&css_set_lock); + mutex_unlock(&cgroup_mutex); + + nsdentry = kernfs_node_dentry(cgrp->kn, sb); + dput(dentry); + if (IS_ERR(nsdentry)) + deactivate_locked_super(sb); + dentry = nsdentry; + } + + if (!new_sb) + cgroup_put(&root->cgrp); + + return dentry; +} + +static struct dentry *cgroup_mount(struct file_system_type *fs_type, + int flags, const char *unused_dev_name, + void *data) +{ + struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; + struct dentry *dentry; + int ret; + + get_cgroup_ns(ns); + + /* Check if the caller has permission to mount. */ + if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { + put_cgroup_ns(ns); + return ERR_PTR(-EPERM); + } + + /* + * The first time anyone tries to mount a cgroup, enable the list + * linking each css_set to its tasks and fix up all existing tasks. + */ + if (!use_task_css_set_links) + cgroup_enable_task_cg_lists(); + + if (fs_type == &cgroup2_fs_type) { + unsigned int root_flags; + + ret = parse_cgroup_root_flags(data, &root_flags); + if (ret) { + put_cgroup_ns(ns); + return ERR_PTR(ret); + } + + cgrp_dfl_visible = true; + cgroup_get_live(&cgrp_dfl_root.cgrp); + + dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root, + CGROUP2_SUPER_MAGIC, ns); + if (!IS_ERR(dentry)) + apply_cgroup_root_flags(root_flags); + } else { + dentry = cgroup1_mount(&cgroup_fs_type, flags, data, + CGROUP_SUPER_MAGIC, ns); + } + + put_cgroup_ns(ns); + return dentry; +} + +static void cgroup_kill_sb(struct super_block *sb) +{ + struct kernfs_root *kf_root = kernfs_root_from_sb(sb); + struct cgroup_root *root = cgroup_root_from_kf(kf_root); + + /* + * If @root doesn't have any mounts or children, start killing it. + * This prevents new mounts by disabling percpu_ref_tryget_live(). + * cgroup_mount() may wait for @root's release. + * + * And don't kill the default root. + */ + if (!list_empty(&root->cgrp.self.children) || + root == &cgrp_dfl_root) + cgroup_put(&root->cgrp); + else + percpu_ref_kill(&root->cgrp.self.refcnt); + + kernfs_kill_sb(sb); +} + +struct file_system_type cgroup_fs_type = { + .name = "cgroup", + .mount = cgroup_mount, + .kill_sb = cgroup_kill_sb, + .fs_flags = FS_USERNS_MOUNT, +}; + +static struct file_system_type cgroup2_fs_type = { + .name = "cgroup2", + .mount = cgroup_mount, + .kill_sb = cgroup_kill_sb, + .fs_flags = FS_USERNS_MOUNT, +}; + +int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, + struct cgroup_namespace *ns) +{ + struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); + + return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); +} + +int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, + struct cgroup_namespace *ns) +{ + int ret; + + mutex_lock(&cgroup_mutex); + spin_lock_irq(&css_set_lock); + + ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); + + spin_unlock_irq(&css_set_lock); + mutex_unlock(&cgroup_mutex); + + return ret; +} +EXPORT_SYMBOL_GPL(cgroup_path_ns); + +/** + * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy + * @task: target task + * @buf: the buffer to write the path into + * @buflen: the length of the buffer + * + * Determine @task's cgroup on the first (the one with the lowest non-zero + * hierarchy_id) cgroup hierarchy and copy its path into @buf. This + * function grabs cgroup_mutex and shouldn't be used inside locks used by + * cgroup controller callbacks. + * + * Return value is the same as kernfs_path(). + */ +int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) +{ + struct cgroup_root *root; + struct cgroup *cgrp; + int hierarchy_id = 1; + int ret; + + mutex_lock(&cgroup_mutex); + spin_lock_irq(&css_set_lock); + + root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); + + if (root) { + cgrp = task_cgroup_from_root(task, root); + ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); + } else { + /* if no hierarchy exists, everyone is in "/" */ + ret = strlcpy(buf, "/", buflen); + } + + spin_unlock_irq(&css_set_lock); + mutex_unlock(&cgroup_mutex); + return ret; +} +EXPORT_SYMBOL_GPL(task_cgroup_path); + +/** + * cgroup_migrate_add_task - add a migration target task to a migration context + * @task: target task + * @mgctx: target migration context + * + * Add @task, which is a migration target, to @mgctx->tset. This function + * becomes noop if @task doesn't need to be migrated. @task's css_set + * should have been added as a migration source and @task->cg_list will be + * moved from the css_set's tasks list to mg_tasks one. + */ +static void cgroup_migrate_add_task(struct task_struct *task, + struct cgroup_mgctx *mgctx) +{ + struct css_set *cset; + + lockdep_assert_held(&css_set_lock); + + /* @task either already exited or can't exit until the end */ + if (task->flags & PF_EXITING) + return; + + /* leave @task alone if post_fork() hasn't linked it yet */ + if (list_empty(&task->cg_list)) + return; + + cset = task_css_set(task); + if (!cset->mg_src_cgrp) + return; + + mgctx->tset.nr_tasks++; + + list_move_tail(&task->cg_list, &cset->mg_tasks); + if (list_empty(&cset->mg_node)) + list_add_tail(&cset->mg_node, + &mgctx->tset.src_csets); + if (list_empty(&cset->mg_dst_cset->mg_node)) + list_add_tail(&cset->mg_dst_cset->mg_node, + &mgctx->tset.dst_csets); +} + +/** + * cgroup_taskset_first - reset taskset and return the first task + * @tset: taskset of interest + * @dst_cssp: output variable for the destination css + * + * @tset iteration is initialized and the first task is returned. + */ +struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, + struct cgroup_subsys_state **dst_cssp) +{ + tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); + tset->cur_task = NULL; + + return cgroup_taskset_next(tset, dst_cssp); +} + +/** + * cgroup_taskset_next - iterate to the next task in taskset + * @tset: taskset of interest + * @dst_cssp: output variable for the destination css + * + * Return the next task in @tset. Iteration must have been initialized + * with cgroup_taskset_first(). + */ +struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, + struct cgroup_subsys_state **dst_cssp) +{ + struct css_set *cset = tset->cur_cset; + struct task_struct *task = tset->cur_task; + + while (&cset->mg_node != tset->csets) { + if (!task) + task = list_first_entry(&cset->mg_tasks, + struct task_struct, cg_list); + else + task = list_next_entry(task, cg_list); + + if (&task->cg_list != &cset->mg_tasks) { + tset->cur_cset = cset; + tset->cur_task = task; + + /* + * This function may be called both before and + * after cgroup_taskset_migrate(). The two cases + * can be distinguished by looking at whether @cset + * has its ->mg_dst_cset set. + */ + if (cset->mg_dst_cset) + *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; + else + *dst_cssp = cset->subsys[tset->ssid]; + + return task; + } + + cset = list_next_entry(cset, mg_node); + task = NULL; + } + + return NULL; +} + +/** + * cgroup_taskset_migrate - migrate a taskset + * @mgctx: migration context + * + * Migrate tasks in @mgctx as setup by migration preparation functions. + * This function fails iff one of the ->can_attach callbacks fails and + * guarantees that either all or none of the tasks in @mgctx are migrated. + * @mgctx is consumed regardless of success. + */ +static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) +{ + struct cgroup_taskset *tset = &mgctx->tset; + struct cgroup_subsys *ss; + struct task_struct *task, *tmp_task; + struct css_set *cset, *tmp_cset; + int ssid, failed_ssid, ret; + + /* check that we can legitimately attach to the cgroup */ + if (tset->nr_tasks) { + do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { + if (ss->can_attach) { + tset->ssid = ssid; + ret = ss->can_attach(tset); + if (ret) { + failed_ssid = ssid; + goto out_cancel_attach; + } + } + } while_each_subsys_mask(); + } + + /* + * Now that we're guaranteed success, proceed to move all tasks to + * the new cgroup. There are no failure cases after here, so this + * is the commit point. + */ + spin_lock_irq(&css_set_lock); + list_for_each_entry(cset, &tset->src_csets, mg_node) { + list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { + struct css_set *from_cset = task_css_set(task); + struct css_set *to_cset = cset->mg_dst_cset; + + get_css_set(to_cset); + to_cset->nr_tasks++; + css_set_move_task(task, from_cset, to_cset, true); + put_css_set_locked(from_cset); + from_cset->nr_tasks--; + } + } + spin_unlock_irq(&css_set_lock); + + /* + * Migration is committed, all target tasks are now on dst_csets. + * Nothing is sensitive to fork() after this point. Notify + * controllers that migration is complete. + */ + tset->csets = &tset->dst_csets; + + if (tset->nr_tasks) { + do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { + if (ss->attach) { + tset->ssid = ssid; + ss->attach(tset); + } + } while_each_subsys_mask(); + } + + ret = 0; + goto out_release_tset; + +out_cancel_attach: + if (tset->nr_tasks) { + do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { + if (ssid == failed_ssid) + break; + if (ss->cancel_attach) { + tset->ssid = ssid; + ss->cancel_attach(tset); + } + } while_each_subsys_mask(); + } +out_release_tset: + spin_lock_irq(&css_set_lock); + list_splice_init(&tset->dst_csets, &tset->src_csets); + list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { + list_splice_tail_init(&cset->mg_tasks, &cset->tasks); + list_del_init(&cset->mg_node); + } + spin_unlock_irq(&css_set_lock); + + /* + * Re-initialize the cgroup_taskset structure in case it is reused + * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() + * iteration. + */ + tset->nr_tasks = 0; + tset->csets = &tset->src_csets; + return ret; +} + +/** + * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination + * @dst_cgrp: destination cgroup to test + * + * On the default hierarchy, except for the mixable, (possible) thread root + * and threaded cgroups, subtree_control must be zero for migration + * destination cgroups with tasks so that child cgroups don't compete + * against tasks. + */ +int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) +{ + /* v1 doesn't have any restriction */ + if (!cgroup_on_dfl(dst_cgrp)) + return 0; + + /* verify @dst_cgrp can host resources */ + if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) + return -EOPNOTSUPP; + + /* mixables don't care */ + if (cgroup_is_mixable(dst_cgrp)) + return 0; + + /* + * If @dst_cgrp is already or can become a thread root or is + * threaded, it doesn't matter. + */ + if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) + return 0; + + /* apply no-internal-process constraint */ + if (dst_cgrp->subtree_control) + return -EBUSY; + + return 0; +} + +/** + * cgroup_migrate_finish - cleanup after attach + * @mgctx: migration context + * + * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See + * those functions for details. + */ +void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) +{ + LIST_HEAD(preloaded); + struct css_set *cset, *tmp_cset; + + lockdep_assert_held(&cgroup_mutex); + + spin_lock_irq(&css_set_lock); + + list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); + list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); + + list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { + cset->mg_src_cgrp = NULL; + cset->mg_dst_cgrp = NULL; + cset->mg_dst_cset = NULL; + list_del_init(&cset->mg_preload_node); + put_css_set_locked(cset); + } + + spin_unlock_irq(&css_set_lock); +} + +/** + * cgroup_migrate_add_src - add a migration source css_set + * @src_cset: the source css_set to add + * @dst_cgrp: the destination cgroup + * @mgctx: migration context + * + * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin + * @src_cset and add it to @mgctx->src_csets, which should later be cleaned + * up by cgroup_migrate_finish(). + * + * This function may be called without holding cgroup_threadgroup_rwsem + * even if the target is a process. Threads may be created and destroyed + * but as long as cgroup_mutex is not dropped, no new css_set can be put + * into play and the preloaded css_sets are guaranteed to cover all + * migrations. + */ +void cgroup_migrate_add_src(struct css_set *src_cset, + struct cgroup *dst_cgrp, + struct cgroup_mgctx *mgctx) +{ + struct cgroup *src_cgrp; + + lockdep_assert_held(&cgroup_mutex); + lockdep_assert_held(&css_set_lock); + + /* + * If ->dead, @src_set is associated with one or more dead cgroups + * and doesn't contain any migratable tasks. Ignore it early so + * that the rest of migration path doesn't get confused by it. + */ + if (src_cset->dead) + return; + + src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); + + if (!list_empty(&src_cset->mg_preload_node)) + return; + + WARN_ON(src_cset->mg_src_cgrp); + WARN_ON(src_cset->mg_dst_cgrp); + WARN_ON(!list_empty(&src_cset->mg_tasks)); + WARN_ON(!list_empty(&src_cset->mg_node)); + + src_cset->mg_src_cgrp = src_cgrp; + src_cset->mg_dst_cgrp = dst_cgrp; + get_css_set(src_cset); + list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); +} + +/** + * cgroup_migrate_prepare_dst - prepare destination css_sets for migration + * @mgctx: migration context + * + * Tasks are about to be moved and all the source css_sets have been + * preloaded to @mgctx->preloaded_src_csets. This function looks up and + * pins all destination css_sets, links each to its source, and append them + * to @mgctx->preloaded_dst_csets. + * + * This function must be called after cgroup_migrate_add_src() has been + * called on each migration source css_set. After migration is performed + * using cgroup_migrate(), cgroup_migrate_finish() must be called on + * @mgctx. + */ +int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) +{ + struct css_set *src_cset, *tmp_cset; + + lockdep_assert_held(&cgroup_mutex); + + /* look up the dst cset for each src cset and link it to src */ + list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, + mg_preload_node) { + struct css_set *dst_cset; + struct cgroup_subsys *ss; + int ssid; + + dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); + if (!dst_cset) + goto err; + + WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); + + /* + * If src cset equals dst, it's noop. Drop the src. + * cgroup_migrate() will skip the cset too. Note that we + * can't handle src == dst as some nodes are used by both. + */ + if (src_cset == dst_cset) { + src_cset->mg_src_cgrp = NULL; + src_cset->mg_dst_cgrp = NULL; + list_del_init(&src_cset->mg_preload_node); + put_css_set(src_cset); + put_css_set(dst_cset); + continue; + } + + src_cset->mg_dst_cset = dst_cset; + + if (list_empty(&dst_cset->mg_preload_node)) + list_add_tail(&dst_cset->mg_preload_node, + &mgctx->preloaded_dst_csets); + else + put_css_set(dst_cset); + + for_each_subsys(ss, ssid) + if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) + mgctx->ss_mask |= 1 << ssid; + } + + return 0; +err: + cgroup_migrate_finish(mgctx); + return -ENOMEM; +} + +/** + * cgroup_migrate - migrate a process or task to a cgroup + * @leader: the leader of the process or the task to migrate + * @threadgroup: whether @leader points to the whole process or a single task + * @mgctx: migration context + * + * Migrate a process or task denoted by @leader. If migrating a process, + * the caller must be holding cgroup_threadgroup_rwsem. The caller is also + * responsible for invoking cgroup_migrate_add_src() and + * cgroup_migrate_prepare_dst() on the targets before invoking this + * function and following up with cgroup_migrate_finish(). + * + * As long as a controller's ->can_attach() doesn't fail, this function is + * guaranteed to succeed. This means that, excluding ->can_attach() + * failure, when migrating multiple targets, the success or failure can be + * decided for all targets by invoking group_migrate_prepare_dst() before + * actually starting migrating. + */ +int cgroup_migrate(struct task_struct *leader, bool threadgroup, + struct cgroup_mgctx *mgctx) +{ + struct task_struct *task; + + /* + * Prevent freeing of tasks while we take a snapshot. Tasks that are + * already PF_EXITING could be freed from underneath us unless we + * take an rcu_read_lock. + */ + spin_lock_irq(&css_set_lock); + rcu_read_lock(); + task = leader; + do { + cgroup_migrate_add_task(task, mgctx); + if (!threadgroup) + break; + } while_each_thread(leader, task); + rcu_read_unlock(); + spin_unlock_irq(&css_set_lock); + + return cgroup_migrate_execute(mgctx); +} + +/** + * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup + * @dst_cgrp: the cgroup to attach to + * @leader: the task or the leader of the threadgroup to be attached + * @threadgroup: attach the whole threadgroup? + * + * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. + */ +int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, + bool threadgroup) +{ + DEFINE_CGROUP_MGCTX(mgctx); + struct task_struct *task; + int ret; + + ret = cgroup_migrate_vet_dst(dst_cgrp); + if (ret) + return ret; + + /* look up all src csets */ + spin_lock_irq(&css_set_lock); + rcu_read_lock(); + task = leader; + do { + cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); + if (!threadgroup) + break; + } while_each_thread(leader, task); + rcu_read_unlock(); + spin_unlock_irq(&css_set_lock); + + /* prepare dst csets and commit */ + ret = cgroup_migrate_prepare_dst(&mgctx); + if (!ret) + ret = cgroup_migrate(leader, threadgroup, &mgctx); + + cgroup_migrate_finish(&mgctx); + + if (!ret) + TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); + + return ret; +} + +struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup) + __acquires(&cgroup_threadgroup_rwsem) +{ + struct task_struct *tsk; + pid_t pid; + + if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) + return ERR_PTR(-EINVAL); + + percpu_down_write(&cgroup_threadgroup_rwsem); + + rcu_read_lock(); + if (pid) { + tsk = find_task_by_vpid(pid); + if (!tsk) { + tsk = ERR_PTR(-ESRCH); + goto out_unlock_threadgroup; + } + } else { + tsk = current; + } + + if (threadgroup) + tsk = tsk->group_leader; + + /* + * kthreads may acquire PF_NO_SETAFFINITY during initialization. + * If userland migrates such a kthread to a non-root cgroup, it can + * become trapped in a cpuset, or RT kthread may be born in a + * cgroup with no rt_runtime allocated. Just say no. + */ + if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { + tsk = ERR_PTR(-EINVAL); + goto out_unlock_threadgroup; + } + + get_task_struct(tsk); + goto out_unlock_rcu; + +out_unlock_threadgroup: + percpu_up_write(&cgroup_threadgroup_rwsem); +out_unlock_rcu: + rcu_read_unlock(); + return tsk; +} + +void cgroup_procs_write_finish(struct task_struct *task) + __releases(&cgroup_threadgroup_rwsem) +{ + struct cgroup_subsys *ss; + int ssid; + + /* release reference from cgroup_procs_write_start() */ + put_task_struct(task); + + percpu_up_write(&cgroup_threadgroup_rwsem); + for_each_subsys(ss, ssid) + if (ss->post_attach) + ss->post_attach(); +} + +static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) +{ + struct cgroup_subsys *ss; + bool printed = false; + int ssid; + + do_each_subsys_mask(ss, ssid, ss_mask) { + if (printed) + seq_putc(seq, ' '); + seq_printf(seq, "%s", ss->name); + printed = true; + } while_each_subsys_mask(); + if (printed) + seq_putc(seq, '\n'); +} + +/* show controllers which are enabled from the parent */ +static int cgroup_controllers_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + + cgroup_print_ss_mask(seq, cgroup_control(cgrp)); + return 0; +} + +/* show controllers which are enabled for a given cgroup's children */ +static int cgroup_subtree_control_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + + cgroup_print_ss_mask(seq, cgrp->subtree_control); + return 0; +} + +/** + * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy + * @cgrp: root of the subtree to update csses for + * + * @cgrp's control masks have changed and its subtree's css associations + * need to be updated accordingly. This function looks up all css_sets + * which are attached to the subtree, creates the matching updated css_sets + * and migrates the tasks to the new ones. + */ +static int cgroup_update_dfl_csses(struct cgroup *cgrp) +{ + DEFINE_CGROUP_MGCTX(mgctx); + struct cgroup_subsys_state *d_css; + struct cgroup *dsct; + struct css_set *src_cset; + int ret; + + lockdep_assert_held(&cgroup_mutex); + + percpu_down_write(&cgroup_threadgroup_rwsem); + + /* look up all csses currently attached to @cgrp's subtree */ + spin_lock_irq(&css_set_lock); + cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { + struct cgrp_cset_link *link; + + list_for_each_entry(link, &dsct->cset_links, cset_link) + cgroup_migrate_add_src(link->cset, dsct, &mgctx); + } + spin_unlock_irq(&css_set_lock); + + /* NULL dst indicates self on default hierarchy */ + ret = cgroup_migrate_prepare_dst(&mgctx); + if (ret) + goto out_finish; + + spin_lock_irq(&css_set_lock); + list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { + struct task_struct *task, *ntask; + + /* all tasks in src_csets need to be migrated */ + list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) + cgroup_migrate_add_task(task, &mgctx); + } + spin_unlock_irq(&css_set_lock); + + ret = cgroup_migrate_execute(&mgctx); +out_finish: + cgroup_migrate_finish(&mgctx); + percpu_up_write(&cgroup_threadgroup_rwsem); + return ret; +} + +/** + * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses + * @cgrp: root of the target subtree + * + * Because css offlining is asynchronous, userland may try to re-enable a + * controller while the previous css is still around. This function grabs + * cgroup_mutex and drains the previous css instances of @cgrp's subtree. + */ +void cgroup_lock_and_drain_offline(struct cgroup *cgrp) + __acquires(&cgroup_mutex) +{ + struct cgroup *dsct; + struct cgroup_subsys_state *d_css; + struct cgroup_subsys *ss; + int ssid; + +restart: + mutex_lock(&cgroup_mutex); + + cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { + for_each_subsys(ss, ssid) { + struct cgroup_subsys_state *css = cgroup_css(dsct, ss); + DEFINE_WAIT(wait); + + if (!css || !percpu_ref_is_dying(&css->refcnt)) + continue; + + cgroup_get_live(dsct); + prepare_to_wait(&dsct->offline_waitq, &wait, + TASK_UNINTERRUPTIBLE); + + mutex_unlock(&cgroup_mutex); + schedule(); + finish_wait(&dsct->offline_waitq, &wait); + + cgroup_put(dsct); + goto restart; + } + } +} + +/** + * cgroup_save_control - save control masks and dom_cgrp of a subtree + * @cgrp: root of the target subtree + * + * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the + * respective old_ prefixed fields for @cgrp's subtree including @cgrp + * itself. + */ +static void cgroup_save_control(struct cgroup *cgrp) +{ + struct cgroup *dsct; + struct cgroup_subsys_state *d_css; + + cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { + dsct->old_subtree_control = dsct->subtree_control; + dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; + dsct->old_dom_cgrp = dsct->dom_cgrp; + } +} + +/** + * cgroup_propagate_control - refresh control masks of a subtree + * @cgrp: root of the target subtree + * + * For @cgrp and its subtree, ensure ->subtree_ss_mask matches + * ->subtree_control and propagate controller availability through the + * subtree so that descendants don't have unavailable controllers enabled. + */ +static void cgroup_propagate_control(struct cgroup *cgrp) +{ + struct cgroup *dsct; + struct cgroup_subsys_state *d_css; + + cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { + dsct->subtree_control &= cgroup_control(dsct); + dsct->subtree_ss_mask = + cgroup_calc_subtree_ss_mask(dsct->subtree_control, + cgroup_ss_mask(dsct)); + } +} + +/** + * cgroup_restore_control - restore control masks and dom_cgrp of a subtree + * @cgrp: root of the target subtree + * + * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the + * respective old_ prefixed fields for @cgrp's subtree including @cgrp + * itself. + */ +static void cgroup_restore_control(struct cgroup *cgrp) +{ + struct cgroup *dsct; + struct cgroup_subsys_state *d_css; + + cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { + dsct->subtree_control = dsct->old_subtree_control; + dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; + dsct->dom_cgrp = dsct->old_dom_cgrp; + } +} + +static bool css_visible(struct cgroup_subsys_state *css) +{ + struct cgroup_subsys *ss = css->ss; + struct cgroup *cgrp = css->cgroup; + + if (cgroup_control(cgrp) & (1 << ss->id)) + return true; + if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) + return false; + return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; +} + +/** + * cgroup_apply_control_enable - enable or show csses according to control + * @cgrp: root of the target subtree + * + * Walk @cgrp's subtree and create new csses or make the existing ones + * visible. A css is created invisible if it's being implicitly enabled + * through dependency. An invisible css is made visible when the userland + * explicitly enables it. + * + * Returns 0 on success, -errno on failure. On failure, csses which have + * been processed already aren't cleaned up. The caller is responsible for + * cleaning up with cgroup_apply_control_disable(). + */ +static int cgroup_apply_control_enable(struct cgroup *cgrp) +{ + struct cgroup *dsct; + struct cgroup_subsys_state *d_css; + struct cgroup_subsys *ss; + int ssid, ret; + + cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { + for_each_subsys(ss, ssid) { + struct cgroup_subsys_state *css = cgroup_css(dsct, ss); + + if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) + continue; + + if (!css) { + css = css_create(dsct, ss); + if (IS_ERR(css)) + return PTR_ERR(css); + } + + WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); + + if (css_visible(css)) { + ret = css_populate_dir(css); + if (ret) + return ret; + } + } + } + + return 0; +} + +/** + * cgroup_apply_control_disable - kill or hide csses according to control + * @cgrp: root of the target subtree + * + * Walk @cgrp's subtree and kill and hide csses so that they match + * cgroup_ss_mask() and cgroup_visible_mask(). + * + * A css is hidden when the userland requests it to be disabled while other + * subsystems are still depending on it. The css must not actively control + * resources and be in the vanilla state if it's made visible again later. + * Controllers which may be depended upon should provide ->css_reset() for + * this purpose. + */ +static void cgroup_apply_control_disable(struct cgroup *cgrp) +{ + struct cgroup *dsct; + struct cgroup_subsys_state *d_css; + struct cgroup_subsys *ss; + int ssid; + + cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { + for_each_subsys(ss, ssid) { + struct cgroup_subsys_state *css = cgroup_css(dsct, ss); + + if (!css) + continue; + + WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); + + if (css->parent && + !(cgroup_ss_mask(dsct) & (1 << ss->id))) { + kill_css(css); + } else if (!css_visible(css)) { + css_clear_dir(css); + if (ss->css_reset) + ss->css_reset(css); + } + } + } +} + +/** + * cgroup_apply_control - apply control mask updates to the subtree + * @cgrp: root of the target subtree + * + * subsystems can be enabled and disabled in a subtree using the following + * steps. + * + * 1. Call cgroup_save_control() to stash the current state. + * 2. Update ->subtree_control masks in the subtree as desired. + * 3. Call cgroup_apply_control() to apply the changes. + * 4. Optionally perform other related operations. + * 5. Call cgroup_finalize_control() to finish up. + * + * This function implements step 3 and propagates the mask changes + * throughout @cgrp's subtree, updates csses accordingly and perform + * process migrations. + */ +static int cgroup_apply_control(struct cgroup *cgrp) +{ + int ret; + + cgroup_propagate_control(cgrp); + + ret = cgroup_apply_control_enable(cgrp); + if (ret) + return ret; + + /* + * At this point, cgroup_e_css() results reflect the new csses + * making the following cgroup_update_dfl_csses() properly update + * css associations of all tasks in the subtree. + */ + ret = cgroup_update_dfl_csses(cgrp); + if (ret) + return ret; + + return 0; +} + +/** + * cgroup_finalize_control - finalize control mask update + * @cgrp: root of the target subtree + * @ret: the result of the update + * + * Finalize control mask update. See cgroup_apply_control() for more info. + */ +static void cgroup_finalize_control(struct cgroup *cgrp, int ret) +{ + if (ret) { + cgroup_restore_control(cgrp); + cgroup_propagate_control(cgrp); + } + + cgroup_apply_control_disable(cgrp); +} + +static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) +{ + u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; + + /* if nothing is getting enabled, nothing to worry about */ + if (!enable) + return 0; + + /* can @cgrp host any resources? */ + if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) + return -EOPNOTSUPP; + + /* mixables don't care */ + if (cgroup_is_mixable(cgrp)) + return 0; + + if (domain_enable) { + /* can't enable domain controllers inside a thread subtree */ + if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) + return -EOPNOTSUPP; + } else { + /* + * Threaded controllers can handle internal competitions + * and are always allowed inside a (prospective) thread + * subtree. + */ + if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) + return 0; + } + + /* + * Controllers can't be enabled for a cgroup with tasks to avoid + * child cgroups competing against tasks. + */ + if (cgroup_has_tasks(cgrp)) + return -EBUSY; + + return 0; +} + +/* change the enabled child controllers for a cgroup in the default hierarchy */ +static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, + loff_t off) +{ + u16 enable = 0, disable = 0; + struct cgroup *cgrp, *child; + struct cgroup_subsys *ss; + char *tok; + int ssid, ret; + + /* + * Parse input - space separated list of subsystem names prefixed + * with either + or -. + */ + buf = strstrip(buf); + while ((tok = strsep(&buf, " "))) { + if (tok[0] == '\0') + continue; + do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { + if (!cgroup_ssid_enabled(ssid) || + strcmp(tok + 1, ss->name)) + continue; + + if (*tok == '+') { + enable |= 1 << ssid; + disable &= ~(1 << ssid); + } else if (*tok == '-') { + disable |= 1 << ssid; + enable &= ~(1 << ssid); + } else { + return -EINVAL; + } + break; + } while_each_subsys_mask(); + if (ssid == CGROUP_SUBSYS_COUNT) + return -EINVAL; + } + + cgrp = cgroup_kn_lock_live(of->kn, true); + if (!cgrp) + return -ENODEV; + + for_each_subsys(ss, ssid) { + if (enable & (1 << ssid)) { + if (cgrp->subtree_control & (1 << ssid)) { + enable &= ~(1 << ssid); + continue; + } + + if (!(cgroup_control(cgrp) & (1 << ssid))) { + ret = -ENOENT; + goto out_unlock; + } + } else if (disable & (1 << ssid)) { + if (!(cgrp->subtree_control & (1 << ssid))) { + disable &= ~(1 << ssid); + continue; + } + + /* a child has it enabled? */ + cgroup_for_each_live_child(child, cgrp) { + if (child->subtree_control & (1 << ssid)) { + ret = -EBUSY; + goto out_unlock; + } + } + } + } + + if (!enable && !disable) { + ret = 0; + goto out_unlock; + } + + ret = cgroup_vet_subtree_control_enable(cgrp, enable); + if (ret) + goto out_unlock; + + /* save and update control masks and prepare csses */ + cgroup_save_control(cgrp); + + cgrp->subtree_control |= enable; + cgrp->subtree_control &= ~disable; + + ret = cgroup_apply_control(cgrp); + cgroup_finalize_control(cgrp, ret); + if (ret) + goto out_unlock; + + kernfs_activate(cgrp->kn); +out_unlock: + cgroup_kn_unlock(of->kn); + return ret ?: nbytes; +} + +/** + * cgroup_enable_threaded - make @cgrp threaded + * @cgrp: the target cgroup + * + * Called when "threaded" is written to the cgroup.type interface file and + * tries to make @cgrp threaded and join the parent's resource domain. + * This function is never called on the root cgroup as cgroup.type doesn't + * exist on it. + */ +static int cgroup_enable_threaded(struct cgroup *cgrp) +{ + struct cgroup *parent = cgroup_parent(cgrp); + struct cgroup *dom_cgrp = parent->dom_cgrp; + struct cgroup *dsct; + struct cgroup_subsys_state *d_css; + int ret; + + lockdep_assert_held(&cgroup_mutex); + + /* noop if already threaded */ + if (cgroup_is_threaded(cgrp)) + return 0; + + /* + * If @cgroup is populated or has domain controllers enabled, it + * can't be switched. While the below cgroup_can_be_thread_root() + * test can catch the same conditions, that's only when @parent is + * not mixable, so let's check it explicitly. + */ + if (cgroup_is_populated(cgrp) || + cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) + return -EOPNOTSUPP; + + /* we're joining the parent's domain, ensure its validity */ + if (!cgroup_is_valid_domain(dom_cgrp) || + !cgroup_can_be_thread_root(dom_cgrp)) + return -EOPNOTSUPP; + + /* + * The following shouldn't cause actual migrations and should + * always succeed. + */ + cgroup_save_control(cgrp); + + cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) + if (dsct == cgrp || cgroup_is_threaded(dsct)) + dsct->dom_cgrp = dom_cgrp; + + ret = cgroup_apply_control(cgrp); + if (!ret) + parent->nr_threaded_children++; + + cgroup_finalize_control(cgrp, ret); + return ret; +} + +static int cgroup_type_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + + if (cgroup_is_threaded(cgrp)) + seq_puts(seq, "threaded\n"); + else if (!cgroup_is_valid_domain(cgrp)) + seq_puts(seq, "domain invalid\n"); + else if (cgroup_is_thread_root(cgrp)) + seq_puts(seq, "domain threaded\n"); + else + seq_puts(seq, "domain\n"); + + return 0; +} + +static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off) +{ + struct cgroup *cgrp; + int ret; + + /* only switching to threaded mode is supported */ + if (strcmp(strstrip(buf), "threaded")) + return -EINVAL; + + /* drain dying csses before we re-apply (threaded) subtree control */ + cgrp = cgroup_kn_lock_live(of->kn, true); + if (!cgrp) + return -ENOENT; + + /* threaded can only be enabled */ + ret = cgroup_enable_threaded(cgrp); + + cgroup_kn_unlock(of->kn); + return ret ?: nbytes; +} + +static int cgroup_max_descendants_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + int descendants = READ_ONCE(cgrp->max_descendants); + + if (descendants == INT_MAX) + seq_puts(seq, "max\n"); + else + seq_printf(seq, "%d\n", descendants); + + return 0; +} + +static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct cgroup *cgrp; + int descendants; + ssize_t ret; + + buf = strstrip(buf); + if (!strcmp(buf, "max")) { + descendants = INT_MAX; + } else { + ret = kstrtoint(buf, 0, &descendants); + if (ret) + return ret; + } + + if (descendants < 0) + return -ERANGE; + + cgrp = cgroup_kn_lock_live(of->kn, false); + if (!cgrp) + return -ENOENT; + + cgrp->max_descendants = descendants; + + cgroup_kn_unlock(of->kn); + + return nbytes; +} + +static int cgroup_max_depth_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + int depth = READ_ONCE(cgrp->max_depth); + + if (depth == INT_MAX) + seq_puts(seq, "max\n"); + else + seq_printf(seq, "%d\n", depth); + + return 0; +} + +static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct cgroup *cgrp; + ssize_t ret; + int depth; + + buf = strstrip(buf); + if (!strcmp(buf, "max")) { + depth = INT_MAX; + } else { + ret = kstrtoint(buf, 0, &depth); + if (ret) + return ret; + } + + if (depth < 0) + return -ERANGE; + + cgrp = cgroup_kn_lock_live(of->kn, false); + if (!cgrp) + return -ENOENT; + + cgrp->max_depth = depth; + + cgroup_kn_unlock(of->kn); + + return nbytes; +} + +static int cgroup_events_show(struct seq_file *seq, void *v) +{ + seq_printf(seq, "populated %d\n", + cgroup_is_populated(seq_css(seq)->cgroup)); + return 0; +} + +static int cgroup_stat_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgroup = seq_css(seq)->cgroup; + + seq_printf(seq, "nr_descendants %d\n", + cgroup->nr_descendants); + seq_printf(seq, "nr_dying_descendants %d\n", + cgroup->nr_dying_descendants); + + return 0; +} + +static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, + struct cgroup *cgrp, int ssid) +{ + struct cgroup_subsys *ss = cgroup_subsys[ssid]; + struct cgroup_subsys_state *css; + int ret; + + if (!ss->css_extra_stat_show) + return 0; + + css = cgroup_tryget_css(cgrp, ss); + if (!css) + return 0; + + ret = ss->css_extra_stat_show(seq, css); + css_put(css); + return ret; +} + +static int cpu_stat_show(struct seq_file *seq, void *v) +{ + struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; + int ret = 0; + + cgroup_base_stat_cputime_show(seq); +#ifdef CONFIG_CGROUP_SCHED + ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); +#endif + return ret; +} + +static int cgroup_file_open(struct kernfs_open_file *of) +{ + struct cftype *cft = of->kn->priv; + struct cgroup_file_ctx *ctx; + int ret; + + ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); + if (!ctx) + return -ENOMEM; + + ctx->ns = current->nsproxy->cgroup_ns; + get_cgroup_ns(ctx->ns); + of->priv = ctx; + + if (!cft->open) + return 0; + + ret = cft->open(of); + if (ret) { + put_cgroup_ns(ctx->ns); + kfree(ctx); + } + return ret; +} + +static void cgroup_file_release(struct kernfs_open_file *of) +{ + struct cftype *cft = of->kn->priv; + struct cgroup_file_ctx *ctx = of->priv; + + if (cft->release) + cft->release(of); + put_cgroup_ns(ctx->ns); + kfree(ctx); +} + +static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off) +{ + struct cgroup_file_ctx *ctx = of->priv; + struct cgroup *cgrp = of->kn->parent->priv; + struct cftype *cft = of->kn->priv; + struct cgroup_subsys_state *css; + int ret; + + /* + * If namespaces are delegation boundaries, disallow writes to + * files in an non-init namespace root from inside the namespace + * except for the files explicitly marked delegatable - + * cgroup.procs and cgroup.subtree_control. + */ + if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && + !(cft->flags & CFTYPE_NS_DELEGATABLE) && + ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) + return -EPERM; + + if (cft->write) + return cft->write(of, buf, nbytes, off); + + /* + * kernfs guarantees that a file isn't deleted with operations in + * flight, which means that the matching css is and stays alive and + * doesn't need to be pinned. The RCU locking is not necessary + * either. It's just for the convenience of using cgroup_css(). + */ + rcu_read_lock(); + css = cgroup_css(cgrp, cft->ss); + rcu_read_unlock(); + + if (cft->write_u64) { + unsigned long long v; + ret = kstrtoull(buf, 0, &v); + if (!ret) + ret = cft->write_u64(css, cft, v); + } else if (cft->write_s64) { + long long v; + ret = kstrtoll(buf, 0, &v); + if (!ret) + ret = cft->write_s64(css, cft, v); + } else { + ret = -EINVAL; + } + + return ret ?: nbytes; +} + +static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) +{ + return seq_cft(seq)->seq_start(seq, ppos); +} + +static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) +{ + return seq_cft(seq)->seq_next(seq, v, ppos); +} + +static void cgroup_seqfile_stop(struct seq_file *seq, void *v) +{ + if (seq_cft(seq)->seq_stop) + seq_cft(seq)->seq_stop(seq, v); +} + +static int cgroup_seqfile_show(struct seq_file *m, void *arg) +{ + struct cftype *cft = seq_cft(m); + struct cgroup_subsys_state *css = seq_css(m); + + if (cft->seq_show) + return cft->seq_show(m, arg); + + if (cft->read_u64) + seq_printf(m, "%llu\n", cft->read_u64(css, cft)); + else if (cft->read_s64) + seq_printf(m, "%lld\n", cft->read_s64(css, cft)); + else + return -EINVAL; + return 0; +} + +static struct kernfs_ops cgroup_kf_single_ops = { + .atomic_write_len = PAGE_SIZE, + .open = cgroup_file_open, + .release = cgroup_file_release, + .write = cgroup_file_write, + .seq_show = cgroup_seqfile_show, +}; + +static struct kernfs_ops cgroup_kf_ops = { + .atomic_write_len = PAGE_SIZE, + .open = cgroup_file_open, + .release = cgroup_file_release, + .write = cgroup_file_write, + .seq_start = cgroup_seqfile_start, + .seq_next = cgroup_seqfile_next, + .seq_stop = cgroup_seqfile_stop, + .seq_show = cgroup_seqfile_show, +}; + +/* set uid and gid of cgroup dirs and files to that of the creator */ +static int cgroup_kn_set_ugid(struct kernfs_node *kn) +{ + struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, + .ia_uid = current_fsuid(), + .ia_gid = current_fsgid(), }; + + if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && + gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) + return 0; + + return kernfs_setattr(kn, &iattr); +} + +static void cgroup_file_notify_timer(struct timer_list *timer) +{ + cgroup_file_notify(container_of(timer, struct cgroup_file, + notify_timer)); +} + +static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, + struct cftype *cft) +{ + char name[CGROUP_FILE_NAME_MAX]; + struct kernfs_node *kn; + struct lock_class_key *key = NULL; + int ret; + +#ifdef CONFIG_DEBUG_LOCK_ALLOC + key = &cft->lockdep_key; +#endif + kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), + cgroup_file_mode(cft), + GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, + 0, cft->kf_ops, cft, + NULL, key); + if (IS_ERR(kn)) + return PTR_ERR(kn); + + ret = cgroup_kn_set_ugid(kn); + if (ret) { + kernfs_remove(kn); + return ret; + } + + if (cft->file_offset) { + struct cgroup_file *cfile = (void *)css + cft->file_offset; + + timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); + + spin_lock_irq(&cgroup_file_kn_lock); + cfile->kn = kn; + spin_unlock_irq(&cgroup_file_kn_lock); + } + + return 0; +} + +/** + * cgroup_addrm_files - add or remove files to a cgroup directory + * @css: the target css + * @cgrp: the target cgroup (usually css->cgroup) + * @cfts: array of cftypes to be added + * @is_add: whether to add or remove + * + * Depending on @is_add, add or remove files defined by @cfts on @cgrp. + * For removals, this function never fails. + */ +static int cgroup_addrm_files(struct cgroup_subsys_state *css, + struct cgroup *cgrp, struct cftype cfts[], + bool is_add) +{ + struct cftype *cft, *cft_end = NULL; + int ret = 0; + + lockdep_assert_held(&cgroup_mutex); + +restart: + for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { + /* does cft->flags tell us to skip this file on @cgrp? */ + if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) + continue; + if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) + continue; + if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) + continue; + if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) + continue; + + if (is_add) { + ret = cgroup_add_file(css, cgrp, cft); + if (ret) { + pr_warn("%s: failed to add %s, err=%d\n", + __func__, cft->name, ret); + cft_end = cft; + is_add = false; + goto restart; + } + } else { + cgroup_rm_file(cgrp, cft); + } + } + return ret; +} + +static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) +{ + struct cgroup_subsys *ss = cfts[0].ss; + struct cgroup *root = &ss->root->cgrp; + struct cgroup_subsys_state *css; + int ret = 0; + + lockdep_assert_held(&cgroup_mutex); + + /* add/rm files for all cgroups created before */ + css_for_each_descendant_pre(css, cgroup_css(root, ss)) { + struct cgroup *cgrp = css->cgroup; + + if (!(css->flags & CSS_VISIBLE)) + continue; + + ret = cgroup_addrm_files(css, cgrp, cfts, is_add); + if (ret) + break; + } + + if (is_add && !ret) + kernfs_activate(root->kn); + return ret; +} + +static void cgroup_exit_cftypes(struct cftype *cfts) +{ + struct cftype *cft; + + for (cft = cfts; cft->name[0] != '\0'; cft++) { + /* free copy for custom atomic_write_len, see init_cftypes() */ + if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) + kfree(cft->kf_ops); + cft->kf_ops = NULL; + cft->ss = NULL; + + /* revert flags set by cgroup core while adding @cfts */ + cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); + } +} + +static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) +{ + struct cftype *cft; + + for (cft = cfts; cft->name[0] != '\0'; cft++) { + struct kernfs_ops *kf_ops; + + WARN_ON(cft->ss || cft->kf_ops); + + if (cft->seq_start) + kf_ops = &cgroup_kf_ops; + else + kf_ops = &cgroup_kf_single_ops; + + /* + * Ugh... if @cft wants a custom max_write_len, we need to + * make a copy of kf_ops to set its atomic_write_len. + */ + if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { + kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); + if (!kf_ops) { + cgroup_exit_cftypes(cfts); + return -ENOMEM; + } + kf_ops->atomic_write_len = cft->max_write_len; + } + + cft->kf_ops = kf_ops; + cft->ss = ss; + } + + return 0; +} + +static int cgroup_rm_cftypes_locked(struct cftype *cfts) +{ + lockdep_assert_held(&cgroup_mutex); + + if (!cfts || !cfts[0].ss) + return -ENOENT; + + list_del(&cfts->node); + cgroup_apply_cftypes(cfts, false); + cgroup_exit_cftypes(cfts); + return 0; +} + +/** + * cgroup_rm_cftypes - remove an array of cftypes from a subsystem + * @cfts: zero-length name terminated array of cftypes + * + * Unregister @cfts. Files described by @cfts are removed from all + * existing cgroups and all future cgroups won't have them either. This + * function can be called anytime whether @cfts' subsys is attached or not. + * + * Returns 0 on successful unregistration, -ENOENT if @cfts is not + * registered. + */ +int cgroup_rm_cftypes(struct cftype *cfts) +{ + int ret; + + mutex_lock(&cgroup_mutex); + ret = cgroup_rm_cftypes_locked(cfts); + mutex_unlock(&cgroup_mutex); + return ret; +} + +/** + * cgroup_add_cftypes - add an array of cftypes to a subsystem + * @ss: target cgroup subsystem + * @cfts: zero-length name terminated array of cftypes + * + * Register @cfts to @ss. Files described by @cfts are created for all + * existing cgroups to which @ss is attached and all future cgroups will + * have them too. This function can be called anytime whether @ss is + * attached or not. + * + * Returns 0 on successful registration, -errno on failure. Note that this + * function currently returns 0 as long as @cfts registration is successful + * even if some file creation attempts on existing cgroups fail. + */ +static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) +{ + int ret; + + if (!cgroup_ssid_enabled(ss->id)) + return 0; + + if (!cfts || cfts[0].name[0] == '\0') + return 0; + + ret = cgroup_init_cftypes(ss, cfts); + if (ret) + return ret; + + mutex_lock(&cgroup_mutex); + + list_add_tail(&cfts->node, &ss->cfts); + ret = cgroup_apply_cftypes(cfts, true); + if (ret) + cgroup_rm_cftypes_locked(cfts); + + mutex_unlock(&cgroup_mutex); + return ret; +} + +/** + * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy + * @ss: target cgroup subsystem + * @cfts: zero-length name terminated array of cftypes + * + * Similar to cgroup_add_cftypes() but the added files are only used for + * the default hierarchy. + */ +int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) +{ + struct cftype *cft; + + for (cft = cfts; cft && cft->name[0] != '\0'; cft++) + cft->flags |= __CFTYPE_ONLY_ON_DFL; + return cgroup_add_cftypes(ss, cfts); +} + +/** + * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies + * @ss: target cgroup subsystem + * @cfts: zero-length name terminated array of cftypes + * + * Similar to cgroup_add_cftypes() but the added files are only used for + * the legacy hierarchies. + */ +int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) +{ + struct cftype *cft; + + for (cft = cfts; cft && cft->name[0] != '\0'; cft++) + cft->flags |= __CFTYPE_NOT_ON_DFL; + return cgroup_add_cftypes(ss, cfts); +} + +/** + * cgroup_file_notify - generate a file modified event for a cgroup_file + * @cfile: target cgroup_file + * + * @cfile must have been obtained by setting cftype->file_offset. + */ +void cgroup_file_notify(struct cgroup_file *cfile) +{ + unsigned long flags; + + spin_lock_irqsave(&cgroup_file_kn_lock, flags); + if (cfile->kn) { + unsigned long last = cfile->notified_at; + unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; + + if (time_in_range(jiffies, last, next)) { + timer_reduce(&cfile->notify_timer, next); + } else { + kernfs_notify(cfile->kn); + cfile->notified_at = jiffies; + } + } + spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); +} + +/** + * css_next_child - find the next child of a given css + * @pos: the current position (%NULL to initiate traversal) + * @parent: css whose children to walk + * + * This function returns the next child of @parent and should be called + * under either cgroup_mutex or RCU read lock. The only requirement is + * that @parent and @pos are accessible. The next sibling is guaranteed to + * be returned regardless of their states. + * + * If a subsystem synchronizes ->css_online() and the start of iteration, a + * css which finished ->css_online() is guaranteed to be visible in the + * future iterations and will stay visible until the last reference is put. + * A css which hasn't finished ->css_online() or already finished + * ->css_offline() may show up during traversal. It's each subsystem's + * responsibility to synchronize against on/offlining. + */ +struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, + struct cgroup_subsys_state *parent) +{ + struct cgroup_subsys_state *next; + + cgroup_assert_mutex_or_rcu_locked(); + + /* + * @pos could already have been unlinked from the sibling list. + * Once a cgroup is removed, its ->sibling.next is no longer + * updated when its next sibling changes. CSS_RELEASED is set when + * @pos is taken off list, at which time its next pointer is valid, + * and, as releases are serialized, the one pointed to by the next + * pointer is guaranteed to not have started release yet. This + * implies that if we observe !CSS_RELEASED on @pos in this RCU + * critical section, the one pointed to by its next pointer is + * guaranteed to not have finished its RCU grace period even if we + * have dropped rcu_read_lock() inbetween iterations. + * + * If @pos has CSS_RELEASED set, its next pointer can't be + * dereferenced; however, as each css is given a monotonically + * increasing unique serial number and always appended to the + * sibling list, the next one can be found by walking the parent's + * children until the first css with higher serial number than + * @pos's. While this path can be slower, it happens iff iteration + * races against release and the race window is very small. + */ + if (!pos) { + next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); + } else if (likely(!(pos->flags & CSS_RELEASED))) { + next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); + } else { + list_for_each_entry_rcu(next, &parent->children, sibling) + if (next->serial_nr > pos->serial_nr) + break; + } + + /* + * @next, if not pointing to the head, can be dereferenced and is + * the next sibling. + */ + if (&next->sibling != &parent->children) + return next; + return NULL; +} + +/** + * css_next_descendant_pre - find the next descendant for pre-order walk + * @pos: the current position (%NULL to initiate traversal) + * @root: css whose descendants to walk + * + * To be used by css_for_each_descendant_pre(). Find the next descendant + * to visit for pre-order traversal of @root's descendants. @root is + * included in the iteration and the first node to be visited. + * + * While this function requires cgroup_mutex or RCU read locking, it + * doesn't require the whole traversal to be contained in a single critical + * section. This function will return the correct next descendant as long + * as both @pos and @root are accessible and @pos is a descendant of @root. + * + * If a subsystem synchronizes ->css_online() and the start of iteration, a + * css which finished ->css_online() is guaranteed to be visible in the + * future iterations and will stay visible until the last reference is put. + * A css which hasn't finished ->css_online() or already finished + * ->css_offline() may show up during traversal. It's each subsystem's + * responsibility to synchronize against on/offlining. + */ +struct cgroup_subsys_state * +css_next_descendant_pre(struct cgroup_subsys_state *pos, + struct cgroup_subsys_state *root) +{ + struct cgroup_subsys_state *next; + + cgroup_assert_mutex_or_rcu_locked(); + + /* if first iteration, visit @root */ + if (!pos) + return root; + + /* visit the first child if exists */ + next = css_next_child(NULL, pos); + if (next) + return next; + + /* no child, visit my or the closest ancestor's next sibling */ + while (pos != root) { + next = css_next_child(pos, pos->parent); + if (next) + return next; + pos = pos->parent; + } + + return NULL; +} + +/** + * css_rightmost_descendant - return the rightmost descendant of a css + * @pos: css of interest + * + * Return the rightmost descendant of @pos. If there's no descendant, @pos + * is returned. This can be used during pre-order traversal to skip + * subtree of @pos. + * + * While this function requires cgroup_mutex or RCU read locking, it + * doesn't require the whole traversal to be contained in a single critical + * section. This function will return the correct rightmost descendant as + * long as @pos is accessible. + */ +struct cgroup_subsys_state * +css_rightmost_descendant(struct cgroup_subsys_state *pos) +{ + struct cgroup_subsys_state *last, *tmp; + + cgroup_assert_mutex_or_rcu_locked(); + + do { + last = pos; + /* ->prev isn't RCU safe, walk ->next till the end */ + pos = NULL; + css_for_each_child(tmp, last) + pos = tmp; + } while (pos); + + return last; +} + +static struct cgroup_subsys_state * +css_leftmost_descendant(struct cgroup_subsys_state *pos) +{ + struct cgroup_subsys_state *last; + + do { + last = pos; + pos = css_next_child(NULL, pos); + } while (pos); + + return last; +} + +/** + * css_next_descendant_post - find the next descendant for post-order walk + * @pos: the current position (%NULL to initiate traversal) + * @root: css whose descendants to walk + * + * To be used by css_for_each_descendant_post(). Find the next descendant + * to visit for post-order traversal of @root's descendants. @root is + * included in the iteration and the last node to be visited. + * + * While this function requires cgroup_mutex or RCU read locking, it + * doesn't require the whole traversal to be contained in a single critical + * section. This function will return the correct next descendant as long + * as both @pos and @cgroup are accessible and @pos is a descendant of + * @cgroup. + * + * If a subsystem synchronizes ->css_online() and the start of iteration, a + * css which finished ->css_online() is guaranteed to be visible in the + * future iterations and will stay visible until the last reference is put. + * A css which hasn't finished ->css_online() or already finished + * ->css_offline() may show up during traversal. It's each subsystem's + * responsibility to synchronize against on/offlining. + */ +struct cgroup_subsys_state * +css_next_descendant_post(struct cgroup_subsys_state *pos, + struct cgroup_subsys_state *root) +{ + struct cgroup_subsys_state *next; + + cgroup_assert_mutex_or_rcu_locked(); + + /* if first iteration, visit leftmost descendant which may be @root */ + if (!pos) + return css_leftmost_descendant(root); + + /* if we visited @root, we're done */ + if (pos == root) + return NULL; + + /* if there's an unvisited sibling, visit its leftmost descendant */ + next = css_next_child(pos, pos->parent); + if (next) + return css_leftmost_descendant(next); + + /* no sibling left, visit parent */ + return pos->parent; +} + +/** + * css_has_online_children - does a css have online children + * @css: the target css + * + * Returns %true if @css has any online children; otherwise, %false. This + * function can be called from any context but the caller is responsible + * for synchronizing against on/offlining as necessary. + */ +bool css_has_online_children(struct cgroup_subsys_state *css) +{ + struct cgroup_subsys_state *child; + bool ret = false; + + rcu_read_lock(); + css_for_each_child(child, css) { + if (child->flags & CSS_ONLINE) { + ret = true; + break; + } + } + rcu_read_unlock(); + return ret; +} + +static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) +{ + struct list_head *l; + struct cgrp_cset_link *link; + struct css_set *cset; + + lockdep_assert_held(&css_set_lock); + + /* find the next threaded cset */ + if (it->tcset_pos) { + l = it->tcset_pos->next; + + if (l != it->tcset_head) { + it->tcset_pos = l; + return container_of(l, struct css_set, + threaded_csets_node); + } + + it->tcset_pos = NULL; + } + + /* find the next cset */ + l = it->cset_pos; + l = l->next; + if (l == it->cset_head) { + it->cset_pos = NULL; + return NULL; + } + + if (it->ss) { + cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); + } else { + link = list_entry(l, struct cgrp_cset_link, cset_link); + cset = link->cset; + } + + it->cset_pos = l; + + /* initialize threaded css_set walking */ + if (it->flags & CSS_TASK_ITER_THREADED) { + if (it->cur_dcset) + put_css_set_locked(it->cur_dcset); + it->cur_dcset = cset; + get_css_set(cset); + + it->tcset_head = &cset->threaded_csets; + it->tcset_pos = &cset->threaded_csets; + } + + return cset; +} + +/** + * css_task_iter_advance_css_set - advance a task itererator to the next css_set + * @it: the iterator to advance + * + * Advance @it to the next css_set to walk. + */ +static void css_task_iter_advance_css_set(struct css_task_iter *it) +{ + struct css_set *cset; + + lockdep_assert_held(&css_set_lock); + + /* Advance to the next non-empty css_set */ + do { + cset = css_task_iter_next_css_set(it); + if (!cset) { + it->task_pos = NULL; + return; + } + } while (!css_set_populated(cset) && list_empty(&cset->dying_tasks)); + + if (!list_empty(&cset->tasks)) { + it->task_pos = cset->tasks.next; + it->cur_tasks_head = &cset->tasks; + } else if (!list_empty(&cset->mg_tasks)) { + it->task_pos = cset->mg_tasks.next; + it->cur_tasks_head = &cset->mg_tasks; + } else { + it->task_pos = cset->dying_tasks.next; + it->cur_tasks_head = &cset->dying_tasks; + } + + it->tasks_head = &cset->tasks; + it->mg_tasks_head = &cset->mg_tasks; + it->dying_tasks_head = &cset->dying_tasks; + + /* + * We don't keep css_sets locked across iteration steps and thus + * need to take steps to ensure that iteration can be resumed after + * the lock is re-acquired. Iteration is performed at two levels - + * css_sets and tasks in them. + * + * Once created, a css_set never leaves its cgroup lists, so a + * pinned css_set is guaranteed to stay put and we can resume + * iteration afterwards. + * + * Tasks may leave @cset across iteration steps. This is resolved + * by registering each iterator with the css_set currently being + * walked and making css_set_move_task() advance iterators whose + * next task is leaving. + */ + if (it->cur_cset) { + list_del(&it->iters_node); + put_css_set_locked(it->cur_cset); + } + get_css_set(cset); + it->cur_cset = cset; + list_add(&it->iters_node, &cset->task_iters); +} + +static void css_task_iter_skip(struct css_task_iter *it, + struct task_struct *task) +{ + lockdep_assert_held(&css_set_lock); + + if (it->task_pos == &task->cg_list) { + it->task_pos = it->task_pos->next; + it->flags |= CSS_TASK_ITER_SKIPPED; + } +} + +static void css_task_iter_advance(struct css_task_iter *it) +{ + struct task_struct *task; + + lockdep_assert_held(&css_set_lock); +repeat: + if (it->task_pos) { + /* + * Advance iterator to find next entry. cset->tasks is + * consumed first and then ->mg_tasks. After ->mg_tasks, + * we move onto the next cset. + */ + if (it->flags & CSS_TASK_ITER_SKIPPED) + it->flags &= ~CSS_TASK_ITER_SKIPPED; + else + it->task_pos = it->task_pos->next; + + if (it->task_pos == it->tasks_head) { + it->task_pos = it->mg_tasks_head->next; + it->cur_tasks_head = it->mg_tasks_head; + } + if (it->task_pos == it->mg_tasks_head) { + it->task_pos = it->dying_tasks_head->next; + it->cur_tasks_head = it->dying_tasks_head; + } + if (it->task_pos == it->dying_tasks_head) + css_task_iter_advance_css_set(it); + } else { + /* called from start, proceed to the first cset */ + css_task_iter_advance_css_set(it); + } + + if (!it->task_pos) + return; + + task = list_entry(it->task_pos, struct task_struct, cg_list); + + if (it->flags & CSS_TASK_ITER_PROCS) { + /* if PROCS, skip over tasks which aren't group leaders */ + if (!thread_group_leader(task)) + goto repeat; + + /* and dying leaders w/o live member threads */ + if (it->cur_tasks_head == it->dying_tasks_head && + !atomic_read(&task->signal->live)) + goto repeat; + } else { + /* skip all dying ones */ + if (it->cur_tasks_head == it->dying_tasks_head) + goto repeat; + } +} + +/** + * css_task_iter_start - initiate task iteration + * @css: the css to walk tasks of + * @flags: CSS_TASK_ITER_* flags + * @it: the task iterator to use + * + * Initiate iteration through the tasks of @css. The caller can call + * css_task_iter_next() to walk through the tasks until the function + * returns NULL. On completion of iteration, css_task_iter_end() must be + * called. + */ +void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, + struct css_task_iter *it) +{ + /* no one should try to iterate before mounting cgroups */ + WARN_ON_ONCE(!use_task_css_set_links); + + memset(it, 0, sizeof(*it)); + + spin_lock_irq(&css_set_lock); + + it->ss = css->ss; + it->flags = flags; + + if (it->ss) + it->cset_pos = &css->cgroup->e_csets[css->ss->id]; + else + it->cset_pos = &css->cgroup->cset_links; + + it->cset_head = it->cset_pos; + + css_task_iter_advance(it); + + spin_unlock_irq(&css_set_lock); +} + +/** + * css_task_iter_next - return the next task for the iterator + * @it: the task iterator being iterated + * + * The "next" function for task iteration. @it should have been + * initialized via css_task_iter_start(). Returns NULL when the iteration + * reaches the end. + */ +struct task_struct *css_task_iter_next(struct css_task_iter *it) +{ + if (it->cur_task) { + put_task_struct(it->cur_task); + it->cur_task = NULL; + } + + spin_lock_irq(&css_set_lock); + + /* @it may be half-advanced by skips, finish advancing */ + if (it->flags & CSS_TASK_ITER_SKIPPED) + css_task_iter_advance(it); + + if (it->task_pos) { + it->cur_task = list_entry(it->task_pos, struct task_struct, + cg_list); + get_task_struct(it->cur_task); + css_task_iter_advance(it); + } + + spin_unlock_irq(&css_set_lock); + + return it->cur_task; +} + +/** + * css_task_iter_end - finish task iteration + * @it: the task iterator to finish + * + * Finish task iteration started by css_task_iter_start(). + */ +void css_task_iter_end(struct css_task_iter *it) +{ + if (it->cur_cset) { + spin_lock_irq(&css_set_lock); + list_del(&it->iters_node); + put_css_set_locked(it->cur_cset); + spin_unlock_irq(&css_set_lock); + } + + if (it->cur_dcset) + put_css_set(it->cur_dcset); + + if (it->cur_task) + put_task_struct(it->cur_task); +} + +static void cgroup_procs_release(struct kernfs_open_file *of) +{ + struct cgroup_file_ctx *ctx = of->priv; + + if (ctx->procs.started) + css_task_iter_end(&ctx->procs.iter); +} + +static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) +{ + struct kernfs_open_file *of = s->private; + struct cgroup_file_ctx *ctx = of->priv; + + if (pos) + (*pos)++; + + return css_task_iter_next(&ctx->procs.iter); +} + +static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, + unsigned int iter_flags) +{ + struct kernfs_open_file *of = s->private; + struct cgroup *cgrp = seq_css(s)->cgroup; + struct cgroup_file_ctx *ctx = of->priv; + struct css_task_iter *it = &ctx->procs.iter; + + /* + * When a seq_file is seeked, it's always traversed sequentially + * from position 0, so we can simply keep iterating on !0 *pos. + */ + if (!ctx->procs.started) { + if (WARN_ON_ONCE((*pos))) + return ERR_PTR(-EINVAL); + css_task_iter_start(&cgrp->self, iter_flags, it); + ctx->procs.started = true; + } else if (!(*pos)) { + css_task_iter_end(it); + css_task_iter_start(&cgrp->self, iter_flags, it); + } else + return it->cur_task; + + return cgroup_procs_next(s, NULL, NULL); +} + +static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) +{ + struct cgroup *cgrp = seq_css(s)->cgroup; + + /* + * All processes of a threaded subtree belong to the domain cgroup + * of the subtree. Only threads can be distributed across the + * subtree. Reject reads on cgroup.procs in the subtree proper. + * They're always empty anyway. + */ + if (cgroup_is_threaded(cgrp)) + return ERR_PTR(-EOPNOTSUPP); + + return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | + CSS_TASK_ITER_THREADED); +} + +static int cgroup_procs_show(struct seq_file *s, void *v) +{ + seq_printf(s, "%d\n", task_pid_vnr(v)); + return 0; +} + +static int cgroup_procs_write_permission(struct cgroup *src_cgrp, + struct cgroup *dst_cgrp, + struct super_block *sb, + struct cgroup_namespace *ns) +{ + struct cgroup *com_cgrp = src_cgrp; + struct inode *inode; + int ret; + + lockdep_assert_held(&cgroup_mutex); + + /* find the common ancestor */ + while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) + com_cgrp = cgroup_parent(com_cgrp); + + /* %current should be authorized to migrate to the common ancestor */ + inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); + if (!inode) + return -ENOMEM; + + ret = inode_permission(inode, MAY_WRITE); + iput(inode); + if (ret) + return ret; + + /* + * If namespaces are delegation boundaries, %current must be able + * to see both source and destination cgroups from its namespace. + */ + if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && + (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || + !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) + return -ENOENT; + + return 0; +} + +static ssize_t cgroup_procs_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct cgroup_file_ctx *ctx = of->priv; + struct cgroup *src_cgrp, *dst_cgrp; + struct task_struct *task; + const struct cred *saved_cred; + ssize_t ret; + + dst_cgrp = cgroup_kn_lock_live(of->kn, false); + if (!dst_cgrp) + return -ENODEV; + + task = cgroup_procs_write_start(buf, true); + ret = PTR_ERR_OR_ZERO(task); + if (ret) + goto out_unlock; + + /* find the source cgroup */ + spin_lock_irq(&css_set_lock); + src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); + spin_unlock_irq(&css_set_lock); + + /* + * Process and thread migrations follow same delegation rule. Check + * permissions using the credentials from file open to protect against + * inherited fd attacks. + */ + saved_cred = override_creds(of->file->f_cred); + ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, + of->file->f_path.dentry->d_sb, + ctx->ns); + revert_creds(saved_cred); + if (ret) + goto out_finish; + + ret = cgroup_attach_task(dst_cgrp, task, true); + +out_finish: + cgroup_procs_write_finish(task); +out_unlock: + cgroup_kn_unlock(of->kn); + + return ret ?: nbytes; +} + +static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) +{ + return __cgroup_procs_start(s, pos, 0); +} + +static ssize_t cgroup_threads_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct cgroup_file_ctx *ctx = of->priv; + struct cgroup *src_cgrp, *dst_cgrp; + struct task_struct *task; + const struct cred *saved_cred; + ssize_t ret; + + buf = strstrip(buf); + + dst_cgrp = cgroup_kn_lock_live(of->kn, false); + if (!dst_cgrp) + return -ENODEV; + + task = cgroup_procs_write_start(buf, false); + ret = PTR_ERR_OR_ZERO(task); + if (ret) + goto out_unlock; + + /* find the source cgroup */ + spin_lock_irq(&css_set_lock); + src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); + spin_unlock_irq(&css_set_lock); + + /* + * Process and thread migrations follow same delegation rule. Check + * permissions using the credentials from file open to protect against + * inherited fd attacks. + */ + saved_cred = override_creds(of->file->f_cred); + ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, + of->file->f_path.dentry->d_sb, + ctx->ns); + revert_creds(saved_cred); + if (ret) + goto out_finish; + + /* and must be contained in the same domain */ + ret = -EOPNOTSUPP; + if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) + goto out_finish; + + ret = cgroup_attach_task(dst_cgrp, task, false); + +out_finish: + cgroup_procs_write_finish(task); +out_unlock: + cgroup_kn_unlock(of->kn); + + return ret ?: nbytes; +} + +/* cgroup core interface files for the default hierarchy */ +static struct cftype cgroup_base_files[] = { + { + .name = "cgroup.type", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = cgroup_type_show, + .write = cgroup_type_write, + }, + { + .name = "cgroup.procs", + .flags = CFTYPE_NS_DELEGATABLE, + .file_offset = offsetof(struct cgroup, procs_file), + .release = cgroup_procs_release, + .seq_start = cgroup_procs_start, + .seq_next = cgroup_procs_next, + .seq_show = cgroup_procs_show, + .write = cgroup_procs_write, + }, + { + .name = "cgroup.threads", + .flags = CFTYPE_NS_DELEGATABLE, + .release = cgroup_procs_release, + .seq_start = cgroup_threads_start, + .seq_next = cgroup_procs_next, + .seq_show = cgroup_procs_show, + .write = cgroup_threads_write, + }, + { + .name = "cgroup.controllers", + .seq_show = cgroup_controllers_show, + }, + { + .name = "cgroup.subtree_control", + .flags = CFTYPE_NS_DELEGATABLE, + .seq_show = cgroup_subtree_control_show, + .write = cgroup_subtree_control_write, + }, + { + .name = "cgroup.events", + .flags = CFTYPE_NOT_ON_ROOT, + .file_offset = offsetof(struct cgroup, events_file), + .seq_show = cgroup_events_show, + }, + { + .name = "cgroup.max.descendants", + .seq_show = cgroup_max_descendants_show, + .write = cgroup_max_descendants_write, + }, + { + .name = "cgroup.max.depth", + .seq_show = cgroup_max_depth_show, + .write = cgroup_max_depth_write, + }, + { + .name = "cgroup.stat", + .seq_show = cgroup_stat_show, + }, + { + .name = "cpu.stat", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = cpu_stat_show, + }, + { } /* terminate */ +}; + +/* + * css destruction is four-stage process. + * + * 1. Destruction starts. Killing of the percpu_ref is initiated. + * Implemented in kill_css(). + * + * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs + * and thus css_tryget_online() is guaranteed to fail, the css can be + * offlined by invoking offline_css(). After offlining, the base ref is + * put. Implemented in css_killed_work_fn(). + * + * 3. When the percpu_ref reaches zero, the only possible remaining + * accessors are inside RCU read sections. css_release() schedules the + * RCU callback. + * + * 4. After the grace period, the css can be freed. Implemented in + * css_free_work_fn(). + * + * It is actually hairier because both step 2 and 4 require process context + * and thus involve punting to css->destroy_work adding two additional + * steps to the already complex sequence. + */ +static void css_free_rwork_fn(struct work_struct *work) +{ + struct cgroup_subsys_state *css = container_of(to_rcu_work(work), + struct cgroup_subsys_state, destroy_rwork); + struct cgroup_subsys *ss = css->ss; + struct cgroup *cgrp = css->cgroup; + + percpu_ref_exit(&css->refcnt); + + if (ss) { + /* css free path */ + struct cgroup_subsys_state *parent = css->parent; + int id = css->id; + + ss->css_free(css); + cgroup_idr_remove(&ss->css_idr, id); + cgroup_put(cgrp); + + if (parent) + css_put(parent); + } else { + /* cgroup free path */ + atomic_dec(&cgrp->root->nr_cgrps); + cgroup1_pidlist_destroy_all(cgrp); + cancel_work_sync(&cgrp->release_agent_work); + + if (cgroup_parent(cgrp)) { + /* + * We get a ref to the parent, and put the ref when + * this cgroup is being freed, so it's guaranteed + * that the parent won't be destroyed before its + * children. + */ + cgroup_put(cgroup_parent(cgrp)); + kernfs_put(cgrp->kn); + if (cgroup_on_dfl(cgrp)) + cgroup_rstat_exit(cgrp); + kfree(cgrp); + } else { + /* + * This is root cgroup's refcnt reaching zero, + * which indicates that the root should be + * released. + */ + cgroup_destroy_root(cgrp->root); + } + } +} + +static void css_release_work_fn(struct work_struct *work) +{ + struct cgroup_subsys_state *css = + container_of(work, struct cgroup_subsys_state, destroy_work); + struct cgroup_subsys *ss = css->ss; + struct cgroup *cgrp = css->cgroup; + + mutex_lock(&cgroup_mutex); + + css->flags |= CSS_RELEASED; + list_del_rcu(&css->sibling); + + if (ss) { + /* css release path */ + if (!list_empty(&css->rstat_css_node)) { + cgroup_rstat_flush(cgrp); + list_del_rcu(&css->rstat_css_node); + } + + cgroup_idr_replace(&ss->css_idr, NULL, css->id); + if (ss->css_released) + ss->css_released(css); + } else { + struct cgroup *tcgrp; + + /* cgroup release path */ + TRACE_CGROUP_PATH(release, cgrp); + + if (cgroup_on_dfl(cgrp)) + cgroup_rstat_flush(cgrp); + + spin_lock_irq(&css_set_lock); + for (tcgrp = cgroup_parent(cgrp); tcgrp; + tcgrp = cgroup_parent(tcgrp)) + tcgrp->nr_dying_descendants--; + spin_unlock_irq(&css_set_lock); + + cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); + cgrp->id = -1; + + /* + * There are two control paths which try to determine + * cgroup from dentry without going through kernfs - + * cgroupstats_build() and css_tryget_online_from_dir(). + * Those are supported by RCU protecting clearing of + * cgrp->kn->priv backpointer. + */ + if (cgrp->kn) + RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, + NULL); + + cgroup_bpf_put(cgrp); + } + + mutex_unlock(&cgroup_mutex); + + INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); + queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); +} + +static void css_release(struct percpu_ref *ref) +{ + struct cgroup_subsys_state *css = + container_of(ref, struct cgroup_subsys_state, refcnt); + + INIT_WORK(&css->destroy_work, css_release_work_fn); + queue_work(cgroup_destroy_wq, &css->destroy_work); +} + +static void init_and_link_css(struct cgroup_subsys_state *css, + struct cgroup_subsys *ss, struct cgroup *cgrp) +{ + lockdep_assert_held(&cgroup_mutex); + + cgroup_get_live(cgrp); + + memset(css, 0, sizeof(*css)); + css->cgroup = cgrp; + css->ss = ss; + css->id = -1; + INIT_LIST_HEAD(&css->sibling); + INIT_LIST_HEAD(&css->children); + INIT_LIST_HEAD(&css->rstat_css_node); + css->serial_nr = css_serial_nr_next++; + atomic_set(&css->online_cnt, 0); + + if (cgroup_parent(cgrp)) { + css->parent = cgroup_css(cgroup_parent(cgrp), ss); + css_get(css->parent); + } + + if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush) + list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); + + BUG_ON(cgroup_css(cgrp, ss)); +} + +/* invoke ->css_online() on a new CSS and mark it online if successful */ +static int online_css(struct cgroup_subsys_state *css) +{ + struct cgroup_subsys *ss = css->ss; + int ret = 0; + + lockdep_assert_held(&cgroup_mutex); + + if (ss->css_online) + ret = ss->css_online(css); + if (!ret) { + css->flags |= CSS_ONLINE; + rcu_assign_pointer(css->cgroup->subsys[ss->id], css); + + atomic_inc(&css->online_cnt); + if (css->parent) + atomic_inc(&css->parent->online_cnt); + } + return ret; +} + +/* if the CSS is online, invoke ->css_offline() on it and mark it offline */ +static void offline_css(struct cgroup_subsys_state *css) +{ + struct cgroup_subsys *ss = css->ss; + + lockdep_assert_held(&cgroup_mutex); + + if (!(css->flags & CSS_ONLINE)) + return; + + if (ss->css_offline) + ss->css_offline(css); + + css->flags &= ~CSS_ONLINE; + RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); + + wake_up_all(&css->cgroup->offline_waitq); +} + +/** + * css_create - create a cgroup_subsys_state + * @cgrp: the cgroup new css will be associated with + * @ss: the subsys of new css + * + * Create a new css associated with @cgrp - @ss pair. On success, the new + * css is online and installed in @cgrp. This function doesn't create the + * interface files. Returns 0 on success, -errno on failure. + */ +static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, + struct cgroup_subsys *ss) +{ + struct cgroup *parent = cgroup_parent(cgrp); + struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); + struct cgroup_subsys_state *css; + int err; + + lockdep_assert_held(&cgroup_mutex); + + css = ss->css_alloc(parent_css); + if (!css) + css = ERR_PTR(-ENOMEM); + if (IS_ERR(css)) + return css; + + init_and_link_css(css, ss, cgrp); + + err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); + if (err) + goto err_free_css; + + err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); + if (err < 0) + goto err_free_css; + css->id = err; + + /* @css is ready to be brought online now, make it visible */ + list_add_tail_rcu(&css->sibling, &parent_css->children); + cgroup_idr_replace(&ss->css_idr, css, css->id); + + err = online_css(css); + if (err) + goto err_list_del; + + if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && + cgroup_parent(parent)) { + pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", + current->comm, current->pid, ss->name); + if (!strcmp(ss->name, "memory")) + pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); + ss->warned_broken_hierarchy = true; + } + + return css; + +err_list_del: + list_del_rcu(&css->sibling); +err_free_css: + list_del_rcu(&css->rstat_css_node); + INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); + queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); + return ERR_PTR(err); +} + +/* + * The returned cgroup is fully initialized including its control mask, but + * it isn't associated with its kernfs_node and doesn't have the control + * mask applied. + */ +static struct cgroup *cgroup_create(struct cgroup *parent) +{ + struct cgroup_root *root = parent->root; + struct cgroup *cgrp, *tcgrp; + int level = parent->level + 1; + int ret; + + /* allocate the cgroup and its ID, 0 is reserved for the root */ + cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), + GFP_KERNEL); + if (!cgrp) + return ERR_PTR(-ENOMEM); + + ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); + if (ret) + goto out_free_cgrp; + + if (cgroup_on_dfl(parent)) { + ret = cgroup_rstat_init(cgrp); + if (ret) + goto out_cancel_ref; + } + + /* + * Temporarily set the pointer to NULL, so idr_find() won't return + * a half-baked cgroup. + */ + cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); + if (cgrp->id < 0) { + ret = -ENOMEM; + goto out_stat_exit; + } + + init_cgroup_housekeeping(cgrp); + + cgrp->self.parent = &parent->self; + cgrp->root = root; + cgrp->level = level; + ret = cgroup_bpf_inherit(cgrp); + if (ret) + goto out_idr_free; + + spin_lock_irq(&css_set_lock); + for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { + cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; + + if (tcgrp != cgrp) + tcgrp->nr_descendants++; + } + spin_unlock_irq(&css_set_lock); + + if (notify_on_release(parent)) + set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); + + if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) + set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); + + cgrp->self.serial_nr = css_serial_nr_next++; + + /* allocation complete, commit to creation */ + list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); + atomic_inc(&root->nr_cgrps); + cgroup_get_live(parent); + + /* + * @cgrp is now fully operational. If something fails after this + * point, it'll be released via the normal destruction path. + */ + cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); + + /* + * On the default hierarchy, a child doesn't automatically inherit + * subtree_control from the parent. Each is configured manually. + */ + if (!cgroup_on_dfl(cgrp)) + cgrp->subtree_control = cgroup_control(cgrp); + + cgroup_propagate_control(cgrp); + + return cgrp; + +out_idr_free: + cgroup_idr_remove(&root->cgroup_idr, cgrp->id); +out_stat_exit: + if (cgroup_on_dfl(parent)) + cgroup_rstat_exit(cgrp); +out_cancel_ref: + percpu_ref_exit(&cgrp->self.refcnt); +out_free_cgrp: + kfree(cgrp); + return ERR_PTR(ret); +} + +static bool cgroup_check_hierarchy_limits(struct cgroup *parent) +{ + struct cgroup *cgroup; + int ret = false; + int level = 1; + + lockdep_assert_held(&cgroup_mutex); + + for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { + if (cgroup->nr_descendants >= cgroup->max_descendants) + goto fail; + + if (level > cgroup->max_depth) + goto fail; + + level++; + } + + ret = true; +fail: + return ret; +} + +int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) +{ + struct cgroup *parent, *cgrp; + struct kernfs_node *kn; + int ret; + + /* do not accept '\n' to prevent making /proc//cgroup unparsable */ + if (strchr(name, '\n')) + return -EINVAL; + + parent = cgroup_kn_lock_live(parent_kn, false); + if (!parent) + return -ENODEV; + + if (!cgroup_check_hierarchy_limits(parent)) { + ret = -EAGAIN; + goto out_unlock; + } + + cgrp = cgroup_create(parent); + if (IS_ERR(cgrp)) { + ret = PTR_ERR(cgrp); + goto out_unlock; + } + + /* create the directory */ + kn = kernfs_create_dir(parent->kn, name, mode, cgrp); + if (IS_ERR(kn)) { + ret = PTR_ERR(kn); + goto out_destroy; + } + cgrp->kn = kn; + + /* + * This extra ref will be put in cgroup_free_fn() and guarantees + * that @cgrp->kn is always accessible. + */ + kernfs_get(kn); + + ret = cgroup_kn_set_ugid(kn); + if (ret) + goto out_destroy; + + ret = css_populate_dir(&cgrp->self); + if (ret) + goto out_destroy; + + ret = cgroup_apply_control_enable(cgrp); + if (ret) + goto out_destroy; + + TRACE_CGROUP_PATH(mkdir, cgrp); + + /* let's create and online css's */ + kernfs_activate(kn); + + ret = 0; + goto out_unlock; + +out_destroy: + cgroup_destroy_locked(cgrp); +out_unlock: + cgroup_kn_unlock(parent_kn); + return ret; +} + +/* + * This is called when the refcnt of a css is confirmed to be killed. + * css_tryget_online() is now guaranteed to fail. Tell the subsystem to + * initate destruction and put the css ref from kill_css(). + */ +static void css_killed_work_fn(struct work_struct *work) +{ + struct cgroup_subsys_state *css = + container_of(work, struct cgroup_subsys_state, destroy_work); + + mutex_lock(&cgroup_mutex); + + do { + offline_css(css); + css_put(css); + /* @css can't go away while we're holding cgroup_mutex */ + css = css->parent; + } while (css && atomic_dec_and_test(&css->online_cnt)); + + mutex_unlock(&cgroup_mutex); +} + +/* css kill confirmation processing requires process context, bounce */ +static void css_killed_ref_fn(struct percpu_ref *ref) +{ + struct cgroup_subsys_state *css = + container_of(ref, struct cgroup_subsys_state, refcnt); + + if (atomic_dec_and_test(&css->online_cnt)) { + INIT_WORK(&css->destroy_work, css_killed_work_fn); + queue_work(cgroup_destroy_wq, &css->destroy_work); + } +} + +/** + * kill_css - destroy a css + * @css: css to destroy + * + * This function initiates destruction of @css by removing cgroup interface + * files and putting its base reference. ->css_offline() will be invoked + * asynchronously once css_tryget_online() is guaranteed to fail and when + * the reference count reaches zero, @css will be released. + */ +static void kill_css(struct cgroup_subsys_state *css) +{ + lockdep_assert_held(&cgroup_mutex); + + if (css->flags & CSS_DYING) + return; + + css->flags |= CSS_DYING; + + /* + * This must happen before css is disassociated with its cgroup. + * See seq_css() for details. + */ + css_clear_dir(css); + + /* + * Killing would put the base ref, but we need to keep it alive + * until after ->css_offline(). + */ + css_get(css); + + /* + * cgroup core guarantees that, by the time ->css_offline() is + * invoked, no new css reference will be given out via + * css_tryget_online(). We can't simply call percpu_ref_kill() and + * proceed to offlining css's because percpu_ref_kill() doesn't + * guarantee that the ref is seen as killed on all CPUs on return. + * + * Use percpu_ref_kill_and_confirm() to get notifications as each + * css is confirmed to be seen as killed on all CPUs. + */ + percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); +} + +/** + * cgroup_destroy_locked - the first stage of cgroup destruction + * @cgrp: cgroup to be destroyed + * + * css's make use of percpu refcnts whose killing latency shouldn't be + * exposed to userland and are RCU protected. Also, cgroup core needs to + * guarantee that css_tryget_online() won't succeed by the time + * ->css_offline() is invoked. To satisfy all the requirements, + * destruction is implemented in the following two steps. + * + * s1. Verify @cgrp can be destroyed and mark it dying. Remove all + * userland visible parts and start killing the percpu refcnts of + * css's. Set up so that the next stage will be kicked off once all + * the percpu refcnts are confirmed to be killed. + * + * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the + * rest of destruction. Once all cgroup references are gone, the + * cgroup is RCU-freed. + * + * This function implements s1. After this step, @cgrp is gone as far as + * the userland is concerned and a new cgroup with the same name may be + * created. As cgroup doesn't care about the names internally, this + * doesn't cause any problem. + */ +static int cgroup_destroy_locked(struct cgroup *cgrp) + __releases(&cgroup_mutex) __acquires(&cgroup_mutex) +{ + struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); + struct cgroup_subsys_state *css; + struct cgrp_cset_link *link; + int ssid; + + lockdep_assert_held(&cgroup_mutex); + + /* + * Only migration can raise populated from zero and we're already + * holding cgroup_mutex. + */ + if (cgroup_is_populated(cgrp)) + return -EBUSY; + + /* + * Make sure there's no live children. We can't test emptiness of + * ->self.children as dead children linger on it while being + * drained; otherwise, "rmdir parent/child parent" may fail. + */ + if (css_has_online_children(&cgrp->self)) + return -EBUSY; + + /* + * Mark @cgrp and the associated csets dead. The former prevents + * further task migration and child creation by disabling + * cgroup_lock_live_group(). The latter makes the csets ignored by + * the migration path. + */ + cgrp->self.flags &= ~CSS_ONLINE; + + spin_lock_irq(&css_set_lock); + list_for_each_entry(link, &cgrp->cset_links, cset_link) + link->cset->dead = true; + spin_unlock_irq(&css_set_lock); + + /* initiate massacre of all css's */ + for_each_css(css, ssid, cgrp) + kill_css(css); + + /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ + css_clear_dir(&cgrp->self); + kernfs_remove(cgrp->kn); + + if (parent && cgroup_is_threaded(cgrp)) + parent->nr_threaded_children--; + + spin_lock_irq(&css_set_lock); + for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { + tcgrp->nr_descendants--; + tcgrp->nr_dying_descendants++; + } + spin_unlock_irq(&css_set_lock); + + cgroup1_check_for_release(parent); + + /* put the base reference */ + percpu_ref_kill(&cgrp->self.refcnt); + + return 0; +}; + +int cgroup_rmdir(struct kernfs_node *kn) +{ + struct cgroup *cgrp; + int ret = 0; + + cgrp = cgroup_kn_lock_live(kn, false); + if (!cgrp) + return 0; + + ret = cgroup_destroy_locked(cgrp); + if (!ret) + TRACE_CGROUP_PATH(rmdir, cgrp); + + cgroup_kn_unlock(kn); + return ret; +} + +static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { + .show_options = cgroup_show_options, + .remount_fs = cgroup_remount, + .mkdir = cgroup_mkdir, + .rmdir = cgroup_rmdir, + .show_path = cgroup_show_path, +}; + +static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) +{ + struct cgroup_subsys_state *css; + + pr_debug("Initializing cgroup subsys %s\n", ss->name); + + mutex_lock(&cgroup_mutex); + + idr_init(&ss->css_idr); + INIT_LIST_HEAD(&ss->cfts); + + /* Create the root cgroup state for this subsystem */ + ss->root = &cgrp_dfl_root; + css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); + /* We don't handle early failures gracefully */ + BUG_ON(IS_ERR(css)); + init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); + + /* + * Root csses are never destroyed and we can't initialize + * percpu_ref during early init. Disable refcnting. + */ + css->flags |= CSS_NO_REF; + + if (early) { + /* allocation can't be done safely during early init */ + css->id = 1; + } else { + css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); + BUG_ON(css->id < 0); + } + + /* Update the init_css_set to contain a subsys + * pointer to this state - since the subsystem is + * newly registered, all tasks and hence the + * init_css_set is in the subsystem's root cgroup. */ + init_css_set.subsys[ss->id] = css; + + have_fork_callback |= (bool)ss->fork << ss->id; + have_exit_callback |= (bool)ss->exit << ss->id; + have_release_callback |= (bool)ss->release << ss->id; + have_canfork_callback |= (bool)ss->can_fork << ss->id; + + /* At system boot, before all subsystems have been + * registered, no tasks have been forked, so we don't + * need to invoke fork callbacks here. */ + BUG_ON(!list_empty(&init_task.tasks)); + + BUG_ON(online_css(css)); + + mutex_unlock(&cgroup_mutex); +} + +/** + * cgroup_init_early - cgroup initialization at system boot + * + * Initialize cgroups at system boot, and initialize any + * subsystems that request early init. + */ +int __init cgroup_init_early(void) +{ + static struct cgroup_sb_opts __initdata opts; + struct cgroup_subsys *ss; + int i; + + init_cgroup_root(&cgrp_dfl_root, &opts); + cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; + + RCU_INIT_POINTER(init_task.cgroups, &init_css_set); + + for_each_subsys(ss, i) { + WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, + "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", + i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, + ss->id, ss->name); + WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, + "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); + + ss->id = i; + ss->name = cgroup_subsys_name[i]; + if (!ss->legacy_name) + ss->legacy_name = cgroup_subsys_name[i]; + + if (ss->early_init) + cgroup_init_subsys(ss, true); + } + return 0; +} + +/** + * cgroup_init - cgroup initialization + * + * Register cgroup filesystem and /proc file, and initialize + * any subsystems that didn't request early init. + */ +int __init cgroup_init(void) +{ + struct cgroup_subsys *ss; + int ssid; + + BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); + BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); + BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); + BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); + + cgroup_rstat_boot(); + + /* + * The latency of the synchronize_sched() is too high for cgroups, + * avoid it at the cost of forcing all readers into the slow path. + */ + rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); + + get_user_ns(init_cgroup_ns.user_ns); + + mutex_lock(&cgroup_mutex); + + /* + * Add init_css_set to the hash table so that dfl_root can link to + * it during init. + */ + hash_add(css_set_table, &init_css_set.hlist, + css_set_hash(init_css_set.subsys)); + + BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0)); + + mutex_unlock(&cgroup_mutex); + + for_each_subsys(ss, ssid) { + if (ss->early_init) { + struct cgroup_subsys_state *css = + init_css_set.subsys[ss->id]; + + css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, + GFP_KERNEL); + BUG_ON(css->id < 0); + } else { + cgroup_init_subsys(ss, false); + } + + list_add_tail(&init_css_set.e_cset_node[ssid], + &cgrp_dfl_root.cgrp.e_csets[ssid]); + + /* + * Setting dfl_root subsys_mask needs to consider the + * disabled flag and cftype registration needs kmalloc, + * both of which aren't available during early_init. + */ + if (!cgroup_ssid_enabled(ssid)) + continue; + + if (cgroup1_ssid_disabled(ssid)) + printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", + ss->name); + + cgrp_dfl_root.subsys_mask |= 1 << ss->id; + + /* implicit controllers must be threaded too */ + WARN_ON(ss->implicit_on_dfl && !ss->threaded); + + if (ss->implicit_on_dfl) + cgrp_dfl_implicit_ss_mask |= 1 << ss->id; + else if (!ss->dfl_cftypes) + cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; + + if (ss->threaded) + cgrp_dfl_threaded_ss_mask |= 1 << ss->id; + + if (ss->dfl_cftypes == ss->legacy_cftypes) { + WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); + } else { + WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); + WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); + } + + if (ss->bind) + ss->bind(init_css_set.subsys[ssid]); + + mutex_lock(&cgroup_mutex); + css_populate_dir(init_css_set.subsys[ssid]); + mutex_unlock(&cgroup_mutex); + } + + /* init_css_set.subsys[] has been updated, re-hash */ + hash_del(&init_css_set.hlist); + hash_add(css_set_table, &init_css_set.hlist, + css_set_hash(init_css_set.subsys)); + + WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); + WARN_ON(register_filesystem(&cgroup_fs_type)); + WARN_ON(register_filesystem(&cgroup2_fs_type)); + WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); + + return 0; +} + +static int __init cgroup_wq_init(void) +{ + /* + * There isn't much point in executing destruction path in + * parallel. Good chunk is serialized with cgroup_mutex anyway. + * Use 1 for @max_active. + * + * We would prefer to do this in cgroup_init() above, but that + * is called before init_workqueues(): so leave this until after. + */ + cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); + BUG_ON(!cgroup_destroy_wq); + return 0; +} +core_initcall(cgroup_wq_init); + +void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, + char *buf, size_t buflen) +{ + struct kernfs_node *kn; + + kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id); + if (!kn) + return; + kernfs_path(kn, buf, buflen); + kernfs_put(kn); +} + +/* + * proc_cgroup_show() + * - Print task's cgroup paths into seq_file, one line for each hierarchy + * - Used for /proc//cgroup. + */ +int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, + struct pid *pid, struct task_struct *tsk) +{ + char *buf; + int retval; + struct cgroup_root *root; + + retval = -ENOMEM; + buf = kmalloc(PATH_MAX, GFP_KERNEL); + if (!buf) + goto out; + + mutex_lock(&cgroup_mutex); + spin_lock_irq(&css_set_lock); + + for_each_root(root) { + struct cgroup_subsys *ss; + struct cgroup *cgrp; + int ssid, count = 0; + + if (root == &cgrp_dfl_root && !cgrp_dfl_visible) + continue; + + seq_printf(m, "%d:", root->hierarchy_id); + if (root != &cgrp_dfl_root) + for_each_subsys(ss, ssid) + if (root->subsys_mask & (1 << ssid)) + seq_printf(m, "%s%s", count++ ? "," : "", + ss->legacy_name); + if (strlen(root->name)) + seq_printf(m, "%sname=%s", count ? "," : "", + root->name); + seq_putc(m, ':'); + + cgrp = task_cgroup_from_root(tsk, root); + + /* + * On traditional hierarchies, all zombie tasks show up as + * belonging to the root cgroup. On the default hierarchy, + * while a zombie doesn't show up in "cgroup.procs" and + * thus can't be migrated, its /proc/PID/cgroup keeps + * reporting the cgroup it belonged to before exiting. If + * the cgroup is removed before the zombie is reaped, + * " (deleted)" is appended to the cgroup path. + */ + if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { + retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, + current->nsproxy->cgroup_ns); + if (retval >= PATH_MAX) + retval = -ENAMETOOLONG; + if (retval < 0) + goto out_unlock; + + seq_puts(m, buf); + } else { + seq_puts(m, "/"); + } + + if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) + seq_puts(m, " (deleted)\n"); + else + seq_putc(m, '\n'); + } + + retval = 0; +out_unlock: + spin_unlock_irq(&css_set_lock); + mutex_unlock(&cgroup_mutex); + kfree(buf); +out: + return retval; +} + +/** + * cgroup_fork - initialize cgroup related fields during copy_process() + * @child: pointer to task_struct of forking parent process. + * + * A task is associated with the init_css_set until cgroup_post_fork() + * attaches it to the parent's css_set. Empty cg_list indicates that + * @child isn't holding reference to its css_set. + */ +void cgroup_fork(struct task_struct *child) +{ + RCU_INIT_POINTER(child->cgroups, &init_css_set); + INIT_LIST_HEAD(&child->cg_list); +} + +/** + * cgroup_can_fork - called on a new task before the process is exposed + * @child: the task in question. + * + * This calls the subsystem can_fork() callbacks. If the can_fork() callback + * returns an error, the fork aborts with that error code. This allows for + * a cgroup subsystem to conditionally allow or deny new forks. + */ +int cgroup_can_fork(struct task_struct *child) +{ + struct cgroup_subsys *ss; + int i, j, ret; + + do_each_subsys_mask(ss, i, have_canfork_callback) { + ret = ss->can_fork(child); + if (ret) + goto out_revert; + } while_each_subsys_mask(); + + return 0; + +out_revert: + for_each_subsys(ss, j) { + if (j >= i) + break; + if (ss->cancel_fork) + ss->cancel_fork(child); + } + + return ret; +} + +/** + * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() + * @child: the task in question + * + * This calls the cancel_fork() callbacks if a fork failed *after* + * cgroup_can_fork() succeded. + */ +void cgroup_cancel_fork(struct task_struct *child) +{ + struct cgroup_subsys *ss; + int i; + + for_each_subsys(ss, i) + if (ss->cancel_fork) + ss->cancel_fork(child); +} + +/** + * cgroup_post_fork - called on a new task after adding it to the task list + * @child: the task in question + * + * Adds the task to the list running through its css_set if necessary and + * call the subsystem fork() callbacks. Has to be after the task is + * visible on the task list in case we race with the first call to + * cgroup_task_iter_start() - to guarantee that the new task ends up on its + * list. + */ +void cgroup_post_fork(struct task_struct *child) +{ + struct cgroup_subsys *ss; + int i; + + /* + * This may race against cgroup_enable_task_cg_lists(). As that + * function sets use_task_css_set_links before grabbing + * tasklist_lock and we just went through tasklist_lock to add + * @child, it's guaranteed that either we see the set + * use_task_css_set_links or cgroup_enable_task_cg_lists() sees + * @child during its iteration. + * + * If we won the race, @child is associated with %current's + * css_set. Grabbing css_set_lock guarantees both that the + * association is stable, and, on completion of the parent's + * migration, @child is visible in the source of migration or + * already in the destination cgroup. This guarantee is necessary + * when implementing operations which need to migrate all tasks of + * a cgroup to another. + * + * Note that if we lose to cgroup_enable_task_cg_lists(), @child + * will remain in init_css_set. This is safe because all tasks are + * in the init_css_set before cg_links is enabled and there's no + * operation which transfers all tasks out of init_css_set. + */ + if (use_task_css_set_links) { + struct css_set *cset; + + spin_lock_irq(&css_set_lock); + cset = task_css_set(current); + if (list_empty(&child->cg_list)) { + get_css_set(cset); + cset->nr_tasks++; + css_set_move_task(child, NULL, cset, false); + } + spin_unlock_irq(&css_set_lock); + } + + /* + * Call ss->fork(). This must happen after @child is linked on + * css_set; otherwise, @child might change state between ->fork() + * and addition to css_set. + */ + do_each_subsys_mask(ss, i, have_fork_callback) { + ss->fork(child); + } while_each_subsys_mask(); +} + +/** + * cgroup_exit - detach cgroup from exiting task + * @tsk: pointer to task_struct of exiting process + * + * Description: Detach cgroup from @tsk and release it. + * + * Note that cgroups marked notify_on_release force every task in + * them to take the global cgroup_mutex mutex when exiting. + * This could impact scaling on very large systems. Be reluctant to + * use notify_on_release cgroups where very high task exit scaling + * is required on large systems. + * + * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We + * call cgroup_exit() while the task is still competent to handle + * notify_on_release(), then leave the task attached to the root cgroup in + * each hierarchy for the remainder of its exit. No need to bother with + * init_css_set refcnting. init_css_set never goes away and we can't race + * with migration path - PF_EXITING is visible to migration path. + */ +void cgroup_exit(struct task_struct *tsk) +{ + struct cgroup_subsys *ss; + struct css_set *cset; + int i; + + /* + * Unlink from @tsk from its css_set. As migration path can't race + * with us, we can check css_set and cg_list without synchronization. + */ + cset = task_css_set(tsk); + + if (!list_empty(&tsk->cg_list)) { + spin_lock_irq(&css_set_lock); + css_set_move_task(tsk, cset, NULL, false); + list_add_tail(&tsk->cg_list, &cset->dying_tasks); + cset->nr_tasks--; + spin_unlock_irq(&css_set_lock); + } else { + get_css_set(cset); + } + + /* see cgroup_post_fork() for details */ + do_each_subsys_mask(ss, i, have_exit_callback) { + ss->exit(tsk); + } while_each_subsys_mask(); +} + +void cgroup_release(struct task_struct *task) +{ + struct cgroup_subsys *ss; + int ssid; + + do_each_subsys_mask(ss, ssid, have_release_callback) { + ss->release(task); + } while_each_subsys_mask(); + + if (use_task_css_set_links) { + spin_lock_irq(&css_set_lock); + css_set_skip_task_iters(task_css_set(task), task); + list_del_init(&task->cg_list); + spin_unlock_irq(&css_set_lock); + } +} + +void cgroup_free(struct task_struct *task) +{ + struct css_set *cset = task_css_set(task); + put_css_set(cset); +} + +static int __init cgroup_disable(char *str) +{ + struct cgroup_subsys *ss; + char *token; + int i; + + while ((token = strsep(&str, ",")) != NULL) { + if (!*token) + continue; + + for_each_subsys(ss, i) { + if (strcmp(token, ss->name) && + strcmp(token, ss->legacy_name)) + continue; + + static_branch_disable(cgroup_subsys_enabled_key[i]); + pr_info("Disabling %s control group subsystem\n", + ss->name); + } + } + return 1; +} +__setup("cgroup_disable=", cgroup_disable); + +/** + * css_tryget_online_from_dir - get corresponding css from a cgroup dentry + * @dentry: directory dentry of interest + * @ss: subsystem of interest + * + * If @dentry is a directory for a cgroup which has @ss enabled on it, try + * to get the corresponding css and return it. If such css doesn't exist + * or can't be pinned, an ERR_PTR value is returned. + */ +struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, + struct cgroup_subsys *ss) +{ + struct kernfs_node *kn = kernfs_node_from_dentry(dentry); + struct file_system_type *s_type = dentry->d_sb->s_type; + struct cgroup_subsys_state *css = NULL; + struct cgroup *cgrp; + + /* is @dentry a cgroup dir? */ + if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || + !kn || kernfs_type(kn) != KERNFS_DIR) + return ERR_PTR(-EBADF); + + rcu_read_lock(); + + /* + * This path doesn't originate from kernfs and @kn could already + * have been or be removed at any point. @kn->priv is RCU + * protected for this access. See css_release_work_fn() for details. + */ + cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); + if (cgrp) + css = cgroup_css(cgrp, ss); + + if (!css || !css_tryget_online(css)) + css = ERR_PTR(-ENOENT); + + rcu_read_unlock(); + return css; +} + +/** + * css_from_id - lookup css by id + * @id: the cgroup id + * @ss: cgroup subsys to be looked into + * + * Returns the css if there's valid one with @id, otherwise returns NULL. + * Should be called under rcu_read_lock(). + */ +struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) +{ + WARN_ON_ONCE(!rcu_read_lock_held()); + return idr_find(&ss->css_idr, id); +} + +/** + * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path + * @path: path on the default hierarchy + * + * Find the cgroup at @path on the default hierarchy, increment its + * reference count and return it. Returns pointer to the found cgroup on + * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) + * if @path points to a non-directory. + */ +struct cgroup *cgroup_get_from_path(const char *path) +{ + struct kernfs_node *kn; + struct cgroup *cgrp; + + mutex_lock(&cgroup_mutex); + + kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); + if (kn) { + if (kernfs_type(kn) == KERNFS_DIR) { + cgrp = kn->priv; + cgroup_get_live(cgrp); + } else { + cgrp = ERR_PTR(-ENOTDIR); + } + kernfs_put(kn); + } else { + cgrp = ERR_PTR(-ENOENT); + } + + mutex_unlock(&cgroup_mutex); + return cgrp; +} +EXPORT_SYMBOL_GPL(cgroup_get_from_path); + +/** + * cgroup_get_from_fd - get a cgroup pointer from a fd + * @fd: fd obtained by open(cgroup2_dir) + * + * Find the cgroup from a fd which should be obtained + * by opening a cgroup directory. Returns a pointer to the + * cgroup on success. ERR_PTR is returned if the cgroup + * cannot be found. + */ +struct cgroup *cgroup_get_from_fd(int fd) +{ + struct cgroup_subsys_state *css; + struct cgroup *cgrp; + struct file *f; + + f = fget_raw(fd); + if (!f) + return ERR_PTR(-EBADF); + + css = css_tryget_online_from_dir(f->f_path.dentry, NULL); + fput(f); + if (IS_ERR(css)) + return ERR_CAST(css); + + cgrp = css->cgroup; + if (!cgroup_on_dfl(cgrp)) { + cgroup_put(cgrp); + return ERR_PTR(-EBADF); + } + + return cgrp; +} +EXPORT_SYMBOL_GPL(cgroup_get_from_fd); + +/* + * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data + * definition in cgroup-defs.h. + */ +#ifdef CONFIG_SOCK_CGROUP_DATA + +#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) + +DEFINE_SPINLOCK(cgroup_sk_update_lock); +static bool cgroup_sk_alloc_disabled __read_mostly; + +void cgroup_sk_alloc_disable(void) +{ + if (cgroup_sk_alloc_disabled) + return; + pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); + cgroup_sk_alloc_disabled = true; +} + +#else + +#define cgroup_sk_alloc_disabled false + +#endif + +void cgroup_sk_alloc(struct sock_cgroup_data *skcd) +{ + if (cgroup_sk_alloc_disabled) { + skcd->no_refcnt = 1; + return; + } + + /* Don't associate the sock with unrelated interrupted task's cgroup. */ + if (in_interrupt()) + return; + + rcu_read_lock(); + + while (true) { + struct css_set *cset; + + cset = task_css_set(current); + if (likely(cgroup_tryget(cset->dfl_cgrp))) { + skcd->val = (unsigned long)cset->dfl_cgrp; + break; + } + cpu_relax(); + } + + rcu_read_unlock(); +} + +void cgroup_sk_clone(struct sock_cgroup_data *skcd) +{ + /* Socket clone path */ + if (skcd->val) { + if (skcd->no_refcnt) + return; + /* + * We might be cloning a socket which is left in an empty + * cgroup and the cgroup might have already been rmdir'd. + * Don't use cgroup_get_live(). + */ + cgroup_get(sock_cgroup_ptr(skcd)); + } +} + +void cgroup_sk_free(struct sock_cgroup_data *skcd) +{ + if (skcd->no_refcnt) + return; + + cgroup_put(sock_cgroup_ptr(skcd)); +} + +#endif /* CONFIG_SOCK_CGROUP_DATA */ + +#ifdef CONFIG_CGROUP_BPF +int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, + enum bpf_attach_type type, u32 flags) +{ + int ret; + + mutex_lock(&cgroup_mutex); + ret = __cgroup_bpf_attach(cgrp, prog, type, flags); + mutex_unlock(&cgroup_mutex); + return ret; +} +int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, + enum bpf_attach_type type, u32 flags) +{ + int ret; + + mutex_lock(&cgroup_mutex); + ret = __cgroup_bpf_detach(cgrp, prog, type, flags); + mutex_unlock(&cgroup_mutex); + return ret; +} +int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + int ret; + + mutex_lock(&cgroup_mutex); + ret = __cgroup_bpf_query(cgrp, attr, uattr); + mutex_unlock(&cgroup_mutex); + return ret; +} +#endif /* CONFIG_CGROUP_BPF */ + +#ifdef CONFIG_SYSFS +static ssize_t show_delegatable_files(struct cftype *files, char *buf, + ssize_t size, const char *prefix) +{ + struct cftype *cft; + ssize_t ret = 0; + + for (cft = files; cft && cft->name[0] != '\0'; cft++) { + if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) + continue; + + if (prefix) + ret += snprintf(buf + ret, size - ret, "%s.", prefix); + + ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); + + if (unlikely(ret >= size)) { + WARN_ON(1); + break; + } + } + + return ret; +} + +static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, + char *buf) +{ + struct cgroup_subsys *ss; + int ssid; + ssize_t ret = 0; + + ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, + NULL); + + for_each_subsys(ss, ssid) + ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, + PAGE_SIZE - ret, + cgroup_subsys_name[ssid]); + + return ret; +} +static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); + +static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, + char *buf) +{ + return snprintf(buf, PAGE_SIZE, "nsdelegate\n"); +} +static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); + +static struct attribute *cgroup_sysfs_attrs[] = { + &cgroup_delegate_attr.attr, + &cgroup_features_attr.attr, + NULL, +}; + +static const struct attribute_group cgroup_sysfs_attr_group = { + .attrs = cgroup_sysfs_attrs, + .name = "cgroup", +}; + +static int __init cgroup_sysfs_init(void) +{ + return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); +} +subsys_initcall(cgroup_sysfs_init); +#endif /* CONFIG_SYSFS */ -- cgit v1.2.3