/* * drivers/ata/ahci_tegra.c * * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved. * * Author: * Mikko Perttunen <mperttunen@nvidia.com> * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include <linux/ahci_platform.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <soc/tegra/fuse.h> #include <soc/tegra/pmc.h> #include "ahci.h" #define DRV_NAME "tegra-ahci" #define SATA_CONFIGURATION_0 0x180 #define SATA_CONFIGURATION_0_EN_FPCI BIT(0) #define SATA_CONFIGURATION_0_CLK_OVERRIDE BIT(31) #define SCFG_OFFSET 0x1000 #define T_SATA0_CFG_1 0x04 #define T_SATA0_CFG_1_IO_SPACE BIT(0) #define T_SATA0_CFG_1_MEMORY_SPACE BIT(1) #define T_SATA0_CFG_1_BUS_MASTER BIT(2) #define T_SATA0_CFG_1_SERR BIT(8) #define T_SATA0_CFG_9 0x24 #define T_SATA0_CFG_9_BASE_ADDRESS 0x40020000 #define SATA_FPCI_BAR5 0x94 #define SATA_FPCI_BAR5_START_MASK (0xfffffff << 4) #define SATA_FPCI_BAR5_START (0x0040020 << 4) #define SATA_FPCI_BAR5_ACCESS_TYPE (0x1) #define SATA_INTR_MASK 0x188 #define SATA_INTR_MASK_IP_INT_MASK BIT(16) #define T_SATA0_CFG_35 0x94 #define T_SATA0_CFG_35_IDP_INDEX_MASK (0x7ff << 2) #define T_SATA0_CFG_35_IDP_INDEX (0x2a << 2) #define T_SATA0_AHCI_IDP1 0x98 #define T_SATA0_AHCI_IDP1_DATA (0x400040) #define T_SATA0_CFG_PHY_1 0x12c #define T_SATA0_CFG_PHY_1_PADS_IDDQ_EN BIT(23) #define T_SATA0_CFG_PHY_1_PAD_PLL_IDDQ_EN BIT(22) #define T_SATA0_NVOOB 0x114 #define T_SATA0_NVOOB_COMMA_CNT_MASK (0xff << 16) #define T_SATA0_NVOOB_COMMA_CNT (0x07 << 16) #define T_SATA0_NVOOB_SQUELCH_FILTER_MODE_MASK (0x3 << 24) #define T_SATA0_NVOOB_SQUELCH_FILTER_MODE (0x1 << 24) #define T_SATA0_NVOOB_SQUELCH_FILTER_LENGTH_MASK (0x3 << 26) #define T_SATA0_NVOOB_SQUELCH_FILTER_LENGTH (0x3 << 26) #define T_SATA_CFG_PHY_0 0x120 #define T_SATA_CFG_PHY_0_USE_7BIT_ALIGN_DET_FOR_SPD BIT(11) #define T_SATA_CFG_PHY_0_MASK_SQUELCH BIT(24) #define T_SATA0_CFG2NVOOB_2 0x134 #define T_SATA0_CFG2NVOOB_2_COMWAKE_IDLE_CNT_LOW_MASK (0x1ff << 18) #define T_SATA0_CFG2NVOOB_2_COMWAKE_IDLE_CNT_LOW (0xc << 18) #define T_SATA0_AHCI_HBA_CAP_BKDR 0x300 #define T_SATA0_AHCI_HBA_CAP_BKDR_PARTIAL_ST_CAP BIT(13) #define T_SATA0_AHCI_HBA_CAP_BKDR_SLUMBER_ST_CAP BIT(14) #define T_SATA0_AHCI_HBA_CAP_BKDR_SALP BIT(26) #define T_SATA0_AHCI_HBA_CAP_BKDR_SUPP_PM BIT(17) #define T_SATA0_AHCI_HBA_CAP_BKDR_SNCQ BIT(30) #define T_SATA0_BKDOOR_CC 0x4a4 #define T_SATA0_BKDOOR_CC_CLASS_CODE_MASK (0xffff << 16) #define T_SATA0_BKDOOR_CC_CLASS_CODE (0x0106 << 16) #define T_SATA0_BKDOOR_CC_PROG_IF_MASK (0xff << 8) #define T_SATA0_BKDOOR_CC_PROG_IF (0x01 << 8) #define T_SATA0_CFG_SATA 0x54c #define T_SATA0_CFG_SATA_BACKDOOR_PROG_IF_EN BIT(12) #define T_SATA0_CFG_MISC 0x550 #define T_SATA0_INDEX 0x680 #define T_SATA0_CHX_PHY_CTRL1_GEN1 0x690 #define T_SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_MASK 0xff #define T_SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_SHIFT 0 #define T_SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_MASK (0xff << 8) #define T_SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_SHIFT 8 #define T_SATA0_CHX_PHY_CTRL1_GEN2 0x694 #define T_SATA0_CHX_PHY_CTRL1_GEN2_TX_AMP_MASK 0xff #define T_SATA0_CHX_PHY_CTRL1_GEN2_TX_AMP_SHIFT 0 #define T_SATA0_CHX_PHY_CTRL1_GEN2_TX_PEAK_MASK (0xff << 12) #define T_SATA0_CHX_PHY_CTRL1_GEN2_TX_PEAK_SHIFT 12 #define T_SATA0_CHX_PHY_CTRL2 0x69c #define T_SATA0_CHX_PHY_CTRL2_CDR_CNTL_GEN1 0x23 #define T_SATA0_CHX_PHY_CTRL11 0x6d0 #define T_SATA0_CHX_PHY_CTRL11_GEN2_RX_EQ (0x2800 << 16) #define T_SATA0_CHX_PHY_CTRL17_0 0x6e8 #define T_SATA0_CHX_PHY_CTRL17_0_RX_EQ_CTRL_L_GEN1 0x55010000 #define T_SATA0_CHX_PHY_CTRL18_0 0x6ec #define T_SATA0_CHX_PHY_CTRL18_0_RX_EQ_CTRL_L_GEN2 0x55010000 #define T_SATA0_CHX_PHY_CTRL20_0 0x6f4 #define T_SATA0_CHX_PHY_CTRL20_0_RX_EQ_CTRL_H_GEN1 0x1 #define T_SATA0_CHX_PHY_CTRL21_0 0x6f8 #define T_SATA0_CHX_PHY_CTRL21_0_RX_EQ_CTRL_H_GEN2 0x1 /* AUX Registers */ #define SATA_AUX_MISC_CNTL_1_0 0x8 #define SATA_AUX_MISC_CNTL_1_0_DEVSLP_OVERRIDE BIT(17) #define SATA_AUX_MISC_CNTL_1_0_SDS_SUPPORT BIT(13) #define SATA_AUX_MISC_CNTL_1_0_DESO_SUPPORT BIT(15) #define SATA_AUX_RX_STAT_INT_0 0xc #define SATA_AUX_RX_STAT_INT_0_SATA_DEVSLP BIT(7) #define SATA_AUX_SPARE_CFG0_0 0x18 #define SATA_AUX_SPARE_CFG0_0_MDAT_TIMER_AFTER_PG_VALID BIT(14) #define FUSE_SATA_CALIB 0x124 #define FUSE_SATA_CALIB_MASK 0x3 struct sata_pad_calibration { u8 gen1_tx_amp; u8 gen1_tx_peak; u8 gen2_tx_amp; u8 gen2_tx_peak; }; static const struct sata_pad_calibration tegra124_pad_calibration[] = { {0x18, 0x04, 0x18, 0x0a}, {0x0e, 0x04, 0x14, 0x0a}, {0x0e, 0x07, 0x1a, 0x0e}, {0x14, 0x0e, 0x1a, 0x0e}, }; struct tegra_ahci_ops { int (*init)(struct ahci_host_priv *hpriv); }; struct tegra_ahci_soc { const char *const *supply_names; u32 num_supplies; bool supports_devslp; const struct tegra_ahci_ops *ops; }; struct tegra_ahci_priv { struct platform_device *pdev; void __iomem *sata_regs; void __iomem *sata_aux_regs; struct reset_control *sata_rst; struct reset_control *sata_oob_rst; struct reset_control *sata_cold_rst; /* Needs special handling, cannot use ahci_platform */ struct clk *sata_clk; struct regulator_bulk_data *supplies; const struct tegra_ahci_soc *soc; }; static void tegra_ahci_handle_quirks(struct ahci_host_priv *hpriv) { struct tegra_ahci_priv *tegra = hpriv->plat_data; u32 val; if (tegra->sata_aux_regs && !tegra->soc->supports_devslp) { val = readl(tegra->sata_aux_regs + SATA_AUX_MISC_CNTL_1_0); val &= ~SATA_AUX_MISC_CNTL_1_0_SDS_SUPPORT; writel(val, tegra->sata_aux_regs + SATA_AUX_MISC_CNTL_1_0); } } static int tegra124_ahci_init(struct ahci_host_priv *hpriv) { struct tegra_ahci_priv *tegra = hpriv->plat_data; struct sata_pad_calibration calib; int ret; u32 val; /* Pad calibration */ ret = tegra_fuse_readl(FUSE_SATA_CALIB, &val); if (ret) return ret; calib = tegra124_pad_calibration[val & FUSE_SATA_CALIB_MASK]; writel(BIT(0), tegra->sata_regs + SCFG_OFFSET + T_SATA0_INDEX); val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL1_GEN1); val &= ~T_SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_MASK; val &= ~T_SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_MASK; val |= calib.gen1_tx_amp << T_SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_SHIFT; val |= calib.gen1_tx_peak << T_SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_SHIFT; writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL1_GEN1); val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL1_GEN2); val &= ~T_SATA0_CHX_PHY_CTRL1_GEN2_TX_AMP_MASK; val &= ~T_SATA0_CHX_PHY_CTRL1_GEN2_TX_PEAK_MASK; val |= calib.gen2_tx_amp << T_SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_SHIFT; val |= calib.gen2_tx_peak << T_SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_SHIFT; writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL1_GEN2); writel(T_SATA0_CHX_PHY_CTRL11_GEN2_RX_EQ, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL11); writel(T_SATA0_CHX_PHY_CTRL2_CDR_CNTL_GEN1, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL2); writel(0, tegra->sata_regs + SCFG_OFFSET + T_SATA0_INDEX); return 0; } static int tegra_ahci_power_on(struct ahci_host_priv *hpriv) { struct tegra_ahci_priv *tegra = hpriv->plat_data; int ret; ret = regulator_bulk_enable(tegra->soc->num_supplies, tegra->supplies); if (ret) return ret; ret = tegra_powergate_sequence_power_up(TEGRA_POWERGATE_SATA, tegra->sata_clk, tegra->sata_rst); if (ret) goto disable_regulators; reset_control_assert(tegra->sata_oob_rst); reset_control_assert(tegra->sata_cold_rst); ret = ahci_platform_enable_resources(hpriv); if (ret) goto disable_power; reset_control_deassert(tegra->sata_cold_rst); reset_control_deassert(tegra->sata_oob_rst); return 0; disable_power: clk_disable_unprepare(tegra->sata_clk); tegra_powergate_power_off(TEGRA_POWERGATE_SATA); disable_regulators: regulator_bulk_disable(tegra->soc->num_supplies, tegra->supplies); return ret; } static void tegra_ahci_power_off(struct ahci_host_priv *hpriv) { struct tegra_ahci_priv *tegra = hpriv->plat_data; ahci_platform_disable_resources(hpriv); reset_control_assert(tegra->sata_rst); reset_control_assert(tegra->sata_oob_rst); reset_control_assert(tegra->sata_cold_rst); clk_disable_unprepare(tegra->sata_clk); tegra_powergate_power_off(TEGRA_POWERGATE_SATA); regulator_bulk_disable(tegra->soc->num_supplies, tegra->supplies); } static int tegra_ahci_controller_init(struct ahci_host_priv *hpriv) { struct tegra_ahci_priv *tegra = hpriv->plat_data; int ret; u32 val; ret = tegra_ahci_power_on(hpriv); if (ret) { dev_err(&tegra->pdev->dev, "failed to power on AHCI controller: %d\n", ret); return ret; } /* * Program the following SATA IPFS registers to allow SW accesses to * SATA's MMIO register range. */ val = readl(tegra->sata_regs + SATA_FPCI_BAR5); val &= ~(SATA_FPCI_BAR5_START_MASK | SATA_FPCI_BAR5_ACCESS_TYPE); val |= SATA_FPCI_BAR5_START | SATA_FPCI_BAR5_ACCESS_TYPE; writel(val, tegra->sata_regs + SATA_FPCI_BAR5); /* Program the following SATA IPFS register to enable the SATA */ val = readl(tegra->sata_regs + SATA_CONFIGURATION_0); val |= SATA_CONFIGURATION_0_EN_FPCI; writel(val, tegra->sata_regs + SATA_CONFIGURATION_0); /* Electrical settings for better link stability */ val = T_SATA0_CHX_PHY_CTRL17_0_RX_EQ_CTRL_L_GEN1; writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL17_0); val = T_SATA0_CHX_PHY_CTRL18_0_RX_EQ_CTRL_L_GEN2; writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL18_0); val = T_SATA0_CHX_PHY_CTRL20_0_RX_EQ_CTRL_H_GEN1; writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL20_0); val = T_SATA0_CHX_PHY_CTRL21_0_RX_EQ_CTRL_H_GEN2; writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL21_0); /* For SQUELCH Filter & Gen3 drive getting detected as Gen1 drive */ val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA_CFG_PHY_0); val |= T_SATA_CFG_PHY_0_MASK_SQUELCH; val &= ~T_SATA_CFG_PHY_0_USE_7BIT_ALIGN_DET_FOR_SPD; writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA_CFG_PHY_0); val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_NVOOB); val &= ~(T_SATA0_NVOOB_COMMA_CNT_MASK | T_SATA0_NVOOB_SQUELCH_FILTER_LENGTH_MASK | T_SATA0_NVOOB_SQUELCH_FILTER_MODE_MASK); val |= (T_SATA0_NVOOB_COMMA_CNT | T_SATA0_NVOOB_SQUELCH_FILTER_LENGTH | T_SATA0_NVOOB_SQUELCH_FILTER_MODE); writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_NVOOB); /* * Change CFG2NVOOB_2_COMWAKE_IDLE_CNT_LOW from 83.3 ns to 58.8ns */ val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG2NVOOB_2); val &= ~T_SATA0_CFG2NVOOB_2_COMWAKE_IDLE_CNT_LOW_MASK; val |= T_SATA0_CFG2NVOOB_2_COMWAKE_IDLE_CNT_LOW; writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG2NVOOB_2); if (tegra->soc->ops && tegra->soc->ops->init) tegra->soc->ops->init(hpriv); /* * Program the following SATA configuration registers to * initialize SATA */ val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_1); val |= (T_SATA0_CFG_1_IO_SPACE | T_SATA0_CFG_1_MEMORY_SPACE | T_SATA0_CFG_1_BUS_MASTER | T_SATA0_CFG_1_SERR); writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_1); val = T_SATA0_CFG_9_BASE_ADDRESS; writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_9); /* Program Class Code and Programming interface for SATA */ val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_SATA); val |= T_SATA0_CFG_SATA_BACKDOOR_PROG_IF_EN; writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_SATA); val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_BKDOOR_CC); val &= ~(T_SATA0_BKDOOR_CC_CLASS_CODE_MASK | T_SATA0_BKDOOR_CC_PROG_IF_MASK); val |= T_SATA0_BKDOOR_CC_CLASS_CODE | T_SATA0_BKDOOR_CC_PROG_IF; writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_BKDOOR_CC); val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_SATA); val &= ~T_SATA0_CFG_SATA_BACKDOOR_PROG_IF_EN; writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_SATA); /* Enabling LPM capabilities through Backdoor Programming */ val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_AHCI_HBA_CAP_BKDR); val |= (T_SATA0_AHCI_HBA_CAP_BKDR_PARTIAL_ST_CAP | T_SATA0_AHCI_HBA_CAP_BKDR_SLUMBER_ST_CAP | T_SATA0_AHCI_HBA_CAP_BKDR_SALP | T_SATA0_AHCI_HBA_CAP_BKDR_SUPP_PM); writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_AHCI_HBA_CAP_BKDR); /* SATA Second Level Clock Gating configuration * Enabling Gating of Tx/Rx clocks and driving Pad IDDQ and Lane * IDDQ Signals */ val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_35); val &= ~T_SATA0_CFG_35_IDP_INDEX_MASK; val |= T_SATA0_CFG_35_IDP_INDEX; writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_35); val = T_SATA0_AHCI_IDP1_DATA; writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_AHCI_IDP1); val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_PHY_1); val |= (T_SATA0_CFG_PHY_1_PADS_IDDQ_EN | T_SATA0_CFG_PHY_1_PAD_PLL_IDDQ_EN); writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_PHY_1); /* Enabling IPFS Clock Gating */ val = readl(tegra->sata_regs + SATA_CONFIGURATION_0); val &= ~SATA_CONFIGURATION_0_CLK_OVERRIDE; writel(val, tegra->sata_regs + SATA_CONFIGURATION_0); tegra_ahci_handle_quirks(hpriv); /* Unmask SATA interrupts */ val = readl(tegra->sata_regs + SATA_INTR_MASK); val |= SATA_INTR_MASK_IP_INT_MASK; writel(val, tegra->sata_regs + SATA_INTR_MASK); return 0; } static void tegra_ahci_controller_deinit(struct ahci_host_priv *hpriv) { tegra_ahci_power_off(hpriv); } static void tegra_ahci_host_stop(struct ata_host *host) { struct ahci_host_priv *hpriv = host->private_data; tegra_ahci_controller_deinit(hpriv); } static struct ata_port_operations ahci_tegra_port_ops = { .inherits = &ahci_ops, .host_stop = tegra_ahci_host_stop, }; static const struct ata_port_info ahci_tegra_port_info = { .flags = AHCI_FLAG_COMMON | ATA_FLAG_NO_DIPM, .pio_mask = ATA_PIO4, .udma_mask = ATA_UDMA6, .port_ops = &ahci_tegra_port_ops, }; static const char *const tegra124_supply_names[] = { "avdd", "hvdd", "vddio", "target-5v", "target-12v" }; static const struct tegra_ahci_ops tegra124_ahci_ops = { .init = tegra124_ahci_init, }; static const struct tegra_ahci_soc tegra124_ahci_soc = { .supply_names = tegra124_supply_names, .num_supplies = ARRAY_SIZE(tegra124_supply_names), .supports_devslp = false, .ops = &tegra124_ahci_ops, }; static const struct tegra_ahci_soc tegra210_ahci_soc = { .supports_devslp = false, }; static const struct of_device_id tegra_ahci_of_match[] = { { .compatible = "nvidia,tegra124-ahci", .data = &tegra124_ahci_soc }, { .compatible = "nvidia,tegra210-ahci", .data = &tegra210_ahci_soc }, {} }; MODULE_DEVICE_TABLE(of, tegra_ahci_of_match); static struct scsi_host_template ahci_platform_sht = { AHCI_SHT(DRV_NAME), }; static int tegra_ahci_probe(struct platform_device *pdev) { struct ahci_host_priv *hpriv; struct tegra_ahci_priv *tegra; struct resource *res; int ret; unsigned int i; hpriv = ahci_platform_get_resources(pdev, 0); if (IS_ERR(hpriv)) return PTR_ERR(hpriv); tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL); if (!tegra) return -ENOMEM; hpriv->plat_data = tegra; tegra->pdev = pdev; tegra->soc = of_device_get_match_data(&pdev->dev); res = platform_get_resource(pdev, IORESOURCE_MEM, 1); tegra->sata_regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(tegra->sata_regs)) return PTR_ERR(tegra->sata_regs); /* * AUX registers is optional. */ res = platform_get_resource(pdev, IORESOURCE_MEM, 2); if (res) { tegra->sata_aux_regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(tegra->sata_aux_regs)) return PTR_ERR(tegra->sata_aux_regs); } tegra->sata_rst = devm_reset_control_get(&pdev->dev, "sata"); if (IS_ERR(tegra->sata_rst)) { dev_err(&pdev->dev, "Failed to get sata reset\n"); return PTR_ERR(tegra->sata_rst); } tegra->sata_oob_rst = devm_reset_control_get(&pdev->dev, "sata-oob"); if (IS_ERR(tegra->sata_oob_rst)) { dev_err(&pdev->dev, "Failed to get sata-oob reset\n"); return PTR_ERR(tegra->sata_oob_rst); } tegra->sata_cold_rst = devm_reset_control_get(&pdev->dev, "sata-cold"); if (IS_ERR(tegra->sata_cold_rst)) { dev_err(&pdev->dev, "Failed to get sata-cold reset\n"); return PTR_ERR(tegra->sata_cold_rst); } tegra->sata_clk = devm_clk_get(&pdev->dev, "sata"); if (IS_ERR(tegra->sata_clk)) { dev_err(&pdev->dev, "Failed to get sata clock\n"); return PTR_ERR(tegra->sata_clk); } tegra->supplies = devm_kcalloc(&pdev->dev, tegra->soc->num_supplies, sizeof(*tegra->supplies), GFP_KERNEL); if (!tegra->supplies) return -ENOMEM; for (i = 0; i < tegra->soc->num_supplies; i++) tegra->supplies[i].supply = tegra->soc->supply_names[i]; ret = devm_regulator_bulk_get(&pdev->dev, tegra->soc->num_supplies, tegra->supplies); if (ret) { dev_err(&pdev->dev, "Failed to get regulators\n"); return ret; } ret = tegra_ahci_controller_init(hpriv); if (ret) return ret; ret = ahci_platform_init_host(pdev, hpriv, &ahci_tegra_port_info, &ahci_platform_sht); if (ret) goto deinit_controller; return 0; deinit_controller: tegra_ahci_controller_deinit(hpriv); return ret; }; static struct platform_driver tegra_ahci_driver = { .probe = tegra_ahci_probe, .remove = ata_platform_remove_one, .driver = { .name = DRV_NAME, .of_match_table = tegra_ahci_of_match, }, /* LP0 suspend support not implemented */ }; module_platform_driver(tegra_ahci_driver); MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>"); MODULE_DESCRIPTION("Tegra AHCI SATA driver"); MODULE_LICENSE("GPL v2");