/* * Resource Director Technology(RDT) * - Cache Allocation code. * * Copyright (C) 2016 Intel Corporation * * Authors: * Fenghua Yu * Tony Luck * Vikas Shivappa * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * More information about RDT be found in the Intel (R) x86 Architecture * Software Developer Manual June 2016, volume 3, section 17.17. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include "intel_rdt.h" #define MBA_IS_LINEAR 0x4 #define MBA_MAX_MBPS U32_MAX /* Mutex to protect rdtgroup access. */ DEFINE_MUTEX(rdtgroup_mutex); /* * The cached intel_pqr_state is strictly per CPU and can never be * updated from a remote CPU. Functions which modify the state * are called with interrupts disabled and no preemption, which * is sufficient for the protection. */ DEFINE_PER_CPU(struct intel_pqr_state, pqr_state); /* * Used to store the max resource name width and max resource data width * to display the schemata in a tabular format */ int max_name_width, max_data_width; /* * Global boolean for rdt_alloc which is true if any * resource allocation is enabled. */ bool rdt_alloc_capable; static void mba_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r); static void cat_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r); #define domain_init(id) LIST_HEAD_INIT(rdt_resources_all[id].domains) struct rdt_resource rdt_resources_all[] = { [RDT_RESOURCE_L3] = { .rid = RDT_RESOURCE_L3, .name = "L3", .domains = domain_init(RDT_RESOURCE_L3), .msr_base = IA32_L3_CBM_BASE, .msr_update = cat_wrmsr, .cache_level = 3, .cache = { .min_cbm_bits = 1, .cbm_idx_mult = 1, .cbm_idx_offset = 0, }, .parse_ctrlval = parse_cbm, .format_str = "%d=%0*x", .fflags = RFTYPE_RES_CACHE, }, [RDT_RESOURCE_L3DATA] = { .rid = RDT_RESOURCE_L3DATA, .name = "L3DATA", .domains = domain_init(RDT_RESOURCE_L3DATA), .msr_base = IA32_L3_CBM_BASE, .msr_update = cat_wrmsr, .cache_level = 3, .cache = { .min_cbm_bits = 1, .cbm_idx_mult = 2, .cbm_idx_offset = 0, }, .parse_ctrlval = parse_cbm, .format_str = "%d=%0*x", .fflags = RFTYPE_RES_CACHE, }, [RDT_RESOURCE_L3CODE] = { .rid = RDT_RESOURCE_L3CODE, .name = "L3CODE", .domains = domain_init(RDT_RESOURCE_L3CODE), .msr_base = IA32_L3_CBM_BASE, .msr_update = cat_wrmsr, .cache_level = 3, .cache = { .min_cbm_bits = 1, .cbm_idx_mult = 2, .cbm_idx_offset = 1, }, .parse_ctrlval = parse_cbm, .format_str = "%d=%0*x", .fflags = RFTYPE_RES_CACHE, }, [RDT_RESOURCE_L2] = { .rid = RDT_RESOURCE_L2, .name = "L2", .domains = domain_init(RDT_RESOURCE_L2), .msr_base = IA32_L2_CBM_BASE, .msr_update = cat_wrmsr, .cache_level = 2, .cache = { .min_cbm_bits = 1, .cbm_idx_mult = 1, .cbm_idx_offset = 0, }, .parse_ctrlval = parse_cbm, .format_str = "%d=%0*x", .fflags = RFTYPE_RES_CACHE, }, [RDT_RESOURCE_L2DATA] = { .rid = RDT_RESOURCE_L2DATA, .name = "L2DATA", .domains = domain_init(RDT_RESOURCE_L2DATA), .msr_base = IA32_L2_CBM_BASE, .msr_update = cat_wrmsr, .cache_level = 2, .cache = { .min_cbm_bits = 1, .cbm_idx_mult = 2, .cbm_idx_offset = 0, }, .parse_ctrlval = parse_cbm, .format_str = "%d=%0*x", .fflags = RFTYPE_RES_CACHE, }, [RDT_RESOURCE_L2CODE] = { .rid = RDT_RESOURCE_L2CODE, .name = "L2CODE", .domains = domain_init(RDT_RESOURCE_L2CODE), .msr_base = IA32_L2_CBM_BASE, .msr_update = cat_wrmsr, .cache_level = 2, .cache = { .min_cbm_bits = 1, .cbm_idx_mult = 2, .cbm_idx_offset = 1, }, .parse_ctrlval = parse_cbm, .format_str = "%d=%0*x", .fflags = RFTYPE_RES_CACHE, }, [RDT_RESOURCE_MBA] = { .rid = RDT_RESOURCE_MBA, .name = "MB", .domains = domain_init(RDT_RESOURCE_MBA), .msr_base = IA32_MBA_THRTL_BASE, .msr_update = mba_wrmsr, .cache_level = 3, .parse_ctrlval = parse_bw, .format_str = "%d=%*u", .fflags = RFTYPE_RES_MB, }, }; static unsigned int cbm_idx(struct rdt_resource *r, unsigned int closid) { return closid * r->cache.cbm_idx_mult + r->cache.cbm_idx_offset; } /* * cache_alloc_hsw_probe() - Have to probe for Intel haswell server CPUs * as they do not have CPUID enumeration support for Cache allocation. * The check for Vendor/Family/Model is not enough to guarantee that * the MSRs won't #GP fault because only the following SKUs support * CAT: * Intel(R) Xeon(R) CPU E5-2658 v3 @ 2.20GHz * Intel(R) Xeon(R) CPU E5-2648L v3 @ 1.80GHz * Intel(R) Xeon(R) CPU E5-2628L v3 @ 2.00GHz * Intel(R) Xeon(R) CPU E5-2618L v3 @ 2.30GHz * Intel(R) Xeon(R) CPU E5-2608L v3 @ 2.00GHz * Intel(R) Xeon(R) CPU E5-2658A v3 @ 2.20GHz * * Probe by trying to write the first of the L3 cach mask registers * and checking that the bits stick. Max CLOSids is always 4 and max cbm length * is always 20 on hsw server parts. The minimum cache bitmask length * allowed for HSW server is always 2 bits. Hardcode all of them. */ static inline void cache_alloc_hsw_probe(void) { struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3]; u32 l, h, max_cbm = BIT_MASK(20) - 1; if (wrmsr_safe(IA32_L3_CBM_BASE, max_cbm, 0)) return; rdmsr(IA32_L3_CBM_BASE, l, h); /* If all the bits were set in MSR, return success */ if (l != max_cbm) return; r->num_closid = 4; r->default_ctrl = max_cbm; r->cache.cbm_len = 20; r->cache.shareable_bits = 0xc0000; r->cache.min_cbm_bits = 2; r->alloc_capable = true; r->alloc_enabled = true; rdt_alloc_capable = true; } bool is_mba_sc(struct rdt_resource *r) { if (!r) return rdt_resources_all[RDT_RESOURCE_MBA].membw.mba_sc; return r->membw.mba_sc; } /* * rdt_get_mb_table() - get a mapping of bandwidth(b/w) percentage values * exposed to user interface and the h/w understandable delay values. * * The non-linear delay values have the granularity of power of two * and also the h/w does not guarantee a curve for configured delay * values vs. actual b/w enforced. * Hence we need a mapping that is pre calibrated so the user can * express the memory b/w as a percentage value. */ static inline bool rdt_get_mb_table(struct rdt_resource *r) { /* * There are no Intel SKUs as of now to support non-linear delay. */ pr_info("MBA b/w map not implemented for cpu:%d, model:%d", boot_cpu_data.x86, boot_cpu_data.x86_model); return false; } static bool rdt_get_mem_config(struct rdt_resource *r) { union cpuid_0x10_3_eax eax; union cpuid_0x10_x_edx edx; u32 ebx, ecx; cpuid_count(0x00000010, 3, &eax.full, &ebx, &ecx, &edx.full); r->num_closid = edx.split.cos_max + 1; r->membw.max_delay = eax.split.max_delay + 1; r->default_ctrl = MAX_MBA_BW; if (ecx & MBA_IS_LINEAR) { r->membw.delay_linear = true; r->membw.min_bw = MAX_MBA_BW - r->membw.max_delay; r->membw.bw_gran = MAX_MBA_BW - r->membw.max_delay; } else { if (!rdt_get_mb_table(r)) return false; } r->data_width = 3; r->alloc_capable = true; r->alloc_enabled = true; return true; } static void rdt_get_cache_alloc_cfg(int idx, struct rdt_resource *r) { union cpuid_0x10_1_eax eax; union cpuid_0x10_x_edx edx; u32 ebx, ecx; cpuid_count(0x00000010, idx, &eax.full, &ebx, &ecx, &edx.full); r->num_closid = edx.split.cos_max + 1; r->cache.cbm_len = eax.split.cbm_len + 1; r->default_ctrl = BIT_MASK(eax.split.cbm_len + 1) - 1; r->cache.shareable_bits = ebx & r->default_ctrl; r->data_width = (r->cache.cbm_len + 3) / 4; r->alloc_capable = true; r->alloc_enabled = true; } static void rdt_get_cdp_config(int level, int type) { struct rdt_resource *r_l = &rdt_resources_all[level]; struct rdt_resource *r = &rdt_resources_all[type]; r->num_closid = r_l->num_closid / 2; r->cache.cbm_len = r_l->cache.cbm_len; r->default_ctrl = r_l->default_ctrl; r->cache.shareable_bits = r_l->cache.shareable_bits; r->data_width = (r->cache.cbm_len + 3) / 4; r->alloc_capable = true; /* * By default, CDP is disabled. CDP can be enabled by mount parameter * "cdp" during resctrl file system mount time. */ r->alloc_enabled = false; } static void rdt_get_cdp_l3_config(void) { rdt_get_cdp_config(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA); rdt_get_cdp_config(RDT_RESOURCE_L3, RDT_RESOURCE_L3CODE); } static void rdt_get_cdp_l2_config(void) { rdt_get_cdp_config(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA); rdt_get_cdp_config(RDT_RESOURCE_L2, RDT_RESOURCE_L2CODE); } static int get_cache_id(int cpu, int level) { struct cpu_cacheinfo *ci = get_cpu_cacheinfo(cpu); int i; for (i = 0; i < ci->num_leaves; i++) { if (ci->info_list[i].level == level) return ci->info_list[i].id; } return -1; } /* * Map the memory b/w percentage value to delay values * that can be written to QOS_MSRs. * There are currently no SKUs which support non linear delay values. */ u32 delay_bw_map(unsigned long bw, struct rdt_resource *r) { if (r->membw.delay_linear) return MAX_MBA_BW - bw; pr_warn_once("Non Linear delay-bw map not supported but queried\n"); return r->default_ctrl; } static void mba_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r) { unsigned int i; /* Write the delay values for mba. */ for (i = m->low; i < m->high; i++) wrmsrl(r->msr_base + i, delay_bw_map(d->ctrl_val[i], r)); } static void cat_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r) { unsigned int i; for (i = m->low; i < m->high; i++) wrmsrl(r->msr_base + cbm_idx(r, i), d->ctrl_val[i]); } struct rdt_domain *get_domain_from_cpu(int cpu, struct rdt_resource *r) { struct rdt_domain *d; list_for_each_entry(d, &r->domains, list) { /* Find the domain that contains this CPU */ if (cpumask_test_cpu(cpu, &d->cpu_mask)) return d; } return NULL; } void rdt_ctrl_update(void *arg) { struct msr_param *m = arg; struct rdt_resource *r = m->res; int cpu = smp_processor_id(); struct rdt_domain *d; d = get_domain_from_cpu(cpu, r); if (d) { r->msr_update(d, m, r); return; } pr_warn_once("cpu %d not found in any domain for resource %s\n", cpu, r->name); } /* * rdt_find_domain - Find a domain in a resource that matches input resource id * * Search resource r's domain list to find the resource id. If the resource * id is found in a domain, return the domain. Otherwise, if requested by * caller, return the first domain whose id is bigger than the input id. * The domain list is sorted by id in ascending order. */ struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id, struct list_head **pos) { struct rdt_domain *d; struct list_head *l; if (id < 0) return ERR_PTR(-ENODEV); list_for_each(l, &r->domains) { d = list_entry(l, struct rdt_domain, list); /* When id is found, return its domain. */ if (id == d->id) return d; /* Stop searching when finding id's position in sorted list. */ if (id < d->id) break; } if (pos) *pos = l; return NULL; } void setup_default_ctrlval(struct rdt_resource *r, u32 *dc, u32 *dm) { int i; /* * Initialize the Control MSRs to having no control. * For Cache Allocation: Set all bits in cbm * For Memory Allocation: Set b/w requested to 100% * and the bandwidth in MBps to U32_MAX */ for (i = 0; i < r->num_closid; i++, dc++, dm++) { *dc = r->default_ctrl; *dm = MBA_MAX_MBPS; } } static int domain_setup_ctrlval(struct rdt_resource *r, struct rdt_domain *d) { struct msr_param m; u32 *dc, *dm; dc = kmalloc_array(r->num_closid, sizeof(*d->ctrl_val), GFP_KERNEL); if (!dc) return -ENOMEM; dm = kmalloc_array(r->num_closid, sizeof(*d->mbps_val), GFP_KERNEL); if (!dm) { kfree(dc); return -ENOMEM; } d->ctrl_val = dc; d->mbps_val = dm; setup_default_ctrlval(r, dc, dm); m.low = 0; m.high = r->num_closid; r->msr_update(d, &m, r); return 0; } static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d) { size_t tsize; if (is_llc_occupancy_enabled()) { d->rmid_busy_llc = kcalloc(BITS_TO_LONGS(r->num_rmid), sizeof(unsigned long), GFP_KERNEL); if (!d->rmid_busy_llc) return -ENOMEM; INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo); } if (is_mbm_total_enabled()) { tsize = sizeof(*d->mbm_total); d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL); if (!d->mbm_total) { kfree(d->rmid_busy_llc); return -ENOMEM; } } if (is_mbm_local_enabled()) { tsize = sizeof(*d->mbm_local); d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL); if (!d->mbm_local) { kfree(d->rmid_busy_llc); kfree(d->mbm_total); return -ENOMEM; } } if (is_mbm_enabled()) { INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow); mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL); } return 0; } /* * domain_add_cpu - Add a cpu to a resource's domain list. * * If an existing domain in the resource r's domain list matches the cpu's * resource id, add the cpu in the domain. * * Otherwise, a new domain is allocated and inserted into the right position * in the domain list sorted by id in ascending order. * * The order in the domain list is visible to users when we print entries * in the schemata file and schemata input is validated to have the same order * as this list. */ static void domain_add_cpu(int cpu, struct rdt_resource *r) { int id = get_cache_id(cpu, r->cache_level); struct list_head *add_pos = NULL; struct rdt_domain *d; d = rdt_find_domain(r, id, &add_pos); if (IS_ERR(d)) { pr_warn("Could't find cache id for cpu %d\n", cpu); return; } if (d) { cpumask_set_cpu(cpu, &d->cpu_mask); return; } d = kzalloc_node(sizeof(*d), GFP_KERNEL, cpu_to_node(cpu)); if (!d) return; d->id = id; cpumask_set_cpu(cpu, &d->cpu_mask); rdt_domain_reconfigure_cdp(r); if (r->alloc_capable && domain_setup_ctrlval(r, d)) { kfree(d); return; } if (r->mon_capable && domain_setup_mon_state(r, d)) { kfree(d->ctrl_val); kfree(d->mbps_val); kfree(d); return; } list_add_tail(&d->list, add_pos); /* * If resctrl is mounted, add * per domain monitor data directories. */ if (static_branch_unlikely(&rdt_mon_enable_key)) mkdir_mondata_subdir_allrdtgrp(r, d); } static void domain_remove_cpu(int cpu, struct rdt_resource *r) { int id = get_cache_id(cpu, r->cache_level); struct rdt_domain *d; d = rdt_find_domain(r, id, NULL); if (IS_ERR_OR_NULL(d)) { pr_warn("Could't find cache id for cpu %d\n", cpu); return; } cpumask_clear_cpu(cpu, &d->cpu_mask); if (cpumask_empty(&d->cpu_mask)) { /* * If resctrl is mounted, remove all the * per domain monitor data directories. */ if (static_branch_unlikely(&rdt_mon_enable_key)) rmdir_mondata_subdir_allrdtgrp(r, d->id); list_del(&d->list); if (r->mon_capable && is_mbm_enabled()) cancel_delayed_work(&d->mbm_over); if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) { /* * When a package is going down, forcefully * decrement rmid->ebusy. There is no way to know * that the L3 was flushed and hence may lead to * incorrect counts in rare scenarios, but leaving * the RMID as busy creates RMID leaks if the * package never comes back. */ __check_limbo(d, true); cancel_delayed_work(&d->cqm_limbo); } /* * rdt_domain "d" is going to be freed below, so clear * its pointer from pseudo_lock_region struct. */ if (d->plr) d->plr->d = NULL; kfree(d->ctrl_val); kfree(d->mbps_val); kfree(d->rmid_busy_llc); kfree(d->mbm_total); kfree(d->mbm_local); kfree(d); return; } if (r == &rdt_resources_all[RDT_RESOURCE_L3]) { if (is_mbm_enabled() && cpu == d->mbm_work_cpu) { cancel_delayed_work(&d->mbm_over); mbm_setup_overflow_handler(d, 0); } if (is_llc_occupancy_enabled() && cpu == d->cqm_work_cpu && has_busy_rmid(r, d)) { cancel_delayed_work(&d->cqm_limbo); cqm_setup_limbo_handler(d, 0); } } } static void clear_closid_rmid(int cpu) { struct intel_pqr_state *state = this_cpu_ptr(&pqr_state); state->default_closid = 0; state->default_rmid = 0; state->cur_closid = 0; state->cur_rmid = 0; wrmsr(IA32_PQR_ASSOC, 0, 0); } static int intel_rdt_online_cpu(unsigned int cpu) { struct rdt_resource *r; mutex_lock(&rdtgroup_mutex); for_each_capable_rdt_resource(r) domain_add_cpu(cpu, r); /* The cpu is set in default rdtgroup after online. */ cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask); clear_closid_rmid(cpu); mutex_unlock(&rdtgroup_mutex); return 0; } static void clear_childcpus(struct rdtgroup *r, unsigned int cpu) { struct rdtgroup *cr; list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) { if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask)) { break; } } } static int intel_rdt_offline_cpu(unsigned int cpu) { struct rdtgroup *rdtgrp; struct rdt_resource *r; mutex_lock(&rdtgroup_mutex); for_each_capable_rdt_resource(r) domain_remove_cpu(cpu, r); list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) { clear_childcpus(rdtgrp, cpu); break; } } clear_closid_rmid(cpu); mutex_unlock(&rdtgroup_mutex); return 0; } /* * Choose a width for the resource name and resource data based on the * resource that has widest name and cbm. */ static __init void rdt_init_padding(void) { struct rdt_resource *r; int cl; for_each_alloc_capable_rdt_resource(r) { cl = strlen(r->name); if (cl > max_name_width) max_name_width = cl; if (r->data_width > max_data_width) max_data_width = r->data_width; } } enum { RDT_FLAG_CMT, RDT_FLAG_MBM_TOTAL, RDT_FLAG_MBM_LOCAL, RDT_FLAG_L3_CAT, RDT_FLAG_L3_CDP, RDT_FLAG_L2_CAT, RDT_FLAG_L2_CDP, RDT_FLAG_MBA, }; #define RDT_OPT(idx, n, f) \ [idx] = { \ .name = n, \ .flag = f \ } struct rdt_options { char *name; int flag; bool force_off, force_on; }; static struct rdt_options rdt_options[] __initdata = { RDT_OPT(RDT_FLAG_CMT, "cmt", X86_FEATURE_CQM_OCCUP_LLC), RDT_OPT(RDT_FLAG_MBM_TOTAL, "mbmtotal", X86_FEATURE_CQM_MBM_TOTAL), RDT_OPT(RDT_FLAG_MBM_LOCAL, "mbmlocal", X86_FEATURE_CQM_MBM_LOCAL), RDT_OPT(RDT_FLAG_L3_CAT, "l3cat", X86_FEATURE_CAT_L3), RDT_OPT(RDT_FLAG_L3_CDP, "l3cdp", X86_FEATURE_CDP_L3), RDT_OPT(RDT_FLAG_L2_CAT, "l2cat", X86_FEATURE_CAT_L2), RDT_OPT(RDT_FLAG_L2_CDP, "l2cdp", X86_FEATURE_CDP_L2), RDT_OPT(RDT_FLAG_MBA, "mba", X86_FEATURE_MBA), }; #define NUM_RDT_OPTIONS ARRAY_SIZE(rdt_options) static int __init set_rdt_options(char *str) { struct rdt_options *o; bool force_off; char *tok; if (*str == '=') str++; while ((tok = strsep(&str, ",")) != NULL) { force_off = *tok == '!'; if (force_off) tok++; for (o = rdt_options; o < &rdt_options[NUM_RDT_OPTIONS]; o++) { if (strcmp(tok, o->name) == 0) { if (force_off) o->force_off = true; else o->force_on = true; break; } } } return 1; } __setup("rdt", set_rdt_options); static bool __init rdt_cpu_has(int flag) { bool ret = boot_cpu_has(flag); struct rdt_options *o; if (!ret) return ret; for (o = rdt_options; o < &rdt_options[NUM_RDT_OPTIONS]; o++) { if (flag == o->flag) { if (o->force_off) ret = false; if (o->force_on) ret = true; break; } } return ret; } static __init bool get_rdt_alloc_resources(void) { bool ret = false; if (rdt_alloc_capable) return true; if (!boot_cpu_has(X86_FEATURE_RDT_A)) return false; if (rdt_cpu_has(X86_FEATURE_CAT_L3)) { rdt_get_cache_alloc_cfg(1, &rdt_resources_all[RDT_RESOURCE_L3]); if (rdt_cpu_has(X86_FEATURE_CDP_L3)) rdt_get_cdp_l3_config(); ret = true; } if (rdt_cpu_has(X86_FEATURE_CAT_L2)) { /* CPUID 0x10.2 fields are same format at 0x10.1 */ rdt_get_cache_alloc_cfg(2, &rdt_resources_all[RDT_RESOURCE_L2]); if (rdt_cpu_has(X86_FEATURE_CDP_L2)) rdt_get_cdp_l2_config(); ret = true; } if (rdt_cpu_has(X86_FEATURE_MBA)) { if (rdt_get_mem_config(&rdt_resources_all[RDT_RESOURCE_MBA])) ret = true; } return ret; } static __init bool get_rdt_mon_resources(void) { if (rdt_cpu_has(X86_FEATURE_CQM_OCCUP_LLC)) rdt_mon_features |= (1 << QOS_L3_OCCUP_EVENT_ID); if (rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL)) rdt_mon_features |= (1 << QOS_L3_MBM_TOTAL_EVENT_ID); if (rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL)) rdt_mon_features |= (1 << QOS_L3_MBM_LOCAL_EVENT_ID); if (!rdt_mon_features) return false; return !rdt_get_mon_l3_config(&rdt_resources_all[RDT_RESOURCE_L3]); } static __init void rdt_quirks(void) { switch (boot_cpu_data.x86_model) { case INTEL_FAM6_HASWELL_X: if (!rdt_options[RDT_FLAG_L3_CAT].force_off) cache_alloc_hsw_probe(); break; case INTEL_FAM6_SKYLAKE_X: if (boot_cpu_data.x86_stepping <= 4) set_rdt_options("!cmt,!mbmtotal,!mbmlocal,!l3cat"); else set_rdt_options("!l3cat"); } } static __init bool get_rdt_resources(void) { rdt_quirks(); rdt_alloc_capable = get_rdt_alloc_resources(); rdt_mon_capable = get_rdt_mon_resources(); return (rdt_mon_capable || rdt_alloc_capable); } static enum cpuhp_state rdt_online; static int __init intel_rdt_late_init(void) { struct rdt_resource *r; int state, ret; if (!get_rdt_resources()) return -ENODEV; rdt_init_padding(); state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/rdt/cat:online:", intel_rdt_online_cpu, intel_rdt_offline_cpu); if (state < 0) return state; ret = rdtgroup_init(); if (ret) { cpuhp_remove_state(state); return ret; } rdt_online = state; for_each_alloc_capable_rdt_resource(r) pr_info("Intel RDT %s allocation detected\n", r->name); for_each_mon_capable_rdt_resource(r) pr_info("Intel RDT %s monitoring detected\n", r->name); return 0; } late_initcall(intel_rdt_late_init); static void __exit intel_rdt_exit(void) { cpuhp_remove_state(rdt_online); rdtgroup_exit(); } __exitcall(intel_rdt_exit);