/* * Shared support code for AMD K8 northbridges and derivates. * Copyright 2006 Andi Kleen, SUSE Labs. Subject to GPLv2. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #define PCI_DEVICE_ID_AMD_17H_ROOT 0x1450 #define PCI_DEVICE_ID_AMD_17H_M10H_ROOT 0x15d0 #define PCI_DEVICE_ID_AMD_17H_M30H_ROOT 0x1480 #define PCI_DEVICE_ID_AMD_17H_DF_F4 0x1464 #define PCI_DEVICE_ID_AMD_17H_M10H_DF_F4 0x15ec #define PCI_DEVICE_ID_AMD_17H_M30H_DF_F4 0x1494 #define PCI_DEVICE_ID_AMD_17H_M70H_DF_F4 0x1444 #define PCI_DEVICE_ID_AMD_19H_DF_F4 0x1654 /* Protect the PCI config register pairs used for SMN and DF indirect access. */ static DEFINE_MUTEX(smn_mutex); static u32 *flush_words; static const struct pci_device_id amd_root_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_ROOT) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M10H_ROOT) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M30H_ROOT) }, {} }; #define PCI_DEVICE_ID_AMD_CNB17H_F4 0x1704 const struct pci_device_id amd_nb_misc_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_K8_NB_MISC) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_10H_NB_MISC) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_NB_F3) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_M10H_F3) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F3) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F3) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_16H_NB_F3) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F3) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_DF_F3) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M10H_DF_F3) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M30H_DF_F3) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_CNB17H_F3) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M70H_DF_F3) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_19H_DF_F3) }, {} }; EXPORT_SYMBOL_GPL(amd_nb_misc_ids); static const struct pci_device_id amd_nb_link_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_NB_F4) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F4) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F4) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_16H_NB_F4) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F4) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_DF_F4) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M10H_DF_F4) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M30H_DF_F4) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M70H_DF_F4) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_19H_DF_F4) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_CNB17H_F4) }, {} }; const struct amd_nb_bus_dev_range amd_nb_bus_dev_ranges[] __initconst = { { 0x00, 0x18, 0x20 }, { 0xff, 0x00, 0x20 }, { 0xfe, 0x00, 0x20 }, { } }; static struct amd_northbridge_info amd_northbridges; u16 amd_nb_num(void) { return amd_northbridges.num; } EXPORT_SYMBOL_GPL(amd_nb_num); bool amd_nb_has_feature(unsigned int feature) { return ((amd_northbridges.flags & feature) == feature); } EXPORT_SYMBOL_GPL(amd_nb_has_feature); struct amd_northbridge *node_to_amd_nb(int node) { return (node < amd_northbridges.num) ? &amd_northbridges.nb[node] : NULL; } EXPORT_SYMBOL_GPL(node_to_amd_nb); static struct pci_dev *next_northbridge(struct pci_dev *dev, const struct pci_device_id *ids) { do { dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev); if (!dev) break; } while (!pci_match_id(ids, dev)); return dev; } static int __amd_smn_rw(u16 node, u32 address, u32 *value, bool write) { struct pci_dev *root; int err = -ENODEV; if (node >= amd_northbridges.num) goto out; root = node_to_amd_nb(node)->root; if (!root) goto out; mutex_lock(&smn_mutex); err = pci_write_config_dword(root, 0x60, address); if (err) { pr_warn("Error programming SMN address 0x%x.\n", address); goto out_unlock; } err = (write ? pci_write_config_dword(root, 0x64, *value) : pci_read_config_dword(root, 0x64, value)); if (err) pr_warn("Error %s SMN address 0x%x.\n", (write ? "writing to" : "reading from"), address); out_unlock: mutex_unlock(&smn_mutex); out: return err; } int amd_smn_read(u16 node, u32 address, u32 *value) { return __amd_smn_rw(node, address, value, false); } EXPORT_SYMBOL_GPL(amd_smn_read); int amd_smn_write(u16 node, u32 address, u32 value) { return __amd_smn_rw(node, address, &value, true); } EXPORT_SYMBOL_GPL(amd_smn_write); /* * Data Fabric Indirect Access uses FICAA/FICAD. * * Fabric Indirect Configuration Access Address (FICAA): Constructed based * on the device's Instance Id and the PCI function and register offset of * the desired register. * * Fabric Indirect Configuration Access Data (FICAD): There are FICAD LO * and FICAD HI registers but so far we only need the LO register. */ int amd_df_indirect_read(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo) { struct pci_dev *F4; u32 ficaa; int err = -ENODEV; if (node >= amd_northbridges.num) goto out; F4 = node_to_amd_nb(node)->link; if (!F4) goto out; ficaa = 1; ficaa |= reg & 0x3FC; ficaa |= (func & 0x7) << 11; ficaa |= instance_id << 16; mutex_lock(&smn_mutex); err = pci_write_config_dword(F4, 0x5C, ficaa); if (err) { pr_warn("Error writing DF Indirect FICAA, FICAA=0x%x\n", ficaa); goto out_unlock; } err = pci_read_config_dword(F4, 0x98, lo); if (err) pr_warn("Error reading DF Indirect FICAD LO, FICAA=0x%x.\n", ficaa); out_unlock: mutex_unlock(&smn_mutex); out: return err; } EXPORT_SYMBOL_GPL(amd_df_indirect_read); int amd_cache_northbridges(void) { u16 i = 0; struct amd_northbridge *nb; struct pci_dev *root, *misc, *link; if (amd_northbridges.num) return 0; misc = NULL; while ((misc = next_northbridge(misc, amd_nb_misc_ids)) != NULL) i++; if (!i) return -ENODEV; nb = kcalloc(i, sizeof(struct amd_northbridge), GFP_KERNEL); if (!nb) return -ENOMEM; amd_northbridges.nb = nb; amd_northbridges.num = i; link = misc = root = NULL; for (i = 0; i != amd_northbridges.num; i++) { node_to_amd_nb(i)->root = root = next_northbridge(root, amd_root_ids); node_to_amd_nb(i)->misc = misc = next_northbridge(misc, amd_nb_misc_ids); node_to_amd_nb(i)->link = link = next_northbridge(link, amd_nb_link_ids); } if (amd_gart_present()) amd_northbridges.flags |= AMD_NB_GART; /* * Check for L3 cache presence. */ if (!cpuid_edx(0x80000006)) return 0; /* * Some CPU families support L3 Cache Index Disable. There are some * limitations because of E382 and E388 on family 0x10. */ if (boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model >= 0x8 && (boot_cpu_data.x86_model > 0x9 || boot_cpu_data.x86_stepping >= 0x1)) amd_northbridges.flags |= AMD_NB_L3_INDEX_DISABLE; if (boot_cpu_data.x86 == 0x15) amd_northbridges.flags |= AMD_NB_L3_INDEX_DISABLE; /* L3 cache partitioning is supported on family 0x15 */ if (boot_cpu_data.x86 == 0x15) amd_northbridges.flags |= AMD_NB_L3_PARTITIONING; return 0; } EXPORT_SYMBOL_GPL(amd_cache_northbridges); /* * Ignores subdevice/subvendor but as far as I can figure out * they're useless anyways */ bool __init early_is_amd_nb(u32 device) { const struct pci_device_id *id; u32 vendor = device & 0xffff; device >>= 16; for (id = amd_nb_misc_ids; id->vendor; id++) if (vendor == id->vendor && device == id->device) return true; return false; } struct resource *amd_get_mmconfig_range(struct resource *res) { u32 address; u64 base, msr; unsigned int segn_busn_bits; if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) return NULL; /* assume all cpus from fam10h have mmconfig */ if (boot_cpu_data.x86 < 0x10) return NULL; address = MSR_FAM10H_MMIO_CONF_BASE; rdmsrl(address, msr); /* mmconfig is not enabled */ if (!(msr & FAM10H_MMIO_CONF_ENABLE)) return NULL; base = msr & (FAM10H_MMIO_CONF_BASE_MASK<> FAM10H_MMIO_CONF_BUSRANGE_SHIFT) & FAM10H_MMIO_CONF_BUSRANGE_MASK; res->flags = IORESOURCE_MEM; res->start = base; res->end = base + (1ULL<<(segn_busn_bits + 20)) - 1; return res; } int amd_get_subcaches(int cpu) { struct pci_dev *link = node_to_amd_nb(amd_get_nb_id(cpu))->link; unsigned int mask; if (!amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) return 0; pci_read_config_dword(link, 0x1d4, &mask); return (mask >> (4 * cpu_data(cpu).cpu_core_id)) & 0xf; } int amd_set_subcaches(int cpu, unsigned long mask) { static unsigned int reset, ban; struct amd_northbridge *nb = node_to_amd_nb(amd_get_nb_id(cpu)); unsigned int reg; int cuid; if (!amd_nb_has_feature(AMD_NB_L3_PARTITIONING) || mask > 0xf) return -EINVAL; /* if necessary, collect reset state of L3 partitioning and BAN mode */ if (reset == 0) { pci_read_config_dword(nb->link, 0x1d4, &reset); pci_read_config_dword(nb->misc, 0x1b8, &ban); ban &= 0x180000; } /* deactivate BAN mode if any subcaches are to be disabled */ if (mask != 0xf) { pci_read_config_dword(nb->misc, 0x1b8, ®); pci_write_config_dword(nb->misc, 0x1b8, reg & ~0x180000); } cuid = cpu_data(cpu).cpu_core_id; mask <<= 4 * cuid; mask |= (0xf ^ (1 << cuid)) << 26; pci_write_config_dword(nb->link, 0x1d4, mask); /* reset BAN mode if L3 partitioning returned to reset state */ pci_read_config_dword(nb->link, 0x1d4, ®); if (reg == reset) { pci_read_config_dword(nb->misc, 0x1b8, ®); reg &= ~0x180000; pci_write_config_dword(nb->misc, 0x1b8, reg | ban); } return 0; } static void amd_cache_gart(void) { u16 i; if (!amd_nb_has_feature(AMD_NB_GART)) return; flush_words = kmalloc_array(amd_northbridges.num, sizeof(u32), GFP_KERNEL); if (!flush_words) { amd_northbridges.flags &= ~AMD_NB_GART; pr_notice("Cannot initialize GART flush words, GART support disabled\n"); return; } for (i = 0; i != amd_northbridges.num; i++) pci_read_config_dword(node_to_amd_nb(i)->misc, 0x9c, &flush_words[i]); } void amd_flush_garts(void) { int flushed, i; unsigned long flags; static DEFINE_SPINLOCK(gart_lock); if (!amd_nb_has_feature(AMD_NB_GART)) return; /* * Avoid races between AGP and IOMMU. In theory it's not needed * but I'm not sure if the hardware won't lose flush requests * when another is pending. This whole thing is so expensive anyways * that it doesn't matter to serialize more. -AK */ spin_lock_irqsave(&gart_lock, flags); flushed = 0; for (i = 0; i < amd_northbridges.num; i++) { pci_write_config_dword(node_to_amd_nb(i)->misc, 0x9c, flush_words[i] | 1); flushed++; } for (i = 0; i < amd_northbridges.num; i++) { u32 w; /* Make sure the hardware actually executed the flush*/ for (;;) { pci_read_config_dword(node_to_amd_nb(i)->misc, 0x9c, &w); if (!(w & 1)) break; cpu_relax(); } } spin_unlock_irqrestore(&gart_lock, flags); if (!flushed) pr_notice("nothing to flush?\n"); } EXPORT_SYMBOL_GPL(amd_flush_garts); static void __fix_erratum_688(void *info) { #define MSR_AMD64_IC_CFG 0xC0011021 msr_set_bit(MSR_AMD64_IC_CFG, 3); msr_set_bit(MSR_AMD64_IC_CFG, 14); } /* Apply erratum 688 fix so machines without a BIOS fix work. */ static __init void fix_erratum_688(void) { struct pci_dev *F4; u32 val; if (boot_cpu_data.x86 != 0x14) return; if (!amd_northbridges.num) return; F4 = node_to_amd_nb(0)->link; if (!F4) return; if (pci_read_config_dword(F4, 0x164, &val)) return; if (val & BIT(2)) return; on_each_cpu(__fix_erratum_688, NULL, 0); pr_info("x86/cpu/AMD: CPU erratum 688 worked around\n"); } static __init int init_amd_nbs(void) { amd_cache_northbridges(); amd_cache_gart(); fix_erratum_688(); return 0; } /* This has to go after the PCI subsystem */ fs_initcall(init_amd_nbs);