/* * Kernel Probes (KProbes) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) IBM Corporation, 2002, 2004 * * 2002-Oct Created by Vamsi Krishna S Kernel * Probes initial implementation ( includes contributions from * Rusty Russell). * 2004-July Suparna Bhattacharya added jumper probes * interface to access function arguments. * 2004-Nov Ananth N Mavinakayanahalli kprobes port * for PPC64 */ #include #include #include #include #include #include #include #include #include #include #include DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; bool arch_within_kprobe_blacklist(unsigned long addr) { return (addr >= (unsigned long)__kprobes_text_start && addr < (unsigned long)__kprobes_text_end) || (addr >= (unsigned long)_stext && addr < (unsigned long)__head_end); } kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset) { kprobe_opcode_t *addr = NULL; #ifdef PPC64_ELF_ABI_v2 /* PPC64 ABIv2 needs local entry point */ addr = (kprobe_opcode_t *)kallsyms_lookup_name(name); if (addr && !offset) { #ifdef CONFIG_KPROBES_ON_FTRACE unsigned long faddr; /* * Per livepatch.h, ftrace location is always within the first * 16 bytes of a function on powerpc with -mprofile-kernel. */ faddr = ftrace_location_range((unsigned long)addr, (unsigned long)addr + 16); if (faddr) addr = (kprobe_opcode_t *)faddr; else #endif addr = (kprobe_opcode_t *)ppc_function_entry(addr); } #elif defined(PPC64_ELF_ABI_v1) /* * 64bit powerpc ABIv1 uses function descriptors: * - Check for the dot variant of the symbol first. * - If that fails, try looking up the symbol provided. * * This ensures we always get to the actual symbol and not * the descriptor. * * Also handle format. */ char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN]; bool dot_appended = false; const char *c; ssize_t ret = 0; int len = 0; if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) { c++; len = c - name; memcpy(dot_name, name, len); } else c = name; if (*c != '\0' && *c != '.') { dot_name[len++] = '.'; dot_appended = true; } ret = strscpy(dot_name + len, c, KSYM_NAME_LEN); if (ret > 0) addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name); /* Fallback to the original non-dot symbol lookup */ if (!addr && dot_appended) addr = (kprobe_opcode_t *)kallsyms_lookup_name(name); #else addr = (kprobe_opcode_t *)kallsyms_lookup_name(name); #endif return addr; } int arch_prepare_kprobe(struct kprobe *p) { int ret = 0; kprobe_opcode_t insn = *p->addr; if ((unsigned long)p->addr & 0x03) { printk("Attempt to register kprobe at an unaligned address\n"); ret = -EINVAL; } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) { printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n"); ret = -EINVAL; } /* insn must be on a special executable page on ppc64. This is * not explicitly required on ppc32 (right now), but it doesn't hurt */ if (!ret) { p->ainsn.insn = get_insn_slot(); if (!p->ainsn.insn) ret = -ENOMEM; } if (!ret) { memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); p->opcode = *p->addr; flush_icache_range((unsigned long)p->ainsn.insn, (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t)); } p->ainsn.boostable = 0; return ret; } NOKPROBE_SYMBOL(arch_prepare_kprobe); void arch_arm_kprobe(struct kprobe *p) { patch_instruction(p->addr, BREAKPOINT_INSTRUCTION); } NOKPROBE_SYMBOL(arch_arm_kprobe); void arch_disarm_kprobe(struct kprobe *p) { patch_instruction(p->addr, p->opcode); } NOKPROBE_SYMBOL(arch_disarm_kprobe); void arch_remove_kprobe(struct kprobe *p) { if (p->ainsn.insn) { free_insn_slot(p->ainsn.insn, 0); p->ainsn.insn = NULL; } } NOKPROBE_SYMBOL(arch_remove_kprobe); static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) { enable_single_step(regs); /* * On powerpc we should single step on the original * instruction even if the probed insn is a trap * variant as values in regs could play a part in * if the trap is taken or not */ regs->nip = (unsigned long)p->ainsn.insn; } static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb) { kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr; } static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); kcb->kprobe_status = kcb->prev_kprobe.status; kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr; } static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, p); kcb->kprobe_saved_msr = regs->msr; } bool arch_kprobe_on_func_entry(unsigned long offset) { #ifdef PPC64_ELF_ABI_v2 #ifdef CONFIG_KPROBES_ON_FTRACE return offset <= 16; #else return offset <= 8; #endif #else return !offset; #endif } void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) { ri->ret_addr = (kprobe_opcode_t *)regs->link; /* Replace the return addr with trampoline addr */ regs->link = (unsigned long)kretprobe_trampoline; } NOKPROBE_SYMBOL(arch_prepare_kretprobe); static int try_to_emulate(struct kprobe *p, struct pt_regs *regs) { int ret; unsigned int insn = *p->ainsn.insn; /* regs->nip is also adjusted if emulate_step returns 1 */ ret = emulate_step(regs, insn); if (ret > 0) { /* * Once this instruction has been boosted * successfully, set the boostable flag */ if (unlikely(p->ainsn.boostable == 0)) p->ainsn.boostable = 1; } else if (ret < 0) { /* * We don't allow kprobes on mtmsr(d)/rfi(d), etc. * So, we should never get here... but, its still * good to catch them, just in case... */ printk("Can't step on instruction %x\n", insn); BUG(); } else { /* * If we haven't previously emulated this instruction, then it * can't be boosted. Note it down so we don't try to do so again. * * If, however, we had emulated this instruction in the past, * then this is just an error with the current run (for * instance, exceptions due to a load/store). We return 0 so * that this is now single-stepped, but continue to try * emulating it in subsequent probe hits. */ if (unlikely(p->ainsn.boostable != 1)) p->ainsn.boostable = -1; } return ret; } NOKPROBE_SYMBOL(try_to_emulate); int kprobe_handler(struct pt_regs *regs) { struct kprobe *p; int ret = 0; unsigned int *addr = (unsigned int *)regs->nip; struct kprobe_ctlblk *kcb; if (user_mode(regs)) return 0; if (!IS_ENABLED(CONFIG_BOOKE) && (!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR))) return 0; /* * We don't want to be preempted for the entire * duration of kprobe processing */ preempt_disable(); kcb = get_kprobe_ctlblk(); /* Check we're not actually recursing */ if (kprobe_running()) { p = get_kprobe(addr); if (p) { kprobe_opcode_t insn = *p->ainsn.insn; if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) { /* Turn off 'trace' bits */ regs->msr &= ~MSR_SINGLESTEP; regs->msr |= kcb->kprobe_saved_msr; goto no_kprobe; } /* We have reentered the kprobe_handler(), since * another probe was hit while within the handler. * We here save the original kprobes variables and * just single step on the instruction of the new probe * without calling any user handlers. */ save_previous_kprobe(kcb); set_current_kprobe(p, regs, kcb); kprobes_inc_nmissed_count(p); kcb->kprobe_status = KPROBE_REENTER; if (p->ainsn.boostable >= 0) { ret = try_to_emulate(p, regs); if (ret > 0) { restore_previous_kprobe(kcb); preempt_enable_no_resched(); return 1; } } prepare_singlestep(p, regs); return 1; } else if (*addr != BREAKPOINT_INSTRUCTION) { /* If trap variant, then it belongs not to us */ kprobe_opcode_t cur_insn = *addr; if (is_trap(cur_insn)) goto no_kprobe; /* The breakpoint instruction was removed by * another cpu right after we hit, no further * handling of this interrupt is appropriate */ ret = 1; } goto no_kprobe; } p = get_kprobe(addr); if (!p) { if (*addr != BREAKPOINT_INSTRUCTION) { /* * PowerPC has multiple variants of the "trap" * instruction. If the current instruction is a * trap variant, it could belong to someone else */ kprobe_opcode_t cur_insn = *addr; if (is_trap(cur_insn)) goto no_kprobe; /* * The breakpoint instruction was removed right * after we hit it. Another cpu has removed * either a probepoint or a debugger breakpoint * at this address. In either case, no further * handling of this interrupt is appropriate. */ ret = 1; } /* Not one of ours: let kernel handle it */ goto no_kprobe; } kcb->kprobe_status = KPROBE_HIT_ACTIVE; set_current_kprobe(p, regs, kcb); if (p->pre_handler && p->pre_handler(p, regs)) { /* handler changed execution path, so skip ss setup */ reset_current_kprobe(); preempt_enable_no_resched(); return 1; } if (p->ainsn.boostable >= 0) { ret = try_to_emulate(p, regs); if (ret > 0) { if (p->post_handler) p->post_handler(p, regs, 0); kcb->kprobe_status = KPROBE_HIT_SSDONE; reset_current_kprobe(); preempt_enable_no_resched(); return 1; } } prepare_singlestep(p, regs); kcb->kprobe_status = KPROBE_HIT_SS; return 1; no_kprobe: preempt_enable_no_resched(); return ret; } NOKPROBE_SYMBOL(kprobe_handler); /* * Function return probe trampoline: * - init_kprobes() establishes a probepoint here * - When the probed function returns, this probe * causes the handlers to fire */ asm(".global kretprobe_trampoline\n" ".type kretprobe_trampoline, @function\n" "kretprobe_trampoline:\n" "nop\n" "blr\n" ".size kretprobe_trampoline, .-kretprobe_trampoline\n"); /* * Called when the probe at kretprobe trampoline is hit */ static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) { struct kretprobe_instance *ri = NULL; struct hlist_head *head, empty_rp; struct hlist_node *tmp; unsigned long flags, orig_ret_address = 0; unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; INIT_HLIST_HEAD(&empty_rp); kretprobe_hash_lock(current, &head, &flags); /* * It is possible to have multiple instances associated with a given * task either because an multiple functions in the call path * have a return probe installed on them, and/or more than one return * return probe was registered for a target function. * * We can handle this because: * - instances are always inserted at the head of the list * - when multiple return probes are registered for the same * function, the first instance's ret_addr will point to the * real return address, and all the rest will point to * kretprobe_trampoline */ hlist_for_each_entry_safe(ri, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; if (ri->rp && ri->rp->handler) ri->rp->handler(ri, regs); orig_ret_address = (unsigned long)ri->ret_addr; recycle_rp_inst(ri, &empty_rp); if (orig_ret_address != trampoline_address) /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } kretprobe_assert(ri, orig_ret_address, trampoline_address); /* * We get here through one of two paths: * 1. by taking a trap -> kprobe_handler() -> here * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here * * When going back through (1), we need regs->nip to be setup properly * as it is used to determine the return address from the trap. * For (2), since nip is not honoured with optprobes, we instead setup * the link register properly so that the subsequent 'blr' in * kretprobe_trampoline jumps back to the right instruction. * * For nip, we should set the address to the previous instruction since * we end up emulating it in kprobe_handler(), which increments the nip * again. */ regs->nip = orig_ret_address - 4; regs->link = orig_ret_address; kretprobe_hash_unlock(current, &flags); hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { hlist_del(&ri->hlist); kfree(ri); } return 0; } NOKPROBE_SYMBOL(trampoline_probe_handler); /* * Called after single-stepping. p->addr is the address of the * instruction whose first byte has been replaced by the "breakpoint" * instruction. To avoid the SMP problems that can occur when we * temporarily put back the original opcode to single-step, we * single-stepped a copy of the instruction. The address of this * copy is p->ainsn.insn. */ int kprobe_post_handler(struct pt_regs *regs) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); if (!cur || user_mode(regs)) return 0; /* make sure we got here for instruction we have a kprobe on */ if (((unsigned long)cur->ainsn.insn + 4) != regs->nip) return 0; if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; cur->post_handler(cur, regs, 0); } /* Adjust nip to after the single-stepped instruction */ regs->nip = (unsigned long)cur->addr + 4; regs->msr |= kcb->kprobe_saved_msr; /*Restore back the original saved kprobes variables and continue. */ if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); goto out; } reset_current_kprobe(); out: preempt_enable_no_resched(); /* * if somebody else is singlestepping across a probe point, msr * will have DE/SE set, in which case, continue the remaining processing * of do_debug, as if this is not a probe hit. */ if (regs->msr & MSR_SINGLESTEP) return 0; return 1; } NOKPROBE_SYMBOL(kprobe_post_handler); int kprobe_fault_handler(struct pt_regs *regs, int trapnr) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); const struct exception_table_entry *entry; switch(kcb->kprobe_status) { case KPROBE_HIT_SS: case KPROBE_REENTER: /* * We are here because the instruction being single * stepped caused a page fault. We reset the current * kprobe and the nip points back to the probe address * and allow the page fault handler to continue as a * normal page fault. */ regs->nip = (unsigned long)cur->addr; regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */ regs->msr |= kcb->kprobe_saved_msr; if (kcb->kprobe_status == KPROBE_REENTER) restore_previous_kprobe(kcb); else reset_current_kprobe(); preempt_enable_no_resched(); break; case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: /* * We increment the nmissed count for accounting, * we can also use npre/npostfault count for accounting * these specific fault cases. */ kprobes_inc_nmissed_count(cur); /* * We come here because instructions in the pre/post * handler caused the page_fault, this could happen * if handler tries to access user space by * copy_from_user(), get_user() etc. Let the * user-specified handler try to fix it first. */ if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) return 1; /* * In case the user-specified fault handler returned * zero, try to fix up. */ if ((entry = search_exception_tables(regs->nip)) != NULL) { regs->nip = extable_fixup(entry); return 1; } /* * fixup_exception() could not handle it, * Let do_page_fault() fix it. */ break; default: break; } return 0; } NOKPROBE_SYMBOL(kprobe_fault_handler); unsigned long arch_deref_entry_point(void *entry) { #ifdef PPC64_ELF_ABI_v1 if (!kernel_text_address((unsigned long)entry)) return ppc_global_function_entry(entry); else #endif return (unsigned long)entry; } NOKPROBE_SYMBOL(arch_deref_entry_point); static struct kprobe trampoline_p = { .addr = (kprobe_opcode_t *) &kretprobe_trampoline, .pre_handler = trampoline_probe_handler }; int __init arch_init_kprobes(void) { return register_kprobe(&trampoline_p); } int arch_trampoline_kprobe(struct kprobe *p) { if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) return 1; return 0; } NOKPROBE_SYMBOL(arch_trampoline_kprobe);