/* * Copyright 2010 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include #include #include #include "radeon.h" #include "radeon_asic.h" #include "radeon_audio.h" #include #include "evergreend.h" #include "atom.h" #include "avivod.h" #include "evergreen_reg.h" #include "evergreen_blit_shaders.h" #include "radeon_ucode.h" #define DC_HPDx_CONTROL(x) (DC_HPD1_CONTROL + (x * 0xc)) #define DC_HPDx_INT_CONTROL(x) (DC_HPD1_INT_CONTROL + (x * 0xc)) #define DC_HPDx_INT_STATUS_REG(x) (DC_HPD1_INT_STATUS + (x * 0xc)) /* * Indirect registers accessor */ u32 eg_cg_rreg(struct radeon_device *rdev, u32 reg) { unsigned long flags; u32 r; spin_lock_irqsave(&rdev->cg_idx_lock, flags); WREG32(EVERGREEN_CG_IND_ADDR, ((reg) & 0xffff)); r = RREG32(EVERGREEN_CG_IND_DATA); spin_unlock_irqrestore(&rdev->cg_idx_lock, flags); return r; } void eg_cg_wreg(struct radeon_device *rdev, u32 reg, u32 v) { unsigned long flags; spin_lock_irqsave(&rdev->cg_idx_lock, flags); WREG32(EVERGREEN_CG_IND_ADDR, ((reg) & 0xffff)); WREG32(EVERGREEN_CG_IND_DATA, (v)); spin_unlock_irqrestore(&rdev->cg_idx_lock, flags); } u32 eg_pif_phy0_rreg(struct radeon_device *rdev, u32 reg) { unsigned long flags; u32 r; spin_lock_irqsave(&rdev->pif_idx_lock, flags); WREG32(EVERGREEN_PIF_PHY0_INDEX, ((reg) & 0xffff)); r = RREG32(EVERGREEN_PIF_PHY0_DATA); spin_unlock_irqrestore(&rdev->pif_idx_lock, flags); return r; } void eg_pif_phy0_wreg(struct radeon_device *rdev, u32 reg, u32 v) { unsigned long flags; spin_lock_irqsave(&rdev->pif_idx_lock, flags); WREG32(EVERGREEN_PIF_PHY0_INDEX, ((reg) & 0xffff)); WREG32(EVERGREEN_PIF_PHY0_DATA, (v)); spin_unlock_irqrestore(&rdev->pif_idx_lock, flags); } u32 eg_pif_phy1_rreg(struct radeon_device *rdev, u32 reg) { unsigned long flags; u32 r; spin_lock_irqsave(&rdev->pif_idx_lock, flags); WREG32(EVERGREEN_PIF_PHY1_INDEX, ((reg) & 0xffff)); r = RREG32(EVERGREEN_PIF_PHY1_DATA); spin_unlock_irqrestore(&rdev->pif_idx_lock, flags); return r; } void eg_pif_phy1_wreg(struct radeon_device *rdev, u32 reg, u32 v) { unsigned long flags; spin_lock_irqsave(&rdev->pif_idx_lock, flags); WREG32(EVERGREEN_PIF_PHY1_INDEX, ((reg) & 0xffff)); WREG32(EVERGREEN_PIF_PHY1_DATA, (v)); spin_unlock_irqrestore(&rdev->pif_idx_lock, flags); } static const u32 crtc_offsets[6] = { EVERGREEN_CRTC0_REGISTER_OFFSET, EVERGREEN_CRTC1_REGISTER_OFFSET, EVERGREEN_CRTC2_REGISTER_OFFSET, EVERGREEN_CRTC3_REGISTER_OFFSET, EVERGREEN_CRTC4_REGISTER_OFFSET, EVERGREEN_CRTC5_REGISTER_OFFSET }; #include "clearstate_evergreen.h" static const u32 sumo_rlc_save_restore_register_list[] = { 0x98fc, 0x9830, 0x9834, 0x9838, 0x9870, 0x9874, 0x8a14, 0x8b24, 0x8bcc, 0x8b10, 0x8d00, 0x8d04, 0x8c00, 0x8c04, 0x8c08, 0x8c0c, 0x8d8c, 0x8c20, 0x8c24, 0x8c28, 0x8c18, 0x8c1c, 0x8cf0, 0x8e2c, 0x8e38, 0x8c30, 0x9508, 0x9688, 0x9608, 0x960c, 0x9610, 0x9614, 0x88c4, 0x88d4, 0xa008, 0x900c, 0x9100, 0x913c, 0x98f8, 0x98f4, 0x9b7c, 0x3f8c, 0x8950, 0x8954, 0x8a18, 0x8b28, 0x9144, 0x9148, 0x914c, 0x3f90, 0x3f94, 0x915c, 0x9160, 0x9178, 0x917c, 0x9180, 0x918c, 0x9190, 0x9194, 0x9198, 0x919c, 0x91a8, 0x91ac, 0x91b0, 0x91b4, 0x91b8, 0x91c4, 0x91c8, 0x91cc, 0x91d0, 0x91d4, 0x91e0, 0x91e4, 0x91ec, 0x91f0, 0x91f4, 0x9200, 0x9204, 0x929c, 0x9150, 0x802c, }; static void evergreen_gpu_init(struct radeon_device *rdev); void evergreen_fini(struct radeon_device *rdev); void evergreen_pcie_gen2_enable(struct radeon_device *rdev); void evergreen_program_aspm(struct radeon_device *rdev); extern void cayman_cp_int_cntl_setup(struct radeon_device *rdev, int ring, u32 cp_int_cntl); extern void cayman_vm_decode_fault(struct radeon_device *rdev, u32 status, u32 addr); void cik_init_cp_pg_table(struct radeon_device *rdev); extern u32 si_get_csb_size(struct radeon_device *rdev); extern void si_get_csb_buffer(struct radeon_device *rdev, volatile u32 *buffer); extern u32 cik_get_csb_size(struct radeon_device *rdev); extern void cik_get_csb_buffer(struct radeon_device *rdev, volatile u32 *buffer); extern void rv770_set_clk_bypass_mode(struct radeon_device *rdev); static const u32 evergreen_golden_registers[] = { 0x3f90, 0xffff0000, 0xff000000, 0x9148, 0xffff0000, 0xff000000, 0x3f94, 0xffff0000, 0xff000000, 0x914c, 0xffff0000, 0xff000000, 0x9b7c, 0xffffffff, 0x00000000, 0x8a14, 0xffffffff, 0x00000007, 0x8b10, 0xffffffff, 0x00000000, 0x960c, 0xffffffff, 0x54763210, 0x88c4, 0xffffffff, 0x000000c2, 0x88d4, 0xffffffff, 0x00000010, 0x8974, 0xffffffff, 0x00000000, 0xc78, 0x00000080, 0x00000080, 0x5eb4, 0xffffffff, 0x00000002, 0x5e78, 0xffffffff, 0x001000f0, 0x6104, 0x01000300, 0x00000000, 0x5bc0, 0x00300000, 0x00000000, 0x7030, 0xffffffff, 0x00000011, 0x7c30, 0xffffffff, 0x00000011, 0x10830, 0xffffffff, 0x00000011, 0x11430, 0xffffffff, 0x00000011, 0x12030, 0xffffffff, 0x00000011, 0x12c30, 0xffffffff, 0x00000011, 0xd02c, 0xffffffff, 0x08421000, 0x240c, 0xffffffff, 0x00000380, 0x8b24, 0xffffffff, 0x00ff0fff, 0x28a4c, 0x06000000, 0x06000000, 0x10c, 0x00000001, 0x00000001, 0x8d00, 0xffffffff, 0x100e4848, 0x8d04, 0xffffffff, 0x00164745, 0x8c00, 0xffffffff, 0xe4000003, 0x8c04, 0xffffffff, 0x40600060, 0x8c08, 0xffffffff, 0x001c001c, 0x8cf0, 0xffffffff, 0x08e00620, 0x8c20, 0xffffffff, 0x00800080, 0x8c24, 0xffffffff, 0x00800080, 0x8c18, 0xffffffff, 0x20202078, 0x8c1c, 0xffffffff, 0x00001010, 0x28350, 0xffffffff, 0x00000000, 0xa008, 0xffffffff, 0x00010000, 0x5c4, 0xffffffff, 0x00000001, 0x9508, 0xffffffff, 0x00000002, 0x913c, 0x0000000f, 0x0000000a }; static const u32 evergreen_golden_registers2[] = { 0x2f4c, 0xffffffff, 0x00000000, 0x54f4, 0xffffffff, 0x00000000, 0x54f0, 0xffffffff, 0x00000000, 0x5498, 0xffffffff, 0x00000000, 0x549c, 0xffffffff, 0x00000000, 0x5494, 0xffffffff, 0x00000000, 0x53cc, 0xffffffff, 0x00000000, 0x53c8, 0xffffffff, 0x00000000, 0x53c4, 0xffffffff, 0x00000000, 0x53c0, 0xffffffff, 0x00000000, 0x53bc, 0xffffffff, 0x00000000, 0x53b8, 0xffffffff, 0x00000000, 0x53b4, 0xffffffff, 0x00000000, 0x53b0, 0xffffffff, 0x00000000 }; static const u32 cypress_mgcg_init[] = { 0x802c, 0xffffffff, 0xc0000000, 0x5448, 0xffffffff, 0x00000100, 0x55e4, 0xffffffff, 0x00000100, 0x160c, 0xffffffff, 0x00000100, 0x5644, 0xffffffff, 0x00000100, 0xc164, 0xffffffff, 0x00000100, 0x8a18, 0xffffffff, 0x00000100, 0x897c, 0xffffffff, 0x06000100, 0x8b28, 0xffffffff, 0x00000100, 0x9144, 0xffffffff, 0x00000100, 0x9a60, 0xffffffff, 0x00000100, 0x9868, 0xffffffff, 0x00000100, 0x8d58, 0xffffffff, 0x00000100, 0x9510, 0xffffffff, 0x00000100, 0x949c, 0xffffffff, 0x00000100, 0x9654, 0xffffffff, 0x00000100, 0x9030, 0xffffffff, 0x00000100, 0x9034, 0xffffffff, 0x00000100, 0x9038, 0xffffffff, 0x00000100, 0x903c, 0xffffffff, 0x00000100, 0x9040, 0xffffffff, 0x00000100, 0xa200, 0xffffffff, 0x00000100, 0xa204, 0xffffffff, 0x00000100, 0xa208, 0xffffffff, 0x00000100, 0xa20c, 0xffffffff, 0x00000100, 0x971c, 0xffffffff, 0x00000100, 0x977c, 0xffffffff, 0x00000100, 0x3f80, 0xffffffff, 0x00000100, 0xa210, 0xffffffff, 0x00000100, 0xa214, 0xffffffff, 0x00000100, 0x4d8, 0xffffffff, 0x00000100, 0x9784, 0xffffffff, 0x00000100, 0x9698, 0xffffffff, 0x00000100, 0x4d4, 0xffffffff, 0x00000200, 0x30cc, 0xffffffff, 0x00000100, 0xd0c0, 0xffffffff, 0xff000100, 0x802c, 0xffffffff, 0x40000000, 0x915c, 0xffffffff, 0x00010000, 0x9160, 0xffffffff, 0x00030002, 0x9178, 0xffffffff, 0x00070000, 0x917c, 0xffffffff, 0x00030002, 0x9180, 0xffffffff, 0x00050004, 0x918c, 0xffffffff, 0x00010006, 0x9190, 0xffffffff, 0x00090008, 0x9194, 0xffffffff, 0x00070000, 0x9198, 0xffffffff, 0x00030002, 0x919c, 0xffffffff, 0x00050004, 0x91a8, 0xffffffff, 0x00010006, 0x91ac, 0xffffffff, 0x00090008, 0x91b0, 0xffffffff, 0x00070000, 0x91b4, 0xffffffff, 0x00030002, 0x91b8, 0xffffffff, 0x00050004, 0x91c4, 0xffffffff, 0x00010006, 0x91c8, 0xffffffff, 0x00090008, 0x91cc, 0xffffffff, 0x00070000, 0x91d0, 0xffffffff, 0x00030002, 0x91d4, 0xffffffff, 0x00050004, 0x91e0, 0xffffffff, 0x00010006, 0x91e4, 0xffffffff, 0x00090008, 0x91e8, 0xffffffff, 0x00000000, 0x91ec, 0xffffffff, 0x00070000, 0x91f0, 0xffffffff, 0x00030002, 0x91f4, 0xffffffff, 0x00050004, 0x9200, 0xffffffff, 0x00010006, 0x9204, 0xffffffff, 0x00090008, 0x9208, 0xffffffff, 0x00070000, 0x920c, 0xffffffff, 0x00030002, 0x9210, 0xffffffff, 0x00050004, 0x921c, 0xffffffff, 0x00010006, 0x9220, 0xffffffff, 0x00090008, 0x9224, 0xffffffff, 0x00070000, 0x9228, 0xffffffff, 0x00030002, 0x922c, 0xffffffff, 0x00050004, 0x9238, 0xffffffff, 0x00010006, 0x923c, 0xffffffff, 0x00090008, 0x9240, 0xffffffff, 0x00070000, 0x9244, 0xffffffff, 0x00030002, 0x9248, 0xffffffff, 0x00050004, 0x9254, 0xffffffff, 0x00010006, 0x9258, 0xffffffff, 0x00090008, 0x925c, 0xffffffff, 0x00070000, 0x9260, 0xffffffff, 0x00030002, 0x9264, 0xffffffff, 0x00050004, 0x9270, 0xffffffff, 0x00010006, 0x9274, 0xffffffff, 0x00090008, 0x9278, 0xffffffff, 0x00070000, 0x927c, 0xffffffff, 0x00030002, 0x9280, 0xffffffff, 0x00050004, 0x928c, 0xffffffff, 0x00010006, 0x9290, 0xffffffff, 0x00090008, 0x9294, 0xffffffff, 0x00000000, 0x929c, 0xffffffff, 0x00000001, 0x802c, 0xffffffff, 0x40010000, 0x915c, 0xffffffff, 0x00010000, 0x9160, 0xffffffff, 0x00030002, 0x9178, 0xffffffff, 0x00070000, 0x917c, 0xffffffff, 0x00030002, 0x9180, 0xffffffff, 0x00050004, 0x918c, 0xffffffff, 0x00010006, 0x9190, 0xffffffff, 0x00090008, 0x9194, 0xffffffff, 0x00070000, 0x9198, 0xffffffff, 0x00030002, 0x919c, 0xffffffff, 0x00050004, 0x91a8, 0xffffffff, 0x00010006, 0x91ac, 0xffffffff, 0x00090008, 0x91b0, 0xffffffff, 0x00070000, 0x91b4, 0xffffffff, 0x00030002, 0x91b8, 0xffffffff, 0x00050004, 0x91c4, 0xffffffff, 0x00010006, 0x91c8, 0xffffffff, 0x00090008, 0x91cc, 0xffffffff, 0x00070000, 0x91d0, 0xffffffff, 0x00030002, 0x91d4, 0xffffffff, 0x00050004, 0x91e0, 0xffffffff, 0x00010006, 0x91e4, 0xffffffff, 0x00090008, 0x91e8, 0xffffffff, 0x00000000, 0x91ec, 0xffffffff, 0x00070000, 0x91f0, 0xffffffff, 0x00030002, 0x91f4, 0xffffffff, 0x00050004, 0x9200, 0xffffffff, 0x00010006, 0x9204, 0xffffffff, 0x00090008, 0x9208, 0xffffffff, 0x00070000, 0x920c, 0xffffffff, 0x00030002, 0x9210, 0xffffffff, 0x00050004, 0x921c, 0xffffffff, 0x00010006, 0x9220, 0xffffffff, 0x00090008, 0x9224, 0xffffffff, 0x00070000, 0x9228, 0xffffffff, 0x00030002, 0x922c, 0xffffffff, 0x00050004, 0x9238, 0xffffffff, 0x00010006, 0x923c, 0xffffffff, 0x00090008, 0x9240, 0xffffffff, 0x00070000, 0x9244, 0xffffffff, 0x00030002, 0x9248, 0xffffffff, 0x00050004, 0x9254, 0xffffffff, 0x00010006, 0x9258, 0xffffffff, 0x00090008, 0x925c, 0xffffffff, 0x00070000, 0x9260, 0xffffffff, 0x00030002, 0x9264, 0xffffffff, 0x00050004, 0x9270, 0xffffffff, 0x00010006, 0x9274, 0xffffffff, 0x00090008, 0x9278, 0xffffffff, 0x00070000, 0x927c, 0xffffffff, 0x00030002, 0x9280, 0xffffffff, 0x00050004, 0x928c, 0xffffffff, 0x00010006, 0x9290, 0xffffffff, 0x00090008, 0x9294, 0xffffffff, 0x00000000, 0x929c, 0xffffffff, 0x00000001, 0x802c, 0xffffffff, 0xc0000000 }; static const u32 redwood_mgcg_init[] = { 0x802c, 0xffffffff, 0xc0000000, 0x5448, 0xffffffff, 0x00000100, 0x55e4, 0xffffffff, 0x00000100, 0x160c, 0xffffffff, 0x00000100, 0x5644, 0xffffffff, 0x00000100, 0xc164, 0xffffffff, 0x00000100, 0x8a18, 0xffffffff, 0x00000100, 0x897c, 0xffffffff, 0x06000100, 0x8b28, 0xffffffff, 0x00000100, 0x9144, 0xffffffff, 0x00000100, 0x9a60, 0xffffffff, 0x00000100, 0x9868, 0xffffffff, 0x00000100, 0x8d58, 0xffffffff, 0x00000100, 0x9510, 0xffffffff, 0x00000100, 0x949c, 0xffffffff, 0x00000100, 0x9654, 0xffffffff, 0x00000100, 0x9030, 0xffffffff, 0x00000100, 0x9034, 0xffffffff, 0x00000100, 0x9038, 0xffffffff, 0x00000100, 0x903c, 0xffffffff, 0x00000100, 0x9040, 0xffffffff, 0x00000100, 0xa200, 0xffffffff, 0x00000100, 0xa204, 0xffffffff, 0x00000100, 0xa208, 0xffffffff, 0x00000100, 0xa20c, 0xffffffff, 0x00000100, 0x971c, 0xffffffff, 0x00000100, 0x977c, 0xffffffff, 0x00000100, 0x3f80, 0xffffffff, 0x00000100, 0xa210, 0xffffffff, 0x00000100, 0xa214, 0xffffffff, 0x00000100, 0x4d8, 0xffffffff, 0x00000100, 0x9784, 0xffffffff, 0x00000100, 0x9698, 0xffffffff, 0x00000100, 0x4d4, 0xffffffff, 0x00000200, 0x30cc, 0xffffffff, 0x00000100, 0xd0c0, 0xffffffff, 0xff000100, 0x802c, 0xffffffff, 0x40000000, 0x915c, 0xffffffff, 0x00010000, 0x9160, 0xffffffff, 0x00030002, 0x9178, 0xffffffff, 0x00070000, 0x917c, 0xffffffff, 0x00030002, 0x9180, 0xffffffff, 0x00050004, 0x918c, 0xffffffff, 0x00010006, 0x9190, 0xffffffff, 0x00090008, 0x9194, 0xffffffff, 0x00070000, 0x9198, 0xffffffff, 0x00030002, 0x919c, 0xffffffff, 0x00050004, 0x91a8, 0xffffffff, 0x00010006, 0x91ac, 0xffffffff, 0x00090008, 0x91b0, 0xffffffff, 0x00070000, 0x91b4, 0xffffffff, 0x00030002, 0x91b8, 0xffffffff, 0x00050004, 0x91c4, 0xffffffff, 0x00010006, 0x91c8, 0xffffffff, 0x00090008, 0x91cc, 0xffffffff, 0x00070000, 0x91d0, 0xffffffff, 0x00030002, 0x91d4, 0xffffffff, 0x00050004, 0x91e0, 0xffffffff, 0x00010006, 0x91e4, 0xffffffff, 0x00090008, 0x91e8, 0xffffffff, 0x00000000, 0x91ec, 0xffffffff, 0x00070000, 0x91f0, 0xffffffff, 0x00030002, 0x91f4, 0xffffffff, 0x00050004, 0x9200, 0xffffffff, 0x00010006, 0x9204, 0xffffffff, 0x00090008, 0x9294, 0xffffffff, 0x00000000, 0x929c, 0xffffffff, 0x00000001, 0x802c, 0xffffffff, 0xc0000000 }; static const u32 cedar_golden_registers[] = { 0x3f90, 0xffff0000, 0xff000000, 0x9148, 0xffff0000, 0xff000000, 0x3f94, 0xffff0000, 0xff000000, 0x914c, 0xffff0000, 0xff000000, 0x9b7c, 0xffffffff, 0x00000000, 0x8a14, 0xffffffff, 0x00000007, 0x8b10, 0xffffffff, 0x00000000, 0x960c, 0xffffffff, 0x54763210, 0x88c4, 0xffffffff, 0x000000c2, 0x88d4, 0xffffffff, 0x00000000, 0x8974, 0xffffffff, 0x00000000, 0xc78, 0x00000080, 0x00000080, 0x5eb4, 0xffffffff, 0x00000002, 0x5e78, 0xffffffff, 0x001000f0, 0x6104, 0x01000300, 0x00000000, 0x5bc0, 0x00300000, 0x00000000, 0x7030, 0xffffffff, 0x00000011, 0x7c30, 0xffffffff, 0x00000011, 0x10830, 0xffffffff, 0x00000011, 0x11430, 0xffffffff, 0x00000011, 0xd02c, 0xffffffff, 0x08421000, 0x240c, 0xffffffff, 0x00000380, 0x8b24, 0xffffffff, 0x00ff0fff, 0x28a4c, 0x06000000, 0x06000000, 0x10c, 0x00000001, 0x00000001, 0x8d00, 0xffffffff, 0x100e4848, 0x8d04, 0xffffffff, 0x00164745, 0x8c00, 0xffffffff, 0xe4000003, 0x8c04, 0xffffffff, 0x40600060, 0x8c08, 0xffffffff, 0x001c001c, 0x8cf0, 0xffffffff, 0x08e00410, 0x8c20, 0xffffffff, 0x00800080, 0x8c24, 0xffffffff, 0x00800080, 0x8c18, 0xffffffff, 0x20202078, 0x8c1c, 0xffffffff, 0x00001010, 0x28350, 0xffffffff, 0x00000000, 0xa008, 0xffffffff, 0x00010000, 0x5c4, 0xffffffff, 0x00000001, 0x9508, 0xffffffff, 0x00000002 }; static const u32 cedar_mgcg_init[] = { 0x802c, 0xffffffff, 0xc0000000, 0x5448, 0xffffffff, 0x00000100, 0x55e4, 0xffffffff, 0x00000100, 0x160c, 0xffffffff, 0x00000100, 0x5644, 0xffffffff, 0x00000100, 0xc164, 0xffffffff, 0x00000100, 0x8a18, 0xffffffff, 0x00000100, 0x897c, 0xffffffff, 0x06000100, 0x8b28, 0xffffffff, 0x00000100, 0x9144, 0xffffffff, 0x00000100, 0x9a60, 0xffffffff, 0x00000100, 0x9868, 0xffffffff, 0x00000100, 0x8d58, 0xffffffff, 0x00000100, 0x9510, 0xffffffff, 0x00000100, 0x949c, 0xffffffff, 0x00000100, 0x9654, 0xffffffff, 0x00000100, 0x9030, 0xffffffff, 0x00000100, 0x9034, 0xffffffff, 0x00000100, 0x9038, 0xffffffff, 0x00000100, 0x903c, 0xffffffff, 0x00000100, 0x9040, 0xffffffff, 0x00000100, 0xa200, 0xffffffff, 0x00000100, 0xa204, 0xffffffff, 0x00000100, 0xa208, 0xffffffff, 0x00000100, 0xa20c, 0xffffffff, 0x00000100, 0x971c, 0xffffffff, 0x00000100, 0x977c, 0xffffffff, 0x00000100, 0x3f80, 0xffffffff, 0x00000100, 0xa210, 0xffffffff, 0x00000100, 0xa214, 0xffffffff, 0x00000100, 0x4d8, 0xffffffff, 0x00000100, 0x9784, 0xffffffff, 0x00000100, 0x9698, 0xffffffff, 0x00000100, 0x4d4, 0xffffffff, 0x00000200, 0x30cc, 0xffffffff, 0x00000100, 0xd0c0, 0xffffffff, 0xff000100, 0x802c, 0xffffffff, 0x40000000, 0x915c, 0xffffffff, 0x00010000, 0x9178, 0xffffffff, 0x00050000, 0x917c, 0xffffffff, 0x00030002, 0x918c, 0xffffffff, 0x00010004, 0x9190, 0xffffffff, 0x00070006, 0x9194, 0xffffffff, 0x00050000, 0x9198, 0xffffffff, 0x00030002, 0x91a8, 0xffffffff, 0x00010004, 0x91ac, 0xffffffff, 0x00070006, 0x91e8, 0xffffffff, 0x00000000, 0x9294, 0xffffffff, 0x00000000, 0x929c, 0xffffffff, 0x00000001, 0x802c, 0xffffffff, 0xc0000000 }; static const u32 juniper_mgcg_init[] = { 0x802c, 0xffffffff, 0xc0000000, 0x5448, 0xffffffff, 0x00000100, 0x55e4, 0xffffffff, 0x00000100, 0x160c, 0xffffffff, 0x00000100, 0x5644, 0xffffffff, 0x00000100, 0xc164, 0xffffffff, 0x00000100, 0x8a18, 0xffffffff, 0x00000100, 0x897c, 0xffffffff, 0x06000100, 0x8b28, 0xffffffff, 0x00000100, 0x9144, 0xffffffff, 0x00000100, 0x9a60, 0xffffffff, 0x00000100, 0x9868, 0xffffffff, 0x00000100, 0x8d58, 0xffffffff, 0x00000100, 0x9510, 0xffffffff, 0x00000100, 0x949c, 0xffffffff, 0x00000100, 0x9654, 0xffffffff, 0x00000100, 0x9030, 0xffffffff, 0x00000100, 0x9034, 0xffffffff, 0x00000100, 0x9038, 0xffffffff, 0x00000100, 0x903c, 0xffffffff, 0x00000100, 0x9040, 0xffffffff, 0x00000100, 0xa200, 0xffffffff, 0x00000100, 0xa204, 0xffffffff, 0x00000100, 0xa208, 0xffffffff, 0x00000100, 0xa20c, 0xffffffff, 0x00000100, 0x971c, 0xffffffff, 0x00000100, 0xd0c0, 0xffffffff, 0xff000100, 0x802c, 0xffffffff, 0x40000000, 0x915c, 0xffffffff, 0x00010000, 0x9160, 0xffffffff, 0x00030002, 0x9178, 0xffffffff, 0x00070000, 0x917c, 0xffffffff, 0x00030002, 0x9180, 0xffffffff, 0x00050004, 0x918c, 0xffffffff, 0x00010006, 0x9190, 0xffffffff, 0x00090008, 0x9194, 0xffffffff, 0x00070000, 0x9198, 0xffffffff, 0x00030002, 0x919c, 0xffffffff, 0x00050004, 0x91a8, 0xffffffff, 0x00010006, 0x91ac, 0xffffffff, 0x00090008, 0x91b0, 0xffffffff, 0x00070000, 0x91b4, 0xffffffff, 0x00030002, 0x91b8, 0xffffffff, 0x00050004, 0x91c4, 0xffffffff, 0x00010006, 0x91c8, 0xffffffff, 0x00090008, 0x91cc, 0xffffffff, 0x00070000, 0x91d0, 0xffffffff, 0x00030002, 0x91d4, 0xffffffff, 0x00050004, 0x91e0, 0xffffffff, 0x00010006, 0x91e4, 0xffffffff, 0x00090008, 0x91e8, 0xffffffff, 0x00000000, 0x91ec, 0xffffffff, 0x00070000, 0x91f0, 0xffffffff, 0x00030002, 0x91f4, 0xffffffff, 0x00050004, 0x9200, 0xffffffff, 0x00010006, 0x9204, 0xffffffff, 0x00090008, 0x9208, 0xffffffff, 0x00070000, 0x920c, 0xffffffff, 0x00030002, 0x9210, 0xffffffff, 0x00050004, 0x921c, 0xffffffff, 0x00010006, 0x9220, 0xffffffff, 0x00090008, 0x9224, 0xffffffff, 0x00070000, 0x9228, 0xffffffff, 0x00030002, 0x922c, 0xffffffff, 0x00050004, 0x9238, 0xffffffff, 0x00010006, 0x923c, 0xffffffff, 0x00090008, 0x9240, 0xffffffff, 0x00070000, 0x9244, 0xffffffff, 0x00030002, 0x9248, 0xffffffff, 0x00050004, 0x9254, 0xffffffff, 0x00010006, 0x9258, 0xffffffff, 0x00090008, 0x925c, 0xffffffff, 0x00070000, 0x9260, 0xffffffff, 0x00030002, 0x9264, 0xffffffff, 0x00050004, 0x9270, 0xffffffff, 0x00010006, 0x9274, 0xffffffff, 0x00090008, 0x9278, 0xffffffff, 0x00070000, 0x927c, 0xffffffff, 0x00030002, 0x9280, 0xffffffff, 0x00050004, 0x928c, 0xffffffff, 0x00010006, 0x9290, 0xffffffff, 0x00090008, 0x9294, 0xffffffff, 0x00000000, 0x929c, 0xffffffff, 0x00000001, 0x802c, 0xffffffff, 0xc0000000, 0x977c, 0xffffffff, 0x00000100, 0x3f80, 0xffffffff, 0x00000100, 0xa210, 0xffffffff, 0x00000100, 0xa214, 0xffffffff, 0x00000100, 0x4d8, 0xffffffff, 0x00000100, 0x9784, 0xffffffff, 0x00000100, 0x9698, 0xffffffff, 0x00000100, 0x4d4, 0xffffffff, 0x00000200, 0x30cc, 0xffffffff, 0x00000100, 0x802c, 0xffffffff, 0xc0000000 }; static const u32 supersumo_golden_registers[] = { 0x5eb4, 0xffffffff, 0x00000002, 0x5c4, 0xffffffff, 0x00000001, 0x7030, 0xffffffff, 0x00000011, 0x7c30, 0xffffffff, 0x00000011, 0x6104, 0x01000300, 0x00000000, 0x5bc0, 0x00300000, 0x00000000, 0x8c04, 0xffffffff, 0x40600060, 0x8c08, 0xffffffff, 0x001c001c, 0x8c20, 0xffffffff, 0x00800080, 0x8c24, 0xffffffff, 0x00800080, 0x8c18, 0xffffffff, 0x20202078, 0x8c1c, 0xffffffff, 0x00001010, 0x918c, 0xffffffff, 0x00010006, 0x91a8, 0xffffffff, 0x00010006, 0x91c4, 0xffffffff, 0x00010006, 0x91e0, 0xffffffff, 0x00010006, 0x9200, 0xffffffff, 0x00010006, 0x9150, 0xffffffff, 0x6e944040, 0x917c, 0xffffffff, 0x00030002, 0x9180, 0xffffffff, 0x00050004, 0x9198, 0xffffffff, 0x00030002, 0x919c, 0xffffffff, 0x00050004, 0x91b4, 0xffffffff, 0x00030002, 0x91b8, 0xffffffff, 0x00050004, 0x91d0, 0xffffffff, 0x00030002, 0x91d4, 0xffffffff, 0x00050004, 0x91f0, 0xffffffff, 0x00030002, 0x91f4, 0xffffffff, 0x00050004, 0x915c, 0xffffffff, 0x00010000, 0x9160, 0xffffffff, 0x00030002, 0x3f90, 0xffff0000, 0xff000000, 0x9178, 0xffffffff, 0x00070000, 0x9194, 0xffffffff, 0x00070000, 0x91b0, 0xffffffff, 0x00070000, 0x91cc, 0xffffffff, 0x00070000, 0x91ec, 0xffffffff, 0x00070000, 0x9148, 0xffff0000, 0xff000000, 0x9190, 0xffffffff, 0x00090008, 0x91ac, 0xffffffff, 0x00090008, 0x91c8, 0xffffffff, 0x00090008, 0x91e4, 0xffffffff, 0x00090008, 0x9204, 0xffffffff, 0x00090008, 0x3f94, 0xffff0000, 0xff000000, 0x914c, 0xffff0000, 0xff000000, 0x929c, 0xffffffff, 0x00000001, 0x8a18, 0xffffffff, 0x00000100, 0x8b28, 0xffffffff, 0x00000100, 0x9144, 0xffffffff, 0x00000100, 0x5644, 0xffffffff, 0x00000100, 0x9b7c, 0xffffffff, 0x00000000, 0x8030, 0xffffffff, 0x0000100a, 0x8a14, 0xffffffff, 0x00000007, 0x8b24, 0xffffffff, 0x00ff0fff, 0x8b10, 0xffffffff, 0x00000000, 0x28a4c, 0x06000000, 0x06000000, 0x4d8, 0xffffffff, 0x00000100, 0x913c, 0xffff000f, 0x0100000a, 0x960c, 0xffffffff, 0x54763210, 0x88c4, 0xffffffff, 0x000000c2, 0x88d4, 0xffffffff, 0x00000010, 0x8974, 0xffffffff, 0x00000000, 0xc78, 0x00000080, 0x00000080, 0x5e78, 0xffffffff, 0x001000f0, 0xd02c, 0xffffffff, 0x08421000, 0xa008, 0xffffffff, 0x00010000, 0x8d00, 0xffffffff, 0x100e4848, 0x8d04, 0xffffffff, 0x00164745, 0x8c00, 0xffffffff, 0xe4000003, 0x8cf0, 0x1fffffff, 0x08e00620, 0x28350, 0xffffffff, 0x00000000, 0x9508, 0xffffffff, 0x00000002 }; static const u32 sumo_golden_registers[] = { 0x900c, 0x00ffffff, 0x0017071f, 0x8c18, 0xffffffff, 0x10101060, 0x8c1c, 0xffffffff, 0x00001010, 0x8c30, 0x0000000f, 0x00000005, 0x9688, 0x0000000f, 0x00000007 }; static const u32 wrestler_golden_registers[] = { 0x5eb4, 0xffffffff, 0x00000002, 0x5c4, 0xffffffff, 0x00000001, 0x7030, 0xffffffff, 0x00000011, 0x7c30, 0xffffffff, 0x00000011, 0x6104, 0x01000300, 0x00000000, 0x5bc0, 0x00300000, 0x00000000, 0x918c, 0xffffffff, 0x00010006, 0x91a8, 0xffffffff, 0x00010006, 0x9150, 0xffffffff, 0x6e944040, 0x917c, 0xffffffff, 0x00030002, 0x9198, 0xffffffff, 0x00030002, 0x915c, 0xffffffff, 0x00010000, 0x3f90, 0xffff0000, 0xff000000, 0x9178, 0xffffffff, 0x00070000, 0x9194, 0xffffffff, 0x00070000, 0x9148, 0xffff0000, 0xff000000, 0x9190, 0xffffffff, 0x00090008, 0x91ac, 0xffffffff, 0x00090008, 0x3f94, 0xffff0000, 0xff000000, 0x914c, 0xffff0000, 0xff000000, 0x929c, 0xffffffff, 0x00000001, 0x8a18, 0xffffffff, 0x00000100, 0x8b28, 0xffffffff, 0x00000100, 0x9144, 0xffffffff, 0x00000100, 0x9b7c, 0xffffffff, 0x00000000, 0x8030, 0xffffffff, 0x0000100a, 0x8a14, 0xffffffff, 0x00000001, 0x8b24, 0xffffffff, 0x00ff0fff, 0x8b10, 0xffffffff, 0x00000000, 0x28a4c, 0x06000000, 0x06000000, 0x4d8, 0xffffffff, 0x00000100, 0x913c, 0xffff000f, 0x0100000a, 0x960c, 0xffffffff, 0x54763210, 0x88c4, 0xffffffff, 0x000000c2, 0x88d4, 0xffffffff, 0x00000010, 0x8974, 0xffffffff, 0x00000000, 0xc78, 0x00000080, 0x00000080, 0x5e78, 0xffffffff, 0x001000f0, 0xd02c, 0xffffffff, 0x08421000, 0xa008, 0xffffffff, 0x00010000, 0x8d00, 0xffffffff, 0x100e4848, 0x8d04, 0xffffffff, 0x00164745, 0x8c00, 0xffffffff, 0xe4000003, 0x8cf0, 0x1fffffff, 0x08e00410, 0x28350, 0xffffffff, 0x00000000, 0x9508, 0xffffffff, 0x00000002, 0x900c, 0xffffffff, 0x0017071f, 0x8c18, 0xffffffff, 0x10101060, 0x8c1c, 0xffffffff, 0x00001010 }; static const u32 barts_golden_registers[] = { 0x5eb4, 0xffffffff, 0x00000002, 0x5e78, 0x8f311ff1, 0x001000f0, 0x3f90, 0xffff0000, 0xff000000, 0x9148, 0xffff0000, 0xff000000, 0x3f94, 0xffff0000, 0xff000000, 0x914c, 0xffff0000, 0xff000000, 0xc78, 0x00000080, 0x00000080, 0xbd4, 0x70073777, 0x00010001, 0xd02c, 0xbfffff1f, 0x08421000, 0xd0b8, 0x03773777, 0x02011003, 0x5bc0, 0x00200000, 0x50100000, 0x98f8, 0x33773777, 0x02011003, 0x98fc, 0xffffffff, 0x76543210, 0x7030, 0x31000311, 0x00000011, 0x2f48, 0x00000007, 0x02011003, 0x6b28, 0x00000010, 0x00000012, 0x7728, 0x00000010, 0x00000012, 0x10328, 0x00000010, 0x00000012, 0x10f28, 0x00000010, 0x00000012, 0x11b28, 0x00000010, 0x00000012, 0x12728, 0x00000010, 0x00000012, 0x240c, 0x000007ff, 0x00000380, 0x8a14, 0xf000001f, 0x00000007, 0x8b24, 0x3fff3fff, 0x00ff0fff, 0x8b10, 0x0000ff0f, 0x00000000, 0x28a4c, 0x07ffffff, 0x06000000, 0x10c, 0x00000001, 0x00010003, 0xa02c, 0xffffffff, 0x0000009b, 0x913c, 0x0000000f, 0x0100000a, 0x8d00, 0xffff7f7f, 0x100e4848, 0x8d04, 0x00ffffff, 0x00164745, 0x8c00, 0xfffc0003, 0xe4000003, 0x8c04, 0xf8ff00ff, 0x40600060, 0x8c08, 0x00ff00ff, 0x001c001c, 0x8cf0, 0x1fff1fff, 0x08e00620, 0x8c20, 0x0fff0fff, 0x00800080, 0x8c24, 0x0fff0fff, 0x00800080, 0x8c18, 0xffffffff, 0x20202078, 0x8c1c, 0x0000ffff, 0x00001010, 0x28350, 0x00000f01, 0x00000000, 0x9508, 0x3700001f, 0x00000002, 0x960c, 0xffffffff, 0x54763210, 0x88c4, 0x001f3ae3, 0x000000c2, 0x88d4, 0x0000001f, 0x00000010, 0x8974, 0xffffffff, 0x00000000 }; static const u32 turks_golden_registers[] = { 0x5eb4, 0xffffffff, 0x00000002, 0x5e78, 0x8f311ff1, 0x001000f0, 0x8c8, 0x00003000, 0x00001070, 0x8cc, 0x000fffff, 0x00040035, 0x3f90, 0xffff0000, 0xfff00000, 0x9148, 0xffff0000, 0xfff00000, 0x3f94, 0xffff0000, 0xfff00000, 0x914c, 0xffff0000, 0xfff00000, 0xc78, 0x00000080, 0x00000080, 0xbd4, 0x00073007, 0x00010002, 0xd02c, 0xbfffff1f, 0x08421000, 0xd0b8, 0x03773777, 0x02010002, 0x5bc0, 0x00200000, 0x50100000, 0x98f8, 0x33773777, 0x00010002, 0x98fc, 0xffffffff, 0x33221100, 0x7030, 0x31000311, 0x00000011, 0x2f48, 0x33773777, 0x00010002, 0x6b28, 0x00000010, 0x00000012, 0x7728, 0x00000010, 0x00000012, 0x10328, 0x00000010, 0x00000012, 0x10f28, 0x00000010, 0x00000012, 0x11b28, 0x00000010, 0x00000012, 0x12728, 0x00000010, 0x00000012, 0x240c, 0x000007ff, 0x00000380, 0x8a14, 0xf000001f, 0x00000007, 0x8b24, 0x3fff3fff, 0x00ff0fff, 0x8b10, 0x0000ff0f, 0x00000000, 0x28a4c, 0x07ffffff, 0x06000000, 0x10c, 0x00000001, 0x00010003, 0xa02c, 0xffffffff, 0x0000009b, 0x913c, 0x0000000f, 0x0100000a, 0x8d00, 0xffff7f7f, 0x100e4848, 0x8d04, 0x00ffffff, 0x00164745, 0x8c00, 0xfffc0003, 0xe4000003, 0x8c04, 0xf8ff00ff, 0x40600060, 0x8c08, 0x00ff00ff, 0x001c001c, 0x8cf0, 0x1fff1fff, 0x08e00410, 0x8c20, 0x0fff0fff, 0x00800080, 0x8c24, 0x0fff0fff, 0x00800080, 0x8c18, 0xffffffff, 0x20202078, 0x8c1c, 0x0000ffff, 0x00001010, 0x28350, 0x00000f01, 0x00000000, 0x9508, 0x3700001f, 0x00000002, 0x960c, 0xffffffff, 0x54763210, 0x88c4, 0x001f3ae3, 0x000000c2, 0x88d4, 0x0000001f, 0x00000010, 0x8974, 0xffffffff, 0x00000000 }; static const u32 caicos_golden_registers[] = { 0x5eb4, 0xffffffff, 0x00000002, 0x5e78, 0x8f311ff1, 0x001000f0, 0x8c8, 0x00003420, 0x00001450, 0x8cc, 0x000fffff, 0x00040035, 0x3f90, 0xffff0000, 0xfffc0000, 0x9148, 0xffff0000, 0xfffc0000, 0x3f94, 0xffff0000, 0xfffc0000, 0x914c, 0xffff0000, 0xfffc0000, 0xc78, 0x00000080, 0x00000080, 0xbd4, 0x00073007, 0x00010001, 0xd02c, 0xbfffff1f, 0x08421000, 0xd0b8, 0x03773777, 0x02010001, 0x5bc0, 0x00200000, 0x50100000, 0x98f8, 0x33773777, 0x02010001, 0x98fc, 0xffffffff, 0x33221100, 0x7030, 0x31000311, 0x00000011, 0x2f48, 0x33773777, 0x02010001, 0x6b28, 0x00000010, 0x00000012, 0x7728, 0x00000010, 0x00000012, 0x10328, 0x00000010, 0x00000012, 0x10f28, 0x00000010, 0x00000012, 0x11b28, 0x00000010, 0x00000012, 0x12728, 0x00000010, 0x00000012, 0x240c, 0x000007ff, 0x00000380, 0x8a14, 0xf000001f, 0x00000001, 0x8b24, 0x3fff3fff, 0x00ff0fff, 0x8b10, 0x0000ff0f, 0x00000000, 0x28a4c, 0x07ffffff, 0x06000000, 0x10c, 0x00000001, 0x00010003, 0xa02c, 0xffffffff, 0x0000009b, 0x913c, 0x0000000f, 0x0100000a, 0x8d00, 0xffff7f7f, 0x100e4848, 0x8d04, 0x00ffffff, 0x00164745, 0x8c00, 0xfffc0003, 0xe4000003, 0x8c04, 0xf8ff00ff, 0x40600060, 0x8c08, 0x00ff00ff, 0x001c001c, 0x8cf0, 0x1fff1fff, 0x08e00410, 0x8c20, 0x0fff0fff, 0x00800080, 0x8c24, 0x0fff0fff, 0x00800080, 0x8c18, 0xffffffff, 0x20202078, 0x8c1c, 0x0000ffff, 0x00001010, 0x28350, 0x00000f01, 0x00000000, 0x9508, 0x3700001f, 0x00000002, 0x960c, 0xffffffff, 0x54763210, 0x88c4, 0x001f3ae3, 0x000000c2, 0x88d4, 0x0000001f, 0x00000010, 0x8974, 0xffffffff, 0x00000000 }; static void evergreen_init_golden_registers(struct radeon_device *rdev) { switch (rdev->family) { case CHIP_CYPRESS: case CHIP_HEMLOCK: radeon_program_register_sequence(rdev, evergreen_golden_registers, (const u32)ARRAY_SIZE(evergreen_golden_registers)); radeon_program_register_sequence(rdev, evergreen_golden_registers2, (const u32)ARRAY_SIZE(evergreen_golden_registers2)); radeon_program_register_sequence(rdev, cypress_mgcg_init, (const u32)ARRAY_SIZE(cypress_mgcg_init)); break; case CHIP_JUNIPER: radeon_program_register_sequence(rdev, evergreen_golden_registers, (const u32)ARRAY_SIZE(evergreen_golden_registers)); radeon_program_register_sequence(rdev, evergreen_golden_registers2, (const u32)ARRAY_SIZE(evergreen_golden_registers2)); radeon_program_register_sequence(rdev, juniper_mgcg_init, (const u32)ARRAY_SIZE(juniper_mgcg_init)); break; case CHIP_REDWOOD: radeon_program_register_sequence(rdev, evergreen_golden_registers, (const u32)ARRAY_SIZE(evergreen_golden_registers)); radeon_program_register_sequence(rdev, evergreen_golden_registers2, (const u32)ARRAY_SIZE(evergreen_golden_registers2)); radeon_program_register_sequence(rdev, redwood_mgcg_init, (const u32)ARRAY_SIZE(redwood_mgcg_init)); break; case CHIP_CEDAR: radeon_program_register_sequence(rdev, cedar_golden_registers, (const u32)ARRAY_SIZE(cedar_golden_registers)); radeon_program_register_sequence(rdev, evergreen_golden_registers2, (const u32)ARRAY_SIZE(evergreen_golden_registers2)); radeon_program_register_sequence(rdev, cedar_mgcg_init, (const u32)ARRAY_SIZE(cedar_mgcg_init)); break; case CHIP_PALM: radeon_program_register_sequence(rdev, wrestler_golden_registers, (const u32)ARRAY_SIZE(wrestler_golden_registers)); break; case CHIP_SUMO: radeon_program_register_sequence(rdev, supersumo_golden_registers, (const u32)ARRAY_SIZE(supersumo_golden_registers)); break; case CHIP_SUMO2: radeon_program_register_sequence(rdev, supersumo_golden_registers, (const u32)ARRAY_SIZE(supersumo_golden_registers)); radeon_program_register_sequence(rdev, sumo_golden_registers, (const u32)ARRAY_SIZE(sumo_golden_registers)); break; case CHIP_BARTS: radeon_program_register_sequence(rdev, barts_golden_registers, (const u32)ARRAY_SIZE(barts_golden_registers)); break; case CHIP_TURKS: radeon_program_register_sequence(rdev, turks_golden_registers, (const u32)ARRAY_SIZE(turks_golden_registers)); break; case CHIP_CAICOS: radeon_program_register_sequence(rdev, caicos_golden_registers, (const u32)ARRAY_SIZE(caicos_golden_registers)); break; default: break; } } /** * evergreen_get_allowed_info_register - fetch the register for the info ioctl * * @rdev: radeon_device pointer * @reg: register offset in bytes * @val: register value * * Returns 0 for success or -EINVAL for an invalid register * */ int evergreen_get_allowed_info_register(struct radeon_device *rdev, u32 reg, u32 *val) { switch (reg) { case GRBM_STATUS: case GRBM_STATUS_SE0: case GRBM_STATUS_SE1: case SRBM_STATUS: case SRBM_STATUS2: case DMA_STATUS_REG: case UVD_STATUS: *val = RREG32(reg); return 0; default: return -EINVAL; } } void evergreen_tiling_fields(unsigned tiling_flags, unsigned *bankw, unsigned *bankh, unsigned *mtaspect, unsigned *tile_split) { *bankw = (tiling_flags >> RADEON_TILING_EG_BANKW_SHIFT) & RADEON_TILING_EG_BANKW_MASK; *bankh = (tiling_flags >> RADEON_TILING_EG_BANKH_SHIFT) & RADEON_TILING_EG_BANKH_MASK; *mtaspect = (tiling_flags >> RADEON_TILING_EG_MACRO_TILE_ASPECT_SHIFT) & RADEON_TILING_EG_MACRO_TILE_ASPECT_MASK; *tile_split = (tiling_flags >> RADEON_TILING_EG_TILE_SPLIT_SHIFT) & RADEON_TILING_EG_TILE_SPLIT_MASK; switch (*bankw) { default: case 1: *bankw = EVERGREEN_ADDR_SURF_BANK_WIDTH_1; break; case 2: *bankw = EVERGREEN_ADDR_SURF_BANK_WIDTH_2; break; case 4: *bankw = EVERGREEN_ADDR_SURF_BANK_WIDTH_4; break; case 8: *bankw = EVERGREEN_ADDR_SURF_BANK_WIDTH_8; break; } switch (*bankh) { default: case 1: *bankh = EVERGREEN_ADDR_SURF_BANK_HEIGHT_1; break; case 2: *bankh = EVERGREEN_ADDR_SURF_BANK_HEIGHT_2; break; case 4: *bankh = EVERGREEN_ADDR_SURF_BANK_HEIGHT_4; break; case 8: *bankh = EVERGREEN_ADDR_SURF_BANK_HEIGHT_8; break; } switch (*mtaspect) { default: case 1: *mtaspect = EVERGREEN_ADDR_SURF_MACRO_TILE_ASPECT_1; break; case 2: *mtaspect = EVERGREEN_ADDR_SURF_MACRO_TILE_ASPECT_2; break; case 4: *mtaspect = EVERGREEN_ADDR_SURF_MACRO_TILE_ASPECT_4; break; case 8: *mtaspect = EVERGREEN_ADDR_SURF_MACRO_TILE_ASPECT_8; break; } } static int sumo_set_uvd_clock(struct radeon_device *rdev, u32 clock, u32 cntl_reg, u32 status_reg) { int r, i; struct atom_clock_dividers dividers; r = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, clock, false, ÷rs); if (r) return r; WREG32_P(cntl_reg, dividers.post_div, ~(DCLK_DIR_CNTL_EN|DCLK_DIVIDER_MASK)); for (i = 0; i < 100; i++) { if (RREG32(status_reg) & DCLK_STATUS) break; mdelay(10); } if (i == 100) return -ETIMEDOUT; return 0; } int sumo_set_uvd_clocks(struct radeon_device *rdev, u32 vclk, u32 dclk) { int r = 0; u32 cg_scratch = RREG32(CG_SCRATCH1); r = sumo_set_uvd_clock(rdev, vclk, CG_VCLK_CNTL, CG_VCLK_STATUS); if (r) goto done; cg_scratch &= 0xffff0000; cg_scratch |= vclk / 100; /* Mhz */ r = sumo_set_uvd_clock(rdev, dclk, CG_DCLK_CNTL, CG_DCLK_STATUS); if (r) goto done; cg_scratch &= 0x0000ffff; cg_scratch |= (dclk / 100) << 16; /* Mhz */ done: WREG32(CG_SCRATCH1, cg_scratch); return r; } int evergreen_set_uvd_clocks(struct radeon_device *rdev, u32 vclk, u32 dclk) { /* start off with something large */ unsigned fb_div = 0, vclk_div = 0, dclk_div = 0; int r; /* bypass vclk and dclk with bclk */ WREG32_P(CG_UPLL_FUNC_CNTL_2, VCLK_SRC_SEL(1) | DCLK_SRC_SEL(1), ~(VCLK_SRC_SEL_MASK | DCLK_SRC_SEL_MASK)); /* put PLL in bypass mode */ WREG32_P(CG_UPLL_FUNC_CNTL, UPLL_BYPASS_EN_MASK, ~UPLL_BYPASS_EN_MASK); if (!vclk || !dclk) { /* keep the Bypass mode, put PLL to sleep */ WREG32_P(CG_UPLL_FUNC_CNTL, UPLL_SLEEP_MASK, ~UPLL_SLEEP_MASK); return 0; } r = radeon_uvd_calc_upll_dividers(rdev, vclk, dclk, 125000, 250000, 16384, 0x03FFFFFF, 0, 128, 5, &fb_div, &vclk_div, &dclk_div); if (r) return r; /* set VCO_MODE to 1 */ WREG32_P(CG_UPLL_FUNC_CNTL, UPLL_VCO_MODE_MASK, ~UPLL_VCO_MODE_MASK); /* toggle UPLL_SLEEP to 1 then back to 0 */ WREG32_P(CG_UPLL_FUNC_CNTL, UPLL_SLEEP_MASK, ~UPLL_SLEEP_MASK); WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_SLEEP_MASK); /* deassert UPLL_RESET */ WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_RESET_MASK); mdelay(1); r = radeon_uvd_send_upll_ctlreq(rdev, CG_UPLL_FUNC_CNTL); if (r) return r; /* assert UPLL_RESET again */ WREG32_P(CG_UPLL_FUNC_CNTL, UPLL_RESET_MASK, ~UPLL_RESET_MASK); /* disable spread spectrum. */ WREG32_P(CG_UPLL_SPREAD_SPECTRUM, 0, ~SSEN_MASK); /* set feedback divider */ WREG32_P(CG_UPLL_FUNC_CNTL_3, UPLL_FB_DIV(fb_div), ~UPLL_FB_DIV_MASK); /* set ref divider to 0 */ WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_REF_DIV_MASK); if (fb_div < 307200) WREG32_P(CG_UPLL_FUNC_CNTL_4, 0, ~UPLL_SPARE_ISPARE9); else WREG32_P(CG_UPLL_FUNC_CNTL_4, UPLL_SPARE_ISPARE9, ~UPLL_SPARE_ISPARE9); /* set PDIV_A and PDIV_B */ WREG32_P(CG_UPLL_FUNC_CNTL_2, UPLL_PDIV_A(vclk_div) | UPLL_PDIV_B(dclk_div), ~(UPLL_PDIV_A_MASK | UPLL_PDIV_B_MASK)); /* give the PLL some time to settle */ mdelay(15); /* deassert PLL_RESET */ WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_RESET_MASK); mdelay(15); /* switch from bypass mode to normal mode */ WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_BYPASS_EN_MASK); r = radeon_uvd_send_upll_ctlreq(rdev, CG_UPLL_FUNC_CNTL); if (r) return r; /* switch VCLK and DCLK selection */ WREG32_P(CG_UPLL_FUNC_CNTL_2, VCLK_SRC_SEL(2) | DCLK_SRC_SEL(2), ~(VCLK_SRC_SEL_MASK | DCLK_SRC_SEL_MASK)); mdelay(100); return 0; } void evergreen_fix_pci_max_read_req_size(struct radeon_device *rdev) { int readrq; u16 v; readrq = pcie_get_readrq(rdev->pdev); v = ffs(readrq) - 8; /* if bios or OS sets MAX_READ_REQUEST_SIZE to an invalid value, fix it * to avoid hangs or perfomance issues */ if ((v == 0) || (v == 6) || (v == 7)) pcie_set_readrq(rdev->pdev, 512); } void dce4_program_fmt(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); struct radeon_crtc *radeon_crtc = to_radeon_crtc(encoder->crtc); struct drm_connector *connector = radeon_get_connector_for_encoder(encoder); int bpc = 0; u32 tmp = 0; enum radeon_connector_dither dither = RADEON_FMT_DITHER_DISABLE; if (connector) { struct radeon_connector *radeon_connector = to_radeon_connector(connector); bpc = radeon_get_monitor_bpc(connector); dither = radeon_connector->dither; } /* LVDS/eDP FMT is set up by atom */ if (radeon_encoder->devices & ATOM_DEVICE_LCD_SUPPORT) return; /* not needed for analog */ if ((radeon_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1) || (radeon_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2)) return; if (bpc == 0) return; switch (bpc) { case 6: if (dither == RADEON_FMT_DITHER_ENABLE) /* XXX sort out optimal dither settings */ tmp |= (FMT_FRAME_RANDOM_ENABLE | FMT_HIGHPASS_RANDOM_ENABLE | FMT_SPATIAL_DITHER_EN); else tmp |= FMT_TRUNCATE_EN; break; case 8: if (dither == RADEON_FMT_DITHER_ENABLE) /* XXX sort out optimal dither settings */ tmp |= (FMT_FRAME_RANDOM_ENABLE | FMT_HIGHPASS_RANDOM_ENABLE | FMT_RGB_RANDOM_ENABLE | FMT_SPATIAL_DITHER_EN | FMT_SPATIAL_DITHER_DEPTH); else tmp |= (FMT_TRUNCATE_EN | FMT_TRUNCATE_DEPTH); break; case 10: default: /* not needed */ break; } WREG32(FMT_BIT_DEPTH_CONTROL + radeon_crtc->crtc_offset, tmp); } static bool dce4_is_in_vblank(struct radeon_device *rdev, int crtc) { if (RREG32(EVERGREEN_CRTC_STATUS + crtc_offsets[crtc]) & EVERGREEN_CRTC_V_BLANK) return true; else return false; } static bool dce4_is_counter_moving(struct radeon_device *rdev, int crtc) { u32 pos1, pos2; pos1 = RREG32(EVERGREEN_CRTC_STATUS_POSITION + crtc_offsets[crtc]); pos2 = RREG32(EVERGREEN_CRTC_STATUS_POSITION + crtc_offsets[crtc]); if (pos1 != pos2) return true; else return false; } /** * dce4_wait_for_vblank - vblank wait asic callback. * * @rdev: radeon_device pointer * @crtc: crtc to wait for vblank on * * Wait for vblank on the requested crtc (evergreen+). */ void dce4_wait_for_vblank(struct radeon_device *rdev, int crtc) { unsigned i = 0; if (crtc >= rdev->num_crtc) return; if (!(RREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[crtc]) & EVERGREEN_CRTC_MASTER_EN)) return; /* depending on when we hit vblank, we may be close to active; if so, * wait for another frame. */ while (dce4_is_in_vblank(rdev, crtc)) { if (i++ % 100 == 0) { if (!dce4_is_counter_moving(rdev, crtc)) break; } } while (!dce4_is_in_vblank(rdev, crtc)) { if (i++ % 100 == 0) { if (!dce4_is_counter_moving(rdev, crtc)) break; } } } /** * evergreen_page_flip - pageflip callback. * * @rdev: radeon_device pointer * @crtc_id: crtc to cleanup pageflip on * @crtc_base: new address of the crtc (GPU MC address) * * Triggers the actual pageflip by updating the primary * surface base address (evergreen+). */ void evergreen_page_flip(struct radeon_device *rdev, int crtc_id, u64 crtc_base, bool async) { struct radeon_crtc *radeon_crtc = rdev->mode_info.crtcs[crtc_id]; /* update the scanout addresses */ WREG32(EVERGREEN_GRPH_FLIP_CONTROL + radeon_crtc->crtc_offset, async ? EVERGREEN_GRPH_SURFACE_UPDATE_H_RETRACE_EN : 0); WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + radeon_crtc->crtc_offset, upper_32_bits(crtc_base)); WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset, (u32)crtc_base); /* post the write */ RREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset); } /** * evergreen_page_flip_pending - check if page flip is still pending * * @rdev: radeon_device pointer * @crtc_id: crtc to check * * Returns the current update pending status. */ bool evergreen_page_flip_pending(struct radeon_device *rdev, int crtc_id) { struct radeon_crtc *radeon_crtc = rdev->mode_info.crtcs[crtc_id]; /* Return current update_pending status: */ return !!(RREG32(EVERGREEN_GRPH_UPDATE + radeon_crtc->crtc_offset) & EVERGREEN_GRPH_SURFACE_UPDATE_PENDING); } /* get temperature in millidegrees */ int evergreen_get_temp(struct radeon_device *rdev) { u32 temp, toffset; int actual_temp = 0; if (rdev->family == CHIP_JUNIPER) { toffset = (RREG32(CG_THERMAL_CTRL) & TOFFSET_MASK) >> TOFFSET_SHIFT; temp = (RREG32(CG_TS0_STATUS) & TS0_ADC_DOUT_MASK) >> TS0_ADC_DOUT_SHIFT; if (toffset & 0x100) actual_temp = temp / 2 - (0x200 - toffset); else actual_temp = temp / 2 + toffset; actual_temp = actual_temp * 1000; } else { temp = (RREG32(CG_MULT_THERMAL_STATUS) & ASIC_T_MASK) >> ASIC_T_SHIFT; if (temp & 0x400) actual_temp = -256; else if (temp & 0x200) actual_temp = 255; else if (temp & 0x100) { actual_temp = temp & 0x1ff; actual_temp |= ~0x1ff; } else actual_temp = temp & 0xff; actual_temp = (actual_temp * 1000) / 2; } return actual_temp; } int sumo_get_temp(struct radeon_device *rdev) { u32 temp = RREG32(CG_THERMAL_STATUS) & 0xff; int actual_temp = temp - 49; return actual_temp * 1000; } /** * sumo_pm_init_profile - Initialize power profiles callback. * * @rdev: radeon_device pointer * * Initialize the power states used in profile mode * (sumo, trinity, SI). * Used for profile mode only. */ void sumo_pm_init_profile(struct radeon_device *rdev) { int idx; /* default */ rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 0; /* low,mid sh/mh */ if (rdev->flags & RADEON_IS_MOBILITY) idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_BATTERY, 0); else idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_PERFORMANCE, 0); rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 0; /* high sh/mh */ idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_PERFORMANCE, 0); rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = rdev->pm.power_state[idx].num_clock_modes - 1; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = rdev->pm.power_state[idx].num_clock_modes - 1; } /** * btc_pm_init_profile - Initialize power profiles callback. * * @rdev: radeon_device pointer * * Initialize the power states used in profile mode * (BTC, cayman). * Used for profile mode only. */ void btc_pm_init_profile(struct radeon_device *rdev) { int idx; /* default */ rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 2; /* starting with BTC, there is one state that is used for both * MH and SH. Difference is that we always use the high clock index for * mclk. */ if (rdev->flags & RADEON_IS_MOBILITY) idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_BATTERY, 0); else idx = radeon_pm_get_type_index(rdev, POWER_STATE_TYPE_PERFORMANCE, 0); /* low sh */ rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0; /* mid sh */ rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 1; /* high sh */ rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = 2; /* low mh */ rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0; /* mid mh */ rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 1; /* high mh */ rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = idx; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = 2; } /** * evergreen_pm_misc - set additional pm hw parameters callback. * * @rdev: radeon_device pointer * * Set non-clock parameters associated with a power state * (voltage, etc.) (evergreen+). */ void evergreen_pm_misc(struct radeon_device *rdev) { int req_ps_idx = rdev->pm.requested_power_state_index; int req_cm_idx = rdev->pm.requested_clock_mode_index; struct radeon_power_state *ps = &rdev->pm.power_state[req_ps_idx]; struct radeon_voltage *voltage = &ps->clock_info[req_cm_idx].voltage; if (voltage->type == VOLTAGE_SW) { /* 0xff0x are flags rather then an actual voltage */ if ((voltage->voltage & 0xff00) == 0xff00) return; if (voltage->voltage && (voltage->voltage != rdev->pm.current_vddc)) { radeon_atom_set_voltage(rdev, voltage->voltage, SET_VOLTAGE_TYPE_ASIC_VDDC); rdev->pm.current_vddc = voltage->voltage; DRM_DEBUG("Setting: vddc: %d\n", voltage->voltage); } /* starting with BTC, there is one state that is used for both * MH and SH. Difference is that we always use the high clock index for * mclk and vddci. */ if ((rdev->pm.pm_method == PM_METHOD_PROFILE) && (rdev->family >= CHIP_BARTS) && rdev->pm.active_crtc_count && ((rdev->pm.profile_index == PM_PROFILE_MID_MH_IDX) || (rdev->pm.profile_index == PM_PROFILE_LOW_MH_IDX))) voltage = &rdev->pm.power_state[req_ps_idx]. clock_info[rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx].voltage; /* 0xff0x are flags rather then an actual voltage */ if ((voltage->vddci & 0xff00) == 0xff00) return; if (voltage->vddci && (voltage->vddci != rdev->pm.current_vddci)) { radeon_atom_set_voltage(rdev, voltage->vddci, SET_VOLTAGE_TYPE_ASIC_VDDCI); rdev->pm.current_vddci = voltage->vddci; DRM_DEBUG("Setting: vddci: %d\n", voltage->vddci); } } } /** * evergreen_pm_prepare - pre-power state change callback. * * @rdev: radeon_device pointer * * Prepare for a power state change (evergreen+). */ void evergreen_pm_prepare(struct radeon_device *rdev) { struct drm_device *ddev = rdev->ddev; struct drm_crtc *crtc; struct radeon_crtc *radeon_crtc; u32 tmp; /* disable any active CRTCs */ list_for_each_entry(crtc, &ddev->mode_config.crtc_list, head) { radeon_crtc = to_radeon_crtc(crtc); if (radeon_crtc->enabled) { tmp = RREG32(EVERGREEN_CRTC_CONTROL + radeon_crtc->crtc_offset); tmp |= EVERGREEN_CRTC_DISP_READ_REQUEST_DISABLE; WREG32(EVERGREEN_CRTC_CONTROL + radeon_crtc->crtc_offset, tmp); } } } /** * evergreen_pm_finish - post-power state change callback. * * @rdev: radeon_device pointer * * Clean up after a power state change (evergreen+). */ void evergreen_pm_finish(struct radeon_device *rdev) { struct drm_device *ddev = rdev->ddev; struct drm_crtc *crtc; struct radeon_crtc *radeon_crtc; u32 tmp; /* enable any active CRTCs */ list_for_each_entry(crtc, &ddev->mode_config.crtc_list, head) { radeon_crtc = to_radeon_crtc(crtc); if (radeon_crtc->enabled) { tmp = RREG32(EVERGREEN_CRTC_CONTROL + radeon_crtc->crtc_offset); tmp &= ~EVERGREEN_CRTC_DISP_READ_REQUEST_DISABLE; WREG32(EVERGREEN_CRTC_CONTROL + radeon_crtc->crtc_offset, tmp); } } } /** * evergreen_hpd_sense - hpd sense callback. * * @rdev: radeon_device pointer * @hpd: hpd (hotplug detect) pin * * Checks if a digital monitor is connected (evergreen+). * Returns true if connected, false if not connected. */ bool evergreen_hpd_sense(struct radeon_device *rdev, enum radeon_hpd_id hpd) { if (hpd == RADEON_HPD_NONE) return false; return !!(RREG32(DC_HPDx_INT_STATUS_REG(hpd)) & DC_HPDx_SENSE); } /** * evergreen_hpd_set_polarity - hpd set polarity callback. * * @rdev: radeon_device pointer * @hpd: hpd (hotplug detect) pin * * Set the polarity of the hpd pin (evergreen+). */ void evergreen_hpd_set_polarity(struct radeon_device *rdev, enum radeon_hpd_id hpd) { bool connected = evergreen_hpd_sense(rdev, hpd); if (hpd == RADEON_HPD_NONE) return; if (connected) WREG32_AND(DC_HPDx_INT_CONTROL(hpd), ~DC_HPDx_INT_POLARITY); else WREG32_OR(DC_HPDx_INT_CONTROL(hpd), DC_HPDx_INT_POLARITY); } /** * evergreen_hpd_init - hpd setup callback. * * @rdev: radeon_device pointer * * Setup the hpd pins used by the card (evergreen+). * Enable the pin, set the polarity, and enable the hpd interrupts. */ void evergreen_hpd_init(struct radeon_device *rdev) { struct drm_device *dev = rdev->ddev; struct drm_connector *connector; unsigned enabled = 0; u32 tmp = DC_HPDx_CONNECTION_TIMER(0x9c4) | DC_HPDx_RX_INT_TIMER(0xfa) | DC_HPDx_EN; list_for_each_entry(connector, &dev->mode_config.connector_list, head) { enum radeon_hpd_id hpd = to_radeon_connector(connector)->hpd.hpd; if (connector->connector_type == DRM_MODE_CONNECTOR_eDP || connector->connector_type == DRM_MODE_CONNECTOR_LVDS) { /* don't try to enable hpd on eDP or LVDS avoid breaking the * aux dp channel on imac and help (but not completely fix) * https://bugzilla.redhat.com/show_bug.cgi?id=726143 * also avoid interrupt storms during dpms. */ continue; } if (hpd == RADEON_HPD_NONE) continue; WREG32(DC_HPDx_CONTROL(hpd), tmp); enabled |= 1 << hpd; radeon_hpd_set_polarity(rdev, hpd); } radeon_irq_kms_enable_hpd(rdev, enabled); } /** * evergreen_hpd_fini - hpd tear down callback. * * @rdev: radeon_device pointer * * Tear down the hpd pins used by the card (evergreen+). * Disable the hpd interrupts. */ void evergreen_hpd_fini(struct radeon_device *rdev) { struct drm_device *dev = rdev->ddev; struct drm_connector *connector; unsigned disabled = 0; list_for_each_entry(connector, &dev->mode_config.connector_list, head) { enum radeon_hpd_id hpd = to_radeon_connector(connector)->hpd.hpd; if (hpd == RADEON_HPD_NONE) continue; WREG32(DC_HPDx_CONTROL(hpd), 0); disabled |= 1 << hpd; } radeon_irq_kms_disable_hpd(rdev, disabled); } /* watermark setup */ static u32 evergreen_line_buffer_adjust(struct radeon_device *rdev, struct radeon_crtc *radeon_crtc, struct drm_display_mode *mode, struct drm_display_mode *other_mode) { u32 tmp, buffer_alloc, i; u32 pipe_offset = radeon_crtc->crtc_id * 0x20; /* * Line Buffer Setup * There are 3 line buffers, each one shared by 2 display controllers. * DC_LB_MEMORY_SPLIT controls how that line buffer is shared between * the display controllers. The paritioning is done via one of four * preset allocations specified in bits 2:0: * first display controller * 0 - first half of lb (3840 * 2) * 1 - first 3/4 of lb (5760 * 2) * 2 - whole lb (7680 * 2), other crtc must be disabled * 3 - first 1/4 of lb (1920 * 2) * second display controller * 4 - second half of lb (3840 * 2) * 5 - second 3/4 of lb (5760 * 2) * 6 - whole lb (7680 * 2), other crtc must be disabled * 7 - last 1/4 of lb (1920 * 2) */ /* this can get tricky if we have two large displays on a paired group * of crtcs. Ideally for multiple large displays we'd assign them to * non-linked crtcs for maximum line buffer allocation. */ if (radeon_crtc->base.enabled && mode) { if (other_mode) { tmp = 0; /* 1/2 */ buffer_alloc = 1; } else { tmp = 2; /* whole */ buffer_alloc = 2; } } else { tmp = 0; buffer_alloc = 0; } /* second controller of the pair uses second half of the lb */ if (radeon_crtc->crtc_id % 2) tmp += 4; WREG32(DC_LB_MEMORY_SPLIT + radeon_crtc->crtc_offset, tmp); if (ASIC_IS_DCE41(rdev) || ASIC_IS_DCE5(rdev)) { WREG32(PIPE0_DMIF_BUFFER_CONTROL + pipe_offset, DMIF_BUFFERS_ALLOCATED(buffer_alloc)); for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(PIPE0_DMIF_BUFFER_CONTROL + pipe_offset) & DMIF_BUFFERS_ALLOCATED_COMPLETED) break; udelay(1); } } if (radeon_crtc->base.enabled && mode) { switch (tmp) { case 0: case 4: default: if (ASIC_IS_DCE5(rdev)) return 4096 * 2; else return 3840 * 2; case 1: case 5: if (ASIC_IS_DCE5(rdev)) return 6144 * 2; else return 5760 * 2; case 2: case 6: if (ASIC_IS_DCE5(rdev)) return 8192 * 2; else return 7680 * 2; case 3: case 7: if (ASIC_IS_DCE5(rdev)) return 2048 * 2; else return 1920 * 2; } } /* controller not enabled, so no lb used */ return 0; } u32 evergreen_get_number_of_dram_channels(struct radeon_device *rdev) { u32 tmp = RREG32(MC_SHARED_CHMAP); switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) { case 0: default: return 1; case 1: return 2; case 2: return 4; case 3: return 8; } } struct evergreen_wm_params { u32 dram_channels; /* number of dram channels */ u32 yclk; /* bandwidth per dram data pin in kHz */ u32 sclk; /* engine clock in kHz */ u32 disp_clk; /* display clock in kHz */ u32 src_width; /* viewport width */ u32 active_time; /* active display time in ns */ u32 blank_time; /* blank time in ns */ bool interlaced; /* mode is interlaced */ fixed20_12 vsc; /* vertical scale ratio */ u32 num_heads; /* number of active crtcs */ u32 bytes_per_pixel; /* bytes per pixel display + overlay */ u32 lb_size; /* line buffer allocated to pipe */ u32 vtaps; /* vertical scaler taps */ }; static u32 evergreen_dram_bandwidth(struct evergreen_wm_params *wm) { /* Calculate DRAM Bandwidth and the part allocated to display. */ fixed20_12 dram_efficiency; /* 0.7 */ fixed20_12 yclk, dram_channels, bandwidth; fixed20_12 a; a.full = dfixed_const(1000); yclk.full = dfixed_const(wm->yclk); yclk.full = dfixed_div(yclk, a); dram_channels.full = dfixed_const(wm->dram_channels * 4); a.full = dfixed_const(10); dram_efficiency.full = dfixed_const(7); dram_efficiency.full = dfixed_div(dram_efficiency, a); bandwidth.full = dfixed_mul(dram_channels, yclk); bandwidth.full = dfixed_mul(bandwidth, dram_efficiency); return dfixed_trunc(bandwidth); } static u32 evergreen_dram_bandwidth_for_display(struct evergreen_wm_params *wm) { /* Calculate DRAM Bandwidth and the part allocated to display. */ fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */ fixed20_12 yclk, dram_channels, bandwidth; fixed20_12 a; a.full = dfixed_const(1000); yclk.full = dfixed_const(wm->yclk); yclk.full = dfixed_div(yclk, a); dram_channels.full = dfixed_const(wm->dram_channels * 4); a.full = dfixed_const(10); disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */ disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a); bandwidth.full = dfixed_mul(dram_channels, yclk); bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation); return dfixed_trunc(bandwidth); } static u32 evergreen_data_return_bandwidth(struct evergreen_wm_params *wm) { /* Calculate the display Data return Bandwidth */ fixed20_12 return_efficiency; /* 0.8 */ fixed20_12 sclk, bandwidth; fixed20_12 a; a.full = dfixed_const(1000); sclk.full = dfixed_const(wm->sclk); sclk.full = dfixed_div(sclk, a); a.full = dfixed_const(10); return_efficiency.full = dfixed_const(8); return_efficiency.full = dfixed_div(return_efficiency, a); a.full = dfixed_const(32); bandwidth.full = dfixed_mul(a, sclk); bandwidth.full = dfixed_mul(bandwidth, return_efficiency); return dfixed_trunc(bandwidth); } static u32 evergreen_dmif_request_bandwidth(struct evergreen_wm_params *wm) { /* Calculate the DMIF Request Bandwidth */ fixed20_12 disp_clk_request_efficiency; /* 0.8 */ fixed20_12 disp_clk, bandwidth; fixed20_12 a; a.full = dfixed_const(1000); disp_clk.full = dfixed_const(wm->disp_clk); disp_clk.full = dfixed_div(disp_clk, a); a.full = dfixed_const(10); disp_clk_request_efficiency.full = dfixed_const(8); disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a); a.full = dfixed_const(32); bandwidth.full = dfixed_mul(a, disp_clk); bandwidth.full = dfixed_mul(bandwidth, disp_clk_request_efficiency); return dfixed_trunc(bandwidth); } static u32 evergreen_available_bandwidth(struct evergreen_wm_params *wm) { /* Calculate the Available bandwidth. Display can use this temporarily but not in average. */ u32 dram_bandwidth = evergreen_dram_bandwidth(wm); u32 data_return_bandwidth = evergreen_data_return_bandwidth(wm); u32 dmif_req_bandwidth = evergreen_dmif_request_bandwidth(wm); return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth)); } static u32 evergreen_average_bandwidth(struct evergreen_wm_params *wm) { /* Calculate the display mode Average Bandwidth * DisplayMode should contain the source and destination dimensions, * timing, etc. */ fixed20_12 bpp; fixed20_12 line_time; fixed20_12 src_width; fixed20_12 bandwidth; fixed20_12 a; a.full = dfixed_const(1000); line_time.full = dfixed_const(wm->active_time + wm->blank_time); line_time.full = dfixed_div(line_time, a); bpp.full = dfixed_const(wm->bytes_per_pixel); src_width.full = dfixed_const(wm->src_width); bandwidth.full = dfixed_mul(src_width, bpp); bandwidth.full = dfixed_mul(bandwidth, wm->vsc); bandwidth.full = dfixed_div(bandwidth, line_time); return dfixed_trunc(bandwidth); } static u32 evergreen_latency_watermark(struct evergreen_wm_params *wm) { /* First calcualte the latency in ns */ u32 mc_latency = 2000; /* 2000 ns. */ u32 available_bandwidth = evergreen_available_bandwidth(wm); u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth; u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth; u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */ u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) + (wm->num_heads * cursor_line_pair_return_time); u32 latency = mc_latency + other_heads_data_return_time + dc_latency; u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time; fixed20_12 a, b, c; if (wm->num_heads == 0) return 0; a.full = dfixed_const(2); b.full = dfixed_const(1); if ((wm->vsc.full > a.full) || ((wm->vsc.full > b.full) && (wm->vtaps >= 3)) || (wm->vtaps >= 5) || ((wm->vsc.full >= a.full) && wm->interlaced)) max_src_lines_per_dst_line = 4; else max_src_lines_per_dst_line = 2; a.full = dfixed_const(available_bandwidth); b.full = dfixed_const(wm->num_heads); a.full = dfixed_div(a, b); lb_fill_bw = min(dfixed_trunc(a), wm->disp_clk * wm->bytes_per_pixel / 1000); a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel); b.full = dfixed_const(1000); c.full = dfixed_const(lb_fill_bw); b.full = dfixed_div(c, b); a.full = dfixed_div(a, b); line_fill_time = dfixed_trunc(a); if (line_fill_time < wm->active_time) return latency; else return latency + (line_fill_time - wm->active_time); } static bool evergreen_average_bandwidth_vs_dram_bandwidth_for_display(struct evergreen_wm_params *wm) { if (evergreen_average_bandwidth(wm) <= (evergreen_dram_bandwidth_for_display(wm) / wm->num_heads)) return true; else return false; }; static bool evergreen_average_bandwidth_vs_available_bandwidth(struct evergreen_wm_params *wm) { if (evergreen_average_bandwidth(wm) <= (evergreen_available_bandwidth(wm) / wm->num_heads)) return true; else return false; }; static bool evergreen_check_latency_hiding(struct evergreen_wm_params *wm) { u32 lb_partitions = wm->lb_size / wm->src_width; u32 line_time = wm->active_time + wm->blank_time; u32 latency_tolerant_lines; u32 latency_hiding; fixed20_12 a; a.full = dfixed_const(1); if (wm->vsc.full > a.full) latency_tolerant_lines = 1; else { if (lb_partitions <= (wm->vtaps + 1)) latency_tolerant_lines = 1; else latency_tolerant_lines = 2; } latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time); if (evergreen_latency_watermark(wm) <= latency_hiding) return true; else return false; } static void evergreen_program_watermarks(struct radeon_device *rdev, struct radeon_crtc *radeon_crtc, u32 lb_size, u32 num_heads) { struct drm_display_mode *mode = &radeon_crtc->base.mode; struct evergreen_wm_params wm_low, wm_high; u32 dram_channels; u32 active_time; u32 line_time = 0; u32 latency_watermark_a = 0, latency_watermark_b = 0; u32 priority_a_mark = 0, priority_b_mark = 0; u32 priority_a_cnt = PRIORITY_OFF; u32 priority_b_cnt = PRIORITY_OFF; u32 pipe_offset = radeon_crtc->crtc_id * 16; u32 tmp, arb_control3; fixed20_12 a, b, c; if (radeon_crtc->base.enabled && num_heads && mode) { active_time = (u32) div_u64((u64)mode->crtc_hdisplay * 1000000, (u32)mode->clock); line_time = (u32) div_u64((u64)mode->crtc_htotal * 1000000, (u32)mode->clock); line_time = min(line_time, (u32)65535); priority_a_cnt = 0; priority_b_cnt = 0; dram_channels = evergreen_get_number_of_dram_channels(rdev); /* watermark for high clocks */ if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) { wm_high.yclk = radeon_dpm_get_mclk(rdev, false) * 10; wm_high.sclk = radeon_dpm_get_sclk(rdev, false) * 10; } else { wm_high.yclk = rdev->pm.current_mclk * 10; wm_high.sclk = rdev->pm.current_sclk * 10; } wm_high.disp_clk = mode->clock; wm_high.src_width = mode->crtc_hdisplay; wm_high.active_time = active_time; wm_high.blank_time = line_time - wm_high.active_time; wm_high.interlaced = false; if (mode->flags & DRM_MODE_FLAG_INTERLACE) wm_high.interlaced = true; wm_high.vsc = radeon_crtc->vsc; wm_high.vtaps = 1; if (radeon_crtc->rmx_type != RMX_OFF) wm_high.vtaps = 2; wm_high.bytes_per_pixel = 4; /* XXX: get this from fb config */ wm_high.lb_size = lb_size; wm_high.dram_channels = dram_channels; wm_high.num_heads = num_heads; /* watermark for low clocks */ if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) { wm_low.yclk = radeon_dpm_get_mclk(rdev, true) * 10; wm_low.sclk = radeon_dpm_get_sclk(rdev, true) * 10; } else { wm_low.yclk = rdev->pm.current_mclk * 10; wm_low.sclk = rdev->pm.current_sclk * 10; } wm_low.disp_clk = mode->clock; wm_low.src_width = mode->crtc_hdisplay; wm_low.active_time = active_time; wm_low.blank_time = line_time - wm_low.active_time; wm_low.interlaced = false; if (mode->flags & DRM_MODE_FLAG_INTERLACE) wm_low.interlaced = true; wm_low.vsc = radeon_crtc->vsc; wm_low.vtaps = 1; if (radeon_crtc->rmx_type != RMX_OFF) wm_low.vtaps = 2; wm_low.bytes_per_pixel = 4; /* XXX: get this from fb config */ wm_low.lb_size = lb_size; wm_low.dram_channels = dram_channels; wm_low.num_heads = num_heads; /* set for high clocks */ latency_watermark_a = min(evergreen_latency_watermark(&wm_high), (u32)65535); /* set for low clocks */ latency_watermark_b = min(evergreen_latency_watermark(&wm_low), (u32)65535); /* possibly force display priority to high */ /* should really do this at mode validation time... */ if (!evergreen_average_bandwidth_vs_dram_bandwidth_for_display(&wm_high) || !evergreen_average_bandwidth_vs_available_bandwidth(&wm_high) || !evergreen_check_latency_hiding(&wm_high) || (rdev->disp_priority == 2)) { DRM_DEBUG_KMS("force priority a to high\n"); priority_a_cnt |= PRIORITY_ALWAYS_ON; } if (!evergreen_average_bandwidth_vs_dram_bandwidth_for_display(&wm_low) || !evergreen_average_bandwidth_vs_available_bandwidth(&wm_low) || !evergreen_check_latency_hiding(&wm_low) || (rdev->disp_priority == 2)) { DRM_DEBUG_KMS("force priority b to high\n"); priority_b_cnt |= PRIORITY_ALWAYS_ON; } a.full = dfixed_const(1000); b.full = dfixed_const(mode->clock); b.full = dfixed_div(b, a); c.full = dfixed_const(latency_watermark_a); c.full = dfixed_mul(c, b); c.full = dfixed_mul(c, radeon_crtc->hsc); c.full = dfixed_div(c, a); a.full = dfixed_const(16); c.full = dfixed_div(c, a); priority_a_mark = dfixed_trunc(c); priority_a_cnt |= priority_a_mark & PRIORITY_MARK_MASK; a.full = dfixed_const(1000); b.full = dfixed_const(mode->clock); b.full = dfixed_div(b, a); c.full = dfixed_const(latency_watermark_b); c.full = dfixed_mul(c, b); c.full = dfixed_mul(c, radeon_crtc->hsc); c.full = dfixed_div(c, a); a.full = dfixed_const(16); c.full = dfixed_div(c, a); priority_b_mark = dfixed_trunc(c); priority_b_cnt |= priority_b_mark & PRIORITY_MARK_MASK; /* Save number of lines the linebuffer leads before the scanout */ radeon_crtc->lb_vblank_lead_lines = DIV_ROUND_UP(lb_size, mode->crtc_hdisplay); } /* select wm A */ arb_control3 = RREG32(PIPE0_ARBITRATION_CONTROL3 + pipe_offset); tmp = arb_control3; tmp &= ~LATENCY_WATERMARK_MASK(3); tmp |= LATENCY_WATERMARK_MASK(1); WREG32(PIPE0_ARBITRATION_CONTROL3 + pipe_offset, tmp); WREG32(PIPE0_LATENCY_CONTROL + pipe_offset, (LATENCY_LOW_WATERMARK(latency_watermark_a) | LATENCY_HIGH_WATERMARK(line_time))); /* select wm B */ tmp = RREG32(PIPE0_ARBITRATION_CONTROL3 + pipe_offset); tmp &= ~LATENCY_WATERMARK_MASK(3); tmp |= LATENCY_WATERMARK_MASK(2); WREG32(PIPE0_ARBITRATION_CONTROL3 + pipe_offset, tmp); WREG32(PIPE0_LATENCY_CONTROL + pipe_offset, (LATENCY_LOW_WATERMARK(latency_watermark_b) | LATENCY_HIGH_WATERMARK(line_time))); /* restore original selection */ WREG32(PIPE0_ARBITRATION_CONTROL3 + pipe_offset, arb_control3); /* write the priority marks */ WREG32(PRIORITY_A_CNT + radeon_crtc->crtc_offset, priority_a_cnt); WREG32(PRIORITY_B_CNT + radeon_crtc->crtc_offset, priority_b_cnt); /* save values for DPM */ radeon_crtc->line_time = line_time; radeon_crtc->wm_high = latency_watermark_a; radeon_crtc->wm_low = latency_watermark_b; } /** * evergreen_bandwidth_update - update display watermarks callback. * * @rdev: radeon_device pointer * * Update the display watermarks based on the requested mode(s) * (evergreen+). */ void evergreen_bandwidth_update(struct radeon_device *rdev) { struct drm_display_mode *mode0 = NULL; struct drm_display_mode *mode1 = NULL; u32 num_heads = 0, lb_size; int i; if (!rdev->mode_info.mode_config_initialized) return; radeon_update_display_priority(rdev); for (i = 0; i < rdev->num_crtc; i++) { if (rdev->mode_info.crtcs[i]->base.enabled) num_heads++; } for (i = 0; i < rdev->num_crtc; i += 2) { mode0 = &rdev->mode_info.crtcs[i]->base.mode; mode1 = &rdev->mode_info.crtcs[i+1]->base.mode; lb_size = evergreen_line_buffer_adjust(rdev, rdev->mode_info.crtcs[i], mode0, mode1); evergreen_program_watermarks(rdev, rdev->mode_info.crtcs[i], lb_size, num_heads); lb_size = evergreen_line_buffer_adjust(rdev, rdev->mode_info.crtcs[i+1], mode1, mode0); evergreen_program_watermarks(rdev, rdev->mode_info.crtcs[i+1], lb_size, num_heads); } } /** * evergreen_mc_wait_for_idle - wait for MC idle callback. * * @rdev: radeon_device pointer * * Wait for the MC (memory controller) to be idle. * (evergreen+). * Returns 0 if the MC is idle, -1 if not. */ int evergreen_mc_wait_for_idle(struct radeon_device *rdev) { unsigned i; u32 tmp; for (i = 0; i < rdev->usec_timeout; i++) { /* read MC_STATUS */ tmp = RREG32(SRBM_STATUS) & 0x1F00; if (!tmp) return 0; udelay(1); } return -1; } /* * GART */ void evergreen_pcie_gart_tlb_flush(struct radeon_device *rdev) { unsigned i; u32 tmp; WREG32(HDP_MEM_COHERENCY_FLUSH_CNTL, 0x1); WREG32(VM_CONTEXT0_REQUEST_RESPONSE, REQUEST_TYPE(1)); for (i = 0; i < rdev->usec_timeout; i++) { /* read MC_STATUS */ tmp = RREG32(VM_CONTEXT0_REQUEST_RESPONSE); tmp = (tmp & RESPONSE_TYPE_MASK) >> RESPONSE_TYPE_SHIFT; if (tmp == 2) { pr_warn("[drm] r600 flush TLB failed\n"); return; } if (tmp) { return; } udelay(1); } } static int evergreen_pcie_gart_enable(struct radeon_device *rdev) { u32 tmp; int r; if (rdev->gart.robj == NULL) { dev_err(rdev->dev, "No VRAM object for PCIE GART.\n"); return -EINVAL; } r = radeon_gart_table_vram_pin(rdev); if (r) return r; /* Setup L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_FRAGMENT_PROCESSING | ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | EFFECTIVE_L2_QUEUE_SIZE(7)); WREG32(VM_L2_CNTL2, 0); WREG32(VM_L2_CNTL3, BANK_SELECT(0) | CACHE_UPDATE_MODE(2)); /* Setup TLB control */ tmp = ENABLE_L1_TLB | ENABLE_L1_FRAGMENT_PROCESSING | SYSTEM_ACCESS_MODE_NOT_IN_SYS | SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU | EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5); if (rdev->flags & RADEON_IS_IGP) { WREG32(FUS_MC_VM_MD_L1_TLB0_CNTL, tmp); WREG32(FUS_MC_VM_MD_L1_TLB1_CNTL, tmp); WREG32(FUS_MC_VM_MD_L1_TLB2_CNTL, tmp); } else { WREG32(MC_VM_MD_L1_TLB0_CNTL, tmp); WREG32(MC_VM_MD_L1_TLB1_CNTL, tmp); WREG32(MC_VM_MD_L1_TLB2_CNTL, tmp); if ((rdev->family == CHIP_JUNIPER) || (rdev->family == CHIP_CYPRESS) || (rdev->family == CHIP_HEMLOCK) || (rdev->family == CHIP_BARTS)) WREG32(MC_VM_MD_L1_TLB3_CNTL, tmp); } WREG32(MC_VM_MB_L1_TLB0_CNTL, tmp); WREG32(MC_VM_MB_L1_TLB1_CNTL, tmp); WREG32(MC_VM_MB_L1_TLB2_CNTL, tmp); WREG32(MC_VM_MB_L1_TLB3_CNTL, tmp); WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12); WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12); WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12); WREG32(VM_CONTEXT0_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) | RANGE_PROTECTION_FAULT_ENABLE_DEFAULT); WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR, (u32)(rdev->dummy_page.addr >> 12)); WREG32(VM_CONTEXT1_CNTL, 0); evergreen_pcie_gart_tlb_flush(rdev); DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n", (unsigned)(rdev->mc.gtt_size >> 20), (unsigned long long)rdev->gart.table_addr); rdev->gart.ready = true; return 0; } static void evergreen_pcie_gart_disable(struct radeon_device *rdev) { u32 tmp; /* Disable all tables */ WREG32(VM_CONTEXT0_CNTL, 0); WREG32(VM_CONTEXT1_CNTL, 0); /* Setup L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING | EFFECTIVE_L2_QUEUE_SIZE(7)); WREG32(VM_L2_CNTL2, 0); WREG32(VM_L2_CNTL3, BANK_SELECT(0) | CACHE_UPDATE_MODE(2)); /* Setup TLB control */ tmp = EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5); WREG32(MC_VM_MD_L1_TLB0_CNTL, tmp); WREG32(MC_VM_MD_L1_TLB1_CNTL, tmp); WREG32(MC_VM_MD_L1_TLB2_CNTL, tmp); WREG32(MC_VM_MB_L1_TLB0_CNTL, tmp); WREG32(MC_VM_MB_L1_TLB1_CNTL, tmp); WREG32(MC_VM_MB_L1_TLB2_CNTL, tmp); WREG32(MC_VM_MB_L1_TLB3_CNTL, tmp); radeon_gart_table_vram_unpin(rdev); } static void evergreen_pcie_gart_fini(struct radeon_device *rdev) { evergreen_pcie_gart_disable(rdev); radeon_gart_table_vram_free(rdev); radeon_gart_fini(rdev); } static void evergreen_agp_enable(struct radeon_device *rdev) { u32 tmp; /* Setup L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_FRAGMENT_PROCESSING | ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | EFFECTIVE_L2_QUEUE_SIZE(7)); WREG32(VM_L2_CNTL2, 0); WREG32(VM_L2_CNTL3, BANK_SELECT(0) | CACHE_UPDATE_MODE(2)); /* Setup TLB control */ tmp = ENABLE_L1_TLB | ENABLE_L1_FRAGMENT_PROCESSING | SYSTEM_ACCESS_MODE_NOT_IN_SYS | SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU | EFFECTIVE_L1_TLB_SIZE(5) | EFFECTIVE_L1_QUEUE_SIZE(5); WREG32(MC_VM_MD_L1_TLB0_CNTL, tmp); WREG32(MC_VM_MD_L1_TLB1_CNTL, tmp); WREG32(MC_VM_MD_L1_TLB2_CNTL, tmp); WREG32(MC_VM_MB_L1_TLB0_CNTL, tmp); WREG32(MC_VM_MB_L1_TLB1_CNTL, tmp); WREG32(MC_VM_MB_L1_TLB2_CNTL, tmp); WREG32(MC_VM_MB_L1_TLB3_CNTL, tmp); WREG32(VM_CONTEXT0_CNTL, 0); WREG32(VM_CONTEXT1_CNTL, 0); } static const unsigned ni_dig_offsets[] = { NI_DIG0_REGISTER_OFFSET, NI_DIG1_REGISTER_OFFSET, NI_DIG2_REGISTER_OFFSET, NI_DIG3_REGISTER_OFFSET, NI_DIG4_REGISTER_OFFSET, NI_DIG5_REGISTER_OFFSET }; static const unsigned ni_tx_offsets[] = { NI_DCIO_UNIPHY0_UNIPHY_TX_CONTROL1, NI_DCIO_UNIPHY1_UNIPHY_TX_CONTROL1, NI_DCIO_UNIPHY2_UNIPHY_TX_CONTROL1, NI_DCIO_UNIPHY3_UNIPHY_TX_CONTROL1, NI_DCIO_UNIPHY4_UNIPHY_TX_CONTROL1, NI_DCIO_UNIPHY5_UNIPHY_TX_CONTROL1 }; static const unsigned evergreen_dp_offsets[] = { EVERGREEN_DP0_REGISTER_OFFSET, EVERGREEN_DP1_REGISTER_OFFSET, EVERGREEN_DP2_REGISTER_OFFSET, EVERGREEN_DP3_REGISTER_OFFSET, EVERGREEN_DP4_REGISTER_OFFSET, EVERGREEN_DP5_REGISTER_OFFSET }; static const unsigned evergreen_disp_int_status[] = { DISP_INTERRUPT_STATUS, DISP_INTERRUPT_STATUS_CONTINUE, DISP_INTERRUPT_STATUS_CONTINUE2, DISP_INTERRUPT_STATUS_CONTINUE3, DISP_INTERRUPT_STATUS_CONTINUE4, DISP_INTERRUPT_STATUS_CONTINUE5 }; /* * Assumption is that EVERGREEN_CRTC_MASTER_EN enable for requested crtc * We go from crtc to connector and it is not relible since it * should be an opposite direction .If crtc is enable then * find the dig_fe which selects this crtc and insure that it enable. * if such dig_fe is found then find dig_be which selects found dig_be and * insure that it enable and in DP_SST mode. * if UNIPHY_PLL_CONTROL1.enable then we should disconnect timing * from dp symbols clocks . */ static bool evergreen_is_dp_sst_stream_enabled(struct radeon_device *rdev, unsigned crtc_id, unsigned *ret_dig_fe) { unsigned i; unsigned dig_fe; unsigned dig_be; unsigned dig_en_be; unsigned uniphy_pll; unsigned digs_fe_selected; unsigned dig_be_mode; unsigned dig_fe_mask; bool is_enabled = false; bool found_crtc = false; /* loop through all running dig_fe to find selected crtc */ for (i = 0; i < ARRAY_SIZE(ni_dig_offsets); i++) { dig_fe = RREG32(NI_DIG_FE_CNTL + ni_dig_offsets[i]); if (dig_fe & NI_DIG_FE_CNTL_SYMCLK_FE_ON && crtc_id == NI_DIG_FE_CNTL_SOURCE_SELECT(dig_fe)) { /* found running pipe */ found_crtc = true; dig_fe_mask = 1 << i; dig_fe = i; break; } } if (found_crtc) { /* loop through all running dig_be to find selected dig_fe */ for (i = 0; i < ARRAY_SIZE(ni_dig_offsets); i++) { dig_be = RREG32(NI_DIG_BE_CNTL + ni_dig_offsets[i]); /* if dig_fe_selected by dig_be? */ digs_fe_selected = NI_DIG_BE_CNTL_FE_SOURCE_SELECT(dig_be); dig_be_mode = NI_DIG_FE_CNTL_MODE(dig_be); if (dig_fe_mask & digs_fe_selected && /* if dig_be in sst mode? */ dig_be_mode == NI_DIG_BE_DPSST) { dig_en_be = RREG32(NI_DIG_BE_EN_CNTL + ni_dig_offsets[i]); uniphy_pll = RREG32(NI_DCIO_UNIPHY0_PLL_CONTROL1 + ni_tx_offsets[i]); /* dig_be enable and tx is running */ if (dig_en_be & NI_DIG_BE_EN_CNTL_ENABLE && dig_en_be & NI_DIG_BE_EN_CNTL_SYMBCLK_ON && uniphy_pll & NI_DCIO_UNIPHY0_PLL_CONTROL1_ENABLE) { is_enabled = true; *ret_dig_fe = dig_fe; break; } } } } return is_enabled; } /* * Blank dig when in dp sst mode * Dig ignores crtc timing */ static void evergreen_blank_dp_output(struct radeon_device *rdev, unsigned dig_fe) { unsigned stream_ctrl; unsigned fifo_ctrl; unsigned counter = 0; if (dig_fe >= ARRAY_SIZE(evergreen_dp_offsets)) { DRM_ERROR("invalid dig_fe %d\n", dig_fe); return; } stream_ctrl = RREG32(EVERGREEN_DP_VID_STREAM_CNTL + evergreen_dp_offsets[dig_fe]); if (!(stream_ctrl & EVERGREEN_DP_VID_STREAM_CNTL_ENABLE)) { DRM_ERROR("dig %d , should be enable\n", dig_fe); return; } stream_ctrl &=~EVERGREEN_DP_VID_STREAM_CNTL_ENABLE; WREG32(EVERGREEN_DP_VID_STREAM_CNTL + evergreen_dp_offsets[dig_fe], stream_ctrl); stream_ctrl = RREG32(EVERGREEN_DP_VID_STREAM_CNTL + evergreen_dp_offsets[dig_fe]); while (counter < 32 && stream_ctrl & EVERGREEN_DP_VID_STREAM_STATUS) { msleep(1); counter++; stream_ctrl = RREG32(EVERGREEN_DP_VID_STREAM_CNTL + evergreen_dp_offsets[dig_fe]); } if (counter >= 32 ) DRM_ERROR("counter exceeds %d\n", counter); fifo_ctrl = RREG32(EVERGREEN_DP_STEER_FIFO + evergreen_dp_offsets[dig_fe]); fifo_ctrl |= EVERGREEN_DP_STEER_FIFO_RESET; WREG32(EVERGREEN_DP_STEER_FIFO + evergreen_dp_offsets[dig_fe], fifo_ctrl); } void evergreen_mc_stop(struct radeon_device *rdev, struct evergreen_mc_save *save) { u32 crtc_enabled, tmp, frame_count, blackout; int i, j; unsigned dig_fe; if (!ASIC_IS_NODCE(rdev)) { save->vga_render_control = RREG32(VGA_RENDER_CONTROL); save->vga_hdp_control = RREG32(VGA_HDP_CONTROL); /* disable VGA render */ WREG32(VGA_RENDER_CONTROL, 0); } /* blank the display controllers */ for (i = 0; i < rdev->num_crtc; i++) { crtc_enabled = RREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i]) & EVERGREEN_CRTC_MASTER_EN; if (crtc_enabled) { save->crtc_enabled[i] = true; if (ASIC_IS_DCE6(rdev)) { tmp = RREG32(EVERGREEN_CRTC_BLANK_CONTROL + crtc_offsets[i]); if (!(tmp & EVERGREEN_CRTC_BLANK_DATA_EN)) { radeon_wait_for_vblank(rdev, i); WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 1); tmp |= EVERGREEN_CRTC_BLANK_DATA_EN; WREG32(EVERGREEN_CRTC_BLANK_CONTROL + crtc_offsets[i], tmp); WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 0); } } else { tmp = RREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i]); if (!(tmp & EVERGREEN_CRTC_DISP_READ_REQUEST_DISABLE)) { radeon_wait_for_vblank(rdev, i); WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 1); tmp |= EVERGREEN_CRTC_DISP_READ_REQUEST_DISABLE; WREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i], tmp); WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 0); } } /* wait for the next frame */ frame_count = radeon_get_vblank_counter(rdev, i); for (j = 0; j < rdev->usec_timeout; j++) { if (radeon_get_vblank_counter(rdev, i) != frame_count) break; udelay(1); } /*we should disable dig if it drives dp sst*/ /*but we are in radeon_device_init and the topology is unknown*/ /*and it is available after radeon_modeset_init*/ /*the following method radeon_atom_encoder_dpms_dig*/ /*does the job if we initialize it properly*/ /*for now we do it this manually*/ /**/ if (ASIC_IS_DCE5(rdev) && evergreen_is_dp_sst_stream_enabled(rdev, i ,&dig_fe)) evergreen_blank_dp_output(rdev, dig_fe); /*we could remove 6 lines below*/ /* XXX this is a hack to avoid strange behavior with EFI on certain systems */ WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 1); tmp = RREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i]); tmp &= ~EVERGREEN_CRTC_MASTER_EN; WREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i], tmp); WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 0); save->crtc_enabled[i] = false; /* ***** */ } else { save->crtc_enabled[i] = false; } } radeon_mc_wait_for_idle(rdev); blackout = RREG32(MC_SHARED_BLACKOUT_CNTL); if ((blackout & BLACKOUT_MODE_MASK) != 1) { /* Block CPU access */ WREG32(BIF_FB_EN, 0); /* blackout the MC */ blackout &= ~BLACKOUT_MODE_MASK; WREG32(MC_SHARED_BLACKOUT_CNTL, blackout | 1); } /* wait for the MC to settle */ udelay(100); /* lock double buffered regs */ for (i = 0; i < rdev->num_crtc; i++) { if (save->crtc_enabled[i]) { tmp = RREG32(EVERGREEN_GRPH_UPDATE + crtc_offsets[i]); if (!(tmp & EVERGREEN_GRPH_UPDATE_LOCK)) { tmp |= EVERGREEN_GRPH_UPDATE_LOCK; WREG32(EVERGREEN_GRPH_UPDATE + crtc_offsets[i], tmp); } tmp = RREG32(EVERGREEN_MASTER_UPDATE_LOCK + crtc_offsets[i]); if (!(tmp & 1)) { tmp |= 1; WREG32(EVERGREEN_MASTER_UPDATE_LOCK + crtc_offsets[i], tmp); } } } } void evergreen_mc_resume(struct radeon_device *rdev, struct evergreen_mc_save *save) { u32 tmp, frame_count; int i, j; /* update crtc base addresses */ for (i = 0; i < rdev->num_crtc; i++) { WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + crtc_offsets[i], upper_32_bits(rdev->mc.vram_start)); WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS_HIGH + crtc_offsets[i], upper_32_bits(rdev->mc.vram_start)); WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + crtc_offsets[i], (u32)rdev->mc.vram_start); WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS + crtc_offsets[i], (u32)rdev->mc.vram_start); } if (!ASIC_IS_NODCE(rdev)) { WREG32(EVERGREEN_VGA_MEMORY_BASE_ADDRESS_HIGH, upper_32_bits(rdev->mc.vram_start)); WREG32(EVERGREEN_VGA_MEMORY_BASE_ADDRESS, (u32)rdev->mc.vram_start); } /* unlock regs and wait for update */ for (i = 0; i < rdev->num_crtc; i++) { if (save->crtc_enabled[i]) { tmp = RREG32(EVERGREEN_MASTER_UPDATE_MODE + crtc_offsets[i]); if ((tmp & 0x7) != 0) { tmp &= ~0x7; WREG32(EVERGREEN_MASTER_UPDATE_MODE + crtc_offsets[i], tmp); } tmp = RREG32(EVERGREEN_GRPH_UPDATE + crtc_offsets[i]); if (tmp & EVERGREEN_GRPH_UPDATE_LOCK) { tmp &= ~EVERGREEN_GRPH_UPDATE_LOCK; WREG32(EVERGREEN_GRPH_UPDATE + crtc_offsets[i], tmp); } tmp = RREG32(EVERGREEN_MASTER_UPDATE_LOCK + crtc_offsets[i]); if (tmp & 1) { tmp &= ~1; WREG32(EVERGREEN_MASTER_UPDATE_LOCK + crtc_offsets[i], tmp); } for (j = 0; j < rdev->usec_timeout; j++) { tmp = RREG32(EVERGREEN_GRPH_UPDATE + crtc_offsets[i]); if ((tmp & EVERGREEN_GRPH_SURFACE_UPDATE_PENDING) == 0) break; udelay(1); } } } /* unblackout the MC */ tmp = RREG32(MC_SHARED_BLACKOUT_CNTL); tmp &= ~BLACKOUT_MODE_MASK; WREG32(MC_SHARED_BLACKOUT_CNTL, tmp); /* allow CPU access */ WREG32(BIF_FB_EN, FB_READ_EN | FB_WRITE_EN); for (i = 0; i < rdev->num_crtc; i++) { if (save->crtc_enabled[i]) { if (ASIC_IS_DCE6(rdev)) { tmp = RREG32(EVERGREEN_CRTC_BLANK_CONTROL + crtc_offsets[i]); tmp &= ~EVERGREEN_CRTC_BLANK_DATA_EN; WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 1); WREG32(EVERGREEN_CRTC_BLANK_CONTROL + crtc_offsets[i], tmp); WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 0); } else { tmp = RREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i]); tmp &= ~EVERGREEN_CRTC_DISP_READ_REQUEST_DISABLE; WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 1); WREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i], tmp); WREG32(EVERGREEN_CRTC_UPDATE_LOCK + crtc_offsets[i], 0); } /* wait for the next frame */ frame_count = radeon_get_vblank_counter(rdev, i); for (j = 0; j < rdev->usec_timeout; j++) { if (radeon_get_vblank_counter(rdev, i) != frame_count) break; udelay(1); } } } if (!ASIC_IS_NODCE(rdev)) { /* Unlock vga access */ WREG32(VGA_HDP_CONTROL, save->vga_hdp_control); mdelay(1); WREG32(VGA_RENDER_CONTROL, save->vga_render_control); } } void evergreen_mc_program(struct radeon_device *rdev) { struct evergreen_mc_save save; u32 tmp; int i, j; /* Initialize HDP */ for (i = 0, j = 0; i < 32; i++, j += 0x18) { WREG32((0x2c14 + j), 0x00000000); WREG32((0x2c18 + j), 0x00000000); WREG32((0x2c1c + j), 0x00000000); WREG32((0x2c20 + j), 0x00000000); WREG32((0x2c24 + j), 0x00000000); } WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0); evergreen_mc_stop(rdev, &save); if (evergreen_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } /* Lockout access through VGA aperture*/ WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE); /* Update configuration */ if (rdev->flags & RADEON_IS_AGP) { if (rdev->mc.vram_start < rdev->mc.gtt_start) { /* VRAM before AGP */ WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR, rdev->mc.vram_start >> 12); WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, rdev->mc.gtt_end >> 12); } else { /* VRAM after AGP */ WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR, rdev->mc.gtt_start >> 12); WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, rdev->mc.vram_end >> 12); } } else { WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR, rdev->mc.vram_start >> 12); WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, rdev->mc.vram_end >> 12); } WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR, rdev->vram_scratch.gpu_addr >> 12); /* llano/ontario only */ if ((rdev->family == CHIP_PALM) || (rdev->family == CHIP_SUMO) || (rdev->family == CHIP_SUMO2)) { tmp = RREG32(MC_FUS_VM_FB_OFFSET) & 0x000FFFFF; tmp |= ((rdev->mc.vram_end >> 20) & 0xF) << 24; tmp |= ((rdev->mc.vram_start >> 20) & 0xF) << 20; WREG32(MC_FUS_VM_FB_OFFSET, tmp); } tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16; tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF); WREG32(MC_VM_FB_LOCATION, tmp); WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8)); WREG32(HDP_NONSURFACE_INFO, (2 << 7) | (1 << 30)); WREG32(HDP_NONSURFACE_SIZE, 0x3FFFFFFF); if (rdev->flags & RADEON_IS_AGP) { WREG32(MC_VM_AGP_TOP, rdev->mc.gtt_end >> 16); WREG32(MC_VM_AGP_BOT, rdev->mc.gtt_start >> 16); WREG32(MC_VM_AGP_BASE, rdev->mc.agp_base >> 22); } else { WREG32(MC_VM_AGP_BASE, 0); WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF); WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF); } if (evergreen_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } evergreen_mc_resume(rdev, &save); /* we need to own VRAM, so turn off the VGA renderer here * to stop it overwriting our objects */ rv515_vga_render_disable(rdev); } /* * CP. */ void evergreen_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib) { struct radeon_ring *ring = &rdev->ring[ib->ring]; u32 next_rptr; /* set to DX10/11 mode */ radeon_ring_write(ring, PACKET3(PACKET3_MODE_CONTROL, 0)); radeon_ring_write(ring, 1); if (ring->rptr_save_reg) { next_rptr = ring->wptr + 3 + 4; radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1)); radeon_ring_write(ring, ((ring->rptr_save_reg - PACKET3_SET_CONFIG_REG_START) >> 2)); radeon_ring_write(ring, next_rptr); } else if (rdev->wb.enabled) { next_rptr = ring->wptr + 5 + 4; radeon_ring_write(ring, PACKET3(PACKET3_MEM_WRITE, 3)); radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc); radeon_ring_write(ring, (upper_32_bits(ring->next_rptr_gpu_addr) & 0xff) | (1 << 18)); radeon_ring_write(ring, next_rptr); radeon_ring_write(ring, 0); } radeon_ring_write(ring, PACKET3(PACKET3_INDIRECT_BUFFER, 2)); radeon_ring_write(ring, #ifdef __BIG_ENDIAN (2 << 0) | #endif (ib->gpu_addr & 0xFFFFFFFC)); radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFF); radeon_ring_write(ring, ib->length_dw); } static int evergreen_cp_load_microcode(struct radeon_device *rdev) { const __be32 *fw_data; int i; if (!rdev->me_fw || !rdev->pfp_fw) return -EINVAL; r700_cp_stop(rdev); WREG32(CP_RB_CNTL, #ifdef __BIG_ENDIAN BUF_SWAP_32BIT | #endif RB_NO_UPDATE | RB_BLKSZ(15) | RB_BUFSZ(3)); fw_data = (const __be32 *)rdev->pfp_fw->data; WREG32(CP_PFP_UCODE_ADDR, 0); for (i = 0; i < EVERGREEN_PFP_UCODE_SIZE; i++) WREG32(CP_PFP_UCODE_DATA, be32_to_cpup(fw_data++)); WREG32(CP_PFP_UCODE_ADDR, 0); fw_data = (const __be32 *)rdev->me_fw->data; WREG32(CP_ME_RAM_WADDR, 0); for (i = 0; i < EVERGREEN_PM4_UCODE_SIZE; i++) WREG32(CP_ME_RAM_DATA, be32_to_cpup(fw_data++)); WREG32(CP_PFP_UCODE_ADDR, 0); WREG32(CP_ME_RAM_WADDR, 0); WREG32(CP_ME_RAM_RADDR, 0); return 0; } static int evergreen_cp_start(struct radeon_device *rdev) { struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; int r, i; uint32_t cp_me; r = radeon_ring_lock(rdev, ring, 7); if (r) { DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r); return r; } radeon_ring_write(ring, PACKET3(PACKET3_ME_INITIALIZE, 5)); radeon_ring_write(ring, 0x1); radeon_ring_write(ring, 0x0); radeon_ring_write(ring, rdev->config.evergreen.max_hw_contexts - 1); radeon_ring_write(ring, PACKET3_ME_INITIALIZE_DEVICE_ID(1)); radeon_ring_write(ring, 0); radeon_ring_write(ring, 0); radeon_ring_unlock_commit(rdev, ring, false); cp_me = 0xff; WREG32(CP_ME_CNTL, cp_me); r = radeon_ring_lock(rdev, ring, evergreen_default_size + 19); if (r) { DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r); return r; } /* setup clear context state */ radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); radeon_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); for (i = 0; i < evergreen_default_size; i++) radeon_ring_write(ring, evergreen_default_state[i]); radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); radeon_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE); /* set clear context state */ radeon_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0)); radeon_ring_write(ring, 0); /* SQ_VTX_BASE_VTX_LOC */ radeon_ring_write(ring, 0xc0026f00); radeon_ring_write(ring, 0x00000000); radeon_ring_write(ring, 0x00000000); radeon_ring_write(ring, 0x00000000); /* Clear consts */ radeon_ring_write(ring, 0xc0036f00); radeon_ring_write(ring, 0x00000bc4); radeon_ring_write(ring, 0xffffffff); radeon_ring_write(ring, 0xffffffff); radeon_ring_write(ring, 0xffffffff); radeon_ring_write(ring, 0xc0026900); radeon_ring_write(ring, 0x00000316); radeon_ring_write(ring, 0x0000000e); /* VGT_VERTEX_REUSE_BLOCK_CNTL */ radeon_ring_write(ring, 0x00000010); /* */ radeon_ring_unlock_commit(rdev, ring, false); return 0; } static int evergreen_cp_resume(struct radeon_device *rdev) { struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; u32 tmp; u32 rb_bufsz; int r; /* Reset cp; if cp is reset, then PA, SH, VGT also need to be reset */ WREG32(GRBM_SOFT_RESET, (SOFT_RESET_CP | SOFT_RESET_PA | SOFT_RESET_SH | SOFT_RESET_VGT | SOFT_RESET_SPI | SOFT_RESET_SX)); RREG32(GRBM_SOFT_RESET); mdelay(15); WREG32(GRBM_SOFT_RESET, 0); RREG32(GRBM_SOFT_RESET); /* Set ring buffer size */ rb_bufsz = order_base_2(ring->ring_size / 8); tmp = (order_base_2(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz; #ifdef __BIG_ENDIAN tmp |= BUF_SWAP_32BIT; #endif WREG32(CP_RB_CNTL, tmp); WREG32(CP_SEM_WAIT_TIMER, 0x0); WREG32(CP_SEM_INCOMPLETE_TIMER_CNTL, 0x0); /* Set the write pointer delay */ WREG32(CP_RB_WPTR_DELAY, 0); /* Initialize the ring buffer's read and write pointers */ WREG32(CP_RB_CNTL, tmp | RB_RPTR_WR_ENA); WREG32(CP_RB_RPTR_WR, 0); ring->wptr = 0; WREG32(CP_RB_WPTR, ring->wptr); /* set the wb address whether it's enabled or not */ WREG32(CP_RB_RPTR_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFFFFFFFC)); WREG32(CP_RB_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFF); WREG32(SCRATCH_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET) >> 8) & 0xFFFFFFFF); if (rdev->wb.enabled) WREG32(SCRATCH_UMSK, 0xff); else { tmp |= RB_NO_UPDATE; WREG32(SCRATCH_UMSK, 0); } mdelay(1); WREG32(CP_RB_CNTL, tmp); WREG32(CP_RB_BASE, ring->gpu_addr >> 8); WREG32(CP_DEBUG, (1 << 27) | (1 << 28)); evergreen_cp_start(rdev); ring->ready = true; r = radeon_ring_test(rdev, RADEON_RING_TYPE_GFX_INDEX, ring); if (r) { ring->ready = false; return r; } return 0; } /* * Core functions */ static void evergreen_gpu_init(struct radeon_device *rdev) { u32 gb_addr_config; u32 mc_shared_chmap, mc_arb_ramcfg; u32 sx_debug_1; u32 smx_dc_ctl0; u32 sq_config; u32 sq_lds_resource_mgmt; u32 sq_gpr_resource_mgmt_1; u32 sq_gpr_resource_mgmt_2; u32 sq_gpr_resource_mgmt_3; u32 sq_thread_resource_mgmt; u32 sq_thread_resource_mgmt_2; u32 sq_stack_resource_mgmt_1; u32 sq_stack_resource_mgmt_2; u32 sq_stack_resource_mgmt_3; u32 vgt_cache_invalidation; u32 hdp_host_path_cntl, tmp; u32 disabled_rb_mask; int i, j, ps_thread_count; switch (rdev->family) { case CHIP_CYPRESS: case CHIP_HEMLOCK: rdev->config.evergreen.num_ses = 2; rdev->config.evergreen.max_pipes = 4; rdev->config.evergreen.max_tile_pipes = 8; rdev->config.evergreen.max_simds = 10; rdev->config.evergreen.max_backends = 4 * rdev->config.evergreen.num_ses; rdev->config.evergreen.max_gprs = 256; rdev->config.evergreen.max_threads = 248; rdev->config.evergreen.max_gs_threads = 32; rdev->config.evergreen.max_stack_entries = 512; rdev->config.evergreen.sx_num_of_sets = 4; rdev->config.evergreen.sx_max_export_size = 256; rdev->config.evergreen.sx_max_export_pos_size = 64; rdev->config.evergreen.sx_max_export_smx_size = 192; rdev->config.evergreen.max_hw_contexts = 8; rdev->config.evergreen.sq_num_cf_insts = 2; rdev->config.evergreen.sc_prim_fifo_size = 0x100; rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30; rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = CYPRESS_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_JUNIPER: rdev->config.evergreen.num_ses = 1; rdev->config.evergreen.max_pipes = 4; rdev->config.evergreen.max_tile_pipes = 4; rdev->config.evergreen.max_simds = 10; rdev->config.evergreen.max_backends = 4 * rdev->config.evergreen.num_ses; rdev->config.evergreen.max_gprs = 256; rdev->config.evergreen.max_threads = 248; rdev->config.evergreen.max_gs_threads = 32; rdev->config.evergreen.max_stack_entries = 512; rdev->config.evergreen.sx_num_of_sets = 4; rdev->config.evergreen.sx_max_export_size = 256; rdev->config.evergreen.sx_max_export_pos_size = 64; rdev->config.evergreen.sx_max_export_smx_size = 192; rdev->config.evergreen.max_hw_contexts = 8; rdev->config.evergreen.sq_num_cf_insts = 2; rdev->config.evergreen.sc_prim_fifo_size = 0x100; rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30; rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = JUNIPER_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_REDWOOD: rdev->config.evergreen.num_ses = 1; rdev->config.evergreen.max_pipes = 4; rdev->config.evergreen.max_tile_pipes = 4; rdev->config.evergreen.max_simds = 5; rdev->config.evergreen.max_backends = 2 * rdev->config.evergreen.num_ses; rdev->config.evergreen.max_gprs = 256; rdev->config.evergreen.max_threads = 248; rdev->config.evergreen.max_gs_threads = 32; rdev->config.evergreen.max_stack_entries = 256; rdev->config.evergreen.sx_num_of_sets = 4; rdev->config.evergreen.sx_max_export_size = 256; rdev->config.evergreen.sx_max_export_pos_size = 64; rdev->config.evergreen.sx_max_export_smx_size = 192; rdev->config.evergreen.max_hw_contexts = 8; rdev->config.evergreen.sq_num_cf_insts = 2; rdev->config.evergreen.sc_prim_fifo_size = 0x100; rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30; rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = REDWOOD_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_CEDAR: default: rdev->config.evergreen.num_ses = 1; rdev->config.evergreen.max_pipes = 2; rdev->config.evergreen.max_tile_pipes = 2; rdev->config.evergreen.max_simds = 2; rdev->config.evergreen.max_backends = 1 * rdev->config.evergreen.num_ses; rdev->config.evergreen.max_gprs = 256; rdev->config.evergreen.max_threads = 192; rdev->config.evergreen.max_gs_threads = 16; rdev->config.evergreen.max_stack_entries = 256; rdev->config.evergreen.sx_num_of_sets = 4; rdev->config.evergreen.sx_max_export_size = 128; rdev->config.evergreen.sx_max_export_pos_size = 32; rdev->config.evergreen.sx_max_export_smx_size = 96; rdev->config.evergreen.max_hw_contexts = 4; rdev->config.evergreen.sq_num_cf_insts = 1; rdev->config.evergreen.sc_prim_fifo_size = 0x40; rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30; rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = CEDAR_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_PALM: rdev->config.evergreen.num_ses = 1; rdev->config.evergreen.max_pipes = 2; rdev->config.evergreen.max_tile_pipes = 2; rdev->config.evergreen.max_simds = 2; rdev->config.evergreen.max_backends = 1 * rdev->config.evergreen.num_ses; rdev->config.evergreen.max_gprs = 256; rdev->config.evergreen.max_threads = 192; rdev->config.evergreen.max_gs_threads = 16; rdev->config.evergreen.max_stack_entries = 256; rdev->config.evergreen.sx_num_of_sets = 4; rdev->config.evergreen.sx_max_export_size = 128; rdev->config.evergreen.sx_max_export_pos_size = 32; rdev->config.evergreen.sx_max_export_smx_size = 96; rdev->config.evergreen.max_hw_contexts = 4; rdev->config.evergreen.sq_num_cf_insts = 1; rdev->config.evergreen.sc_prim_fifo_size = 0x40; rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30; rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = CEDAR_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_SUMO: rdev->config.evergreen.num_ses = 1; rdev->config.evergreen.max_pipes = 4; rdev->config.evergreen.max_tile_pipes = 4; if (rdev->pdev->device == 0x9648) rdev->config.evergreen.max_simds = 3; else if ((rdev->pdev->device == 0x9647) || (rdev->pdev->device == 0x964a)) rdev->config.evergreen.max_simds = 4; else rdev->config.evergreen.max_simds = 5; rdev->config.evergreen.max_backends = 2 * rdev->config.evergreen.num_ses; rdev->config.evergreen.max_gprs = 256; rdev->config.evergreen.max_threads = 248; rdev->config.evergreen.max_gs_threads = 32; rdev->config.evergreen.max_stack_entries = 256; rdev->config.evergreen.sx_num_of_sets = 4; rdev->config.evergreen.sx_max_export_size = 256; rdev->config.evergreen.sx_max_export_pos_size = 64; rdev->config.evergreen.sx_max_export_smx_size = 192; rdev->config.evergreen.max_hw_contexts = 8; rdev->config.evergreen.sq_num_cf_insts = 2; rdev->config.evergreen.sc_prim_fifo_size = 0x40; rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30; rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = SUMO_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_SUMO2: rdev->config.evergreen.num_ses = 1; rdev->config.evergreen.max_pipes = 4; rdev->config.evergreen.max_tile_pipes = 4; rdev->config.evergreen.max_simds = 2; rdev->config.evergreen.max_backends = 1 * rdev->config.evergreen.num_ses; rdev->config.evergreen.max_gprs = 256; rdev->config.evergreen.max_threads = 248; rdev->config.evergreen.max_gs_threads = 32; rdev->config.evergreen.max_stack_entries = 512; rdev->config.evergreen.sx_num_of_sets = 4; rdev->config.evergreen.sx_max_export_size = 256; rdev->config.evergreen.sx_max_export_pos_size = 64; rdev->config.evergreen.sx_max_export_smx_size = 192; rdev->config.evergreen.max_hw_contexts = 4; rdev->config.evergreen.sq_num_cf_insts = 2; rdev->config.evergreen.sc_prim_fifo_size = 0x40; rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30; rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = SUMO2_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_BARTS: rdev->config.evergreen.num_ses = 2; rdev->config.evergreen.max_pipes = 4; rdev->config.evergreen.max_tile_pipes = 8; rdev->config.evergreen.max_simds = 7; rdev->config.evergreen.max_backends = 4 * rdev->config.evergreen.num_ses; rdev->config.evergreen.max_gprs = 256; rdev->config.evergreen.max_threads = 248; rdev->config.evergreen.max_gs_threads = 32; rdev->config.evergreen.max_stack_entries = 512; rdev->config.evergreen.sx_num_of_sets = 4; rdev->config.evergreen.sx_max_export_size = 256; rdev->config.evergreen.sx_max_export_pos_size = 64; rdev->config.evergreen.sx_max_export_smx_size = 192; rdev->config.evergreen.max_hw_contexts = 8; rdev->config.evergreen.sq_num_cf_insts = 2; rdev->config.evergreen.sc_prim_fifo_size = 0x100; rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30; rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = BARTS_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_TURKS: rdev->config.evergreen.num_ses = 1; rdev->config.evergreen.max_pipes = 4; rdev->config.evergreen.max_tile_pipes = 4; rdev->config.evergreen.max_simds = 6; rdev->config.evergreen.max_backends = 2 * rdev->config.evergreen.num_ses; rdev->config.evergreen.max_gprs = 256; rdev->config.evergreen.max_threads = 248; rdev->config.evergreen.max_gs_threads = 32; rdev->config.evergreen.max_stack_entries = 256; rdev->config.evergreen.sx_num_of_sets = 4; rdev->config.evergreen.sx_max_export_size = 256; rdev->config.evergreen.sx_max_export_pos_size = 64; rdev->config.evergreen.sx_max_export_smx_size = 192; rdev->config.evergreen.max_hw_contexts = 8; rdev->config.evergreen.sq_num_cf_insts = 2; rdev->config.evergreen.sc_prim_fifo_size = 0x100; rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30; rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = TURKS_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_CAICOS: rdev->config.evergreen.num_ses = 1; rdev->config.evergreen.max_pipes = 2; rdev->config.evergreen.max_tile_pipes = 2; rdev->config.evergreen.max_simds = 2; rdev->config.evergreen.max_backends = 1 * rdev->config.evergreen.num_ses; rdev->config.evergreen.max_gprs = 256; rdev->config.evergreen.max_threads = 192; rdev->config.evergreen.max_gs_threads = 16; rdev->config.evergreen.max_stack_entries = 256; rdev->config.evergreen.sx_num_of_sets = 4; rdev->config.evergreen.sx_max_export_size = 128; rdev->config.evergreen.sx_max_export_pos_size = 32; rdev->config.evergreen.sx_max_export_smx_size = 96; rdev->config.evergreen.max_hw_contexts = 4; rdev->config.evergreen.sq_num_cf_insts = 1; rdev->config.evergreen.sc_prim_fifo_size = 0x40; rdev->config.evergreen.sc_hiz_tile_fifo_size = 0x30; rdev->config.evergreen.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = CAICOS_GB_ADDR_CONFIG_GOLDEN; break; } /* Initialize HDP */ for (i = 0, j = 0; i < 32; i++, j += 0x18) { WREG32((0x2c14 + j), 0x00000000); WREG32((0x2c18 + j), 0x00000000); WREG32((0x2c1c + j), 0x00000000); WREG32((0x2c20 + j), 0x00000000); WREG32((0x2c24 + j), 0x00000000); } WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff)); WREG32(SRBM_INT_CNTL, 0x1); WREG32(SRBM_INT_ACK, 0x1); evergreen_fix_pci_max_read_req_size(rdev); mc_shared_chmap = RREG32(MC_SHARED_CHMAP); if ((rdev->family == CHIP_PALM) || (rdev->family == CHIP_SUMO) || (rdev->family == CHIP_SUMO2)) mc_arb_ramcfg = RREG32(FUS_MC_ARB_RAMCFG); else mc_arb_ramcfg = RREG32(MC_ARB_RAMCFG); /* setup tiling info dword. gb_addr_config is not adequate since it does * not have bank info, so create a custom tiling dword. * bits 3:0 num_pipes * bits 7:4 num_banks * bits 11:8 group_size * bits 15:12 row_size */ rdev->config.evergreen.tile_config = 0; switch (rdev->config.evergreen.max_tile_pipes) { case 1: default: rdev->config.evergreen.tile_config |= (0 << 0); break; case 2: rdev->config.evergreen.tile_config |= (1 << 0); break; case 4: rdev->config.evergreen.tile_config |= (2 << 0); break; case 8: rdev->config.evergreen.tile_config |= (3 << 0); break; } /* num banks is 8 on all fusion asics. 0 = 4, 1 = 8, 2 = 16 */ if (rdev->flags & RADEON_IS_IGP) rdev->config.evergreen.tile_config |= 1 << 4; else { switch ((mc_arb_ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT) { case 0: /* four banks */ rdev->config.evergreen.tile_config |= 0 << 4; break; case 1: /* eight banks */ rdev->config.evergreen.tile_config |= 1 << 4; break; case 2: /* sixteen banks */ default: rdev->config.evergreen.tile_config |= 2 << 4; break; } } rdev->config.evergreen.tile_config |= 0 << 8; rdev->config.evergreen.tile_config |= ((gb_addr_config & 0x30000000) >> 28) << 12; if ((rdev->family >= CHIP_CEDAR) && (rdev->family <= CHIP_HEMLOCK)) { u32 efuse_straps_4; u32 efuse_straps_3; efuse_straps_4 = RREG32_RCU(0x204); efuse_straps_3 = RREG32_RCU(0x203); tmp = (((efuse_straps_4 & 0xf) << 4) | ((efuse_straps_3 & 0xf0000000) >> 28)); } else { tmp = 0; for (i = (rdev->config.evergreen.num_ses - 1); i >= 0; i--) { u32 rb_disable_bitmap; WREG32(GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES | SE_INDEX(i)); WREG32(RLC_GFX_INDEX, INSTANCE_BROADCAST_WRITES | SE_INDEX(i)); rb_disable_bitmap = (RREG32(CC_RB_BACKEND_DISABLE) & 0x00ff0000) >> 16; tmp <<= 4; tmp |= rb_disable_bitmap; } } /* enabled rb are just the one not disabled :) */ disabled_rb_mask = tmp; tmp = 0; for (i = 0; i < rdev->config.evergreen.max_backends; i++) tmp |= (1 << i); /* if all the backends are disabled, fix it up here */ if ((disabled_rb_mask & tmp) == tmp) { for (i = 0; i < rdev->config.evergreen.max_backends; i++) disabled_rb_mask &= ~(1 << i); } for (i = 0; i < rdev->config.evergreen.num_ses; i++) { u32 simd_disable_bitmap; WREG32(GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES | SE_INDEX(i)); WREG32(RLC_GFX_INDEX, INSTANCE_BROADCAST_WRITES | SE_INDEX(i)); simd_disable_bitmap = (RREG32(CC_GC_SHADER_PIPE_CONFIG) & 0xffff0000) >> 16; simd_disable_bitmap |= 0xffffffff << rdev->config.evergreen.max_simds; tmp <<= 16; tmp |= simd_disable_bitmap; } rdev->config.evergreen.active_simds = hweight32(~tmp); WREG32(GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES | SE_BROADCAST_WRITES); WREG32(RLC_GFX_INDEX, INSTANCE_BROADCAST_WRITES | SE_BROADCAST_WRITES); WREG32(GB_ADDR_CONFIG, gb_addr_config); WREG32(DMIF_ADDR_CONFIG, gb_addr_config); WREG32(HDP_ADDR_CONFIG, gb_addr_config); WREG32(DMA_TILING_CONFIG, gb_addr_config); WREG32(UVD_UDEC_ADDR_CONFIG, gb_addr_config); WREG32(UVD_UDEC_DB_ADDR_CONFIG, gb_addr_config); WREG32(UVD_UDEC_DBW_ADDR_CONFIG, gb_addr_config); if ((rdev->config.evergreen.max_backends == 1) && (rdev->flags & RADEON_IS_IGP)) { if ((disabled_rb_mask & 3) == 1) { /* RB0 disabled, RB1 enabled */ tmp = 0x11111111; } else { /* RB1 disabled, RB0 enabled */ tmp = 0x00000000; } } else { tmp = gb_addr_config & NUM_PIPES_MASK; tmp = r6xx_remap_render_backend(rdev, tmp, rdev->config.evergreen.max_backends, EVERGREEN_MAX_BACKENDS, disabled_rb_mask); } rdev->config.evergreen.backend_map = tmp; WREG32(GB_BACKEND_MAP, tmp); WREG32(CGTS_SYS_TCC_DISABLE, 0); WREG32(CGTS_TCC_DISABLE, 0); WREG32(CGTS_USER_SYS_TCC_DISABLE, 0); WREG32(CGTS_USER_TCC_DISABLE, 0); /* set HW defaults for 3D engine */ WREG32(CP_QUEUE_THRESHOLDS, (ROQ_IB1_START(0x16) | ROQ_IB2_START(0x2b))); WREG32(CP_MEQ_THRESHOLDS, STQ_SPLIT(0x30)); WREG32(TA_CNTL_AUX, (DISABLE_CUBE_ANISO | SYNC_GRADIENT | SYNC_WALKER | SYNC_ALIGNER)); sx_debug_1 = RREG32(SX_DEBUG_1); sx_debug_1 |= ENABLE_NEW_SMX_ADDRESS; WREG32(SX_DEBUG_1, sx_debug_1); smx_dc_ctl0 = RREG32(SMX_DC_CTL0); smx_dc_ctl0 &= ~NUMBER_OF_SETS(0x1ff); smx_dc_ctl0 |= NUMBER_OF_SETS(rdev->config.evergreen.sx_num_of_sets); WREG32(SMX_DC_CTL0, smx_dc_ctl0); if (rdev->family <= CHIP_SUMO2) WREG32(SMX_SAR_CTL0, 0x00010000); WREG32(SX_EXPORT_BUFFER_SIZES, (COLOR_BUFFER_SIZE((rdev->config.evergreen.sx_max_export_size / 4) - 1) | POSITION_BUFFER_SIZE((rdev->config.evergreen.sx_max_export_pos_size / 4) - 1) | SMX_BUFFER_SIZE((rdev->config.evergreen.sx_max_export_smx_size / 4) - 1))); WREG32(PA_SC_FIFO_SIZE, (SC_PRIM_FIFO_SIZE(rdev->config.evergreen.sc_prim_fifo_size) | SC_HIZ_TILE_FIFO_SIZE(rdev->config.evergreen.sc_hiz_tile_fifo_size) | SC_EARLYZ_TILE_FIFO_SIZE(rdev->config.evergreen.sc_earlyz_tile_fifo_size))); WREG32(VGT_NUM_INSTANCES, 1); WREG32(SPI_CONFIG_CNTL, 0); WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(4)); WREG32(CP_PERFMON_CNTL, 0); WREG32(SQ_MS_FIFO_SIZES, (CACHE_FIFO_SIZE(16 * rdev->config.evergreen.sq_num_cf_insts) | FETCH_FIFO_HIWATER(0x4) | DONE_FIFO_HIWATER(0xe0) | ALU_UPDATE_FIFO_HIWATER(0x8))); sq_config = RREG32(SQ_CONFIG); sq_config &= ~(PS_PRIO(3) | VS_PRIO(3) | GS_PRIO(3) | ES_PRIO(3)); sq_config |= (VC_ENABLE | EXPORT_SRC_C | PS_PRIO(0) | VS_PRIO(1) | GS_PRIO(2) | ES_PRIO(3)); switch (rdev->family) { case CHIP_CEDAR: case CHIP_PALM: case CHIP_SUMO: case CHIP_SUMO2: case CHIP_CAICOS: /* no vertex cache */ sq_config &= ~VC_ENABLE; break; default: break; } sq_lds_resource_mgmt = RREG32(SQ_LDS_RESOURCE_MGMT); sq_gpr_resource_mgmt_1 = NUM_PS_GPRS((rdev->config.evergreen.max_gprs - (4 * 2))* 12 / 32); sq_gpr_resource_mgmt_1 |= NUM_VS_GPRS((rdev->config.evergreen.max_gprs - (4 * 2)) * 6 / 32); sq_gpr_resource_mgmt_1 |= NUM_CLAUSE_TEMP_GPRS(4); sq_gpr_resource_mgmt_2 = NUM_GS_GPRS((rdev->config.evergreen.max_gprs - (4 * 2)) * 4 / 32); sq_gpr_resource_mgmt_2 |= NUM_ES_GPRS((rdev->config.evergreen.max_gprs - (4 * 2)) * 4 / 32); sq_gpr_resource_mgmt_3 = NUM_HS_GPRS((rdev->config.evergreen.max_gprs - (4 * 2)) * 3 / 32); sq_gpr_resource_mgmt_3 |= NUM_LS_GPRS((rdev->config.evergreen.max_gprs - (4 * 2)) * 3 / 32); switch (rdev->family) { case CHIP_CEDAR: case CHIP_PALM: case CHIP_SUMO: case CHIP_SUMO2: ps_thread_count = 96; break; default: ps_thread_count = 128; break; } sq_thread_resource_mgmt = NUM_PS_THREADS(ps_thread_count); sq_thread_resource_mgmt |= NUM_VS_THREADS((((rdev->config.evergreen.max_threads - ps_thread_count) / 6) / 8) * 8); sq_thread_resource_mgmt |= NUM_GS_THREADS((((rdev->config.evergreen.max_threads - ps_thread_count) / 6) / 8) * 8); sq_thread_resource_mgmt |= NUM_ES_THREADS((((rdev->config.evergreen.max_threads - ps_thread_count) / 6) / 8) * 8); sq_thread_resource_mgmt_2 = NUM_HS_THREADS((((rdev->config.evergreen.max_threads - ps_thread_count) / 6) / 8) * 8); sq_thread_resource_mgmt_2 |= NUM_LS_THREADS((((rdev->config.evergreen.max_threads - ps_thread_count) / 6) / 8) * 8); sq_stack_resource_mgmt_1 = NUM_PS_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6); sq_stack_resource_mgmt_1 |= NUM_VS_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6); sq_stack_resource_mgmt_2 = NUM_GS_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6); sq_stack_resource_mgmt_2 |= NUM_ES_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6); sq_stack_resource_mgmt_3 = NUM_HS_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6); sq_stack_resource_mgmt_3 |= NUM_LS_STACK_ENTRIES((rdev->config.evergreen.max_stack_entries * 1) / 6); WREG32(SQ_CONFIG, sq_config); WREG32(SQ_GPR_RESOURCE_MGMT_1, sq_gpr_resource_mgmt_1); WREG32(SQ_GPR_RESOURCE_MGMT_2, sq_gpr_resource_mgmt_2); WREG32(SQ_GPR_RESOURCE_MGMT_3, sq_gpr_resource_mgmt_3); WREG32(SQ_THREAD_RESOURCE_MGMT, sq_thread_resource_mgmt); WREG32(SQ_THREAD_RESOURCE_MGMT_2, sq_thread_resource_mgmt_2); WREG32(SQ_STACK_RESOURCE_MGMT_1, sq_stack_resource_mgmt_1); WREG32(SQ_STACK_RESOURCE_MGMT_2, sq_stack_resource_mgmt_2); WREG32(SQ_STACK_RESOURCE_MGMT_3, sq_stack_resource_mgmt_3); WREG32(SQ_DYN_GPR_CNTL_PS_FLUSH_REQ, 0); WREG32(SQ_LDS_RESOURCE_MGMT, sq_lds_resource_mgmt); WREG32(PA_SC_FORCE_EOV_MAX_CNTS, (FORCE_EOV_MAX_CLK_CNT(4095) | FORCE_EOV_MAX_REZ_CNT(255))); switch (rdev->family) { case CHIP_CEDAR: case CHIP_PALM: case CHIP_SUMO: case CHIP_SUMO2: case CHIP_CAICOS: vgt_cache_invalidation = CACHE_INVALIDATION(TC_ONLY); break; default: vgt_cache_invalidation = CACHE_INVALIDATION(VC_AND_TC); break; } vgt_cache_invalidation |= AUTO_INVLD_EN(ES_AND_GS_AUTO); WREG32(VGT_CACHE_INVALIDATION, vgt_cache_invalidation); WREG32(VGT_GS_VERTEX_REUSE, 16); WREG32(PA_SU_LINE_STIPPLE_VALUE, 0); WREG32(PA_SC_LINE_STIPPLE_STATE, 0); WREG32(VGT_VERTEX_REUSE_BLOCK_CNTL, 14); WREG32(VGT_OUT_DEALLOC_CNTL, 16); WREG32(CB_PERF_CTR0_SEL_0, 0); WREG32(CB_PERF_CTR0_SEL_1, 0); WREG32(CB_PERF_CTR1_SEL_0, 0); WREG32(CB_PERF_CTR1_SEL_1, 0); WREG32(CB_PERF_CTR2_SEL_0, 0); WREG32(CB_PERF_CTR2_SEL_1, 0); WREG32(CB_PERF_CTR3_SEL_0, 0); WREG32(CB_PERF_CTR3_SEL_1, 0); /* clear render buffer base addresses */ WREG32(CB_COLOR0_BASE, 0); WREG32(CB_COLOR1_BASE, 0); WREG32(CB_COLOR2_BASE, 0); WREG32(CB_COLOR3_BASE, 0); WREG32(CB_COLOR4_BASE, 0); WREG32(CB_COLOR5_BASE, 0); WREG32(CB_COLOR6_BASE, 0); WREG32(CB_COLOR7_BASE, 0); WREG32(CB_COLOR8_BASE, 0); WREG32(CB_COLOR9_BASE, 0); WREG32(CB_COLOR10_BASE, 0); WREG32(CB_COLOR11_BASE, 0); /* set the shader const cache sizes to 0 */ for (i = SQ_ALU_CONST_BUFFER_SIZE_PS_0; i < 0x28200; i += 4) WREG32(i, 0); for (i = SQ_ALU_CONST_BUFFER_SIZE_HS_0; i < 0x29000; i += 4) WREG32(i, 0); tmp = RREG32(HDP_MISC_CNTL); tmp |= HDP_FLUSH_INVALIDATE_CACHE; WREG32(HDP_MISC_CNTL, tmp); hdp_host_path_cntl = RREG32(HDP_HOST_PATH_CNTL); WREG32(HDP_HOST_PATH_CNTL, hdp_host_path_cntl); WREG32(PA_CL_ENHANCE, CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3)); udelay(50); } int evergreen_mc_init(struct radeon_device *rdev) { u32 tmp; int chansize, numchan; /* Get VRAM informations */ rdev->mc.vram_is_ddr = true; if ((rdev->family == CHIP_PALM) || (rdev->family == CHIP_SUMO) || (rdev->family == CHIP_SUMO2)) tmp = RREG32(FUS_MC_ARB_RAMCFG); else tmp = RREG32(MC_ARB_RAMCFG); if (tmp & CHANSIZE_OVERRIDE) { chansize = 16; } else if (tmp & CHANSIZE_MASK) { chansize = 64; } else { chansize = 32; } tmp = RREG32(MC_SHARED_CHMAP); switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) { case 0: default: numchan = 1; break; case 1: numchan = 2; break; case 2: numchan = 4; break; case 3: numchan = 8; break; } rdev->mc.vram_width = numchan * chansize; /* Could aper size report 0 ? */ rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0); rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0); /* Setup GPU memory space */ if ((rdev->family == CHIP_PALM) || (rdev->family == CHIP_SUMO) || (rdev->family == CHIP_SUMO2)) { /* size in bytes on fusion */ rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE); rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE); } else { /* size in MB on evergreen/cayman/tn */ rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE) * 1024ULL * 1024ULL; rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE) * 1024ULL * 1024ULL; } rdev->mc.visible_vram_size = rdev->mc.aper_size; r700_vram_gtt_location(rdev, &rdev->mc); radeon_update_bandwidth_info(rdev); return 0; } void evergreen_print_gpu_status_regs(struct radeon_device *rdev) { dev_info(rdev->dev, " GRBM_STATUS = 0x%08X\n", RREG32(GRBM_STATUS)); dev_info(rdev->dev, " GRBM_STATUS_SE0 = 0x%08X\n", RREG32(GRBM_STATUS_SE0)); dev_info(rdev->dev, " GRBM_STATUS_SE1 = 0x%08X\n", RREG32(GRBM_STATUS_SE1)); dev_info(rdev->dev, " SRBM_STATUS = 0x%08X\n", RREG32(SRBM_STATUS)); dev_info(rdev->dev, " SRBM_STATUS2 = 0x%08X\n", RREG32(SRBM_STATUS2)); dev_info(rdev->dev, " R_008674_CP_STALLED_STAT1 = 0x%08X\n", RREG32(CP_STALLED_STAT1)); dev_info(rdev->dev, " R_008678_CP_STALLED_STAT2 = 0x%08X\n", RREG32(CP_STALLED_STAT2)); dev_info(rdev->dev, " R_00867C_CP_BUSY_STAT = 0x%08X\n", RREG32(CP_BUSY_STAT)); dev_info(rdev->dev, " R_008680_CP_STAT = 0x%08X\n", RREG32(CP_STAT)); dev_info(rdev->dev, " R_00D034_DMA_STATUS_REG = 0x%08X\n", RREG32(DMA_STATUS_REG)); if (rdev->family >= CHIP_CAYMAN) { dev_info(rdev->dev, " R_00D834_DMA_STATUS_REG = 0x%08X\n", RREG32(DMA_STATUS_REG + 0x800)); } } bool evergreen_is_display_hung(struct radeon_device *rdev) { u32 crtc_hung = 0; u32 crtc_status[6]; u32 i, j, tmp; for (i = 0; i < rdev->num_crtc; i++) { if (RREG32(EVERGREEN_CRTC_CONTROL + crtc_offsets[i]) & EVERGREEN_CRTC_MASTER_EN) { crtc_status[i] = RREG32(EVERGREEN_CRTC_STATUS_HV_COUNT + crtc_offsets[i]); crtc_hung |= (1 << i); } } for (j = 0; j < 10; j++) { for (i = 0; i < rdev->num_crtc; i++) { if (crtc_hung & (1 << i)) { tmp = RREG32(EVERGREEN_CRTC_STATUS_HV_COUNT + crtc_offsets[i]); if (tmp != crtc_status[i]) crtc_hung &= ~(1 << i); } } if (crtc_hung == 0) return false; udelay(100); } return true; } u32 evergreen_gpu_check_soft_reset(struct radeon_device *rdev) { u32 reset_mask = 0; u32 tmp; /* GRBM_STATUS */ tmp = RREG32(GRBM_STATUS); if (tmp & (PA_BUSY | SC_BUSY | SH_BUSY | SX_BUSY | TA_BUSY | VGT_BUSY | DB_BUSY | CB_BUSY | SPI_BUSY | VGT_BUSY_NO_DMA)) reset_mask |= RADEON_RESET_GFX; if (tmp & (CF_RQ_PENDING | PF_RQ_PENDING | CP_BUSY | CP_COHERENCY_BUSY)) reset_mask |= RADEON_RESET_CP; if (tmp & GRBM_EE_BUSY) reset_mask |= RADEON_RESET_GRBM | RADEON_RESET_GFX | RADEON_RESET_CP; /* DMA_STATUS_REG */ tmp = RREG32(DMA_STATUS_REG); if (!(tmp & DMA_IDLE)) reset_mask |= RADEON_RESET_DMA; /* SRBM_STATUS2 */ tmp = RREG32(SRBM_STATUS2); if (tmp & DMA_BUSY) reset_mask |= RADEON_RESET_DMA; /* SRBM_STATUS */ tmp = RREG32(SRBM_STATUS); if (tmp & (RLC_RQ_PENDING | RLC_BUSY)) reset_mask |= RADEON_RESET_RLC; if (tmp & IH_BUSY) reset_mask |= RADEON_RESET_IH; if (tmp & SEM_BUSY) reset_mask |= RADEON_RESET_SEM; if (tmp & GRBM_RQ_PENDING) reset_mask |= RADEON_RESET_GRBM; if (tmp & VMC_BUSY) reset_mask |= RADEON_RESET_VMC; if (tmp & (MCB_BUSY | MCB_NON_DISPLAY_BUSY | MCC_BUSY | MCD_BUSY)) reset_mask |= RADEON_RESET_MC; if (evergreen_is_display_hung(rdev)) reset_mask |= RADEON_RESET_DISPLAY; /* VM_L2_STATUS */ tmp = RREG32(VM_L2_STATUS); if (tmp & L2_BUSY) reset_mask |= RADEON_RESET_VMC; /* Skip MC reset as it's mostly likely not hung, just busy */ if (reset_mask & RADEON_RESET_MC) { DRM_DEBUG("MC busy: 0x%08X, clearing.\n", reset_mask); reset_mask &= ~RADEON_RESET_MC; } return reset_mask; } static void evergreen_gpu_soft_reset(struct radeon_device *rdev, u32 reset_mask) { struct evergreen_mc_save save; u32 grbm_soft_reset = 0, srbm_soft_reset = 0; u32 tmp; if (reset_mask == 0) return; dev_info(rdev->dev, "GPU softreset: 0x%08X\n", reset_mask); evergreen_print_gpu_status_regs(rdev); /* Disable CP parsing/prefetching */ WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT); if (reset_mask & RADEON_RESET_DMA) { /* Disable DMA */ tmp = RREG32(DMA_RB_CNTL); tmp &= ~DMA_RB_ENABLE; WREG32(DMA_RB_CNTL, tmp); } udelay(50); evergreen_mc_stop(rdev, &save); if (evergreen_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } if (reset_mask & (RADEON_RESET_GFX | RADEON_RESET_COMPUTE)) { grbm_soft_reset |= SOFT_RESET_DB | SOFT_RESET_CB | SOFT_RESET_PA | SOFT_RESET_SC | SOFT_RESET_SPI | SOFT_RESET_SX | SOFT_RESET_SH | SOFT_RESET_TC | SOFT_RESET_TA | SOFT_RESET_VC | SOFT_RESET_VGT; } if (reset_mask & RADEON_RESET_CP) { grbm_soft_reset |= SOFT_RESET_CP | SOFT_RESET_VGT; srbm_soft_reset |= SOFT_RESET_GRBM; } if (reset_mask & RADEON_RESET_DMA) srbm_soft_reset |= SOFT_RESET_DMA; if (reset_mask & RADEON_RESET_DISPLAY) srbm_soft_reset |= SOFT_RESET_DC; if (reset_mask & RADEON_RESET_RLC) srbm_soft_reset |= SOFT_RESET_RLC; if (reset_mask & RADEON_RESET_SEM) srbm_soft_reset |= SOFT_RESET_SEM; if (reset_mask & RADEON_RESET_IH) srbm_soft_reset |= SOFT_RESET_IH; if (reset_mask & RADEON_RESET_GRBM) srbm_soft_reset |= SOFT_RESET_GRBM; if (reset_mask & RADEON_RESET_VMC) srbm_soft_reset |= SOFT_RESET_VMC; if (!(rdev->flags & RADEON_IS_IGP)) { if (reset_mask & RADEON_RESET_MC) srbm_soft_reset |= SOFT_RESET_MC; } if (grbm_soft_reset) { tmp = RREG32(GRBM_SOFT_RESET); tmp |= grbm_soft_reset; dev_info(rdev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(GRBM_SOFT_RESET, tmp); tmp = RREG32(GRBM_SOFT_RESET); udelay(50); tmp &= ~grbm_soft_reset; WREG32(GRBM_SOFT_RESET, tmp); tmp = RREG32(GRBM_SOFT_RESET); } if (srbm_soft_reset) { tmp = RREG32(SRBM_SOFT_RESET); tmp |= srbm_soft_reset; dev_info(rdev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(SRBM_SOFT_RESET, tmp); tmp = RREG32(SRBM_SOFT_RESET); udelay(50); tmp &= ~srbm_soft_reset; WREG32(SRBM_SOFT_RESET, tmp); tmp = RREG32(SRBM_SOFT_RESET); } /* Wait a little for things to settle down */ udelay(50); evergreen_mc_resume(rdev, &save); udelay(50); evergreen_print_gpu_status_regs(rdev); } void evergreen_gpu_pci_config_reset(struct radeon_device *rdev) { struct evergreen_mc_save save; u32 tmp, i; dev_info(rdev->dev, "GPU pci config reset\n"); /* disable dpm? */ /* Disable CP parsing/prefetching */ WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT); udelay(50); /* Disable DMA */ tmp = RREG32(DMA_RB_CNTL); tmp &= ~DMA_RB_ENABLE; WREG32(DMA_RB_CNTL, tmp); /* XXX other engines? */ /* halt the rlc */ r600_rlc_stop(rdev); udelay(50); /* set mclk/sclk to bypass */ rv770_set_clk_bypass_mode(rdev); /* disable BM */ pci_clear_master(rdev->pdev); /* disable mem access */ evergreen_mc_stop(rdev, &save); if (evergreen_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timed out !\n"); } /* reset */ radeon_pci_config_reset(rdev); /* wait for asic to come out of reset */ for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(CONFIG_MEMSIZE) != 0xffffffff) break; udelay(1); } } int evergreen_asic_reset(struct radeon_device *rdev, bool hard) { u32 reset_mask; if (hard) { evergreen_gpu_pci_config_reset(rdev); return 0; } reset_mask = evergreen_gpu_check_soft_reset(rdev); if (reset_mask) r600_set_bios_scratch_engine_hung(rdev, true); /* try soft reset */ evergreen_gpu_soft_reset(rdev, reset_mask); reset_mask = evergreen_gpu_check_soft_reset(rdev); /* try pci config reset */ if (reset_mask && radeon_hard_reset) evergreen_gpu_pci_config_reset(rdev); reset_mask = evergreen_gpu_check_soft_reset(rdev); if (!reset_mask) r600_set_bios_scratch_engine_hung(rdev, false); return 0; } /** * evergreen_gfx_is_lockup - Check if the GFX engine is locked up * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Check if the GFX engine is locked up. * Returns true if the engine appears to be locked up, false if not. */ bool evergreen_gfx_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) { u32 reset_mask = evergreen_gpu_check_soft_reset(rdev); if (!(reset_mask & (RADEON_RESET_GFX | RADEON_RESET_COMPUTE | RADEON_RESET_CP))) { radeon_ring_lockup_update(rdev, ring); return false; } return radeon_ring_test_lockup(rdev, ring); } /* * RLC */ #define RLC_SAVE_RESTORE_LIST_END_MARKER 0x00000000 #define RLC_CLEAR_STATE_END_MARKER 0x00000001 void sumo_rlc_fini(struct radeon_device *rdev) { int r; /* save restore block */ if (rdev->rlc.save_restore_obj) { r = radeon_bo_reserve(rdev->rlc.save_restore_obj, false); if (unlikely(r != 0)) dev_warn(rdev->dev, "(%d) reserve RLC sr bo failed\n", r); radeon_bo_unpin(rdev->rlc.save_restore_obj); radeon_bo_unreserve(rdev->rlc.save_restore_obj); radeon_bo_unref(&rdev->rlc.save_restore_obj); rdev->rlc.save_restore_obj = NULL; } /* clear state block */ if (rdev->rlc.clear_state_obj) { r = radeon_bo_reserve(rdev->rlc.clear_state_obj, false); if (unlikely(r != 0)) dev_warn(rdev->dev, "(%d) reserve RLC c bo failed\n", r); radeon_bo_unpin(rdev->rlc.clear_state_obj); radeon_bo_unreserve(rdev->rlc.clear_state_obj); radeon_bo_unref(&rdev->rlc.clear_state_obj); rdev->rlc.clear_state_obj = NULL; } /* clear state block */ if (rdev->rlc.cp_table_obj) { r = radeon_bo_reserve(rdev->rlc.cp_table_obj, false); if (unlikely(r != 0)) dev_warn(rdev->dev, "(%d) reserve RLC cp table bo failed\n", r); radeon_bo_unpin(rdev->rlc.cp_table_obj); radeon_bo_unreserve(rdev->rlc.cp_table_obj); radeon_bo_unref(&rdev->rlc.cp_table_obj); rdev->rlc.cp_table_obj = NULL; } } #define CP_ME_TABLE_SIZE 96 int sumo_rlc_init(struct radeon_device *rdev) { const u32 *src_ptr; volatile u32 *dst_ptr; u32 dws, data, i, j, k, reg_num; u32 reg_list_num, reg_list_hdr_blk_index, reg_list_blk_index = 0; u64 reg_list_mc_addr; const struct cs_section_def *cs_data; int r; src_ptr = rdev->rlc.reg_list; dws = rdev->rlc.reg_list_size; if (rdev->family >= CHIP_BONAIRE) { dws += (5 * 16) + 48 + 48 + 64; } cs_data = rdev->rlc.cs_data; if (src_ptr) { /* save restore block */ if (rdev->rlc.save_restore_obj == NULL) { r = radeon_bo_create(rdev, dws * 4, PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM, 0, NULL, NULL, &rdev->rlc.save_restore_obj); if (r) { dev_warn(rdev->dev, "(%d) create RLC sr bo failed\n", r); return r; } } r = radeon_bo_reserve(rdev->rlc.save_restore_obj, false); if (unlikely(r != 0)) { sumo_rlc_fini(rdev); return r; } r = radeon_bo_pin(rdev->rlc.save_restore_obj, RADEON_GEM_DOMAIN_VRAM, &rdev->rlc.save_restore_gpu_addr); if (r) { radeon_bo_unreserve(rdev->rlc.save_restore_obj); dev_warn(rdev->dev, "(%d) pin RLC sr bo failed\n", r); sumo_rlc_fini(rdev); return r; } r = radeon_bo_kmap(rdev->rlc.save_restore_obj, (void **)&rdev->rlc.sr_ptr); if (r) { dev_warn(rdev->dev, "(%d) map RLC sr bo failed\n", r); sumo_rlc_fini(rdev); return r; } /* write the sr buffer */ dst_ptr = rdev->rlc.sr_ptr; if (rdev->family >= CHIP_TAHITI) { /* SI */ for (i = 0; i < rdev->rlc.reg_list_size; i++) dst_ptr[i] = cpu_to_le32(src_ptr[i]); } else { /* ON/LN/TN */ /* format: * dw0: (reg2 << 16) | reg1 * dw1: reg1 save space * dw2: reg2 save space */ for (i = 0; i < dws; i++) { data = src_ptr[i] >> 2; i++; if (i < dws) data |= (src_ptr[i] >> 2) << 16; j = (((i - 1) * 3) / 2); dst_ptr[j] = cpu_to_le32(data); } j = ((i * 3) / 2); dst_ptr[j] = cpu_to_le32(RLC_SAVE_RESTORE_LIST_END_MARKER); } radeon_bo_kunmap(rdev->rlc.save_restore_obj); radeon_bo_unreserve(rdev->rlc.save_restore_obj); } if (cs_data) { /* clear state block */ if (rdev->family >= CHIP_BONAIRE) { rdev->rlc.clear_state_size = dws = cik_get_csb_size(rdev); } else if (rdev->family >= CHIP_TAHITI) { rdev->rlc.clear_state_size = si_get_csb_size(rdev); dws = rdev->rlc.clear_state_size + (256 / 4); } else { reg_list_num = 0; dws = 0; for (i = 0; cs_data[i].section != NULL; i++) { for (j = 0; cs_data[i].section[j].extent != NULL; j++) { reg_list_num++; dws += cs_data[i].section[j].reg_count; } } reg_list_blk_index = (3 * reg_list_num + 2); dws += reg_list_blk_index; rdev->rlc.clear_state_size = dws; } if (rdev->rlc.clear_state_obj == NULL) { r = radeon_bo_create(rdev, dws * 4, PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM, 0, NULL, NULL, &rdev->rlc.clear_state_obj); if (r) { dev_warn(rdev->dev, "(%d) create RLC c bo failed\n", r); sumo_rlc_fini(rdev); return r; } } r = radeon_bo_reserve(rdev->rlc.clear_state_obj, false); if (unlikely(r != 0)) { sumo_rlc_fini(rdev); return r; } r = radeon_bo_pin(rdev->rlc.clear_state_obj, RADEON_GEM_DOMAIN_VRAM, &rdev->rlc.clear_state_gpu_addr); if (r) { radeon_bo_unreserve(rdev->rlc.clear_state_obj); dev_warn(rdev->dev, "(%d) pin RLC c bo failed\n", r); sumo_rlc_fini(rdev); return r; } r = radeon_bo_kmap(rdev->rlc.clear_state_obj, (void **)&rdev->rlc.cs_ptr); if (r) { dev_warn(rdev->dev, "(%d) map RLC c bo failed\n", r); sumo_rlc_fini(rdev); return r; } /* set up the cs buffer */ dst_ptr = rdev->rlc.cs_ptr; if (rdev->family >= CHIP_BONAIRE) { cik_get_csb_buffer(rdev, dst_ptr); } else if (rdev->family >= CHIP_TAHITI) { reg_list_mc_addr = rdev->rlc.clear_state_gpu_addr + 256; dst_ptr[0] = cpu_to_le32(upper_32_bits(reg_list_mc_addr)); dst_ptr[1] = cpu_to_le32(lower_32_bits(reg_list_mc_addr)); dst_ptr[2] = cpu_to_le32(rdev->rlc.clear_state_size); si_get_csb_buffer(rdev, &dst_ptr[(256/4)]); } else { reg_list_hdr_blk_index = 0; reg_list_mc_addr = rdev->rlc.clear_state_gpu_addr + (reg_list_blk_index * 4); data = upper_32_bits(reg_list_mc_addr); dst_ptr[reg_list_hdr_blk_index] = cpu_to_le32(data); reg_list_hdr_blk_index++; for (i = 0; cs_data[i].section != NULL; i++) { for (j = 0; cs_data[i].section[j].extent != NULL; j++) { reg_num = cs_data[i].section[j].reg_count; data = reg_list_mc_addr & 0xffffffff; dst_ptr[reg_list_hdr_blk_index] = cpu_to_le32(data); reg_list_hdr_blk_index++; data = (cs_data[i].section[j].reg_index * 4) & 0xffffffff; dst_ptr[reg_list_hdr_blk_index] = cpu_to_le32(data); reg_list_hdr_blk_index++; data = 0x08000000 | (reg_num * 4); dst_ptr[reg_list_hdr_blk_index] = cpu_to_le32(data); reg_list_hdr_blk_index++; for (k = 0; k < reg_num; k++) { data = cs_data[i].section[j].extent[k]; dst_ptr[reg_list_blk_index + k] = cpu_to_le32(data); } reg_list_mc_addr += reg_num * 4; reg_list_blk_index += reg_num; } } dst_ptr[reg_list_hdr_blk_index] = cpu_to_le32(RLC_CLEAR_STATE_END_MARKER); } radeon_bo_kunmap(rdev->rlc.clear_state_obj); radeon_bo_unreserve(rdev->rlc.clear_state_obj); } if (rdev->rlc.cp_table_size) { if (rdev->rlc.cp_table_obj == NULL) { r = radeon_bo_create(rdev, rdev->rlc.cp_table_size, PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM, 0, NULL, NULL, &rdev->rlc.cp_table_obj); if (r) { dev_warn(rdev->dev, "(%d) create RLC cp table bo failed\n", r); sumo_rlc_fini(rdev); return r; } } r = radeon_bo_reserve(rdev->rlc.cp_table_obj, false); if (unlikely(r != 0)) { dev_warn(rdev->dev, "(%d) reserve RLC cp table bo failed\n", r); sumo_rlc_fini(rdev); return r; } r = radeon_bo_pin(rdev->rlc.cp_table_obj, RADEON_GEM_DOMAIN_VRAM, &rdev->rlc.cp_table_gpu_addr); if (r) { radeon_bo_unreserve(rdev->rlc.cp_table_obj); dev_warn(rdev->dev, "(%d) pin RLC cp_table bo failed\n", r); sumo_rlc_fini(rdev); return r; } r = radeon_bo_kmap(rdev->rlc.cp_table_obj, (void **)&rdev->rlc.cp_table_ptr); if (r) { dev_warn(rdev->dev, "(%d) map RLC cp table bo failed\n", r); sumo_rlc_fini(rdev); return r; } cik_init_cp_pg_table(rdev); radeon_bo_kunmap(rdev->rlc.cp_table_obj); radeon_bo_unreserve(rdev->rlc.cp_table_obj); } return 0; } static void evergreen_rlc_start(struct radeon_device *rdev) { u32 mask = RLC_ENABLE; if (rdev->flags & RADEON_IS_IGP) { mask |= GFX_POWER_GATING_ENABLE | GFX_POWER_GATING_SRC; } WREG32(RLC_CNTL, mask); } int evergreen_rlc_resume(struct radeon_device *rdev) { u32 i; const __be32 *fw_data; if (!rdev->rlc_fw) return -EINVAL; r600_rlc_stop(rdev); WREG32(RLC_HB_CNTL, 0); if (rdev->flags & RADEON_IS_IGP) { if (rdev->family == CHIP_ARUBA) { u32 always_on_bitmap = 3 | (3 << (16 * rdev->config.cayman.max_shader_engines)); /* find out the number of active simds */ u32 tmp = (RREG32(CC_GC_SHADER_PIPE_CONFIG) & 0xffff0000) >> 16; tmp |= 0xffffffff << rdev->config.cayman.max_simds_per_se; tmp = hweight32(~tmp); if (tmp == rdev->config.cayman.max_simds_per_se) { WREG32(TN_RLC_LB_ALWAYS_ACTIVE_SIMD_MASK, always_on_bitmap); WREG32(TN_RLC_LB_PARAMS, 0x00601004); WREG32(TN_RLC_LB_INIT_SIMD_MASK, 0xffffffff); WREG32(TN_RLC_LB_CNTR_INIT, 0x00000000); WREG32(TN_RLC_LB_CNTR_MAX, 0x00002000); } } else { WREG32(RLC_HB_WPTR_LSB_ADDR, 0); WREG32(RLC_HB_WPTR_MSB_ADDR, 0); } WREG32(TN_RLC_SAVE_AND_RESTORE_BASE, rdev->rlc.save_restore_gpu_addr >> 8); WREG32(TN_RLC_CLEAR_STATE_RESTORE_BASE, rdev->rlc.clear_state_gpu_addr >> 8); } else { WREG32(RLC_HB_BASE, 0); WREG32(RLC_HB_RPTR, 0); WREG32(RLC_HB_WPTR, 0); WREG32(RLC_HB_WPTR_LSB_ADDR, 0); WREG32(RLC_HB_WPTR_MSB_ADDR, 0); } WREG32(RLC_MC_CNTL, 0); WREG32(RLC_UCODE_CNTL, 0); fw_data = (const __be32 *)rdev->rlc_fw->data; if (rdev->family >= CHIP_ARUBA) { for (i = 0; i < ARUBA_RLC_UCODE_SIZE; i++) { WREG32(RLC_UCODE_ADDR, i); WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++)); } } else if (rdev->family >= CHIP_CAYMAN) { for (i = 0; i < CAYMAN_RLC_UCODE_SIZE; i++) { WREG32(RLC_UCODE_ADDR, i); WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++)); } } else { for (i = 0; i < EVERGREEN_RLC_UCODE_SIZE; i++) { WREG32(RLC_UCODE_ADDR, i); WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++)); } } WREG32(RLC_UCODE_ADDR, 0); evergreen_rlc_start(rdev); return 0; } /* Interrupts */ u32 evergreen_get_vblank_counter(struct radeon_device *rdev, int crtc) { if (crtc >= rdev->num_crtc) return 0; else return RREG32(CRTC_STATUS_FRAME_COUNT + crtc_offsets[crtc]); } void evergreen_disable_interrupt_state(struct radeon_device *rdev) { int i; u32 tmp; if (rdev->family >= CHIP_CAYMAN) { cayman_cp_int_cntl_setup(rdev, 0, CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); cayman_cp_int_cntl_setup(rdev, 1, 0); cayman_cp_int_cntl_setup(rdev, 2, 0); tmp = RREG32(CAYMAN_DMA1_CNTL) & ~TRAP_ENABLE; WREG32(CAYMAN_DMA1_CNTL, tmp); } else WREG32(CP_INT_CNTL, CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); tmp = RREG32(DMA_CNTL) & ~TRAP_ENABLE; WREG32(DMA_CNTL, tmp); WREG32(GRBM_INT_CNTL, 0); WREG32(SRBM_INT_CNTL, 0); for (i = 0; i < rdev->num_crtc; i++) WREG32(INT_MASK + crtc_offsets[i], 0); for (i = 0; i < rdev->num_crtc; i++) WREG32(GRPH_INT_CONTROL + crtc_offsets[i], 0); /* only one DAC on DCE5 */ if (!ASIC_IS_DCE5(rdev)) WREG32(DACA_AUTODETECT_INT_CONTROL, 0); WREG32(DACB_AUTODETECT_INT_CONTROL, 0); for (i = 0; i < 6; i++) WREG32_AND(DC_HPDx_INT_CONTROL(i), DC_HPDx_INT_POLARITY); } /* Note that the order we write back regs here is important */ int evergreen_irq_set(struct radeon_device *rdev) { int i; u32 cp_int_cntl = CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE; u32 cp_int_cntl1 = 0, cp_int_cntl2 = 0; u32 grbm_int_cntl = 0; u32 dma_cntl, dma_cntl1 = 0; u32 thermal_int = 0; if (!rdev->irq.installed) { WARN(1, "Can't enable IRQ/MSI because no handler is installed\n"); return -EINVAL; } /* don't enable anything if the ih is disabled */ if (!rdev->ih.enabled) { r600_disable_interrupts(rdev); /* force the active interrupt state to all disabled */ evergreen_disable_interrupt_state(rdev); return 0; } if (rdev->family == CHIP_ARUBA) thermal_int = RREG32(TN_CG_THERMAL_INT_CTRL) & ~(THERM_INT_MASK_HIGH | THERM_INT_MASK_LOW); else thermal_int = RREG32(CG_THERMAL_INT) & ~(THERM_INT_MASK_HIGH | THERM_INT_MASK_LOW); dma_cntl = RREG32(DMA_CNTL) & ~TRAP_ENABLE; if (rdev->family >= CHIP_CAYMAN) { /* enable CP interrupts on all rings */ if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) { DRM_DEBUG("evergreen_irq_set: sw int gfx\n"); cp_int_cntl |= TIME_STAMP_INT_ENABLE; } if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_CP1_INDEX])) { DRM_DEBUG("evergreen_irq_set: sw int cp1\n"); cp_int_cntl1 |= TIME_STAMP_INT_ENABLE; } if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_CP2_INDEX])) { DRM_DEBUG("evergreen_irq_set: sw int cp2\n"); cp_int_cntl2 |= TIME_STAMP_INT_ENABLE; } } else { if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) { DRM_DEBUG("evergreen_irq_set: sw int gfx\n"); cp_int_cntl |= RB_INT_ENABLE; cp_int_cntl |= TIME_STAMP_INT_ENABLE; } } if (atomic_read(&rdev->irq.ring_int[R600_RING_TYPE_DMA_INDEX])) { DRM_DEBUG("r600_irq_set: sw int dma\n"); dma_cntl |= TRAP_ENABLE; } if (rdev->family >= CHIP_CAYMAN) { dma_cntl1 = RREG32(CAYMAN_DMA1_CNTL) & ~TRAP_ENABLE; if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_DMA1_INDEX])) { DRM_DEBUG("r600_irq_set: sw int dma1\n"); dma_cntl1 |= TRAP_ENABLE; } } if (rdev->irq.dpm_thermal) { DRM_DEBUG("dpm thermal\n"); thermal_int |= THERM_INT_MASK_HIGH | THERM_INT_MASK_LOW; } if (rdev->family >= CHIP_CAYMAN) { cayman_cp_int_cntl_setup(rdev, 0, cp_int_cntl); cayman_cp_int_cntl_setup(rdev, 1, cp_int_cntl1); cayman_cp_int_cntl_setup(rdev, 2, cp_int_cntl2); } else WREG32(CP_INT_CNTL, cp_int_cntl); WREG32(DMA_CNTL, dma_cntl); if (rdev->family >= CHIP_CAYMAN) WREG32(CAYMAN_DMA1_CNTL, dma_cntl1); WREG32(GRBM_INT_CNTL, grbm_int_cntl); for (i = 0; i < rdev->num_crtc; i++) { radeon_irq_kms_set_irq_n_enabled( rdev, INT_MASK + crtc_offsets[i], VBLANK_INT_MASK, rdev->irq.crtc_vblank_int[i] || atomic_read(&rdev->irq.pflip[i]), "vblank", i); } for (i = 0; i < rdev->num_crtc; i++) WREG32(GRPH_INT_CONTROL + crtc_offsets[i], GRPH_PFLIP_INT_MASK); for (i = 0; i < 6; i++) { radeon_irq_kms_set_irq_n_enabled( rdev, DC_HPDx_INT_CONTROL(i), DC_HPDx_INT_EN | DC_HPDx_RX_INT_EN, rdev->irq.hpd[i], "HPD", i); } if (rdev->family == CHIP_ARUBA) WREG32(TN_CG_THERMAL_INT_CTRL, thermal_int); else WREG32(CG_THERMAL_INT, thermal_int); for (i = 0; i < 6; i++) { radeon_irq_kms_set_irq_n_enabled( rdev, AFMT_AUDIO_PACKET_CONTROL + crtc_offsets[i], AFMT_AZ_FORMAT_WTRIG_MASK, rdev->irq.afmt[i], "HDMI", i); } /* posting read */ RREG32(SRBM_STATUS); return 0; } /* Note that the order we write back regs here is important */ static void evergreen_irq_ack(struct radeon_device *rdev) { int i, j; u32 *grph_int = rdev->irq.stat_regs.evergreen.grph_int; u32 *disp_int = rdev->irq.stat_regs.evergreen.disp_int; u32 *afmt_status = rdev->irq.stat_regs.evergreen.afmt_status; for (i = 0; i < 6; i++) { disp_int[i] = RREG32(evergreen_disp_int_status[i]); afmt_status[i] = RREG32(AFMT_STATUS + crtc_offsets[i]); if (i < rdev->num_crtc) grph_int[i] = RREG32(GRPH_INT_STATUS + crtc_offsets[i]); } /* We write back each interrupt register in pairs of two */ for (i = 0; i < rdev->num_crtc; i += 2) { for (j = i; j < (i + 2); j++) { if (grph_int[j] & GRPH_PFLIP_INT_OCCURRED) WREG32(GRPH_INT_STATUS + crtc_offsets[j], GRPH_PFLIP_INT_CLEAR); } for (j = i; j < (i + 2); j++) { if (disp_int[j] & LB_D1_VBLANK_INTERRUPT) WREG32(VBLANK_STATUS + crtc_offsets[j], VBLANK_ACK); if (disp_int[j] & LB_D1_VLINE_INTERRUPT) WREG32(VLINE_STATUS + crtc_offsets[j], VLINE_ACK); } } for (i = 0; i < 6; i++) { if (disp_int[i] & DC_HPD1_INTERRUPT) WREG32_OR(DC_HPDx_INT_CONTROL(i), DC_HPDx_INT_ACK); } for (i = 0; i < 6; i++) { if (disp_int[i] & DC_HPD1_RX_INTERRUPT) WREG32_OR(DC_HPDx_INT_CONTROL(i), DC_HPDx_RX_INT_ACK); } for (i = 0; i < 6; i++) { if (afmt_status[i] & AFMT_AZ_FORMAT_WTRIG) WREG32_OR(AFMT_AUDIO_PACKET_CONTROL + crtc_offsets[i], AFMT_AZ_FORMAT_WTRIG_ACK); } } static void evergreen_irq_disable(struct radeon_device *rdev) { r600_disable_interrupts(rdev); /* Wait and acknowledge irq */ mdelay(1); evergreen_irq_ack(rdev); evergreen_disable_interrupt_state(rdev); } void evergreen_irq_suspend(struct radeon_device *rdev) { evergreen_irq_disable(rdev); r600_rlc_stop(rdev); } static u32 evergreen_get_ih_wptr(struct radeon_device *rdev) { u32 wptr, tmp; if (rdev->wb.enabled) wptr = le32_to_cpu(rdev->wb.wb[R600_WB_IH_WPTR_OFFSET/4]); else wptr = RREG32(IH_RB_WPTR); if (wptr & RB_OVERFLOW) { wptr &= ~RB_OVERFLOW; /* When a ring buffer overflow happen start parsing interrupt * from the last not overwritten vector (wptr + 16). Hopefully * this should allow us to catchup. */ dev_warn(rdev->dev, "IH ring buffer overflow (0x%08X, 0x%08X, 0x%08X)\n", wptr, rdev->ih.rptr, (wptr + 16) & rdev->ih.ptr_mask); rdev->ih.rptr = (wptr + 16) & rdev->ih.ptr_mask; tmp = RREG32(IH_RB_CNTL); tmp |= IH_WPTR_OVERFLOW_CLEAR; WREG32(IH_RB_CNTL, tmp); } return (wptr & rdev->ih.ptr_mask); } int evergreen_irq_process(struct radeon_device *rdev) { u32 *disp_int = rdev->irq.stat_regs.evergreen.disp_int; u32 *afmt_status = rdev->irq.stat_regs.evergreen.afmt_status; u32 crtc_idx, hpd_idx, afmt_idx; u32 mask; u32 wptr; u32 rptr; u32 src_id, src_data; u32 ring_index; bool queue_hotplug = false; bool queue_hdmi = false; bool queue_dp = false; bool queue_thermal = false; u32 status, addr; const char *event_name; if (!rdev->ih.enabled || rdev->shutdown) return IRQ_NONE; wptr = evergreen_get_ih_wptr(rdev); restart_ih: /* is somebody else already processing irqs? */ if (atomic_xchg(&rdev->ih.lock, 1)) return IRQ_NONE; rptr = rdev->ih.rptr; DRM_DEBUG("evergreen_irq_process start: rptr %d, wptr %d\n", rptr, wptr); /* Order reading of wptr vs. reading of IH ring data */ rmb(); /* display interrupts */ evergreen_irq_ack(rdev); while (rptr != wptr) { /* wptr/rptr are in bytes! */ ring_index = rptr / 4; src_id = le32_to_cpu(rdev->ih.ring[ring_index]) & 0xff; src_data = le32_to_cpu(rdev->ih.ring[ring_index + 1]) & 0xfffffff; switch (src_id) { case 1: /* D1 vblank/vline */ case 2: /* D2 vblank/vline */ case 3: /* D3 vblank/vline */ case 4: /* D4 vblank/vline */ case 5: /* D5 vblank/vline */ case 6: /* D6 vblank/vline */ crtc_idx = src_id - 1; if (src_data == 0) { /* vblank */ mask = LB_D1_VBLANK_INTERRUPT; event_name = "vblank"; if (rdev->irq.crtc_vblank_int[crtc_idx]) { drm_handle_vblank(rdev->ddev, crtc_idx); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[crtc_idx])) { radeon_crtc_handle_vblank(rdev, crtc_idx); } } else if (src_data == 1) { /* vline */ mask = LB_D1_VLINE_INTERRUPT; event_name = "vline"; } else { DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } if (!(disp_int[crtc_idx] & mask)) { DRM_DEBUG("IH: D%d %s - IH event w/o asserted irq bit?\n", crtc_idx + 1, event_name); } disp_int[crtc_idx] &= ~mask; DRM_DEBUG("IH: D%d %s\n", crtc_idx + 1, event_name); break; case 8: /* D1 page flip */ case 10: /* D2 page flip */ case 12: /* D3 page flip */ case 14: /* D4 page flip */ case 16: /* D5 page flip */ case 18: /* D6 page flip */ DRM_DEBUG("IH: D%d flip\n", ((src_id - 8) >> 1) + 1); if (radeon_use_pflipirq > 0) radeon_crtc_handle_flip(rdev, (src_id - 8) >> 1); break; case 42: /* HPD hotplug */ if (src_data <= 5) { hpd_idx = src_data; mask = DC_HPD1_INTERRUPT; queue_hotplug = true; event_name = "HPD"; } else if (src_data <= 11) { hpd_idx = src_data - 6; mask = DC_HPD1_RX_INTERRUPT; queue_dp = true; event_name = "HPD_RX"; } else { DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } if (!(disp_int[hpd_idx] & mask)) DRM_DEBUG("IH: IH event w/o asserted irq bit?\n"); disp_int[hpd_idx] &= ~mask; DRM_DEBUG("IH: %s%d\n", event_name, hpd_idx + 1); break; case 44: /* hdmi */ afmt_idx = src_data; if (afmt_idx > 5) { DRM_ERROR("Unhandled interrupt: %d %d\n", src_id, src_data); break; } if (!(afmt_status[afmt_idx] & AFMT_AZ_FORMAT_WTRIG)) DRM_DEBUG("IH: IH event w/o asserted irq bit?\n"); afmt_status[afmt_idx] &= ~AFMT_AZ_FORMAT_WTRIG; queue_hdmi = true; DRM_DEBUG("IH: HDMI%d\n", afmt_idx + 1); break; case 96: DRM_ERROR("SRBM_READ_ERROR: 0x%x\n", RREG32(SRBM_READ_ERROR)); WREG32(SRBM_INT_ACK, 0x1); break; case 124: /* UVD */ DRM_DEBUG("IH: UVD int: 0x%08x\n", src_data); radeon_fence_process(rdev, R600_RING_TYPE_UVD_INDEX); break; case 146: case 147: addr = RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR); status = RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS); /* reset addr and status */ WREG32_P(VM_CONTEXT1_CNTL2, 1, ~1); if (addr == 0x0 && status == 0x0) break; dev_err(rdev->dev, "GPU fault detected: %d 0x%08x\n", src_id, src_data); dev_err(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n", addr); dev_err(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n", status); cayman_vm_decode_fault(rdev, status, addr); break; case 176: /* CP_INT in ring buffer */ case 177: /* CP_INT in IB1 */ case 178: /* CP_INT in IB2 */ DRM_DEBUG("IH: CP int: 0x%08x\n", src_data); radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX); break; case 181: /* CP EOP event */ DRM_DEBUG("IH: CP EOP\n"); if (rdev->family >= CHIP_CAYMAN) { switch (src_data) { case 0: radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX); break; case 1: radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP1_INDEX); break; case 2: radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP2_INDEX); break; } } else radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX); break; case 224: /* DMA trap event */ DRM_DEBUG("IH: DMA trap\n"); radeon_fence_process(rdev, R600_RING_TYPE_DMA_INDEX); break; case 230: /* thermal low to high */ DRM_DEBUG("IH: thermal low to high\n"); rdev->pm.dpm.thermal.high_to_low = false; queue_thermal = true; break; case 231: /* thermal high to low */ DRM_DEBUG("IH: thermal high to low\n"); rdev->pm.dpm.thermal.high_to_low = true; queue_thermal = true; break; case 233: /* GUI IDLE */ DRM_DEBUG("IH: GUI idle\n"); break; case 244: /* DMA trap event */ if (rdev->family >= CHIP_CAYMAN) { DRM_DEBUG("IH: DMA1 trap\n"); radeon_fence_process(rdev, CAYMAN_RING_TYPE_DMA1_INDEX); } break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } /* wptr/rptr are in bytes! */ rptr += 16; rptr &= rdev->ih.ptr_mask; WREG32(IH_RB_RPTR, rptr); } if (queue_dp) schedule_work(&rdev->dp_work); if (queue_hotplug) schedule_delayed_work(&rdev->hotplug_work, 0); if (queue_hdmi) schedule_work(&rdev->audio_work); if (queue_thermal && rdev->pm.dpm_enabled) schedule_work(&rdev->pm.dpm.thermal.work); rdev->ih.rptr = rptr; atomic_set(&rdev->ih.lock, 0); /* make sure wptr hasn't changed while processing */ wptr = evergreen_get_ih_wptr(rdev); if (wptr != rptr) goto restart_ih; return IRQ_HANDLED; } static void evergreen_uvd_init(struct radeon_device *rdev) { int r; if (!rdev->has_uvd) return; r = radeon_uvd_init(rdev); if (r) { dev_err(rdev->dev, "failed UVD (%d) init.\n", r); /* * At this point rdev->uvd.vcpu_bo is NULL which trickles down * to early fails uvd_v2_2_resume() and thus nothing happens * there. So it is pointless to try to go through that code * hence why we disable uvd here. */ rdev->has_uvd = 0; return; } rdev->ring[R600_RING_TYPE_UVD_INDEX].ring_obj = NULL; r600_ring_init(rdev, &rdev->ring[R600_RING_TYPE_UVD_INDEX], 4096); } static void evergreen_uvd_start(struct radeon_device *rdev) { int r; if (!rdev->has_uvd) return; r = uvd_v2_2_resume(rdev); if (r) { dev_err(rdev->dev, "failed UVD resume (%d).\n", r); goto error; } r = radeon_fence_driver_start_ring(rdev, R600_RING_TYPE_UVD_INDEX); if (r) { dev_err(rdev->dev, "failed initializing UVD fences (%d).\n", r); goto error; } return; error: rdev->ring[R600_RING_TYPE_UVD_INDEX].ring_size = 0; } static void evergreen_uvd_resume(struct radeon_device *rdev) { struct radeon_ring *ring; int r; if (!rdev->has_uvd || !rdev->ring[R600_RING_TYPE_UVD_INDEX].ring_size) return; ring = &rdev->ring[R600_RING_TYPE_UVD_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, 0, PACKET0(UVD_NO_OP, 0)); if (r) { dev_err(rdev->dev, "failed initializing UVD ring (%d).\n", r); return; } r = uvd_v1_0_init(rdev); if (r) { dev_err(rdev->dev, "failed initializing UVD (%d).\n", r); return; } } static int evergreen_startup(struct radeon_device *rdev) { struct radeon_ring *ring; int r; /* enable pcie gen2 link */ evergreen_pcie_gen2_enable(rdev); /* enable aspm */ evergreen_program_aspm(rdev); /* scratch needs to be initialized before MC */ r = r600_vram_scratch_init(rdev); if (r) return r; evergreen_mc_program(rdev); if (ASIC_IS_DCE5(rdev) && !rdev->pm.dpm_enabled) { r = ni_mc_load_microcode(rdev); if (r) { DRM_ERROR("Failed to load MC firmware!\n"); return r; } } if (rdev->flags & RADEON_IS_AGP) { evergreen_agp_enable(rdev); } else { r = evergreen_pcie_gart_enable(rdev); if (r) return r; } evergreen_gpu_init(rdev); /* allocate rlc buffers */ if (rdev->flags & RADEON_IS_IGP) { rdev->rlc.reg_list = sumo_rlc_save_restore_register_list; rdev->rlc.reg_list_size = (u32)ARRAY_SIZE(sumo_rlc_save_restore_register_list); rdev->rlc.cs_data = evergreen_cs_data; r = sumo_rlc_init(rdev); if (r) { DRM_ERROR("Failed to init rlc BOs!\n"); return r; } } /* allocate wb buffer */ r = radeon_wb_init(rdev); if (r) return r; r = radeon_fence_driver_start_ring(rdev, RADEON_RING_TYPE_GFX_INDEX); if (r) { dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r); return r; } r = radeon_fence_driver_start_ring(rdev, R600_RING_TYPE_DMA_INDEX); if (r) { dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r); return r; } evergreen_uvd_start(rdev); /* Enable IRQ */ if (!rdev->irq.installed) { r = radeon_irq_kms_init(rdev); if (r) return r; } r = r600_irq_init(rdev); if (r) { DRM_ERROR("radeon: IH init failed (%d).\n", r); radeon_irq_kms_fini(rdev); return r; } evergreen_irq_set(rdev); ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP_RPTR_OFFSET, RADEON_CP_PACKET2); if (r) return r; ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, R600_WB_DMA_RPTR_OFFSET, DMA_PACKET(DMA_PACKET_NOP, 0, 0)); if (r) return r; r = evergreen_cp_load_microcode(rdev); if (r) return r; r = evergreen_cp_resume(rdev); if (r) return r; r = r600_dma_resume(rdev); if (r) return r; evergreen_uvd_resume(rdev); r = radeon_ib_pool_init(rdev); if (r) { dev_err(rdev->dev, "IB initialization failed (%d).\n", r); return r; } r = radeon_audio_init(rdev); if (r) { DRM_ERROR("radeon: audio init failed\n"); return r; } return 0; } int evergreen_resume(struct radeon_device *rdev) { int r; /* reset the asic, the gfx blocks are often in a bad state * after the driver is unloaded or after a resume */ if (radeon_asic_reset(rdev)) dev_warn(rdev->dev, "GPU reset failed !\n"); /* Do not reset GPU before posting, on rv770 hw unlike on r500 hw, * posting will perform necessary task to bring back GPU into good * shape. */ /* post card */ atom_asic_init(rdev->mode_info.atom_context); /* init golden registers */ evergreen_init_golden_registers(rdev); if (rdev->pm.pm_method == PM_METHOD_DPM) radeon_pm_resume(rdev); rdev->accel_working = true; r = evergreen_startup(rdev); if (r) { DRM_ERROR("evergreen startup failed on resume\n"); rdev->accel_working = false; return r; } return r; } int evergreen_suspend(struct radeon_device *rdev) { radeon_pm_suspend(rdev); radeon_audio_fini(rdev); if (rdev->has_uvd) { uvd_v1_0_fini(rdev); radeon_uvd_suspend(rdev); } r700_cp_stop(rdev); r600_dma_stop(rdev); evergreen_irq_suspend(rdev); radeon_wb_disable(rdev); evergreen_pcie_gart_disable(rdev); return 0; } /* Plan is to move initialization in that function and use * helper function so that radeon_device_init pretty much * do nothing more than calling asic specific function. This * should also allow to remove a bunch of callback function * like vram_info. */ int evergreen_init(struct radeon_device *rdev) { int r; /* Read BIOS */ if (!radeon_get_bios(rdev)) { if (ASIC_IS_AVIVO(rdev)) return -EINVAL; } /* Must be an ATOMBIOS */ if (!rdev->is_atom_bios) { dev_err(rdev->dev, "Expecting atombios for evergreen GPU\n"); return -EINVAL; } r = radeon_atombios_init(rdev); if (r) return r; /* reset the asic, the gfx blocks are often in a bad state * after the driver is unloaded or after a resume */ if (radeon_asic_reset(rdev)) dev_warn(rdev->dev, "GPU reset failed !\n"); /* Post card if necessary */ if (!radeon_card_posted(rdev)) { if (!rdev->bios) { dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n"); return -EINVAL; } DRM_INFO("GPU not posted. posting now...\n"); atom_asic_init(rdev->mode_info.atom_context); } /* init golden registers */ evergreen_init_golden_registers(rdev); /* Initialize scratch registers */ r600_scratch_init(rdev); /* Initialize surface registers */ radeon_surface_init(rdev); /* Initialize clocks */ radeon_get_clock_info(rdev->ddev); /* Fence driver */ r = radeon_fence_driver_init(rdev); if (r) return r; /* initialize AGP */ if (rdev->flags & RADEON_IS_AGP) { r = radeon_agp_init(rdev); if (r) radeon_agp_disable(rdev); } /* initialize memory controller */ r = evergreen_mc_init(rdev); if (r) return r; /* Memory manager */ r = radeon_bo_init(rdev); if (r) return r; if (ASIC_IS_DCE5(rdev)) { if (!rdev->me_fw || !rdev->pfp_fw || !rdev->rlc_fw || !rdev->mc_fw) { r = ni_init_microcode(rdev); if (r) { DRM_ERROR("Failed to load firmware!\n"); return r; } } } else { if (!rdev->me_fw || !rdev->pfp_fw || !rdev->rlc_fw) { r = r600_init_microcode(rdev); if (r) { DRM_ERROR("Failed to load firmware!\n"); return r; } } } /* Initialize power management */ radeon_pm_init(rdev); rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ring_obj = NULL; r600_ring_init(rdev, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX], 1024 * 1024); rdev->ring[R600_RING_TYPE_DMA_INDEX].ring_obj = NULL; r600_ring_init(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX], 64 * 1024); evergreen_uvd_init(rdev); rdev->ih.ring_obj = NULL; r600_ih_ring_init(rdev, 64 * 1024); r = r600_pcie_gart_init(rdev); if (r) return r; rdev->accel_working = true; r = evergreen_startup(rdev); if (r) { dev_err(rdev->dev, "disabling GPU acceleration\n"); r700_cp_fini(rdev); r600_dma_fini(rdev); r600_irq_fini(rdev); if (rdev->flags & RADEON_IS_IGP) sumo_rlc_fini(rdev); radeon_wb_fini(rdev); radeon_ib_pool_fini(rdev); radeon_irq_kms_fini(rdev); evergreen_pcie_gart_fini(rdev); rdev->accel_working = false; } /* Don't start up if the MC ucode is missing on BTC parts. * The default clocks and voltages before the MC ucode * is loaded are not suffient for advanced operations. */ if (ASIC_IS_DCE5(rdev)) { if (!rdev->mc_fw && !(rdev->flags & RADEON_IS_IGP)) { DRM_ERROR("radeon: MC ucode required for NI+.\n"); return -EINVAL; } } return 0; } void evergreen_fini(struct radeon_device *rdev) { radeon_pm_fini(rdev); radeon_audio_fini(rdev); r700_cp_fini(rdev); r600_dma_fini(rdev); r600_irq_fini(rdev); if (rdev->flags & RADEON_IS_IGP) sumo_rlc_fini(rdev); radeon_wb_fini(rdev); radeon_ib_pool_fini(rdev); radeon_irq_kms_fini(rdev); uvd_v1_0_fini(rdev); radeon_uvd_fini(rdev); evergreen_pcie_gart_fini(rdev); r600_vram_scratch_fini(rdev); radeon_gem_fini(rdev); radeon_fence_driver_fini(rdev); radeon_agp_fini(rdev); radeon_bo_fini(rdev); radeon_atombios_fini(rdev); kfree(rdev->bios); rdev->bios = NULL; } void evergreen_pcie_gen2_enable(struct radeon_device *rdev) { u32 link_width_cntl, speed_cntl; if (radeon_pcie_gen2 == 0) return; if (rdev->flags & RADEON_IS_IGP) return; if (!(rdev->flags & RADEON_IS_PCIE)) return; /* x2 cards have a special sequence */ if (ASIC_IS_X2(rdev)) return; if ((rdev->pdev->bus->max_bus_speed != PCIE_SPEED_5_0GT) && (rdev->pdev->bus->max_bus_speed != PCIE_SPEED_8_0GT)) return; speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); if (speed_cntl & LC_CURRENT_DATA_RATE) { DRM_INFO("PCIE gen 2 link speeds already enabled\n"); return; } DRM_INFO("enabling PCIE gen 2 link speeds, disable with radeon.pcie_gen2=0\n"); if ((speed_cntl & LC_OTHER_SIDE_EVER_SENT_GEN2) || (speed_cntl & LC_OTHER_SIDE_SUPPORTS_GEN2)) { link_width_cntl = RREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL); link_width_cntl &= ~LC_UPCONFIGURE_DIS; WREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL, link_width_cntl); speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); speed_cntl &= ~LC_TARGET_LINK_SPEED_OVERRIDE_EN; WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, speed_cntl); speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); speed_cntl |= LC_CLR_FAILED_SPD_CHANGE_CNT; WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, speed_cntl); speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); speed_cntl &= ~LC_CLR_FAILED_SPD_CHANGE_CNT; WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, speed_cntl); speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); speed_cntl |= LC_GEN2_EN_STRAP; WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, speed_cntl); } else { link_width_cntl = RREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL); /* XXX: only disable it if gen1 bridge vendor == 0x111d or 0x1106 */ if (1) link_width_cntl |= LC_UPCONFIGURE_DIS; else link_width_cntl &= ~LC_UPCONFIGURE_DIS; WREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL, link_width_cntl); } } void evergreen_program_aspm(struct radeon_device *rdev) { u32 data, orig; u32 pcie_lc_cntl, pcie_lc_cntl_old; bool disable_l0s, disable_l1 = false, disable_plloff_in_l1 = false; /* fusion_platform = true * if the system is a fusion system * (APU or DGPU in a fusion system). * todo: check if the system is a fusion platform. */ bool fusion_platform = false; if (radeon_aspm == 0) return; if (!(rdev->flags & RADEON_IS_PCIE)) return; switch (rdev->family) { case CHIP_CYPRESS: case CHIP_HEMLOCK: case CHIP_JUNIPER: case CHIP_REDWOOD: case CHIP_CEDAR: case CHIP_SUMO: case CHIP_SUMO2: case CHIP_PALM: case CHIP_ARUBA: disable_l0s = true; break; default: disable_l0s = false; break; } if (rdev->flags & RADEON_IS_IGP) fusion_platform = true; /* XXX also dGPUs in a fusion system */ data = orig = RREG32_PIF_PHY0(PB0_PIF_PAIRING); if (fusion_platform) data &= ~MULTI_PIF; else data |= MULTI_PIF; if (data != orig) WREG32_PIF_PHY0(PB0_PIF_PAIRING, data); data = orig = RREG32_PIF_PHY1(PB1_PIF_PAIRING); if (fusion_platform) data &= ~MULTI_PIF; else data |= MULTI_PIF; if (data != orig) WREG32_PIF_PHY1(PB1_PIF_PAIRING, data); pcie_lc_cntl = pcie_lc_cntl_old = RREG32_PCIE_PORT(PCIE_LC_CNTL); pcie_lc_cntl &= ~(LC_L0S_INACTIVITY_MASK | LC_L1_INACTIVITY_MASK); if (!disable_l0s) { if (rdev->family >= CHIP_BARTS) pcie_lc_cntl |= LC_L0S_INACTIVITY(7); else pcie_lc_cntl |= LC_L0S_INACTIVITY(3); } if (!disable_l1) { if (rdev->family >= CHIP_BARTS) pcie_lc_cntl |= LC_L1_INACTIVITY(7); else pcie_lc_cntl |= LC_L1_INACTIVITY(8); if (!disable_plloff_in_l1) { data = orig = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_0); data &= ~(PLL_POWER_STATE_IN_OFF_0_MASK | PLL_POWER_STATE_IN_TXS2_0_MASK); data |= PLL_POWER_STATE_IN_OFF_0(7) | PLL_POWER_STATE_IN_TXS2_0(7); if (data != orig) WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_0, data); data = orig = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_1); data &= ~(PLL_POWER_STATE_IN_OFF_1_MASK | PLL_POWER_STATE_IN_TXS2_1_MASK); data |= PLL_POWER_STATE_IN_OFF_1(7) | PLL_POWER_STATE_IN_TXS2_1(7); if (data != orig) WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_1, data); data = orig = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_0); data &= ~(PLL_POWER_STATE_IN_OFF_0_MASK | PLL_POWER_STATE_IN_TXS2_0_MASK); data |= PLL_POWER_STATE_IN_OFF_0(7) | PLL_POWER_STATE_IN_TXS2_0(7); if (data != orig) WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_0, data); data = orig = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_1); data &= ~(PLL_POWER_STATE_IN_OFF_1_MASK | PLL_POWER_STATE_IN_TXS2_1_MASK); data |= PLL_POWER_STATE_IN_OFF_1(7) | PLL_POWER_STATE_IN_TXS2_1(7); if (data != orig) WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_1, data); if (rdev->family >= CHIP_BARTS) { data = orig = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_0); data &= ~PLL_RAMP_UP_TIME_0_MASK; data |= PLL_RAMP_UP_TIME_0(4); if (data != orig) WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_0, data); data = orig = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_1); data &= ~PLL_RAMP_UP_TIME_1_MASK; data |= PLL_RAMP_UP_TIME_1(4); if (data != orig) WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_1, data); data = orig = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_0); data &= ~PLL_RAMP_UP_TIME_0_MASK; data |= PLL_RAMP_UP_TIME_0(4); if (data != orig) WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_0, data); data = orig = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_1); data &= ~PLL_RAMP_UP_TIME_1_MASK; data |= PLL_RAMP_UP_TIME_1(4); if (data != orig) WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_1, data); } data = orig = RREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL); data &= ~LC_DYN_LANES_PWR_STATE_MASK; data |= LC_DYN_LANES_PWR_STATE(3); if (data != orig) WREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL, data); if (rdev->family >= CHIP_BARTS) { data = orig = RREG32_PIF_PHY0(PB0_PIF_CNTL); data &= ~LS2_EXIT_TIME_MASK; data |= LS2_EXIT_TIME(1); if (data != orig) WREG32_PIF_PHY0(PB0_PIF_CNTL, data); data = orig = RREG32_PIF_PHY1(PB1_PIF_CNTL); data &= ~LS2_EXIT_TIME_MASK; data |= LS2_EXIT_TIME(1); if (data != orig) WREG32_PIF_PHY1(PB1_PIF_CNTL, data); } } } /* evergreen parts only */ if (rdev->family < CHIP_BARTS) pcie_lc_cntl |= LC_PMI_TO_L1_DIS; if (pcie_lc_cntl != pcie_lc_cntl_old) WREG32_PCIE_PORT(PCIE_LC_CNTL, pcie_lc_cntl); }